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Abstract

The heme oxygenase-carbon monoxide pathway has been shown to play an important role in many physiological processes
and is capable of altering nociception modulation in the nervous system by stimulating soluble guanylate cyclase (sGC). In the
central nervous system, the locus coeruleus (LC) is known to be a region that expresses the heme oxygenase enzyme (HO),
which catalyzes the metabolism of heme to carbon monoxide (CO). Additionally, several lines of evidence have suggested that
the LC can be involved in the modulation of emotional states such as fear and anxiety. The purpose of this investigation was to
evaluate the activation of the heme oxygenase-carbon monoxide pathway in the LC in the modulation of anxiety by using the
elevated plus maze test (EPM) and light-dark box test (LDB) in rats. Experiments were performed on adult male Wistar rats
weighing 250–300 g (n=182). The results showed that the intra-LC microinjection of heme-lysinate (600 nmol), a substrate for
the enzyme HO, increased the number of entries into the open arms and the percentage of time spent in open arms in the
elevated plus maze test, indicating a decrease in anxiety. Additionally, in the LDB test, intra-LC administration of heme-lysinate
promoted an increase on time spent in the light compartment of the box. The intracerebroventricular microinjection of guanylate
cyclase, an sGC inhibitor followed by the intra-LC microinjection of the heme-lysinate blocked the anxiolytic-like reaction on the
EPM test and LDB test. It can therefore be concluded that CO in the LC produced by the HO pathway and acting via cGMP
plays an anxiolytic-like role in the LC of rats.
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Introduction

The exposure of animals to dangerous situations is
potentially effective in eliciting responses characteristic of
fear and anxiety. Because there appears to be a correlation
between human defensive behavior and fear- and anxiety-
related defensive patterns in non-human mammals (1),
many studies have used animal models to study the neural
substrates involved in the modulation of fear and anxiety in
humans. In particular, the elevated plus maze (EPM) is an
animal model where the behavioral repertoire of rodents is
used to detect effects on anxiety, and it has been proven to
be bidirectionally sensitive to manipulations of anxiety (2).

It has been established that the neural substrates
responsible for the modulation of defensive behaviors,
aversive reactions, and emotional states fundamentally
consist of the amygdala, hypothalamus, and periaqueduc-
tal gray matter. However, other structures are also related
to the expression of the emotional responses; in particular,

the noradrenergic system of the locus coeruleus (LC),
which is a system closely correlated with attentional states,
sleep/wakefulness cycles, learning and memory, reproduc-
tion, emotional behaviors and stressful situations, as well
as modulation of fear and anxiety (3). In fact, stressful
situations, including negative emotions, such as anxiety
and/or fear, promote an increase in noradrenaline release
in distinct brain areas, in particular in the hypothalamus,
amygdala, and LC (4).

Neurochemistry research has shown that various
systems of neurotransmitters are involved in fear and
anxiety modulation, such as gamma-aminobutyric acid
(GABA), serotonin, norepinephrine and glutamate (5,6). In
addition, a growing number of studies have given support
that nitric oxide (NO) and carbon monoxide (CO) can
modulate emotional and autonomic responses related
with stress (6,7). In this way, both CO and NO exert
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a stimulatory influence on the acute adrenocorticotropic
hormone (ACTH) response to physical-emotional stressors.
CO and NO share similar properties that can activate soluble
guanylate cyclase (sGC), resulting in the complex regulation
of 30-50-guanosine monophosphate (cGMP) (8,9). Likewise,
Quock and Nguyen (10) demonstrated that systemic
pretreatment with L-NOARG (an inhibitor of NO synthase)
is able to block the anxiolytic effect of chlordiazepoxide in
mice submitted to the EPM, indicating that NO may exert
an anxiolytic effect in mice.

