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Extension of application field of analytical formulas for the computation

of projectile motion in midair
(Extensão do campo de aplicações de fórmulas anaĺıticas para os cálculos do movimento de um projétil no ar)
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The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed.
The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach
is used for the investigation. Application field of the previously obtained approximate analytical formulas has
been expanded both in the upward launch angle , and in the direction of increase of the initial speed of the
projectile. The motion of a baseball is presented as an example. It is shown that in a sufficiently wide ranges of
initial velocity and launch angle the relative error in calculating the distance of the ball does not exceed 1%.
Keywords: spherical object, quadratic drag force, analytical formula, relative error.

O problema clássico do movimento de um ponto material (projétil) jogado com determinado ângulo em
relação à direção horizontal é revisto nesse artigo. A força de resistência do ar é levada em conta, supondo que
o coeficiente de arrastamento seja constante. Uma abordagem anaĺıtica é utilizada para essa investigação. O
campo de aplicação das fórmulas anaĺıticas aproximadas obtidas anteriormente foi expandido tanto em relação ao
ângulo de lançamento quanto em relação aos valores da velocidade inicial do projétil. O movimento de uma bola
de basebol é apresentado como exemplo. Mostra-se que, para intervalos suficientemente amplos de velocidade
inicial e ângulo de lançamento, o erro no cálculo da distância percorrida pela bola não é superior a 1%.
Palavras-chave: objeto esférico, força quadrática de arrastamento, fórmulas anaĺıticas, erro relativo.

1. Introduction

The problem of the motion of a point mass (projec-
tile) thrown at an angle to the horizon has a long his-
tory. The number of works devoted to this task is im-
mense. It is a constituent of many introductory courses
of physics. This task arouses interest of authors as be-
fore [1-6]. With zero air drag force, the analytic solu-
tion is well known. The trajectory of the projectile is
a parabola. In situations of practical interest, such as
throwing a ball, taking into account the impact of the
medium the quadratic resistance law is usually used.
In that case the problem probably does not have an
exact analytic solution and therefore in most scientific
publications it is solved numerically [7-11]. Analytic
approaches to the solution of the problem are not suf-
ficiently advanced. Meanwhile, analytical solutions are
very convenient for a straightforward adaptation to ap-
plied problems and are especially useful for a qualitative
analysis. Therefore the attempts are being continued to
construct analytical solutions (even approximate) for
this problem. Comparativly simple approximate ana-

lytical formulas to study the motion of the point mass
in a medium with a quadratic drag force have been ob-
tained using such an approach [12-14]. These formulas
make it possible to carry out a complete qualitative and
quantitative analysis without using numerical integra-
tion of differential equations of point mass motion. The
proposed analytical solution differs from other solutions
by easy formulas, ease of use and acceptable accuracy.
It is intended to study the motion of a baseball, and
other similar objects.

Present article is largely initiated by the interest-
ing work of Hackborn [4]. In this paper the accuracy
of various analytical approximations of the projectile
trajectories was investigated in the calculation of their
distance in a fairly wide ranges of variation of the ini-
tial velocity and launch angle. The purpose of present
paper is to extend the application field of the formu-
las [12-14] and to compare the accuracy of these for-
mulas for calculating the projectile range with the re-
sults obtained in Ref. [4]. In the paper under con-
sideration the term “point mass” means the center of
mass of a smooth spherical object of finite radius r and
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cross-sectional area S = πr2. The conditions of ap-
plicability of the quadratic resistance law are deemed
to be fulfilled, i.e. Reynolds number Re lies within
1× 103 < Re < 3× 105 [5].

