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Abstract Integration of shape prior information into level
set formulations has led to great improvements in image seg-
mentation in the presence of missing information, occlusion,
and noise. However, most shape-based segmentation tech-
niques incorporate image intensity through simplistic data
terms. A common underlying assumption of such data terms
is that the foreground and the background regions in the
image are homogeneous, i.e., intensities are piecewise con-
stant or piecewise smooth. This situation makes integration
of shape priors inefficient in the presence of intensity inho-
mogeneities. In this paper, we propose a new approach for
combining information from shape priors with that from im-
age intensities. More specifically, our approach uses shape
priors learned by nonparametric density estimation and in-
corporates image intensity distributions learned in a super-
vised manner. Such a combination has not been used in pre-
vious work. Sample image patches are used to learn the in-
tensity distributions, and segmented training shapes are used
to learn the shape priors. We present an active contour algo-
rithm that takes these learned densities into account for im-
age segmentation. Our experiments on synthetic and real im-
ages demonstrate the robustness of the proposed approach to
complicated intensity distributions, and occlusions, as well
as the improvements it provides over existing methods.
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1 Introduction

Image segmentation is one of the oldest and most profound
subjects in computer vision. The goal of segmentation is to
partition an image into regions that might be useful for im-
age interpretation. While a wide variety of ideas and frame-
works have been explored for image segmentation, of par-
ticular interest in this paper are techniques based on active
contours. Active contour based segmentation methods can
be grouped into two major categories: edge-based methods
and region-based methods. Edge based models [1,2] use gra-
dient magnitude to identify and separate regions. However,
these methods suffer from noise. Some preprocessing steps
can be applied for denoising, but these operations weaken
edges. Region based models [3–8] which are preferred in the
presence of noise and low-quality data generally assume in-
tensities in the regions are piecewise smooth. This approach
is succeeded by several methods such as global [3, 6–10]
and local [4, 5] intensity fitting energy based methods and
information theoretic methods [6,7] that use histograms and
probability distribution functions of the input image. Local
intensity energy based models alleviate sensitivity of region
based models to intensity inhomogeneities by integrating
a Gaussian kernel into the global model that assigns more
weight to intensities near the current estimate of the bound-
ary. Recently, a new model that integrates a Gaussian mix-
ture model with a level set method for natural image seg-
mentation has been proposed [11].

Two other major problems that complicate the segmen-
tation process are occlusion and missing information in the
input image. These problems have motivated researchers to
use shape statistics in the segmentation process [12–14]. In

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/19477775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Abdurrahim Soganli et al.

a b c d e

Fig. 1 Synthetically constructed aircraft object with 5 different conditions.

these approaches, prior knowledge of the shape of the tar-
get object is incorporated as a regularization term into an
optimization-based segmentation formulation. In [12–14]
the shape model is represented in terms of level sets. These
methods assume intensities are piecewise constant and in-
corporate image data into the segmentation formulation ac-
cordingly, and they involve statistical constraints to keep the
evolving boundary in the shape space defined by the training
shapes. Earlier work [14] on this problem involves the use
of principal component analysis (PCA) of the signed dis-
tance functions of training shapes in order to capture and
represent shape variability. These techniques provide accu-
rate segmentation in the presence of low SNR and missing
information. However, PCA based techniques have two dis-
advantages. First, these techniques treat the space of signed
distance functions as a linear vector space, which it is not.
Second, these techniques cannot deal with multimodal shape
densities which involve multiple shape subclasses within the
overall shape distribution. Nonparametric shape priors are
proposed in order to alleviate some of the problems faced
by PCA based shape modeling approaches. For example,
in [12], nonparametric kernel density estimate of the shape
distribution is used as the shape prior. In that work, L2 dis-
tance and template overlap ratios are used as metrics for the
Gaussian type kernel. In these segmentation frameworks,
for the data (region) term, a term based on piecewise con-
stant [3] or piecewise smooth [15] regions was adopted be-
sides the shape term. In segmentation scenarios presented in
these works, the shape term regularizes the data term so that
the active contours are evolved to the actual boundary of the
target object when the object of interest is partially occluded
or suffers from noise. However, if the data term falls beyond
a certain limit the shape term may not be able to drive the
curve to the correct boundary.

