
Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 415182, 8 pages
doi:10.1155/2012/415182

Research Article

Multidomain Hierarchical Resource Allocation for
Grid Applications

Mohamed Abouelela and Mohamed El-Darieby

Software Systems Engineering Department, University of Regina, Regina, SK, Canada S4S 0A2

Correspondence should be addressed to Mohamed Abouelela, mmostafa79@gmail.com

Received 4 May 2012; Revised 4 August 2012; Accepted 5 August 2012

Academic Editor: Fangwen Fu

Copyright © 2012 M. Abouelela and M. El-Darieby. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Geographically distributed applications in grid computing environments are becoming more and more resource intensive. Many
applications require the collaboration between different domains, may be independently administrated domains, to exchange
data and share computing and storage resources. This collaboration should be done in a way that maintains the privacy of each
participant domain. This calls for new architectures and approaches to deal with such multidomain environments. We propose
a hierarchical-based architecture as well as multidomain hierarchical resource allocation approach. The resource allocation is
performed in a distributed way among different domains such that each participant domain keeps its internal topology and
private data hidden while sharing abstracted information with other domains. Both computing and networking resources are
jointly scheduled while optimizing the application completion time taking into account data transfer delays. Simulation results
show the scalability and feasibility of the proposed approach.

1. Introduction

An increasing number of scientific and enterprise applica-
tions are becoming dependent on high performance com-
puting (HPC) environments. In general, these applications
are computation- and communication-intensive as they
process very large amounts of datasets. The datasets of the
applications and the resources required are geographically
distributed across the grid.

The grid is an interconnected multidomain environment
where each domain consists of computational, storage, and
communication resources grouped together for business
or administrative reasons. Each domain is independently
administrated and is free to deploy different technologies.
Meeting resource requirements of HPC applications gener-
ally requires allocating resources across a number of grid
domains without sacrificing domain security or privacy
requirements. This calls for novel multidomain scalable and
reliable grid architectures, mechanisms, and algorithms that
keep the balance between integration and privacy.

In general, grid systems should maintain scalability,
reliability, domain privacy, and integration requirements.

a scalable grid system implies maintaining acceptable per-
formance as the number of domains increase and as the
workload on the system intensifies. Reliability implies the
ability of the architecture to recover from resource failures in
acceptable time. Grid resource integration is a basic concept
in grid computing systems that results in better overall
system performance and resource utilization. The privacy of
a grid domain must be maintained in for confidentiality and
commercial competition.

In this paper, we propose hierarchical-based architec-
ture. Hierarchical architecture is typically used to handle
scalability and privacy problems [1]. The proposed hierar-
chical architecture helps in keeping domain privacy while
integrating with other domains. For each domain, different
computing and networking resource parameters including
internal topology and resource status information are kept
internally, while abstracted values for these parameters are
shared with other domains. The abstracted values are to be
sent to a higher level resource manager to help in taking
the resource allocation decisions at the interdomain level.
A multidomain hierarchical resource allocation approach is
used for resource allocation.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/194788582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Journal of Electrical and Computer Engineering

The multidomain hierarchical allocation approach is
carried out in a distributed manner. Each domain executes
intradomain coallocation algorithms to allocate its own
resources. Moreover, different domains coordinate with
each other for resource allocation at the interdomain level
and over all hierarchical levels. The approach relies on
coallocation algorithm that jointly allocate computing and
networking resources considering both data execution and
data transfer times. We focus on a computation- and
communication-summarized in section intensive applica-
tion where data is stored at different sites across multidomain
network and can be divided into independent subsets to
be processed in parallel at different locations. This type of
application is called Divisible Load application.

The rest of the paper is organized as follows: related work
is summarized in Section 2. The proposed architecture is
described in Section 3, while the multidomain hierarchical
resource allocation approach is explained in Section 4.
Experiments setup is explained in Section 5, while results and
discussions are provided in Section 6. Finally, conclusions are
offered at the end of the paper.

