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The static behavior of self-anchored cable-stayed suspension bridge under vertical load is
described with the continuum method. Based on the partition generalized variation principle,
considering the compression-bending coupling effect of the main girder and the tower, the large
displacement incomplete generalized potential energy functional of three-span self-anchored
cable-stayed suspension bridge is established. Then, the basic differential equations of self-
anchored cable-stayed suspension bridge are derived through constraint variation. Taking a self-
anchored cable-stayed suspension bridge with main span 100m, for example, the results by the
proposed analytic method agree with that of numerical analysis. Therefore, the basic differential
equations proposed in this paper could be applied to the preliminary analysis of self-anchored
cable-stayed suspension bridge. The equations also provide a theoretical basis to describe the static
behavior of this type of bridge.

1. Introduction

Sea-crossing bridge projects in the 21st century are facing adverse natural conditions such as
deep water foundations, strong winds, and so on. Either suspension bridge or cable-stayed
bridge for large span bridge has shown shortcomings and inadequacies [1]. Therefore, the
cable-stayed suspension bridge, which combines the advantages of cable-stayed bridge and
suspension bridge to make up for their shortcomings, provides a suitable option for long-
span bridge, particularly those sea-crossing bridge. There are some cable-stayed suspension
bridges in the world, such as Albert Bridge in London, Brooklyn Bridge in New York, and
so on [2]. Wujiang Bridge in China, with spans of 66 + 288 + 66m is the longest modern
cable-stayed suspension bridge. Nagisa Bridge, a single span footbridge in Japan, is a hybrid
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Figure 1: Illustration of a self-anchored cable-stayed suspension bridge.

structure of cable-stayed prestressed concrete bridge and steel suspension bridge. And the
schemes of cable-stayed suspension bridge have been proposed many times, such as Turkey
Izmit Bridge, Gibraltar Strait Bridge, Lingdingyang Bridge, and so on. However, due to lack
of systematic study on such bridge type, the proposals are not implemented. At present,
the schemes of cable-stayed suspension bridge just stay in the program design phase, and
the proposed schemes all adopt the earth-anchored system with large anchor. Using a self-
anchored system could not only save the anchor, but also possess the advantages of cable-
stayed suspension bridge. The Jianshe Bridge in Dalian is the first self-anchored cable-
stayed suspension bridge in the world [3]. And self-anchored cable-stayed suspension bridge
proposals have been brought up for Dalian Bay Bridge, Dalian Jinzhou Bay Bridge, and
Eastern Hubei Yangtze River Bridge.

The bridge structural behavior under static load is an important basis for its design.
Ichiro Konishi gave a detailed elaboration on the static and dynamic basic differential
equations of earth-anchored suspension bridge [4]. Based on the large-displacement partition
generalized variation principle, the incomplete generalized potential energy functional of a
three-span self-anchored cable-stayed suspension bridge is established with the continuum
method. The differential equations of self-anchored cable-stayed suspension bridge are
derived through constraint variation. The differential equations could analyze the structural
behavior of self-anchored cable-stayed suspension bridge under vertical load and could
provide a theoretical basis for static analysis of such type bridge.

2. The Establishment of the Large Displacement Partition Generalized
Potential Energy Functional

Figure 1 shows a self-anchored cable-stayed suspension bridge. Based on the structural
characteristics, the following items are assumed [4].

(1) All the materials conform with Hooke’s Law.

(2) In operational bridge status, the dead load is distributed uniformly along the span,
and the main cables are of parabolic shape.

(3) The main girder is a continuous beam with constant cross section, and vertical
supports exist at the towers. Ignore the vertical curve and camber of the girder.

(4) The stay cables and the hangers are dense and could be compared to a
homogeneous membrane with only axial resistance.

q(x) is the dead load on the girder, while p(x) the live load. Define the displacement
and strain of various parts as follows: uc, vc are the longitudinal and vertical displacements
of the main cable respectively, ub, vb are that of the girder, and ut, vt are that of the tower. And
εc, εh, εl are the strain increments of the main cable, the hanger, and the stay cable caused
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Figure 2: Deformation of the main cable element.

by the live load, respectively. In Figure 1, [x1,x2] ∪ [x3,x4] is the cable-stayed interval, while
[x2,x3] the suspension interval. Due to different boundary conditions between the cable-
stayed interval and the suspension interval, derivation of each will be undertaken separately.