2. Equations of point mass motion and
analytical formulas for basic param-
eters

Suppose that the force of gravity affects the point mass
together with the force of air resistance R (Fig. 1),
which is proportional to the square of the velocity of
the point and directed opposite the velocity vector. For
the convenience of further calculations, the drag force
will be written as R = mgkV 2. Here m is the mass
of the projectile, g is the acceleration due to gravity,
k is the proportionality factor. Vector equation of the
motion of the point mass has the form

mw= mg+R,

where w - acceleration vector of the point mass. Dif-
ferential equations of the motion, a commonly used in
ballistics, are as follows [15]

dV

dt
= −g sin θ − gkV 2,

dθ

dt
= −gcosθ

V
,

dx

dt
= V cosθ,

dy

dt
= V sin θ. (1)

Here V is the velocity of the point mass, θ is the angle
between the tangent to the trajectory of the point mass
and the horizontal, x, y are the Cartesian coordinates
of the point mass, k = ρacdS

2mg = const is the proportion-
ality factor, ρa is the air density, cd is the drag factor
for a sphere, and S is the cross-section area of the ob-
ject (Fig. 1). The first two equations of the system (1)
represent the projections of the vector equation of mo-
tion for the tangent and principal normal to the trajec-
tory, the other two are kinematic relations connecting
the projections of the velocity vector point mass on the
axis x, y with derivatives of the coordinates.

The well-known solution [15] of Eqs. (1) consists of
an explicit analytical dependence of the velocity on the
slope angle of the trajectory and three quadratures

V (θ) =
V0cosθ0

cosθ
√

1 + kV 2
0 cos

2θ0(f(θ0)− f(θ))
,

f(θ) =
sinθ

cos2θ
+ ln

(
tan

(
θ

2
+

π

4

))
, (2)

t = t0 −
1

g

θ∫
θ0

V

cosθ
dθ, x = x0 −

1

g

θ∫
θ0

V 2dθ, (3)

y = y0 −
1

g

θ∫
θ0

V 2tanθdθ.

Figure 1 - Basic motion parameters.

Here V0 and θ0 are the initial values of the velocity
and the slope of the trajectory respectively, t0 is the
initial value of the time, x0, y0 are the initial values
of the coordinates of the point mass (usually accepted
t0 = x0 = y0 = 0). The derivation of the formulas (2)
is shown in the well-known monograph [16].

The integrals on the right-hand sides of Eqs. (3)
cannot be expressed in terms of elementary functions.
Hence, to determine the variables t, x and y we must
either integrate Eqs. (1) numerically or evaluate the
definite integrals (3). To avoid these procedures, com-
paratively simple approximate analytical formulas for
the eight basic parameters of point mass motion were
obtained in [12-14] (Fig. 1). The four parameters corre-
spond to the top of the trajectory, four - to the point of
drop. We will give a complete summary of the formulas
for the maximum height of ascent of the point mass H,
motion time T , the velocity at the trajectory apex Va,
flight range L, the time of ascent ta, the abscissa of the
trajectory apex xa, impact angle with respect to the
horizontal θ1 and the final velocity V1

H =
V 2
0 sin

2θ0
g(2 + kV 2

0 sinθ0)
, T = 2

√
2H

g
,

Va =
V0cosθ0√

1 + kV 2
0 (sinθ0 + cos2θ0lntan(

θ0
2 + π

4 ))

L = VaT, ta =
T − kHVa

2
, xa =

√
LHcotθ0,

θ1 = −arctan

[
LH

(L− xa)2

]
, V1 = V (θ1). (4)

In formulas (4) V0 and θ0 are the initial values of
the velocity and the slope of the trajectory of the point
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mass, respectively. Formulas (4) enable us to calcu-
late the basic parameters of motion of a point mass
directly from the initial data V0, θ0, as in the theory
of parabolic motion. With zero drag (k =0), formulas
(4) go over into the respective formulas of point mass
parabolic motion theory.

As an example of the use of formulas (4) we calcu-
lated the motion of a baseball with the following initial
conditions

V0 = 45 m/s; θ0 = 40◦;
k = 0.000548 s2/m2, g = 9.81 m/s2.

The results of calculations are recorded in Table 1.
The second column shows the values of parameters ob-
tained by numerical integration of the motion Eqs. (1)
with the fourth-order Runge-Kutta method. The third
column contains the values calculated by formulas (4).
The deviations from the exact values of parameters are
shown in the fourth column of the table.

Table 1 - Numerical and analytical values of parameters.