The activity of CO depends on the heme oxygenase
(HO) enzyme that catalyzes the conversion of heme to
CO, heme iron, and biliverdin (9). Two forms of HO, HO-1
and HO-2, have been identified, and a third form, HO-3,
may be present in rats (11,12). In the central and
peripheral nervous systems, HO-2 seems to be respon-
sible for most of the HO activity and is expressed in both
glial and neuronal cells (13), as well as cell layers in the
olfactory bulb, hippocampus, cerebellum, spinal cord, and
LC (9). It is important to note that LC displays elevated
expression of HO-2, whereas the expression of nitric oxide
synthase (responsible for the NO formation) is lower
(9,14). Thus, it is suggested that CO participates in the
modulation of the functions performed by this structure.
Previous studies have demonstrated that the endogenous
HO-CO-cGMP pathway in the LC is critical to modulation
of thermal response during development of endotoxin
fever, as well as during hypothermic response to restraint-
stress (7,15). However, the role of the HO-CO-cGMP
pathway in the other functions modulated by the LC
remains to be clarified, including its role in emotional
behavior. Furthermore, previous studies have demon-
strated a marked increase of c-fos expression (16) and
HO-2 expression (9) in LC after stressful stimuli. There-
fore, the present study was designed to investigate
whether the HO-CO pathway of the LC can modulate
emotional behavior. To this end, we investigated whether
the microinjection of zinc deuteroporphyrin 2,4-bis glycol
(ZnDPBG, an HO inhibitor), heme-lysinate (substrate
overload) or the selective inhibitor of soluble guanylate
cyclase (1H-(1,2,4) oxadiazolo [4,3-a] quinoxaline-1-one
(ODQ)) into the LC in different groups of rats produces
alterations in emotional behavior as assessed by the
elevated plus maze test (EPM) and light-dark box test
(LDB) in rats.

Material and Methods

Animals
Experiments were performed on adult male Wistar rats

weighing 250–300 g, (n=182) obtained from the animal
facility of the Universidade de São Paulo, Ribeirão Preto,
SP, Brazil. Animals were housed in a temperature-
controlled room (24±1°C) and in a 12-h light/dark cycle
(lights on at 6:00 am) with food and water ad libitum.
The experiments were carried out in compliance with the

recommendations of the Sociedade Brasileira de Ciência
em Animais de Laboratório and with the approval of the
Animal Care and Use Committee of the Universidade de
São Paulo, Brazil at the Ribeirão Preto campus (Protocol
#09.1.606.53.7). All efforts were made to minimize animal
suffering.

Surgical procedures
The rats were anesthetized by intramuscular injection

of ketamine (100 mg/kg, União Química Farmacêutica
Nacional S.A., Brazil) plus xylazine (10 mg/kg, Calier S.A.,
Spain) and placed in a stereotaxic apparatus (David-Kopf
Instruments, USA) with the incisive bar at 0 mm and
inclination of vertical stereotaxic bar at 15° (17). One
stainless-steel guide cannula (0.6 mm o.d. and 15 mm in
length) was inserted 1 mm above the right LC region
(coordinates: anterior: 3.4 mm from lambda, lateral: 1.2 mm
from midline, dorsal: 5.8 mm from the skull surface). As one
of the experiments required two microinjections, animals
designated to be used in this experiment were implanted
with a second cannula (0.6 mm o.d. and 12 mm in length)
in the right lateral cerebral ventricle (coordinates: anterior
–1.0 mm, lateral –1.6 mm from midline, dorsal 3.2 to
3.7 mm from the skull surface); incisive bar at –3.3 mm.
The displacement of the meniscus in a water manometer
ensured correct positioning of the cannula in the lateral
ventricle. The cannulas were fixed to the skull by means of
self-polymerizing resin and an additional anchoring screw.
A tight-fitting stylet was kept inside the guide cannula
to prevent occlusion. After surgery, the rats received a sub-
cutaneous injection of the anti-inflammatory and analgesic
Banamine (10 mg/mL flunixin meglumine; Schering-Plough,
USA) and an antibiotic (benzyl penicillin 160,000 U/kg,
Fort Dodge, Brazil, administered intramuscularly). The
experiments were initiated 1 week after surgery.

Drugs and microinjection procedure
The non-selective HO inhibitor ZnDPBG, at the doses

5, 50 and 200 nmol/0.1 mL) and hemin were obtained from
Porphyrin Products (USA). ZnDPBG was dissolved in
50 mM/L of Na2CO3 and stored in the dark. Hemin was
used to prepare heme-lysinate (at the doses 150, 300 and
600 nmol/0.1 mL), a HO-CO-cGMP pathway inducer.
Heme-free preparations were used as amino acid
(L-lysine) vehicle control solutions. The vehicle of heme-
lysinate consisted of L-lysine (14.2 mmol/mL), ethanol
(5%), propylene glycol (40%) and sterile water (55%). The
sGC inhibitor 1H-(1,2,4) oxadiazolo [4,3-a] quinoxaline-1-
one (ODQ, 1.3 nmol/1.0 mL) was purchased from Tocris
Cookson (USA) and dissolved in a vehicle consisting of
1% DMSO in pyrogen-free sterile saline (7,18). These
doses were based on previous studies (7,15).