Our key observation that has motivated the work pre-
sented in this paper is that powerful shape-driven methods
(such as nonparametric shape priors) have so far been used
together with only simple data terms involving piecewise
constant or piecewise smooth intensity assumptions. There
is a need to combine such shape prior methods with flexi-
ble, learning based intensity distributions, such as those pro-
posed in [9, 10]. In many real life scenarios, in the presence
of inhomogeneities or characteristic complicated intensity
distributions in the regions, existing segmentation methods

may fail to capture the target object accurately. Performance
of these models can be better explained with Figure 1. A
Synthetically constructed aircraft image and different back-
grounds are shown in five sample images.

– a. Foreground and background of the object are homoge-
neous. Segmentation can easily be done by simple edge
based models. Region based models can also provide ac-
curate segmentation results.

– b. Foreground and background of the object are still ho-
mogeneous but there is noise. Edge based models may
have problems. Segmentation can be done by region
based models.

– c. Foreground and background of the object are homoge-
neous, noisy and some part of the object is missing. Seg-
mentation can be done by shape based models [12, 13].

– d. Foreground is homogeneous but background of the
object is not homogeneous. There are strong edges in
the background which are not regional boundaries but
inner edges. Edge based models and piecewise smooth-
ness based region models would fail. Segmentation can
be done by using histogram based models.

– e. The background is not homogeneous and some part
of the object is missing. Shape based models can be
used. However piecewise smoothness based data terms
commonly used in these models cannot prevent leakages
and would prevent the effective exploitation of the shape
prior information.

In this paper our motivation is to present an approach
that can handle the types of complication represented by
the toy example in Figure 1(e). Classical shape based mod-
els generally fail to provide successful segmentation when
faced by complicated intensity distributions because of the
simplistic data terms they use. The idea for a remedy, which
has motivated the work presented in this paper, could be
to combine a data term based on learned intensity distribu-
tions with a powerful and versatile approach for incorporat-
ing shape priors. Here, the data term proposed in [9], would
be a promising candidate which is based on the assumption
that probability densities of the background and the fore-
ground regions are a priori known. In this work, we propose
to combine such a learning based data term with a nonpara-
metric shape model term to extend the previously proposed
shape based segmentation approach [12] to the case of com-
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plicated intensity distributions. We propose an energy func-
tional that incorporates these two pieces, and develop an al-
gorithm for minimizing that energy functional for segmen-
tation. We propose two versions of the data term, one in-
volving learning of both the foreground and the background
intensity distributions, and the other considering the case in
which only information about the foreground intensities is
available. We observe that the proposed approach can han-
dle both complicated intensity variabilities and complicated
shape variabilities, a capability that existing methods do not
readily exhibit.

This paper is organized as follows. We review the shape
based model proposed in [12] and the data term proposed
in [3] in Section 2. Next, we explain our proposed model
and its extension to color images in Section 3. In Section 4,
we test our proposed approach on both synthetic images and
on real world color images. In Section 5 we summarize and
conclude our paper.

2 Background

The general shape-based segmentation framework that has
been used in [12, 13] and that we also consider in our work
is based on minimizing energy functionals of the following
form:

E(C) =− log p(data|C)− log pC(C) (1)

In this formulation, C is the segmentation curve, the first
term is the data term and the second one is the shape term
capturing statistical prior information about the shape of the
object to be segmented. Specific choices for the harmony
of these two terms determine the accuracy of segmentation.
In this section we briefly describe the data term used by
the shape-based segmentation methods in [12,13]. This data
term imposes piecewise constant region intensities, and is to
be contrasted with the term we will propose in Section 3.
In this section, we also briefly review nonparametric shape
priors [12], which is the shape term we use in our work.

2.1 Data term

The region-based data term proposed in [3] is used in sev-
eral shape-based methods. Letting I be the grayscale input
image, the energy functional of data term is:

ECV (C) = λ1

∫
inside(C)

(I(x)−min)
2dx

+λ2

∫
outside(C)

(I(x)−mout)
2dx

(2)

where λ1, λ2 are constants, min and mout are the mean in-
tensities inside and outside of the current contour respec-

tively. 1 This term can be adopted to color images as pro-
posed in [16].