2. Related Work

Resource allocation in high performance grid computing
is an area of ongoing research and development. Many
researches were conducted illustrating the joint allocation
approach and showing the advantage of it over the separated
one [2–6]. Most of these efforts assume a centralized resource
manager that has a complete vision of network topology
as well as networking and computing resources status.
This assumption is not valid for large-scale worldwide grid
networks. Practically, grid network comprises geographically
distributed heterogeneous resources interconnected by mul-
tidomains networks. Each domain is managed by a local
domain grid manager that is usually not willing to share its
internal domain information to others due to security and
business confidentiality reasons. Moreover, maintaining and
managing, in one centralized location, dynamic data coming
from heterogeneous resources located in multidomain envi-
ronments added a serious difficulty to the resource allocation
process. To deal with such multidomain environments,
two solutions were presented in the literature: network
virtualization [5, 7, 8] and harmony [9].

Network virtualization separates logical network, called
virtual network, from the substrate infrastructure net-
work resources by dividing the role of the traditional
service provider into two independent entities: infrastruc-
ture provider, who manages the substrate infrastructure
network resources and service provider, who creates the
virtual network by aggregating network resources from
multiple infrastructure providers to build the network
topology. A number of projects were already developed
providing network virtualization over multiple domains [5,
8].

Using network virtualization as a solution of multido-
main joint scheduling problem in grid computing environ-
ment is proposed in [5]. The authors proposed a virtualized

optical network (VON) service composition framework for
grid applications. Upon application task arrival, the virtual
network topology is generated, and the joint scheduling
starts over the virtualized network. Then, the virtualized
network is release after finishing the task. Using network
virtualization as described in [5] has many drawbacks. Net-
work virtualization is still an evolving technique facing many
challenges and enclosing lots of complexities [7]. Integrating
multidomain joint scheduling problem within the network
virtualization framework increases the complexity of the
system without any clear advantage. One of the major
drawbacks is the proposed virtualized network topology
design. The proposed topology design uses bounds for the
maximum amount of the expected traffic to calculate the
minimum bandwidth to be reserved. This topology design
does not take into account the availability of computational
resources. It is not acceptable to consider just the expected
traffic bounds while designing a topology that will be used
in joint computing and networking resource scheduling.
Ignoring computational resources capacity and availability
may affect the overall performance significantly specially in
computational intensive applications.

Harmony [9] is the network resource brokering system
in Phosphorus Research Project [10]. The objective of Phos-
phorus project is to provide on-demand and end-to-end
provisioning of computing and networking resources in mul-
tidomain and multitechnology environments. The workflow
when a grid task received is as follows. After the authenti-
cation, the availability of the requested resources is verified.
Then, the end-to-end path is allocated in two phases. In the
first phase, the interdomain path is selected by the inter-
domain broker (IDB) module. In the second phase, a Net-
work Resource Provisioning System (NRPS) module in each
independent domain calculates the intradomain path. The
intradomain topology for each domain is totally hidden from
other domains and from IDB. Only border endpoints and
interdomain links are exported. The organization of IDBs
can be done in centralized, hierarchical, and distributed
manner.

The proposed Harmony system for multidomain reser-
vation is promising. It shows how different domains can
interact to provide end-to-end connectivity and allocate
the required networking resources, while maintaining the
confidentiality for each domain. The main concern of
this work is the allocation of the networking resource in
multidomain environment, while the joint allocation of the
computing and networking resources is not presented. It is
just stated that they assumed that the computing resources
are scheduled prior to path setup request.

In this paper, we extended the hierarchical architecture of
the Harmony system to jointly schedule both computing and
networking resources in multidomain environment. Each
domain will maintain its structure and topology internally,
while share an abstracted data about its computing and
networking resources status with its Resource Manager
(RM). The RM is similar to IDB in Harmony system
with extended functionality to manage both computing
and networking resources. The RMs are to be arranged in
a multilevel hierarchical architecture. New approaches to

Journal of Electrical and Computer Engineering 3

schedule divisible load applications in such multidomain
hierarchical architecture are to be introduced.

Scheduling divisible load applications in distributed
environments is frequently discussed in the literature. divis-
ible load theory (DLT) has been successfully applied to
parallel and distributed systems, as well as to grid comput-
ing environment [11–13]. Genetic-algorithms (GA)-based
approaches were also proposed to schedule Divisible Loads
[2, 14]. Integer linear programming has also been introduced
to model such problems [13].