A 10-mL Hamilton syringe and a dental injection needle
connected to a PE-10 tube were used to perform the
microinjections into the LC of conscious rats. The injection
needle was 1 mm longer than the guide cannula so that
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the LC was reached by the needle only at the time of
injection. The microinjections were performed at a rate of
0.1 mL over a period of one minute. To prevent reflux, the
needle was kept inside the guide cannula for 40 s after the
end of the infusion.

Elevated plus maze test (EPM)
EPM test was used to assess the anxiety levels of the

rats. The EPM was made of wood, and consisting of two
open arms (50� 10 cm) crossed at right angles with two
closed arms of the same size, according to the specifica-
tions described in Morato and Brandão (19). The two
closed arms were enclosed by walls 50 cm high, with he
exception of the central part of the maze (10� 10 cm)
where the open and closed arms crossed. The entire EPM
was elevated 50 cm above the floor and the luminosity at
the level of the EPM open arms was 30 lux. It is important
to note that rats naturally avoid threatening situations
represented in the model by the height and open space
(19). Behavior in the EPM was recorded by a video
camera linked to a monitor. This device, located outside
the experimental room, allowed the recordings to be
analyzed later. Rats were placed individually in the center
of the maze facing a closed arm and allowed to explore
the maze for a 5-min test period. EPM measures (number
of entries and time spent in each arm) were recorded as
described in Pellow et al. (20). The open-arm activity was
evaluated as the time spent in the open arms relative to
the total time spent in the plus maze (300 s), and was
expressed as a percentage. At the end of the session, the
rat was returned to its home cage, and before the next rat
was tested, the maze was wiped clean with a 70% alcohol
solution and dried with paper towels.

Light-dark box test (LDB)
The LDB consisted of two compartments, a dark area

(30 cm length� 80 cm width� 60 cm height) and a light
area (50 cm length� 80 cm width� 60 cm height)
connected by an opening (15 cm height� 10 cm width).
The box was made of plastic. The light intensity in the dark
side was less than 5 lux. The light region was uncovered
on the top and received room light. Rodents, which are
nocturnal animals, have a natural tendency to spend more
time in the dark compartment, because light places
represent a natural threat. Animals were placed in the
light side of the chamber facing the opening to the dark
chamber and allowed to move freely between the two
compartments for 5 min sessions. Behaviors were
videotaped and scored using Geo Vision software. The
parameters analyzed were the following: number of
transitions (the number of dark compartment to light
compartment transitions) and the total time spent in the
light and in the dark compartments (21). An animal was
considered to be in one of the compartments when its
head and front paws were in that area of the box. At the
end of the session, animals were returned to their home

cages, and the area was wiped clean with a 70% alcohol
solution.

Experimental protocols
Effects of intra-LC injection of ZnDPBG. Rats that were

previously cannulated were microinjected intra-LC with
the HO inhibitor ZnDPBG (5, 50 or 200 nmol, 0.1 mL; n=8)
or with the vehicle (Na2CO3, 50 nmol, 0.1 mL; n=6). The
rats were submitted 15 min later to the EPM or the LDB
test for a period of 5 min.

Effects of intra-LC injection of heme-lysinate. Rats that
were previously cannulated were microinjected intra-LC
with the HO substrate, heme-lysinate (150, 300 or 600 nmol,
0.1 mL; n=8), or with the L-lysine vehicle solution (0.1 mL; n=8).
The rats were submitted 15 min later to the EPM or the LDB
test for a period of 5 min.

Effects of intra-LC injection of sGC inhibitor (ODQ).
Rats that were previously cannulated received intracer-
ebroventricular (icv) microinjections of the sGC inhibitor
ODQ (1.3 nmol, 1.0 mL; n=8) or of the vehicle (DMSO 1%,
1.0 mL; n=5) followed by the intra-LC microinjection of the
heme-lysinate (600 nmol, 0.1 mL; n=8) or the vehicle
(L-lysine, 14.2 mmol, 0.1 mL; n=8). ODQ or its vehicle was
injected in an icv manner to avoid multiple injections into
the LC, which could eventually cause lesions in the
nucleus. This method was based on a previous study (7).
The rats were submitted 15 min later to the EPM or the
LDB test for a period of 5 min.