2.2 Nonparametric shape priors

Shape-based segmentation methods of interest in this work
incorporate shape prior information into a level set-based
energy functional as an additional term. In [12], nonpara-
metric shape priors is introduced to capture complex, poten-
tially multimodal shape prior densities. This goes beyond
the simpler PCA based methods which can only capture
”unimodal” shape variability concentrated around a mean
shape. The training set consists of n segmented unaligned
curves C1, ...,Cn of the target object. These curves are first
aligned with respect to translation, scaling, and rotation pa-
rameters, so that their remaining variability captures the dis-
tribution of the object shape. Aligned curves, C̃1, ...,C̃n are
used to learn a shape probability density function. In particu-
lar, Parzen density estimation is used within a level set-based
formulation as follows:

EShape(C) =
1
n ∑

m
k(dL2(φC̃,φC̃m

),σ) (3)

where φC̃ and φC̃m
are the signed distance functions of the

current contour and the training shapes, respectively. Note
that signed distance functions for level set formulations en-
code the distance of any particular point in the image domain
to the segmenting boundary, with negative sign for points
inside the boundary and with positive sign for points out-
side the boundary. Through this term, the active contour is
constrained by a shape force governed by the training set.
Energy formulation of the shape-based approach of [12] can
be expressed as:

E(C) = ECV (C)+βEShape(C) (4)

where β is a hyper-parameter that tries to balance data and
shape terms. Segmentation is done through minimization
of this energy functional by gradient descent. This iterative
procedure produces the evolution of the curve from initial-
ization to final segmentation.

This shape based model provides accurate segmentation
results in the presence of missing information or occlusions
if the intensity homogeneity assumption of the data term is
correct for the input image. However, generally real world
complex images are not homogeneous and intensities are
not slowly varying. Therefore in the next section we pro-
pose changing the data term in order to obtain accurate seg-
mentation results in the presence of complicated intensity
distributions.

1 The subscript ”CV” is used to refer to the first letters of the last
names of the authors of [3].
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3 Proposed approach

We consider the problem of segmentation of an object with
an arbitrary intensity distribution and arbitrary shape vari-
ability, possibly in a complex background. We are also inter-
ested in handling occlusions and missing information. Our
model is based on two assumptions to help address this chal-
lenging problem:

1. Example contours of the object to be segmented are
available for a priori learning of the shape distribution.
Note that this assumption is the same with [12] and other
shape based models.

2. Image patches are available to learn the probability den-
sity functions of foreground and background (or at least
just the foreground) of the target object.

3.1 Foreground and background distributions are known
(Model 1)

By using the second assumption above, we can insert a prob-
ability density function based data term to the energy func-
tional in (1). In [10] and later in [9] a data term that is suit-
able for our objectives was proposed. This term is given by:

EPD(C) =−
∫

outside(C)
log pout(I(x))dx

−
∫

inside(C)
log pin(I(x))dx

(5)

In this equation, pin(.) and pout(.) are the intensity probabil-
ity density functions that belong to the foreground and the
background regions in the image, respectively. These prob-
ability density functions can either be estimated based on
foreground and background patches extracted from the test
image (if that is feasible in the particular application of in-
terest), or from offline training samples of the type of image
to be segmented. One can use parametric or nonparamet-
ric density estimation methods for estimating these intensity
distributions. In our work presented here, we use nonpara-
metric density estimation on patches extracted from the test
image to be segmented. Gradient flow of this data term is
given below:

∂C
∂ t

= [log(pout(I(x)))− log(pin(I(x))]N

=

(
log

pout(I(x))
pin(I(x))

)
N

(6)

N is inward normal of the segmenting curve. Interpreting
this gradient flow can provide some intuition on the behavior
of this data term. Assume a pixel at location x in the input
image.

– If pin(x)> pout(x), the expression before the normal will
be negative, which will cause the curve to move outward
to include this point in the foreground region.

– If pin(x)< pout(x), the expression before the normal will
be positive, which will cause the curve to move inward
to push this point to the background region.