3. Proposed Architecture

3.1. Problem Statement. HPC grid computing applications
require heterogeneous and geographically distributed com-
puting resources interconnected by multidomain networks.
Cooperation among domains, without sacrificing domain
privacy, to allocate resources is required to execute such
applications. For example, internal topology information of
a domain should not be revealed to other domains [9].
This calls for a novel and scalable architecture allowing
the integration between domains while keeping the privacy
of each domain is required. We focus on divisible load
applications in multidomain environment where application
data is originally stored in geographically distributed sites
and is divided into independent subsets to be executed
in parallel at distributed data-processing sites. Those sites
belong to different independently administrated domains.
The performance of these applications can be optimized by
concurrent execution of data processing tasks at different
processing sites with different input datasets.

Such applications are modelled as data processing jobs
requiring large logical input dataset, D, of total size L. D
is divided into n physical datasets stored at different data
sources DSk, where k = 1, . . . ,n. Each physical dataset k
has a size Lk, where

∑n
k=1 Lk = L. Those datasets are to be

divided into n datasets to be executed at n different sites, and
assign the required computing and networking resources. We
assume that divisible data can be executed at any site using
the same data processing algorithm.

The optimization (scheduling) problem is to minimize
the maximum completion time by deciding on portions of
datasets to be executed at each site (either executed at sites
belonging to the same domain or different domains) and
assigning necessary inter- and intradomain computing and
networking resources.

3.2. Hierarchical Architecture. Hierarchical architecture is
typically used to handle scalability and privacy problems
[1]. In hierarchical architecture, sites with storage and com-
puting resources are organized into different interconnected
subnetworks (domains). A domain consists of a number
of interconnected sites. A RM manages and maintains
topological and state information about different computing
and networking resources in a domain. The process of
grouping sites (at one hierarchy level) into logical domains
and abstracting such domains via a RM (at the next higher
level) is done at all levels of the hierarchy (see Figure 1).

RM-0 RM-2 RM-1

Domain 0 Domain 1Domain 2

Level 1

Level 2

Level 0

Root
RM

Figure 1: Two levels of hierarchical grid architecture.

Figure 1 shows a screenshot for a two levels hierarchical
grid architecture. Level-0 nodes (square shape) represent
data-processing sites, for example, computing clusters, or
super computers containing storage and processing capabil-
ities. Different sites and links have different computational
and networking capabilities. Different sites are grouped into
domains. This does not violate the special case by which
single site can be considered as a domain. Each domain is
managed by a level-1 RM (circular shape). Vertical line rep-
resents dedicated control channels between level-1 RM and
the corresponding domain sites. Level-1 RMs are grouped
into domains. Level-1 domains are managed by Level-2 RM
which aggregates the collected information by level-1 RMs.
In this two levels example, Level-2 RM is known as the root
RM.

Level-0 horizontal links presents inter- and intradomain
links available for data transfers. Level-1 horizontal links
connecting level-1 RMs are virtual links. Virtual links
represent the aggregated topology of the corresponding level-
0 interdomain links, by which Level-0 interdomain links are
aggregated and represented by level-1 links. The capacity
of level-1 virtual link is the summation of the capacities
of the corresponding level-0 interdomain links. At each
level in the hierarchy, networking and computing resource
status information is aggregated by the corresponding RM,
abstracted and sent to parent RM. Within this architecture,
we assume the following.

(i) RMs are connected to each other and to physical sites
with fault tolerant connections (control channels).

(ii) Due to privacy considerations, complete data for each
site, including its internal topology and static and
dynamic resource status data, is available only for its
domain RM.

(iii) An RM shares border end points and interdomain
links data for its managed domain with its parent
RM.

(iv) An RM maintains complete vision for the sites
connected directly to it, and summarized vision
(abstracted parameters) of the sites managed by its
children RMs.

4 Journal of Electrical and Computer Engineering

4. Multidomain Hierarchical Resource
Allocation Approach

The resource allocation is carried out in a distributed manner
at RMs from different domain and different hierarchical
levels. The first step starts by executing resource coallocation
algorithm at the root RM with the objective of achieving load
balance and minimizing the application completion time.
The algorithm defines interdomain data transfer requests.
In the following step, the data transfer requests are sent
down the hierarchy to children RMs. Children RMs apply
intradomain resource allocation algorithm to allocate their
own resources independently. This step is repeated down
the hierarchy until the data transfer requests reaches Level-
0 sites. If a RM couldont find enough resources to fulfil the
requests, a relocate message is to be sent up the hierarchy to
its parent RM to relocate the request load to another RM.

