
A Modular Software Architecture for UAVs

Taygun Kekec, Baris Can Ustundag, Mehmet Ali Guney, Alper Yildirim, Mustafa Unel
Faculty of Engineering and Natural Sciences

Sabanci University
Orhanli-Tuzla 34956, Istanbul, Turkey

Email: {ikekec,bcanustundag,maliguney,alperyildirim,munel}@sabanciuniv.edu

Abstract—There have been several attempts to create scalable
and hardware independent software architectures for Unmanned
Aerial Vehicles (UAV). In this work, we propose an onboard
architecture for UAVs where hardware abstraction, data storage
and communication between modules are efficiently maintained.
All processing and software development is done on the UAV
while state and mission status of the UAV is monitored from a
ground station. The architecture also allows rapid development
of mission-specific third party applications on the vehicle with
the help of the core module.

I. INTRODUCTION

The availability of inexpensive, lightweight and compact
sensors, low-cost and thin computational platforms, and matu-
rity of control system design capabilities have paved the way
to extensive usage of Unmanned Aerial Vehicles (UAVs). The
applications of UAVs are becoming more and more apparent.
Missions performed by UAVs include surveillance [1], [2],
reconnaissance [3], borderline security [4] and remote sensing
of environment [5]. Researchers try to optimize cost, scale and
flight endurance to come up with efficient solutions [6].

An UAV is governed by a flight computer system. The
system reads and analyzes data from a wide variety of sensors
and produces a mission flight plan. For observation purposes,
UAV carries a payload for acquiring visual overview of the
flight environment. While some of the preliminary works on
the topic consisted of gathering visual data and processing it
off-line, real-time processing is essential and indispensable for
missions like threat detection and object tracking.

In addition to physical constraints of developing an UAV
system [7], one needs a reliable, flexible, and scalable software
component on the flight computer. The software component
is responsible for providing hardware abstraction, triggering
security checks, handling unexpected conditions, monitoring
data and mission progress of the system. Moreover, the system
must create a software infrastructure for newly added tasks
so that new applications can communicate with the onboard
software. Finally, the system must provide an interface for
communication of different sources. In Jones’ work [8], au-
thors proposed a software architecture for the design and
simulation of UAV-based setups. Their work mostly focused
on developing a ground station module, can act as a simulator
and command controller, providing hardware-in-the-loop capa-
bility, simulation sensorial inputs, routing of shared data and
generating command requests. Using a graphical configuration
system, the user can create artificial events for triggering new
actions at specified times to test behaviors and responses of
the multiple UAV system.

In Pixhawk project [9], an aerial middleware called MAV-
CONN, is proposed. Capabilities of the architecture is com-
pared with ROS (Robotics Operating System) and LCM
(Lightweight Communications and Marshalling). ROS is an
open-source robotics operating system [10], developed by
Willow Garage and it is preferred a lot due to its variety
in software components. LCM [11] composes of libraries
and software components for communication in soft real-time
systems. MAVCONN acts as a bridge between ground operator
and low level system components, and also provides hardware-
level synchronization of visual and inertial data. It also exploits
the upper layer of ROS architecture and uses LCM as the
communication layer due to its real-time message transmission
capabilities. One relevant observation noted in [9] is that many
robotic systems still employ polling as part of their design
scheme which adds delay to the system and consumes a lot
of processing power due to the context switch. Asynchronous
design is faster when compared to a polling based design. As
asynchronous designes require threads, an onboard middleware
needs to adopt multi-threaded implementation.

In Maza’s work [12], authors proposed an architecture for
UAV cooperation. Their architecture is divided into two layers.
First layer, Executive Layer is responsible for generating high
level decisions and task planning. Second layer, Onboard
Deliberative Layer is responsible for the execution of the tasks.
They define a task as having multiple discrete states where it
can be nested into subtasks. The functionality of their system
is shown on a load transportation application.