Histology
At the end of the experiments, rats were anesthetized

with an intramuscular injection of ketamine (225 mg/kg,
União Química Farmacêutica Nacional S.A., Brazil) plus
xylasine (30 mg/kg, Carlier S.A., Spain), and transcardially
perfused with saline (NaCl, 0.9%), followed by 10% formalin.
The brains were then removed and fixed in 10% formalin for
4 days. The tissue was submitted to routine histological
processing, and sections were observed under a micro-
scope (Carl Zeiss model KS300, Germany) to determine the
locations of the stimulated sites using the Paxinos and
Watson Atlas (17).

Statistical analysis
Results were first submitted to Levene’s test for

homogeneity of variance. One-way analysis of variance
(ANOVA) was then used for each parameter analyzed,
followed by the post hoc Newman-Keuls test. Data were
considered statistically significant when Po0.05. Results
are reported as means±SE.

Results

Figure 1 shows a representative photomicrograph of
the unilateral intra-LC microinjection. The microinjected
area corresponds to the compact cluster of neurons
adjacent to the fourth ventricle in the pontine brainstem,
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according to the atlas of Paxinos and Watson (17). Peri-
LC microinjections caused no apparent change in EPM
and LDB measures, in comparison to rats treated with
vehicle in all experimental groups (data not shown).

At all doses, the intra-LC administration of ZnDPBG
did not alter the percentage of time in the open arms
(F=2.21, P=0.109), the mean number of entries into open
arms (F=1.91, P=0.150), or the number of entries into
closed arms (F=1.06, P=0.382) for rats in the EPM test
(Figure 2A-C). Regarding the LDB test, intra-LC adminis-
tration of ZnDPBG did not alter the time spent in the light
compartment (F=1.858, P=0.161, Figure 2D), or the
number of transitions in the LDB (F=0.456, P=0.715,
Figure 2E).

The results of this study revealed an increase in the
percentage of time spent in and entries into the open arms
of the EPM by rats that received intra-LC microinjections

of heme-lysinate (600 nmol, Figure 3A and B). Consider-
ing the percentage of time spent in the open arms, a
significant increase between treatments was found
(F=10.73, Po0.001) when comparing the 600 nmol
Heme-lys group with other groups (Po0.05, Figure 3A).
Regarding the mean entries into open arms, a significant
increase was observed (F=20.69, Po0.001) when the
600 nmol Heme-lys group was compared with Lys and the
150 nmol and 300 nmol Heme-Lys groups (Figure 3B).
Finally, the mean entries into closed arms of the EPM did
not vary between treatments (Figure 3C). Regarding the
LDB test, a significant increase was found (F=25.43,
Po0.001) in the time spent in the light compartment for
the Heme-Lys groups (150, 300 and 600 nmol) when
compared with the Lys group (Figure 3D). However,
Heme-Lys microinjected intra-LC, at all doses, did not alter
the number of transitions of rats in the LDB (Figure 3E).

The results reported in Figure 4 show that the icv
microinjection of ODQ, an sGC inhibitor, blocked the
increase in the percentage of time spent in, and entries
into, the open arms of the EPM induced by intra-LC
microinjections of heme-lysinate (600 nmol). Considering
the percentage of time spent in the open arms, significant
differences were found in the behaviors (F=61.65,
P=0.002) when comparing the ODQ+Heme group with
other groups (Po0.05, Figure 4A). Nevertheless, regard-
ing the mean entries into the open arms, significant
increases were observed (F=30.18, Po0.001) when
comparing the ODQ+Heme group with the DMSO+
L-lysine, ODQ+L-lysine and ODQ+Heme groups
(Figure 4B). Moreover, the mean number of entries into

Figure 1. Representative photomicrograph of the right locus
coeruleus (LC) of the rat. The figure shows a coronal section at
the pons level illustrating the location of the intact LC (right arrow)
and a typical intra-LC microinjection (left arrow). 4V: fourth
ventricle; Me5: mesencephalic trigeminal nucleus.