2.1. Establishment of Strain Energy of Components within
the Cable-Stayed Interval

2.1.1. Establishment of Strain Energy of the Main Cable

Based on the geometric relationship shown in Figure 2, the following exists for the main cable

ds cos θ = dx,

(1 + εc)ds cos
(
θ + ϕ

)
= ds cos θ + duc,

(1 + εc)ds sin
(
θ + ϕ

)
= ds sin θ + dvc,

(2.1)

where θ + ϕ is the inclination angle of the main cable after deformation and ϕ the change of
the main cable inclination. Elimination of ϕ and element length ds leads to the cable strain
increment given as

εc =
√
(cos θ + u′

c cos θ)
2 + (sin θ + v′

c cos θ)
2 − 1. (2.2)

The strain energy of the main cable is [5]

Uc1 =
∫x2

x1

∫ εc0+εc

εc0

T secθdεcdx, (2.3)

where εc0 is the initial strain of the main cable and T is the cable tension.
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2.1.2. Establishment of Strain Energy of the Stay Cables

According to the assumptions, the strain energy of the stay cables is [6]

Ul =
∫x2

x1

∫ εl0+εl

εl0

l(x)c(x)dεldx, (2.4)

where εl0 is the initial strain of the stay cables, l(x) the stay cable length, and c(x) the tension
of stay cables under dead and live loads.

2.1.3. Establishment of Strain Energy of the Stay Cables

Due to the action of the horizontal component force of the main cable, the girder is under
compression and bending. The assumption that the structure is in an elastic stable state and
shear deformation is neglected will lead to the expression of the axial strain [7]

εx =
∂ub

∂x
− y

∂2vb

∂x2 +
1
2

(
∂vb

∂x

)2

. (2.5)

Then, the strain energy of the girder gives [8, 9]

Ub1 =
1
2

∫x2

x1

[

Nx

(
∂ub

∂x

)
−Mz

(
∂2vb

∂x2

)

+Nx

(
∂vb

∂x

)2
]

dx, (2.6)

where Nx is the girder axial force and Mz is the girder bending moment. In (2.6), the first
item is the strain energy caused by compression, the second that caused by bending, and the
third that due to compression-bending coupling and could be neglected in linear structural
analysis.

2.1.4. Establishment of Strain Energy of the Stay Cables

Based on the above derivation, strain energy of the tower gives [10, 11]

Ut =
1
2

∫H

0

[

Nt

(
∂vt

∂y

)
−Mt

(
∂2ut

∂y2

)

+Nt

(
∂ut

∂y

)2
]

dy, (2.7)

where Nt is the axial force of the tower and Mt is the bending moment. And due to the
symmetry of the structure, the strain energy of the main cable, the tower, and the girder
within the interval [x3,x4] equals that within the interval [x1,x2].

2.2. Establishment of Strain Energy of Components within
the Suspension Interval

According to (2.3)–(2.7), the strain energy of the main cable, the girder, and the hanger is
given as follows.
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The strain energy of the main cable is

Uc2 =
∫x3

x2

∫ εc0+εc

εc0

T dεcds =
∫x3

x2

∫ εc0+εc

εc0

T secθdεcdx. (2.8)

The strain energy of the girder is

Ub2 =
1
2

∫x3

x2

[

Nx

(
∂ub

∂x

)
−Mz

(
∂2vb

∂x2

)

+Nx

(
∂vb

∂x

)2
]

dx. (2.9)

The strain energy of the hanger is

Uh =
∫x3

x2

∫εh0+εh

εh0

h(x)s(x)dεhdx, (2.10)

where εh0 is the initial strain of the hanger, h(x) is the length of hanger and s(x) is the tension
of hanger under dead and live loads.

2.3. Establishment of the Potential Energy Functional

Based on the partition generalized variation principle, the potential energy functional of the
system may be given as [12]

∏
= 2 × (Uc1 +Ul +Ub1 +Ut) +Uc2 +Ub2 +Uh −

∫x4

x1

∫vb

0
q dvbdx −

∫x4

x1

∫vb

0
p dvbdx.

(2.11)

And the constraint conditions are as follows.