The process starts, as the system receives a job request for
divisible load application, at the root RM, assumed at level k.
The RootRM calculates the level k−1 RMs that have enough
resources to meet application request. The rootRM defines a
list of data transfer requests for each of the level k−1 RM that
is expected to participate in serving the application request.
Each data transfer request is defined by five components:
source, destination, value-to-transfer, path and start-time.
The source is a node with a number of datasets (equals to the
value-to-transfer) to be executed remotely at the destination.
Those datasets should be sent at a certain time (start-time)
and should follow a certain path. The path is defined as a
number of links connecting source and destination nodes. At
level k−1, the RMs schedule their resources according to the
requests by their parent RM. This process is repeated at each
level in the hierarchy until Level 0 sites receives the resource
allocation requests. This completes the scheduling process.

For example, consider the grid architecture introduced
in Figure 1. The resource allocation is done first at root RM,
which defines a list of data transfer requests. Assume that one
of the defined requests is source = RM-0, destination = RM-
1, start time = 40 s, value-to-transfer = 20 datasets, and path =
RM-0⇒RM-2⇒RM-1 (the interdomain path). This request
is to be sent to all the RMs involved in this task (RM-0,
RM-1, and RM-2). Then, the scheduling starts at those RMs
to allocate the required internal resources to complete those
requests and provide end to end connectivity. The scheduling
at each of the three RMs results in new lists of requests. Those
lists are to be sent to the sites at level 0.

The detailed algorithm at each RM is comprised of the
following three steps, described in the following subsections.

4.1. Handling Parent Data Transfer Requests. The process at
a level j RM starts by receiving a list of data transfer requests
from its parent RM at level j + 1. Those requests should
be handled first by allocating the necessary computing
and networking resources. A resource allocation greedy
algorithm is called to allocate the needed resources. This
greedy algorithm will be explained in Section 4.3. The RM
defines the set of need computing and networking resources
according to its role in parent request. Generally, the RM can

play one of the following roles: source role, destination role,
and transit role.

(i) Source Role. If the data transfer request defines the
RM as a source node, then a number of datasets,
equals to the value-to-transfer, should be sent out
of the domain managed by this RM to a Predefined
interdomain link at, or before, task start-time. The
RM should allocate the required internal networking
resources to transfer the task data to the border node
connected to the predefined interdomain link.

(ii) Destination Role. If the data transfer request defines
the RM as a destination node, then the domain
managed by this RM expects a certain number of
datasets to arrive to a certain border node through
a certain interdomain link. The required computing
and networking resources should be assigned to
execute or analyze the coming data internally.

(iii) Transit Role. If the data transfer request defines the
RM as a transit node (one of the intermediate nodes
defined in the path field of the request), then the
managed domain expects a certain amount of data to
arrive to a certain border node and the same amount
of data to send out from another border node. The
RM should provide the internal networking resources
to connect those two border nodes to complete the
interdomain path end to end connectivity.

4.2. Optimal Load Distribution Calculation. Allocating the
necessary resources to handle parent request may result in
unbalanced-load distribution among different computing
units. Therefore, load balancing is needed to ensure that the
computing units in the participant sites (or domains) will
finish the load processing at the same time. Assuming n sites,
Li, for all i ∈ 1, . . . ,n defines the current load distribution
(before load balancing). The objective of the load balancing is
to define the optimal load distribution αi, for all i ∈ 1, . . . ,n.
αi defines the number of datasets that should be allocated for
each site i for optimal load distribution. Different algorithms
could be used to calculate the optimal load distribution.
in this paper, we will use Network Aware Divisible Load
Algorithm (NADLA) [15]. NADLA is a simple, light-weight
and fast load balancing algorithm based on divisible load
theory. It considers network availability and connectivity
while deciding on load distribution.