Figure 2. Intra-locus coeruleus administration of
the nonspecific inhibitor of the enzyme heme
oxygenase (HO), ZnDPBG (5, 50 and 200 nmol), or
its vehicle (Na2CO3) did not alter the percentage of
time spent in the open arms (A), the mean number
of entries into open (B) and closed arms (C) in the
elevated plus maze (EPM) test, and on time spent
in the light compartment (D) and number of
transitions (E) in the light-dark box (LDB) test.
One-way ANOVA was used for statistical analysis.
Data are reported as means±SE (n=6–8 animals
per group).
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the closed arms of the EPM did not vary between
treatments (Figure 4C). Additionally, pre-treatment with
ODQ (icv) blocked the increase in time spent in the light
compartment (F=115.42, Po0.001) induced by the intra-
LC microinjection of DMSO+Heme (600 nmol, Figure 4D)
when compared with the DMSO+L-lysine, ODQ+L-lysine
and ODQ+Heme groups (Figure 4D). Finally, none of the

treatments altered the number of transitions in the LDB
(Figure 4E).

Discussion

The results of the present study indicated that the
activity of the HO-CO pathway in the locus coeruleus can

Figure 3. Effects of intra-locus coeruleus admin-
istration of the substrate, heme-lysinate (150, 300
and 600 nmol), or its vehicle (L-lysine) on the
percentage of time spent in the open arms (A), the
mean number of entries into open (B) and closed
arms (C) in the elevated plus maze (EPM) test,
and on time spent in the light compartment
(D) and number of transitions (E) in the light-dark
box (LDB) test. Data are reported as means±SE.
*Po0.05, compared with its respective control
(L-lysine) and with the 150 and 300 nmol heme-
lysinate groups; #Po0.05, compared with its
respective control (L-lysine) (n=8 animals per
group) (Newman-Keuls test).

Figure 4. Effects of icv administration of 1H-(1,2,4)
oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) (1.3
nmol, a soluble guanylate cyclase inhibitor) or its
vehicle (1% DMSO) and intra-locus coeruleus
administration of the heme-lysinate (600 nmol) or
its vehicle (L-lysine) on the percentage of time
spent in the open arms (A), the mean number of
entries into open (B) and closed arms (C) in the
elevated plus maze (EPM) test, and on time spent
in the light compartment (D) and number of
transitions (E) in the light-dark box (LDB) test.
Data are reported as means±SE. *Po0.05 com-
pared to other groups (n=5–8 animals per group)
(Newman-Keuls test).
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modulate anxiety, as assessed by the EPM test and the
LDB test in rats. In particular, it was observed that the
facilitation of enzymatic action by the administration of
its substrate, heme-lysinate (at the dose of 600 nmol),
promoted an increase in the number of open arm entries
and the percentage of time spent in open arms in the EPM
test. In a similar way, in the LDB test, it was observed that
the facilitation of enzymatic action by the administration of
its substrate, heme-lysinate (at the dose of 600 nmol)
promoted an increase in time spent in the light compart-
ment of the box. Taken together, these results suggest an
anxiolytic effect of the HO-CO pathway in the LC.
Additionally, the icv microinjection of the ODQ (an sGC
inhibitor) followed by the intra-LC administration of heme-
lysinate (600 nmol) blocked the anxiolytic-like effect on the
EPM test and LDB test. It is important to note that CO has
a physiological function similar to NO (9), and high levels
of sGC are present in LC (8). However, NOS-like
immunoreactivity is present in nuclei adjacent to LC
(22). So, it is possible that increased activity of cGMP is
mediated by the action of CO rather than by the action of
NO in the LC (14).

There is strong evidence supporting the role of
catecholaminergic LC neurons in emotional behaviors
(3,23). Results from functional studies show that robust
activation of the LC is observed in cats submitted to
stressful situations (24), which also caused an increased
expression of c-fos in this region of mice (25). In particular,
a previous study (4) suggested that negative emotions,
such as fear and/or anxiety, increased noradrenergic
activity in the hypothalamus, amygdala and LC. Further-
more, anatomical studies demonstrated that LC projects
divergent efferent pathways to the forebrain, including
hypothalamus (26) and amygdala (27), structures that are
essential for emotional modulation (28).