2.3.1. The Cable-Stayed Interval

(1) The deformation compatibility condition of the main cable is

Gc1 =
√
(cos θ + u′

c cos θ)
2 + (sin θ + v′

c cos θ)
2 − 1 − εc = 0. (2.12)

(2) The deformation compatibility condition of the stay cable is

Gl =
1

l(x)

√
[l(x) cos α + ub − ut]2 + [l(x) sinα + vb − vt]2 − 1 − εl = 0. (2.13)
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2.3.2. The Suspension Interval

(1) The deformation compatibility condition of the main cable is the same as (2.12)

Gc2 =
√
(cos θ + u′

c cos θ)
2 + (sin θ + v′

c cos θ)
2 − 1 − εc = 0. (2.14)

(2) The deformation compatibility condition of the hanger is

Gh =
1

h(x)

√
[h(x) + vb − vc]2 + (ub − uc)2 − 1 − εh = 0. (2.15)

Then, the large-displacement partition incomplete generalized potential energy
functional is

∏∗
=
∏

+
∫x2

x1

λc1Gc1dx +
∫x2

x1

λlGldx +
∫x3

x2

λc2Gc2dx +
∫x3

x2

λhGhdx +
∫x4

x3

λc1Gc1dx

+
∫x4

x3

λlGldx + 2
∫H

0
λlGldx

=
∏

+2 ×
(∫x2

x1

λc1Gc1dx +
∫x2

x1

λlGldx +
∫H

0
λlGldx

)

+
∫x3

x2

λc2Gc2dx +
∫x3

x2

λhGhdx.

(2.16)

3. Establishment of the Basic Differential Equations of
Self-Anchored Cable-Stayed Suspension Bridge

Perform variation of the generalized functional
∏∗ on uc,vc, ub, vb, ut, vt, εc, εl, εh, λc1,

λc2, λl, and λh, respectively, and correspondent Euler equations could be achieved, that is,
δ
∏∗ = (∂

∏∗/∂φi)δφi = 0 [13], where φi = uc, vc, ub, vb, ut, vt, εc, εl, εh, λc1, λc2, λl, λh.

3.1. Basic Differential Equations of the Cable-Stayed Interval

For the cable-stayed interval x ∈ [x1,x2] ∪ [x3,x4], the balance equations are

T = C
(
C represents the constant

)
,

c cos
(
α + β

) − d

dx

(
Nx +

1
2
EAbv

′2
b

)
= 0,

(3.1)
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where (α + β) is the angle between the stay cable and the x-axis positive direction after
deformation

d2

dx2
Mz +

d

dx

(
Nxv

′
b

) − c sin
(
α + β

)
+ p + q = 0,

d2

dy2
Mt +

d

dy

(
Nt

∂ut

∂y

)
+ c cos

(
α + β

)
= 0,

d

dy

[

Nt +
1
2
EAt

(
∂ut

∂y

)2
]

+ c sin
(
α + β

)
= 0.

(3.2)

3.2. Basic Differential Equations of the Suspension Interval

For the suspension interval x ∈ [x2,x3], the balance equations are

d

dx

[
T cos

(
θ + ϕ

)]
+ s(x)

ub − uc√
[h(x) + vb − vc]2 + (ub − uc)2

= 0, (3.3)

d

dx

[
T sin

(
θ + ϕ

)]
+ s(x)

h(x) + vb − vc√
[h(x) + vb − vc]2 + (ub − uc)2

= 0, (3.4)

d

dx

(
Nx +

1
2
EAbv

′2
b

)
− s(x)

ub − uc√
[h(x) + vb − vc]2 + (ub − uc)2

= 0, (3.5)

d2

dx2Mz +
d

dx

(
Nxv

′
b

)
+ p + q − s(x)

h(x) + vb − vc√
[h(x) + vb − vc]2 + (ub − uc)2

= 0. (3.6)

The differential equations of either the cable-stayed interval or the suspension interval
are quite complicated, and their solutions are difficult to reach. A convenient way to
solve the equations is setting a family function of displacement for each parameter that
meets the boundary conditions and approaches an approximate solution by utilizing the
principle of stationary potential energy [14], but this is not the purpose of this paper.
This paper intends to indicate that a relatively precise description of the static behavior of
self-anchored cable-stayed suspension bridge under vertical load can be achieved through
the continuum approach. And further assumptions are introduced to simplify the above
equations.
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4. Simplification of the Basic Differential Equations of
Self-Anchored Cable-Stayed Suspension Bridge

4.1. Simplification of the Basic Differential Equations of
the Cable-Stayed Interval

Based on the above-mentioned assumptions and excluding the impact of compression-
bending coupling, the strain energy of the main girder and the tower become

Ub1 =
1
2

∫x2

x1

[

Nx

(
∂ub

∂x

)
−Mz

(
∂2vb

∂x2

)]

dx,

Ut =
1
2

∫H

0

[

Nt

(
∂vt

∂y

)
−Mt

(
∂2ut

∂y2

)]

dy.