4.3. Resource Allocation Greedy Algorithm at Each RM.
After defining the optimal load distribution, a set of data
transfer requests should be defined to execute the new
load distribution, and different computing and networking
resources should be allocated. The resource allocation greedy
algorithm (Algorithm 1) is used to define the requestlist
(the set of data transfer requests). The algorithm starts
with an empty requestlist (step 1). Then, the difference
between the optimal load distribution αi and the current load
distribution Li is calculated for each site i. This difference
represents the portions of data to be transferred to/from each
site i. This value can be positive, negative, or zero. Positive

Journal of Electrical and Computer Engineering 5

1: Set RequestList = {}
2: Calculate αi − Li,∀i ∈ 1, ...,n
3: whileαi − Li /= 0,∀i ∈ 1, ...,n do
4 : Set dest = i, such that (αi − Li) is max
5 : Set SourceList = {i},∀i ∈ 1, ...,n&αi − Li ≤ 0
6 : for each source ∈ SourceList do
7 : Calculate Pathsource,dest and

PathWaitingTimesource,dest

8 : end for
9 : Select source from SourceList such that

PathWaitingTimesource,dest is minimum
10 : Set ValueToTrans f er = min[abs(αsource −

Lsource), abs(αdest − Ldest)]
11 : RequestList+ = newTask(source,dest,

ValueToTras f er,Pathsource,dest ,Trans f erTime)
12 : Set Lsource− = ValueToTrans f er
13 : Set Ldest+ = ValueToTrans f er
14 : Update links with the new reservations
15: end while
16: Populate RequestList

Algorithm 1: Resource allocation greedy algorithm.

values mean data sink site (destination receiving data to be
executed internally), while negative values mean data source
sites (sites containing extra-data to be executed in remote
site).

The algorithm iterates until the current load distribution
equals to the optimal load distribution at all sites. In
each iteration, the dest site is selected first as the less
loaded site; αi − Li is maximum. Then, a SourceList list
is defined containing all sites having extra-load; αi − Li is
negative. The source site is selected from this list with the
objective of minimizing the path waiting time. The shortest
paths between the dest site and each site in the SourceList
are calculated, and the site with minimum path waiting
time is selected. A new data transfer request is added to
the RequestList. Finally, the source and destination Loads
(Lsource and Ldest) and Links schedules should be updated
accordingly.

5. Experiment Setup

Simulation experiments were conducted to evaluate the
performance of proposed architecture as well as the mul-
tidomain resource allocation approach. A wide range of dif-
ferent parameters was considered to cover different network
topologies, application types, and algorithms. Up to 10 runs
are carried out for each experiment and their results are
averaged for 95% confidence intervals.

Simulations were conducted using OMNET++ network
simulator (http://www.omnetpp.org/). OMNET++ is a C++
open source discrete event simulator. OMNET++ is highly
modular and well-structured simulator. It provides realistic
and accurate network models for different protocols and
architectures. We developed our own modules to support

multilevel hierarchical architecture and grid computing
functionality.

Different network topologies were generated with a
wide range of parameter variations matching the network
architecture proposed in Section 3.2. Different network sizes,
the number of level 0 sites, were considered, varying from
16 sites up to 1000 sites. Sites were grouped into domains
to construct multilevel hierarchies up to 5 levels. Networks
with different average node degree d: the number of links
connecting this node to other nodes, were considered. The
average node degree values are varying from 2 to 8. Different
bandwidth values for interdomain and intradomain links
were considered.

Moreover, different application load sizes were examined
starting from an average of 25 datasets per source site
to 3000 datasets per site, while the unit dataset size was
fixed to be 1 Gbit. As the datasets per source site increases,
the application becomes more data-intensive. Different
applications may have different processing capacities (time
to process a unit dataset) even on the same site. As the
processing capacity increases, the application goes to be more
computationally intensive. In our simulations, we considered
three application categories: data intensive applications,
intermediate applications, and computationally intensive
applications. To differentiate between those three categories,
the average site processing capacities is set to 5, 25, and 100
second/unit dataset for the three categories, respectively.

The following metrics have been used to evaluate the
performance of the hierarchical scheduling as well as the
proposed architecture.

(i) The application completion time, which is the max-
imum task completion time over all the sites. It is
measured from the task arrival time, until the last site
finishes data processing.