Lopez [13] proposed a middleware system, implementing
common functionalities and communication channels. In their
architecture, they propose a service container which acts as a
plant for subscriber/requester data services. This container is
the core of their architecture which handles name, network and
finally resource management onboard. Container automatically
handles message subscription, message failure conditions and
message delivery. Their proposal is focused on the network
centric low-resource embedded applications.

Honvault [14] proposed an architectural framework im-
plementing core components for the development of fault
tolerant and real-time applications. The framework which is
built on top of a real-time operating system kernel has two
facets. First layer provides key algorithms and services. Second
layer allows development of new application context for new
problems.

The literature survey shows that although UAVs have
different capabilities and mission complexities, they require a
unified software architecture where components communicate
efficiently. Moreover the data must be analyzed during the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/19477579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: Block diagram of proposed system architecture.

flight. In this work, we propose a generic architecture for
achieving these goals. Unlike some cooperatively architectured
systems, we narrow our focus on software framework of indi-
vidual UAVs. Proposed onboard software framework maintains
generic hardware abstraction, data storage and communication
duties. The developers are able to monitor the data, create
new task blocks where tasks communicate with onboard core
module via Inter Process Communication.

The rest of the paper is organized as follows: In Section
2, we present our proposed architecture. In Section 3, we
show implementation details of our architecture. Experimental
results of the platform is presented in Section 4. The paper is
concluded with some remarks and future directions in Section
5.

II. PROPOSED ARCHITECTURE

In this section we will describe parts of our proposed
architecture. Proposed architecture mainly consists of three
main modules. First module, denoted as core module, is the
heart of the architecture where all communication, data storage
and mission management are handled. Second module is
application module which includes mission-specific programs
like object tracking and waypoint following. Third module is
ground station module where operator performs data analysis,
visualization and remote command execution. The overview
of the proposed architecture can be seen in Figure 1. In what
follows, we will describe functionality of core module’s layers
and blocks.

A. Core Module

Hardware Abstraction Layer

Hardware Abstraction Layer (HAL) is responsible for
managing input/output operations of system peripherals and
onboard sensors. Lower part of the layer consists of Serial,
SPI, PPM and I2C communication stacks for data acquisition.
Upper part of the layer is responsible for copying data to shared
memory using multiple threads.

The working principle of the proposed hardware abstrac-
tion layer is time-driven where each thread has a predefined
working period. Acquired data is copied to shared memory in
parallel with the help of several threads. Each thread’s period
differs with respect to the update rate of the associated device.
Using this methodology, shared memory gets an update each
time a thread cycle is completed.

Shared Memory

In our proposed architecture, onboard core module stores
all numerical data on a shared memory. The memory is updated
at several intervals with the help of hardware abstraction layer
threads. This area is not only accessible to all blocks of core
module but also accessible read-only to application module.
Because shared memory is volatile, all fields of shared memory
are copied to a non-volatile disk memory using a logger block.

Cooperative Memory

The proposed architecture adopts decentralized commu-
nication between UAVs. There are two reasons for using a
decentralized communication method. First, when only some

Fig. 2: Internal blocks of mission manager.

of UAVs are in the range of the ground station, remaining
UAVs can receive updates through their peers. Second, some
missions can require exchanging information in the fastest way,
where delay caused by communicating over a ground station
can severely affect sharing even packages of short length.
Details and implementation of this block is reserved for future
work.

Configuration Block

This block stores all system specific settings for onboard
core module. Various settings include network settings, device
access settings for hardware abstraction layer. This block is
accessible to all blocks of core module. Moreover, operator
can also access and modify system settings through a User
Service block via TCP/IP connection.

System Monitor and System State

Core module has all numerical data required for performing
algorithms. A flight system also requires detection of failures
and malfunctioning. In this architecture, system monitoring
block analyzes data residing in shared memory and produces
logic-level system states such as validity of each sensor’s
functionality and battery level monitoring. Output of system
monitoring block is a number of logical data stored in system
state block. Logical data stored in system state is also used
by mission manager, as most of the missions on UAV require
certain state configuration.