(4.1)

Then, the basic differential equations of the cable-stayed interval could be simplified
into

T = C
(
C represents the constant

)
,

d

dx
Nx = c cos

(
α + β

)
,

d2

dx2
Mz − c sin

(
α + β

)
+ p + q = 0,

d2

dy2
Mt + c cos

(
α + β

)
= 0,

d

dy
Nt + c sin

(
α + β

)
= 0.

(4.2)

It can be seen from the above equations that the action of stay cables on the main
girder and the tower is equivalent to the action of distributed load, and the basic differential
equations of the main girder and the tower accord with the equation of a classic beam.

4.2. Simplification of the Basic Differential Equations of
the Suspension Interval

On the basis of the above assumptions, introduce some more as follows: excluding the
elongation of the hangers and assuming the vertical displacement of the main girder equals
that of the main cable.

Then, (3.5) can be simplified into Nx + (1/2)EAbv
′2
b = C (C represents the constant).

Omitting the higher-order terms leads to

Nx = C. (4.3)
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Equation (4.3) indicates that without considering the compression-bending coupling
effect, the axial force in the main girder is constant and its value equals that of the horizontal
component force of the main cable. And (3.6) can be simplified into

d2

dx2Mz +
d

dx

[
Nxv

′
b + T sin

(
θ + ϕ

)]
+ p + q = 0. (4.4)

Because the horizontal component force of the main cable accords H = T cos(θ + ϕ)
and the axial force of the main girder Nx = −H , the above equation could be transformed
into

M′′ + p + q +
d

dx

[
H tan

(
θ + ϕ

) −Hv′
b

]
= 0. (4.5)

Introduction of (2.1) can transform (4.5) into M′′ + p + q +H(d/dx)(y′ + v′
c − v′

c) = 0.
Considering that q = −Hqy′′ and H = Hq + Hp, where Hp represents the increment of the
horizontal component force of the main cable caused by live load, then the above equation
could be further transformed into M′′ + p +Hpy′′ = 0, integration of which leads to

M = M0
p −Hpy, (4.6)

where M0
p is the bending moment of a simply supported beam with the same span under

live load p(x). It can be seen from (4.6) that the horizontal component force of the main cable
caused by live load can reduce the live load bending moment of the main girder. Equation
(4.6) is just the equilibrium differential equation of the deflection theory of self-anchored
suspension bridge [15], and it is same as that of the elasticity theory of earth-anchored
suspension bridge.

Equation (4.6) is an approximate equivalent of the linear equation of the elasticity
theory. The additional bending moment of the girder caused by the enormous axial force
offsets that caused by the live-load deflection when considering the compression-bending
coupling effect. Therefore, the main girder of self-anchored cable-stayed suspension bridge
can be analyzed utilizing the elasticity theory.

An equation of the compatibility condition is required since two unknowns Hp,v exist
in (4.6), and according to the compatibility equation in the deflection theory of self-anchored
suspension bridge, the specific form of the compatibility equation for the suspension interval
is given as follows:

Hp

EcAc

∫x4

x1

dx

cos3θ
± αt

∫x4

x1

dx

cos3θ
−
∫x4

x1

y′v′dx =
HpL

EbAb
± αtL − 2

∫x2

x1

Nx

EbAb
dx, (4.7)

where cos θ = dx/ds, EcAc, and EbAb, represent the axial stiffness of the main cable and
the main girder, respectively, α is the temperature linear expansion coefficient, t, is the
temperature variations, L, is the length of themain girder, andNx is the axial force of themain
girder within the cable-stayed interval. And the above equation indicates that the horizontal
displacement at the anchor end of the main cable equals that at both ends of the main girder.
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Table 1:Material and section properties of the structure components.