This model can also be applied on color images by extending
data term as in [16]. For an RGB image forces from the three
channels can be calculated separately and summed up. More
generally, given a k-channel input image I, the gradient flow
of the data term will be as follows:

∂C
∂ t

= [
k

∑
i=1

log(pouti(I(x)))−
k

∑
i=1

log(pini(I(x)))]N

=

(
k

∑
i=1

log pouti(I(x))
log pini(I(x))

)
N

(7)

Using this data term based on learning intensity distribu-
tions, our energy functional to be used for segmentation be-
comes:

E(C) = EPD(C)+βEShape(C) (8)

To obtain an iterative curve evolution algorithm to minimize
(8), we combine the gradient flow in (6) or (7) with the gra-
dient flow expression for nonparametric shape priors, which
can be found in [12].
In this subsection, we assumed the availability of data for
learning both the foreground and the background intensi-
ties. However, one might also be interested in segmenting
an object with a particular intensity distribution on a vari-
ety of backgrounds. In that case, one needs an approach that
can exploit the foreground intensity distribution without any
knowledge about the background. We handle that case in the
next subsection.

3.2 Only the foreground distribution is known (Model 2)

We construct a new model in which background probability
distribution function is unknown. In this case, a simple idea
could be to treat the background as uniformly distributed.
Thus, pout(I(x)) becomes nothing but constant with follow-
ing value:

pout =
1
L

(9)

where L is maximum value of pixel intensities. The gradient
flow of the data term under this intensity model becomes:

∂C
∂ t

=

(
log

1/L
pin(I(x))

)
N (10)

This term is a simple comparison between 1
L and pin(I(x)).

If pin(I(x)) is bigger than 1
L than the contour moves to in-

clude this point in the foreground. This model can produce
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Fig. 2 Aligned training samples for the aircraft object.
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Fig. 3 Segmentation of the aircraft image. First row (a-e) shows the segmentation result of [12]. Second row (f-j) shows the segmentation result
of proposed model 1 which is based on learning and using the foreground and the background intensity distributions. Third row (k-o) shows the
result of proposed model 2 in which the background is treated as uniformly distributed. Leftmost and rightmost columns show the initial curve and
the final segmentation result, respectively, whereas the middle columns show intermediate states in the curve evolution process.

successful segmentation results under complex and approx-
imately uniformly distributed backgrounds.The overall gra-
dient flow is given by the linear combination of the flow in
(6) due to the data term and the flow resulting from the non-
parametric shape priors, presented in [12].

The algorithmic structure we use to implement the curve
evolution associated with the gradient flows presented in
this and the previous subsections in combination with the
flow due to the shape term is similar to the structure used
in [12]. In particular, we first evolve the curve C using only
the data term until convergence, and then switch the shape
term. This prevents unnecessary evaluations of the nonpara-
metric shape density for the initial and early states of the
curve, which are usually very far away from the actual ob-
ject shape anyway. When the shape term is turned on, both
the data and the shape gradient flows act on the curve at each
iteration. Before computing the shape force, the current seg-
menting curve is aligned with respect to the training shapes.
Once the shape force is computed, the curve C is updated

through the data and the shape forces. This procedure is re-
peated until the curve converges.

4 Experimental results

We now demonstrate segmentation results of our proposed
approach. We first consider segmentation of a synthetically
constructed aircraft image which is similar to the image in
Figure 1(e). The aligned training shapes used in nonpara-
metric shape density estimation are shown in Figure 2. Fig-
ure 3 shows the segmentation results on a test image of the
aircraft object not included in the training set of shapes. We
present results of both versions of our approach. The first
version involves learning and using both the foreground and
the background intensity distributions (Model 1). The sec-
ond version learns and uses the foreground intensities, but
assumes a uniform density for the background (Model 2).
We compare our results with those of [12]. Images in the first
column are (a-f-k) initial contours. Second through fourth
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Fig. 4 Probability density functions of foreground and background of aircraft object used in our segmentation approach. Model 1 (left), Model 2
(right).

Kim et al.