Communication Layer

The onboard software architecture must transmit/receive
various data. When the UAV is operational and core module is
online, the communication requirements can be grouped into
three parts.

First, core module must communicate with other onboard
task-specific applications. When an application goes online,
it also needs to provide packages about itself to the Mission
Manager block such as Mission Definition, Mission Start, and
Mission Status. Mission Manager will respond each interval
whether it is suitable to continue the mission or notify termi-
nation of a mission by core module. This communication is
done by using an IPC (Inter Process Communication) schema.

Second, core module must communicate with the ground
station. An operator can also desire modifying configuration

parameters or even trigger mission termination through mission
manager. This type of communication is done by User Service
block under TCP/IP. Furthermore shared memory and system
state are broadcasted to the ground station through TCP/IP by
Broadcaster block. Due to the high bandwidth requirements,
Broadcaster block must transmit visual data to ground station
under UDP/IP.

Third, core module must communicate and share system
data with other UAVs. For this purposes, we reserve a UAV
P2P(Peer to Peer) Service block. Adopting event-driven
schema, the block updates tables in cooperative memory of
UAV when a message is triggered. It can also serve as a
pipeline for transmitting high priority messages of an UAV,
to the ground station through a nearby UAV.

Logger Block

The architecture implements failure detection on system
monitor block. However for simulation and playback purposes,
volatile data storage must also be supplied with non-volatile
storage on the system. For this purposes, logger block is
responsible for storing three types of data: shared memory,
system state and mission progress data. One can expect first
two to be recorded during whole flight while missions are
recorded from mission startup to mission completion.

In our logging implementation, we adopted a thread-based
logging activity. Logging thread periodically writes shared
memory and system state into flight logging directory. More-
over, the block receives periodic announcements of mission
based data from mission manager block. Each mission has its
own logging directory. The block can also be configured to
broadcast all logs to the network. This is beneficial for small
scale platforms as they may not have sufficient storage space.

Mission Manager

This block is responsible for registering new and moni-
toring ongoing missions. On new mission execution request,
mission creator analyzes incoming mission request, validates
request after analyzing mission requirements from system state
block. Creator establishes new mission into mission queue as
in Fig. 2.

Mission executor keeps track of missions in the queue.
Each mission must report its progress and state to mission
executor periodically. If no report is obtained from running
mission or mission criteria fail to be sufficed, mission is
immediately removed from the mission queue while generating
a mission abort message. Missions also have priorities. Core
module has a few built-in missions (e.g. emergency land)
which have higher priority than developed missions. Automatic
triggering of such a mission causes Mission Executor to put a
new mission to Mission Queue resulting immediate execution
of prioritized mission whilst current mission gets postponed.

B. Application Module

Application module is the space where mission based appli-
cations are stored. As operations like mission logging, mission
preemption, accessing peripherals are already maintained by
core module, one can focus on the task and algorithms while
receiving essential services from core module.

Each mission start is triggered by the user from the ground
station module. Mission manager checks whether mission re-
quirements are fulfilled, and triggers execution of correspond-
ing mission from application module. These requirements are
periodically checked from Mission Executor subblock. All
mission progress is logged and can be transferred through
User Service to the ground station module. The mission must
send acknowledgment to core module periodically or will be
terminated due to security purposes.

C. Ground Station Module

Operator can view real-time video of UAV, and send
mission execution commands like vehicle landing and vehicle
take-off to core module. Core module’s shared memory and
system states are fully observable using this module. Due to
high data transmission bandwidth, it operates through 802.11x
wireless protocol.

III. IMPLEMENTATION

The proposed architecture is implemented on our UAV
(Fig. 3). It employs a Gumstix Overo microcomputer and
Texas Instruments’ TMS320F28335 microcontroller for flight
control. We implemented lower part of hardware abstraction
layer on the microcontroller. Rest of the blocks of core
module and application module are implemented on Gumstix
microcomputer. Ground station module is implemented on a
laptop.