(ii) Scheduling time, which is the time consumed inside
the RMs to come to a decision on scheduling and
resource allocation. For hierarchical scheduling, the
scheduling time is calculated as the summation of
scheduling times over all RMs.

(iii) Standard Deviation in resource utilization (SD), which
is a metric of the system load balancing by measuring
the variations in resource utilization. It is calculated
as the standard deviation in resource utilization for
both links and computing resource units. Resource
utilization is calculated as the percentage of time by
which the resource is busy, so the SD is calculated as a
percentage. SD = 0% reflects optimal load balancing,
that all the resources are utilized equally.

6. Results and Discussion

6.1. Hierarchical versus Centralized. The hierarchical and
centralized architectures are compared for different network
sizes varying from 16 sites network up to 1024 sites network.
The number of hierarchical levels is fixed to two levels for all
hierarchical networks; also the average node degree is fixed
to 4.

6 Journal of Electrical and Computer Engineering

0

2000

4000

6000

8000

10000

12000

14000

A
pp

lic
at

io
n

 c
om

pl
et

io
n

 t
im

e
(s

)

Number of sites

Centralized
Hierarchical

16 25 36 49 64 81 100 144 400 1024

(a) Application completion time

1
16 25 36 49 64 81 100 144 400 1024

10

100

1000

10000

Sc
h

ed
u

lin
g

ti
m

e
(s

)

Number of sites

Centralized
Hierarchical (total time)
Hierarchical (actual time)

(b) Scheduling time

Figure 2: Hierarchical versus centralized for different network sizes.

Figure 2(a) shows the application completion time for
both centralized and hierarchical architectures. It is clear that
for small size networks (16,25 & 36 sites) the two architec-
tures results in almost the same application completion time.
As increasing the network size the centralized architecture
results in significant increase in the application completion
time, while the hierarchical architecture results in slight
increase in the application completion time.

The scheduling time for both architectures, shown on the
y-axis in Figure 2(b), (log scale is used for the y-axis for
better visualization of results). For hierarchical architecture,
two values for the scheduling time were measured: the total
scheduling time and the actual scheduling time. The total
time is measured as the summation of the scheduling task
times in all the RMs, while the actual time is the actual task
scheduling time by considering that the RMs at the same level
are running in parallel. This is one of the advantages of the
hierarchical architecture, that the scheduling is distributed
among a number of RMs running in parallel, which results
in significant deduction in scheduling time. As shown in
Figure 2(b), the hierarchical architecture outperforms the
centralized one for the scheduling time.

A significant reduction in the scheduling time is measured
when using the hierarchical one especially for large size
networks when compared to centralized architectures. The
reduction is around 90% for small size networks (16 & 25
sites networks), while it reaches around 98% for large size
networks (1024 sites network). This comes at a specific cost
that will be discussed below. The scheduling time for cen-
tralized architecture increases significantly as increasing the
network size. For example, as increasing the number of sites
from 25 to 49, the scheduling time increases by a factor of 2,
while increasing the number of sites from 400 to 1024 results
in increase by a factor of 5. On the other hand, for hierarchi-
cal architecture, the scheduling time increases by a factor of
1.65 while increasing the number of sites from 400 to 1024.

6.2. Effect of Hierarchy Depth. To evaluate the effect of the
depth of hierarchy, different networks with fixed number
of sites (250 site) were used while varying the number of
hierarchical levels from 2 to 5. The depth of the hierarchy
is evaluated for the three application categories and the
results are shown in Figures 3(a), 3(b), 3(c), and 3(d). It
is shown in Figure 3(a) that application completion time
is not affected by increasing the depth of the hierarchy
for networks with different hierarchical levels. Figure 3(b)
shows a decrease in the scheduling time as increasing the
depth of the hierarchy for the three application categories. In
addition, a small decrease in the standard deviation in links
utilization is reported (Figure 3(c)). This means better load
balancing among different links as increasing the depth of
the hierarchy. Figure 3(d) shows no notable change in the
standard deviation in computing units utilization as increasing
the depth of the hierarchy.