Additionally, Khoshbouei et al. (29) demonstrated that
amplifying the noradrenergic response to stress by means
of yohimbine treatment prior to submission to acute stress
released galanin in central nucleus of the amygdala, which
produced an anxiolytic response in EPM test. Considering
the results obtained in this study, it is possible that the intra-
LC administration of heme-lysinate increased the activity of
the HO-CO pathway, which in turn could have promoted
an increase of the firing rate of noradrenergic neurons of
the LC (14). This could have caused an alteration of
noradrenergic release in forebrain structures, such as
hypothalamus and amygdala, resulting in an anxiolytic
effect. Within this perspective, clinical findings suggest a
relationship between the central noradrenergic system
in fear/anxiety states and depression in humans. This
suggestion is based on the fact that treatment with the
a2-adrenergic agonist, clonidine, is effective in treating
patients with anxiety disorders, whereas the administration
of the a2-adrenergic antagonist exacerbates emotional
symptoms (30). A previous study demonstrated that rats
with chemical lesions on catecholaminergic neurons

produced by a 6-hydroxydopamine injection in the LC
showed normal motor activity, exploration, and habituation
(23), suggesting that the LC is not essential for controlling
motor activity. Corroborating previous findings, the results
obtained in this study showed that heme-lysinate intra-LC
administrated did not modify the mean number of entries
into closed arms in EPM test, or the number of transitions in
LDB test, which are parameters for locomotor behavior
(2,31). So, it is possible to suggest that the anxiolytic-like
effect, evidenced by an increase in the number of open
arms entries and the percentage of time in open arms in the
EPM test, and an increase in time spent in the light
compartment in the LDB test is due to emotional modula-
tion rather than motor activity alteration.

The noradrenergic system has been identified as one
of the important regulatory systems for the hypothalamic-
pituitary-adrenal axis, acting mainly on the release of
corticotropin releasing factor in neurons in the paraventri-
cular nucleus (PVN) of the hypothalamus (32). In addition,
Ziegler et al. (33) showed that lesions in catecholaminergic
neurons in the LC by the administration of 6-hydroxydopa-
mine attenuated the release of ACTH in animals submitted
to physical restraint stress. Considering the anatomical
findings, it is possible that the activation of noradrenergic
neurons of the LC promotes the inhibition of neurons in the
prefrontal cortex and the disinhibition of GABAergic efferent
neurons in this region, which leads to the activation of the
PVN and, consequently, the activation of the hypothalamic-
pituitary-adrenal circuit (34). Furthermore, the involvement of
the LC in modulating states of fear and anxiety could also
occur by efferent projections to the basolateral nucleus of
the amygdala, because the activity of neurons in the LC
promotes their own inhibition through a negative feedback
(35). However, the noradrenergic modulation in the baso-
lateral amygdala seems to have different dose-dependent
effects on anxiety behavior (36). In this way, Valizadegan
et al. (36) showed that low doses of salbutamol (a b-adren-
ergic agonist) decreased the percentage of open arms time
and open arms entries in the EPM test, indicating an
anxiogenic effect, while the highest dose decreased the
anxiety parameters.

Initial studies conducted by Redmond et al. (37)
showed that electrical stimulation of the LC in monkeys
resulted in behavior observed in situations of intense fear.
However, in rats, studies have shown opposite results
(38,39). In particular, depletion of norepinephrine in rats
resulted in increased fear and anxiety in novel places (38).
On the other hand, chemical injury in the noradrenergic
neurons of the LC promoted reduction of anxiogenic
behaviors assessed with the EPM test, suggesting an
anxiolytic effect after removing the influence of neurons in
the LC (39). According to Weiss et al. (40), studies with
animal models have suggested that the activity of the
noradrenergic system in the LC is related to reduced
anxiety and fear, contrary to a theory first described by
Redmond et al. (37) in which the increased activity in
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neurons of the LC results in fear and anxiety. Therefore, it
is clear that discrepancies exist and that more studies are
still needed for a better understanding of the activity of
neurons in the LC.

In summary, the results obtained in this study showed
that the facilitation of enzymatic action by the administra-
tion of its substrate, heme-lysinate (at the dose of 600
nmol), promoted an increase in the number of open arm
entries and the percentage of time spent in open arms in
the EPM test, and an increase in time spent in the light
compartment in the LDB test. This effect was blocked by
the icv administration of ODQ, a sGC inhibitor. These data
suggest that CO in the LC produced by the HO pathway
and acting via cGMP played an anxiolytic role. Perhaps
this anxiolytic-like effect occurred because the altered

activity of the neurons of the LC, causing a potentiated
noradrenergic tonus of this region, might be related to
anxiety and fear modulation. Further studies are needed
to clarify this involvement.
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