A. Low and High Level Controllers

We employ TMS320F28335 microcontroller for low level
control tasks as well as interfacing sensors. Microcontroller
has 150Mhz processor speed, 68KB RAM and 512KB Flash
memory. The microcontroller is highly capable; it supports 6
capture channels, 16 PWM channels and 16 ADC channels. It
provides 96 interrupts of which 58 are reserved for input/output
units. Unlike many microprocessors, TMS320F28335 employ
zero clock cycle when switching between interrupts. We
implemented 100Hz PID control for low level control task
on the microprocessor. For tuning purposes, control gains
can be modified during the flight from the ground station
module where it will be directed to hardware abstraction
layer by the help of the core module. Also calibration of
the electronic speed controllers and other hardware follow the
same procedure.

Fig. 3: Implementation platform SUQUAD.

Gumstix microcomputer is utilized as the high level
controller of our system. The microcomputer is small and
lightweight, weighting only 6 gr. It has a 600 MHz OMAP
3503 microprocessor and C64+ Digital Signal Processor, and
a 256 MB DDR RAM. The microcomputer also has 4 hardware
PWM channels and fine input/output capabilities where all
voltage regulations are performed by its expansion board.
The device runs Angstrom Linux distribution. We made slight
modifications on the operating system for improving efficiency.

Fig. 4: Real-time data analysis on operator interface.

Fig. 5: UAV’s position on earth and surveillance video on
operator interface.

B. Sensors

We use OmniVision OV 3640 camera of E-Con Systems.
The camera has 3.2 Megapixels resolution running under V4L2
driver. It supports resolutions from 320x240 to 2048x1536
supporting Raw RGB, RGB565, YUV, YCbCr image formats.
Most of the time, image acquisition is done via microproces-
sor. However, utilizing Gumstix’s DSP speeds up acquisition
process significantly. In this work, we use DSPLink library of
Texas Instruments for image acquisition so that microcomputer
can allocate more processing time to different tasks. On user
prompt, frames are transferred to the ground station under
H264 encoding format.

We use CHR-6dm inertial measurement unit which com-
bines 3d rate gyros, accelerometers, and magnetic sensors.
IMU has 32 bit ARM Cortex processor where it comes with
an onboard Extended Kalman Filter implementation reporting
roll, pitch and yaw angles at up to 300Hz over a TTL (3.3V)
UART interface. In order to measure distances and avoid

Proposed MAVCONN ROS
Scale lightweight lightweight middleweight
Availability Open Source Open Source Open Source
Ground Station Module + + -

TABLE I: Comparison of similar middlewares

Proposed PIXHAWK Asct. Pelican
Autopilot TMS320F28335 ARM7 ARM7
AP Mhz 150Mhz 60Mhz 60Mhz
AP RAM 68Kb 32Kb 32Kb
Open HW - + -

TABLE II: Comparison of autopilot systems

obstacles, we use MaxBotix EZ4 ultrasonic sensors which give
resolution of 1 inch with 20Hz reading rate. The sensor can
measure up to 6.45 meters. For high level control tasks GPS
module EM-406A, having sensivity of -159dBm, is used. Peer
to peer radio frequency communication is done via Digi Zigbee
OEM RF module. This device has a communication range of
100 m indoor and 1.6 km outdoor. The module supports point-
to-point and peer-to-peer communication topologies.

C. Ground Station

Ground station module is implemented on a computer
having 2.0 Ghz I5 Intel Core2Duo processor and 4GB RAM.
The ground station is based on open source QGroundControl
framework. We modified this open source software for our
needs. The software also supports real-time plotting of data
(Fig. 4). The operator can also track UAV’s position on earth
with built-in Google Earth plugin as well as on simulated 3D
environment (Fig. 5). Although ground station supports a wide
functionality, the implementation is noticeably slow. We plan
to replace whole ground station system with a new one in
future work.