Those advantages in scheduling time could be verified
analytically. The time of the scheduling algorithm executed
at each RM depends mainly on the number of sites in the
managed domain. Assuming that we have a total of N sites
grouped into domains in L hierarchical levels. Then, the
number of nodes in each domain follows the exponential
function N1/L. Then, the scheduling time at each RM will
follow the same function and decrease exponentially with
respect to the number of levels. Assuming that all the RMs
at the same level are running in parallel, then the actual
scheduling time equals to the result of multiplying the
scheduling time at one RM by the number of levels.

Those advantages in the scheduling time as using the
hierarchical architecture as increasing the depth of the
hierarchy come at the cost of increasing the control overhead.
Increasing the depth of the hierarchy increases the required
number of RMs to manage the system for networks with
the same size. For example, increasing the depth of the
hierarchy from 2 to 5 increases the number of RMs by

Journal of Electrical and Computer Engineering 7

1

10

100

1000

10000

100000

Intermediate

A
pp

lic
at

io
n

 c
om

pl
et

io
n

 t
im

e
(s

)

Application category

Data intensive Compute intensive

(a) Application completion time

0

200

400

600

800

1000

1200

Sc
h

ed
u

lin
g

ti
m

e
(s

)

Intermediate

Application category

Data intensive Compute intensive

(b) Scheduling time

0

5

10

15

20

25

30

Data intensive Intermediate

SD
 (

lin
ks

)
(%

)

Application category

2-levels
3-levels

4-levels

5-levels

Compute intensive

(c) SD (links)

0

5

10

15

20

25

SD
 (

co
m

pu
ti

n
g

u
n

it
s)

 (
%

)

Intermediate

Application category

Data intensive Compute intensive

2-levels
3-levels

4-levels

5-levels

(d) SD (computing units)

Figure 3: The Effect of depth of hierarchy for different application categories.

a factor of 7. Controlling and maintaining this hierarchical
structure increases the cost and complexity as increasing the
number of RMs. This increases the control overhead and
communication complexity. In [1], a study of a hierarchical
routing protocol reported a notable increase in path setup
time and communication overhead as increasing the depth
of the hierarchy.

6.3. Effect of Node Degree. To study the effect of average
node degree (d), networks with different sizes and average
node degrees were considered. As shown in Figure 4(a), for
small size network (25 sites network), no significant change
in application completion time is reported as increasing the
average node degree, while for larger size networks (64, 144
& 400 sites networks), a notable deduction in application
completion time is reported while increasing the average node
degree from 2 to 4. Increasing the average node degree
more than 4 results in no notable improvement in the
application completion time for all the tested network sizes.
Figure 4(b) shows a very small increase in scheduling time as
increasing the average node degree. Those results can help in
network dimensioning problem to select the optimal value

for the average node degree that reduces the application
completion time, while minimizing the number of links. The
dimensioning problem is out of scope of this paper and may
be considered in the future.

7. Concluding Remarks

The proposed hierarchical architecture as well as the mul-
tidomain hierarchical resource allocation approach provided
a novel solution for the joint resource allocation prob-
lem in multidomain grid environments. The hierarchical
architecture maintained the scalability and privacy of the
grid system. The proposed architecture helped in keeping
the domain privacy while integrating with other domains.
Domain internal topology and resource status information
were kept internally, while sharing abstracted parameters
with other domains. The multidomain hierarchical resource
allocation approach was carried out in a distributed manner
where each domain executes intradomain joint scheduling
algorithm to schedule its own resources. Moreover, the
process involved coordinating the resource allocation at the
interdomain level and over all hierarchical levels.

8 Journal of Electrical and Computer Engineering

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

25 64 144 400

A
pp

lic
at

io
n

 c
om

pl
et

io
n

 t
im

e
(s

)

Number of sites

d = 2
d = 4

d = 6
d = 8

(a) Application completion time

0

5

10

15

20

25

30

35

40

Sc
h

ed
u

lin
g

ti
m

e
(s

)

25 64 144 400

Number of sites

d = 2
d = 4

d = 6
d = 8

(b) Scheduling time

Figure 4: Effect of average node degree for different network sizes.