Proposed Model 1

Proposed Model 2

Fig. 5 Segmentation of a circular object. First row shows the segmentation result of [12]. Second row shows the segmentation result of proposed
model 1. Third row shows the result of proposed model 2. Leftmost and rightmost columns show the initial curve and the final segmentation result,
respectively, whereas the middle columns show intermediate states in the curve evolution process.

Fig. 6 Training samples for birds.
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Fig. 7 Pieces involved in the bird image segmentation experiment: 7 foreground training samples, 2 background training samples, input image.
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Fig. 8 Prior distributions of foreground and background for the three channels.

columns are intermediate states in the evolution process, and
the fifth column shows the final segmentation results. Up
to the third column, only the data term is activated in each
method. So the effect of the shape term can be observed in
the last two columns. We observe that the method in [8] fails
to segment this image. This is because the simple data term
in [12] is not able to capture the complicated foreground and
background intensity distributions in this scene. As shown in
Figure 3(c), the data term of [12] drives the curve to high-
contrast areas in the scene, which do not correspond to the
boundary of interest here. The shape prior cannot do much
more than trying to fit the best aircraft shape consistent with
the training data as well as with the boundary favored by the
data term. The final result in Figure 3(e) looks like an air-
craft, but is a poor segmentation of the object in the scene.
The second row presents the results of our Model 1. We ob-
serve that the result in Figure 3(j) is a successful segmen-
tation. The intermediate result in Figure 3(h) demonstrates
the effectiveness of the data term used in our approach in
handling the complicated intensity distributions in this im-
age. Further steps in the evolution, as shown in Figure 3(i-
j), help recover the missing wing of the aircraft through ef-
fective incorporation of shape information. The bottom row
contains the result of our Model 2. Despite the lack of prior
knowledge about the background, this approach is still able
to produce a reasonable segmentation result. However, as
compared to the results of Model 1, Model 2 produces some
artifacts. We can make sense of these artifacts by examin-
ing the intensity probability density functions used by the
two models, shown in Figure 4. In particular, the character-
istic nature of the background intensity distribution which is
not captured effectively by the uniform distribution is that
very dark and very bright intensities are highly likely in the
background region. Since the uniform distribution does not
capture this nature, some of the dark and bright pixels that
are not terribly inconsistent with the shape prior are put into
the foreground region by the approach based on Model 2.

Next we present results on real color images. In the first
such example, we consider segmentation of the sun in the
presence of occlusion. In addition to the potential presence
of an occlusions, this problem can also be challenging
because of scattering around the sun. The test image and
the segmentation results are shown in Figure 5. While one
might argue that the high contrast between the sun and the
background would enable a simpler segmentation approach
to generate a reasonable result, this, of course, is not valid
when we have complications such as occlusions, as seen in
this example. Prior probability densities are obtained by la-
beling small foreground and background regions of the in-
put image by supervised learning. In Figure 5 the first three
columns show segmentation results without the shape term,
which is added after the third column. Our proposed Model
1 provides a reasonably accurate segmentation result. Model
2 leads to correct localization of the sun but, has difficulty
recovering all of the occluded region. The model proposed
in [12] fails to segment the sun. Segmentation result con-
verges to a circular shape because of the activation of the
shape term, but the resulting boundary does not correspond
to the boundary of the sun.

In the third example we consider segmentation of images
of birds. Shapes of randomly chosen bird species are used in
learning the shape priors. The shape training samples used
in our experiment are shown in Figure 6. Although a com-
prehensive shape prior database would require a significant
number of training samples from different bird species, we
use 11 training samples for simplicity and show that even
such limited data could be very valuable when effectively
used in the segmentation process. In this example, prior in-
tensity distributions are not obtained directly from the input
image itself. We use distinct sample background and fore-
ground images. In particular, we learn the foreground inten-
sity distribution from 7 different image patches containing
birds belonging to the same species as the bird in the input
image and learn the background intensity distribution from
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Proposed Model 1

Proposed Model 2

Fig. 9 Segmentation of a bird. First row shows the segmentation result of [12]. Second row shows the segmentation result of proposed model
1. Third row shows the result of proposed model 2. Leftmost and rightmost columns show the initial curve and the final segmentation result,
respectively, whereas the middle columns show intermediate states in the curve evolution process.