Components E/MPa A/m2 Iz/m4 Q/(KN/m)
Main cable 1.95× 105 1.669× 10−2 0 1.40
Stay cables 1.95× 105 3.502× 10−3 0 0.29
Hangers 1.95× 105 2.117× 10−3 0 0.18
Main girder 3.45× 104 9.02 3.06 234.52
Pylon 3.45× 104 6.85 7.08 178.10

30◦

10 × 3.1 + 3.5 = 34.5m

3.5 + 30 × 3.1 + 3.5 = 100m

17
m

3.5 + 10 × 3.1 = 34.5m

Figure 3: Example of a self-anchored cable-stayed suspension bridge (Unit:m).

Table 2: Analytic solution and numerical solution.

Location
Bending moment M/(KN·m)

Analytic solution Numerical solution Difference (%)

Middle of side span −1488 −1328 −12
Junction between cable-stayed section
and suspension section

1384 1442 −4

Middle of the main span 3460 3235 6.9

5. Example of Verification

Below is a simple example of verification of the above-derived differential equations. As
shown in Figure 3, there is a self-anchored cable-stayed suspension bridge with span of
34.5m + 100m + 34.5m. The spacing between both the stay cables and the hangers is 3.1m,
the inclination angles of the stay cables are all 30◦, the sag of the main cable is 17m, and a
uniformly distributed load of q = 20 kN/m is imposed on the main girder. The material and
sectional properties of the main components are shown in Table 1.

Note the continuity of the internal force and the displacement at the junction between
the cable-stayed interval and the suspension one, solve the above equations referencing the
solution approach [16], and compare the results with that of the nonlinear numerical solution.
The comparison result is given as shown in Table 2.

It can be seen from Table 2 that the analytic solution is relatively quite close to the
nonlinear numerical solution. The error is mainly due to the neglecting of the strain energy
of hangers and the compression-bending coupling effect, and in particular, the error of the
middle-span bending moment in side span reaches 12%. The result indicates that the analytic
approach proposed in this paper can be applied to the preliminary analysis of simple self-
anchored cable-stayed suspension bridge, but should not be used in design stage.
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6. Conclusion

Based on the large displacement partition, incomplete generalized variation principle, and
considering the compression-bending coupling effect of the main girder and the tower, the
potential energy functional of a self-anchored cable-stayed suspension bridge is established
with the continuum method. Then, the differential equations of that are derived, which
describe the static behavior of self-anchored cable-stayed suspension bridge under vertical
load. And the following could be seen from the basic differential equations.

(1) The axial force along the main cable within the cable-stayed interval is constant
under vertical load. In addition, the action imposed on the main girder and the
tower by the stay cables is equivalent to that by the distributed load, and the basic
differential equations of the main girder and the tower accord with that of a classic
beam.

(2) The additional bendingmoment caused by the enormous axial force imposed on the
main girder by the main cable offsets the moment caused by the live load deflection
when considering the compression-bending coupling effect. Therefore, the main
girder of a self-anchored cable-stayed suspension bridge can be analyzed utilizing
the elasticity theory.

(3) The analytic method proposed in this paper is mainly to provide a theoretical basis
to describe the static behavior of self-anchored cable-stayed suspension bridge; the
analytic solution is relatively close to the nonlinear numerical solution; therefore,
the analytic approach can be applied to the preliminary analysis of simple self-
anchored cable-stayed suspension bridge.

Nomenclature

q(x): Dead load on the girder
p(x): Live load
uc: Longitudinal displacements of the main cable
vc: Vertical displacements of the main cable
ub: Longitudinal displacements of the girder
vb: Vertical displacements of the girder
ut: Longitudinal displacements of the tower
vt: Vertical displacements of the tower
εc: Strain increments of the main cable
εh: Strain increments of the hanger
εl: Strain increments stay cable
[x1,x2] ∪ [x3,x4]: Cable-stayed interval
[x2,x3]: Suspension interval
ϕ: Change of the main cable inclination
εc0: Initial strain of the main cable
T : Cable tension
εl0: Initial strain of the stay cables
l(x): Stay cable length
c(x): Tension of stay cables
Nx: Axial force of the girder
Mz: Bending moment of the girder
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Nt: Axial force of the tower
Mt: Bending moment of the tower
εh0: Initial strain of the hanger
h(x): Length of hanger
s(x): Tension of hanger
Uc: Strain energy of the main cable
Ub: Strain energy of the girder
Ul: Strain energy of the stay cables
Ut: Strain energy of the tower
Uh: Strain energy of the hanger.
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