Simulations were conducted to evaluate the performance
in terms of application completion time, scheduling time,
and resource utilization for different network topologies,
application types, and algorithms. The proposed hierarchical
architecture proved its scalability and feasibility. Increasing
the hierarchical depth results in better scheduling time
and load balancing. Those advantages came at the cost of
increasing control overhead. In the future, other research
work will be conducted based on the proposed hierarchical
architecture and hierarchical resource allocation approach.
Analysing and evaluating different aggregation procedures
is one of our future goals. In addition, introducing fault
management mechanism will be considered.

References

[1] M. El-Darieby, D. Petriu, and J. Rolia, “Load-balancing data
traffic among inter-domain links,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 5, pp. 1022–1033, 2007.

[2] M. Abouelela and M. El-Darieby, “Co-scheduling computa-
tional and networking resources in E-science optical grids,”
in Proceedings of the 53rd IEEE Global Communications
Conference (GLOBECOM ’10), pp. 1–5, Miami, FLa, USA,
December 2010.

[3] N. Charbonneau, V. M. Vokkarane, C. Guok, and I. Monga,
“Advance reservation frameworks in hybrid IP-WDM net-
works,” IEEE Communications Magazine, vol. 49, no. 5, pp.
132–139, 2011.

[4] M. Koseoglu and E. Karasan, “Joint resource and network
scheduling with adaptive offset determination for optical burst
switched grids,” Future Generation Computer Systems, vol. 26,
no. 4, pp. 576–589, 2010.

[5] Y. Wang, Y. Jin, W. Guo, W. Sun, and W. Hu, “Virtualized
optical network services across multiple domains for grid
applications,” IEEE Communications Magazine, vol. 49, no. 5,
pp. 92–101, 2011.

[6] G. Zervas, E. Escalona, R. Nejabati et al., “Phosphorus
grid-enabled GMPLS control plane (G2MPLS): architectures,

services, and interfaces,” IEEE Communications Magazine, vol.
46, no. 6, pp. 128–137, 2008.

[7] N. M. M. K. Chowdhury and R. Boutaba, “Network vir-
tualization: state of the art and research challenges,” IEEE
Communications Magazine, vol. 47, no. 7, pp. 20–26, 2009.

[8] I. Houidi, W. Louati, W. Ben Ameur, and D. Zeghlache, “Virtu-
al network provisioning across multiple substrate networks,”
Computer Networks, vol. 55, no. 4, pp. 1011–1023, 2011.

[9] A. Willner, C. Barz, J. A. Garcia Espin, J. Ferrer Riera, S.
Figuerola, and P. Martini, “Harmony—advance reservations
in heterogeneous multidomain environments,” in Proceedings
of the 8th International IFIP-TC 6 Networking Conference
(NETWORKING ’09), pp. 871–882, Springer, Berlin, Ger-
many, 2009.

[10] S. Figuerola, N. Ciulli, M. De Leenheer, Y. Demchenko, W.
Ziegler, and A. Binczewski, “Phosphorus: single-step on-
demand services across multi-domain networks for e-science,”
in Proceedings of the Network Architectures, Management, and
Applications V (SPIE ’07), vol. 6784, Wuhan, China, November
2007.

[11] S. Viswanathan, B. Veeravalli, and T. G. Robertazzi, “Resource-
aware distributed scheduling strategies for large-scale com-
putational cluster/grid systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 18, no. 10, pp. 1450–1461, 2007.

[12] C. Yu and D. C. Marinescu, “Algorithms for divisible load
scheduling of data-intensive applications,” Journal of Grid
Computing, vol. 8, no. 1, pp. 133–155, 2010.

[13] P. Thysebaert, B. Volckaert, M. De Leenheer, F. De Turck,
B. Dhoedt, and P. Demeester, “Dimensioning and on-line
scheduling in Lambda Grids using divisible load concepts,”
The Journal of Supercomputing, vol. 42, no. 1, pp. 59–82, 2007.

[14] S. Kim and J. B. Weissman, “A genetic algorithm based
approach for scheduling decomposable Data Grid applica-
tions,” in Proceedings of the International Conference on Parallel
Processing (ICPP ’04), pp. 406–413, August 2004.

[15] M. Abouelela and M. El-Darieby, “Towards network-aware
divisible load theory for optical grids,” in Proceedings of
the IEEE 13th International Conference on High Performance
Computing and Communications (HPCC ’11), pp. 425–431,
September 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