2 image patches. Training patches used for learning the fore-
ground and the background intensity distributions are shown
in Figure 7. Final estimated foreground and background in-
tensity distributions are the average distributions of these
training patches. One can also use a weighted average in
order to obtain better estimated distributions for a specific
scenario. Note that this corresponds to a realistic scenario in
which we do not have access to a patch of intensities of the
particular object in the input image to be segmented. The es-
timated probability density functions of the foreground and
the background regions for each of the three color channels
are shown in Figure 8. In this example, we use an input im-
age containing a bird inside a birdcage which causes occlu-
sions as shown in Figure 7. Most segmentation algorithms
would be challenged by such occlusions. Segmentation re-
sults are shown in Figure 9. We observe that the approach
in [12] is able to segment only the homogeneous part of the
bird. Although activation of the shape term forces the con-
tour to approach the shape of a bird, the piecewise smooth
intensity assumption of the data term imposes a strong pref-
erence to exclude both the dark and the light parts of the bird
inside the contour. Model 1 produces a fairly good result.
We observe that the part of the background that contains the

shadow of the bird is included in the segmented foreground
region. This is most likely caused by the fact that the dark-
ening of the intensities due to the shadow makes this region
unlikely for the background given the learned prior distribu-
tion. Nevertheless, considering the challenging nature of this
problem, our approach based on Model 1 produces reason-
able segmentation results. Model 2 also produces a satisfac-
tory result in this example despite some small mismatches
around the boundaries. This can be explained by the mis-
match of intensity distributions used in the model with those
observed in the input image. In particular, a uniform distri-
bution which is significantly different from the learned dis-
tribution shown in Figure 8 is assumed for the background.
Similarly, the foreground intensity distribution learned from
7 image patches on the left of Figure 7 is a coarse approxi-
mation of the actual intensity distribution in the test image.
When both of these distributions are inaccurate, some level
of imperfection is expected.

Our final example involves the segmentation of car im-
ages. Cars can have a variety of color distributions. Trans-
parency of the windows cause the background to be visible
through the car. Such complications make the segmentation
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Proposed Model 2

Proposed Model 1

Kim et al.

 

 

Fig. 10 Segmentation of a car. First row shows the segmentation result of [12]. Second row shows the segmentation result of proposed model
1. Third row shows the result of proposed model 2. Leftmost and rightmost columns show the initial curve and the final segmentation result,
respectively, whereas the middle columns show intermediate states in the curve evolution process.

of cars a challenge. Exploiting prior intensity distribution
knowledge on foreground and background may lead to bet-
ter segmentation results compared to the piecewise smooth
assumption in such cases. Segmentation results are shown in
Figure 10. The shape based model proposed in [12] fails to
produce an accurate segmentation result. The data term used
in [12] assumes that regions are piecewise smooth, which in
this example causes some parts of the car to be treated as
background. The final result approaches the shape of a car,
but fails to localize the actual car in the scene. Our proposed
Model 1 provides significantly better segmentation results,
although some parts of the car having a similar intensity
distribution to the background are missed. Our Model 2 seg-
ments most of the car successfully, but the uniform back-
ground model causes some artifacts.

5 Conclusions

In this paper, we have proposed a segmentation approach
that involves learning and exploitation of both the intensity
distributions of the regions in the image and the shape dis-
tributions of the objects to be segmented. We have learned

the shape distributions by using the recently developed idea
of nonparametric shape priors. The main contribution of our
work is to combine such shape priors with learning-based in-
tensity models in the segmentation process. We have prosed
two models, one involving the learning of both the fore-
ground and the background intensity distributions, and the
other involving the use of a learning-based foreground den-
sity together with an assumed uniform background density.
We have shown that our approach can provide improvements
over existing shape prior-based segmentation methods es-
pecially when the region intensity distributions are compli-
cated. We have compared the performance of our two mod-
els on synthetic and real examples, and we have also shown
examples of cases where our approach can fail when the dis-
tributions used in the model are inaccurate. We have also
demonstrated the robustness of our proposed approach to
occlusions. When data to learn the shape and the intensity
distributions are available, the proposed approach has the
potential to solve very challenging segmentation problems.
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