Parameter Numerical value Analytical value Error (%)
H, m 30.97 31.43 +1.5
T , s 5.00 5.06 +1.2
Va, m/s 23.19 23.19 0.0
L, m 117.8 117.4 -0.3
ta, s 2.35 2.33 -0.9
xa, m 65.36 66.32 +1.5
θ1, deg -53.04 -54.73 +3.2
V1, m/s 27.45 27.99 +2.0

3. Extension of application field of the
formulas (4)

For baseball typical values of the drag force coefficient
k is about 0.0005/0.0006 s2/m2 [4, 9]. We introduce the
notation p = kV 2

0 . The dimensionless parameter p has
the following physical meaning - it is the ratio of air re-
sistance to the weight of the projectile at the beginning
of the movement. Formulas (4) have a bounded region
of application. The main characteristics of the motion
H, T , Va, L, ta, xa, θ1, V1 have accurate to within 2-3%
for values of the launch angle, initial velocity and the
parameter p from ranges

0◦ ≤ θ0 ≤ 70◦, 0 ≤ V0 ≤ 50 m / s, 0 ≤ p ≤ 1.5. (5)

We transform the formulas (4) so as to improve the
accuracy of calculating the basic measure of the motion
- range L in the entire range of launch angles and at
values of the initial velocity and the parameter p larger
than compared with the ranges of Eq. (5)

0◦ ≤ θ0 ≤ 90◦, 0 ≤ V0 ≤ 80 m/s, 0 ≤ p ≤ 4. (6)

For this we consider the structure of the range for-
mula L = VaT . According to this formula, range of

the motion is defined as the product of the velocity
at the top of the trajectory Va on the time motion T
Therefore, to increase the accuracy of computation of
the range L it is necessary to increase the accuracy of
calculating the parameters Va and T . Let’s start with
the increase the accuracy of the parameter T . In turn,
according to the second of the formulas (4), the time
of the projectile motion T is determined by parameter
H. The formula for the maximum height of ascent of
the projectile H is the most important of all the formu-
las (4). When the launch angle θ0 increases, height H
computed according to the first formula (4) is behind
the exact value of this parameter. The exact value of H
can be obtained by integrating the equations of motion
(1). The greatest noncoincidence occurs at an angle of
throwing θ0 = 90◦. It is known [15] that the maximum
height attained by the point mass at throwing with the
initial conditions V0, θ0 = 90◦, is given by

Hmax =
1

2gk
ln(1 + kV 2

0 ). (7)

Formula (4) for H at θ0 = 90◦ gives the value of

H1 =
V 2
0

g(2 + kV 2
0 )

. (8)

We introduce the notation

∆h = Hmax −H1 =
1

2gk
ln(1 + kV 2

0 )−

V 2
0

g(2 + kV 2
0 )

.

The quantity ∆h - is a mismatch between the exact
and approximate values of the height at θ0 = 90◦. We
form the function f(p), equal to the ratio (8) to (7)

f (p) =
H1

Hmax
=

2p

(2 + p)ln(1 + p)
. (9)

The graph of f(p) is shown in Fig. 2.

Figure 2 - Graph of the function f = f(p).
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The graph shows that when the force of air resis-
tance increases (parameter p grows), formula (4) for H
loses accuracy when θ0 = 90◦. The same holds for large
angles of throwing θ0 ≥ 70◦. To eliminate this draw-
back, we modify the formula (4) for H. Let it be like
this

H =
V 2
0 sin

2θ0
g(2 + kV 2

0 sinθ0)
+ ∆h · f1(θ0). (10)

Here f1(θ0) is a function of the launch angle satisfying
f1(0

◦) = 0, f1(90
◦) = 1. The choice of this function is

quite arbitrary. Let the function f1(θ0) be given by the
following empirical formula

f1(θ0) = sin4θ0 −
(
θ0
90

)2

· cos6θ0.

Graph of this function is shown in Fig. 3. Such a
structure of formula (10) allows more accurate calcula-
tion of the height H at high angles of throwing θ ≥ 70◦.
When θ0 = 90◦, formula (10) gives the exact value of
the height (7).

Figure 3 - Graph of the function f1 = f1(θ0).

Now we transform the second factor Va in the range
formula. The parameter Va is the velocity of the pro-
jectile at the top of the trajectory calculated by the
formulas (2) at θ = 0◦. Instead of the values of the
velocity at the top of the trajectory at θ = 0◦ we cal-
culate the velocity of the projectile at some close point
of the trajectory defined by the angle of inclination θa.
We define angle θa, measured in degrees, as a function
of the parameters p and θ0: θa = f2(p, θ0). The choice
of this function is arbitrary. However, the value of θa
should be positive in order to increase the velocity of
the projectile compared with the value of it at the top
of the trajectory. This follows from the well-known fact
that on the upward trajectory velocity is greater than
at the top. We define the function f2 as follows

θa = f2(p, θ0) = p · π

180
· θ0
90

· (1 + 2 · sin2θ0). (11)

Now under Va we understand the value determined
by the relation

Va = V (θa). (12)

Thus, the formulas (4) for H and Va are replaced
by the formulas (10), (12). In the absence of resis-
tance of the medium (k = 0) formulas (10), (12) turn
into the corresponding formulas of the parabolic motion
theory. In addition, formulas (4) make it possible to ob-
tain simple approximate analitical expressions for the
basic functional relationships of the problem y(x), y(t),
y(θ), x(t), x(θ), t(θ) [13]. For example, the trajectory
equation y(x) has the form

y(x) =
Hx(L− x)

x2
a + (L− 2xa)x

. (13)

This formula shows that for the construction of de-
pendence y(x) we need to know three parameters: H,
L and xa, which are determined by formulas (4). This
dependence y(x) provides a shift of apex of the path to
the right and has a vertical asymptote, as it is in case of
the of projectile trajectories in the air. In the absence
of the resistance L = 2xa and formula (13) go into the
corresponding formula of the theory of parabolic mo-
tion.

4. The results of calculations and their
comparison

The formulas (10), (12), (13) were used to calculate
the motion of a baseball. It is convenient to calcu-
late the coefficient of resistance k in these formulas
by means of the terminal velocity of a ball (Fig. 1):
k = 1/V 2

term. We used the following typical values of k
(for Vterm = 40 m/s) and the acceleration of gravity g

k =
1

402
= 0.000625 s2/m2, g = 9.81 m/s

2
. (14)

The initial velocity, launch angle and parameter p
varied in the ranges (6). When calculating the range of
the ball, the relative error was computed as a function
of initial velocity and launch angle. Distance calculated
according to formulas (4), (10), (12), was compared
with the exact value of this parameter. The exact values
of range were obtained by integration of the equations
of motion (1) by the fourth-order Runge-Kutta method.
The calculation results are shown in Fig 4. This figure
is the main result of this article.
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Figure 4 - The relative error in calculating the distance (in %).

The horizontal plane in Fig 4 corresponds to the
zero value of the relative error. Figure 4 shows that in
the covered scope (6) the relative error is less than 1%.
Figure 5 shows the projectile trajectory y(x) for values
of V0 = 80 m/s, θ0 = 60◦. The solid line is obtained by
integrating Eqs. (1), the broken line is constructed by
formulas (4), (10), (12), (13). It is obvious that these
formulas approximate a precise trajectory quite well. In
paper [4] well-known analytical approximations of the
trajectory of Parker [7], Littlewood [17], Lamb [18] are
quoted, and also Hackborn gave his original formula,
close to above-mentioned ones. These approximations
were used in [4] to calculate the distance of baseball
motion in the ranges of initial velocity and launch an-
gle 10 ≤ V0 ≤ 80 m/s, 15◦ ≤ θ0 ≤ 75◦ for values of
Eq. (14). The relative error in calculating the distance
for these approximations was calculated in Ref. [4]. It
was found by Hackborn that in these ranges the rela-
tive error reaches 4.5% ÷ 6.5%. These values are much
higher than the accuracy of 1% obtained with the help
of formulas (4), (10), (12), (13).

Figure 5 - Graph of the function y = y(x).

5. Conclusions

The proposed modification of the formulas [12-14] al-
lows us to significantly expand the range of their use in
the studying of the projectile motion in midair. All the
basic parameters of the motion and functional depen-
dencies are still described by simple analytical relations.
In addition the numerical values of the required quan-
tities are determined with high accuracy. Thus, the
formulas (4), (10), (12), (13) make it possible to study
the motion of a point mass in a medium with resistance
in the way it is done for the case of no drag.
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