IV. EXPERIMENTAL RESULTS

We demonstrate an experimental flight of our platform,
running proposed architecture. A comparison to similar avail-
able middlewares [9], [10] and autopilot platforms is shown
at Table I and II. The key concept of our architecture is
preserving minimality while providing essential functionality.
Moreover, proposed architecture is open source and available.
We implemented 100Hz PID control for attitude and altitude
control tasks on the microprocessor. The attitude control keeps
the orientation of the quadrotor to the desired value. The initial
orientation of the quadrotor before takeoff was −0.1◦ of φ and
0.4◦ of θ due to non-flat surface. Results of attitude control
during hover is shown in Fig. 8. It can be seen that attitude
angles oscillate in bounded interval of (−2◦, 2◦) whereas they
rarely pass ±1◦. The attitude control is done using cheap
sonar sensor. As measurement of sonar is extremely noisy and
hard to model, we applied median filtering to the Z position
measurements. Altitude control using filtered measurements is
shown in Fig. 6. Control efforts of the flight can be seen in Fig.
7. It can be seen that there are very few momentary oscillations
in U1 control. This shows that quality of hover is very good.
Additional images of various flights is shown on Fig. 9.

Fig. 6: Altitude Control Performance

Fig. 7: Control Inputs

Fig. 8: Attitude Control Performance

Fig. 9: SUQUAD during flight experiments.

V. CONCLUSION AND FUTURE WORKS

In this work, we have proposed an onboard software
architecture for manipulating common tasks. The architecture
is responsible for memory management, distribution of sensory
data, and communicating with other processes and ground
station. It also simplifies mission-specific application devel-
opment by providing a user-friendly interface.

The proposed system is implemented on our UAV using
C++ language and continues to be developed. In future work,
we plan to add an extensive P2P communication layout and
converting mission manager into a cooperative mission sched-
uler. We also plan to develop a ground station module which is
faster than current one. Moreover we will investigate whether
real-time capabilities of Linux platform is powerful enough to
implement the whole HAL on the high level computer.

REFERENCES

[1] M. Quigley, M. Goodrich, S. Griffiths, A. Eldredge, and R. Beard,
“Target acquisition, localization, and surveillance using a fixed-wing
mini-uav and gimbaled camera,” in Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference
on, 2005, pp. 2600–2605.

[2] R. Beard, T. McLain, D. Nelson, D. Kingston, and D. Johanson, “De-
centralized cooperative aerial surveillance using fixed-wing miniature
uavs,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1306–1324, 2006.

[3] P. Iscold, G. A. S. Pereira, and L. A. B. Torres, “Development of a
hand-launched small uav for ground reconnaissance,” Aerospace and
Electronic Systems, IEEE Transactions on, vol. 46, no. 1, pp. 335–348,
2010.

[4] J. Dufrene, W.R., “Mobile military security with concentration on
unmanned aerial vehicles,” in Digital Avionics Systems Conference,
2005. DASC 2005. The 24th, vol. 2, 2005, pp. 8 pp. Vol. 2–.

[5] Y. Lin, J. Hyyppa, and A. Jaakkola, “Mini-uav-borne lidar for fine-scale
mapping,” Geoscience and Remote Sensing Letters, IEEE, vol. 8, no. 3,
pp. 426–430, 2011.

[6] H. Lim, J. Park, D. Lee, and H. J. Kim, “Build your own quadrotor:
Open-source projects on unmanned aerial vehicles,” Robotics Automa-
tion Magazine, IEEE, vol. 19, no. 3, pp. 33–45, 2012.

[7] E. Cetinsoy, S. Dikyar, C. Hancer, K. Oner, E. Sirimoglu, M. Unel, and
M. Aksit, “Design and Construction of a Novel Quad Tilt-Wing UAV,”
Mechatronics, vol. 22, no. 6, pp. 723–745, 2012.

[8] E. D. Jones, R. S. Roberts, and T. C. S. Hsia, “Stomp: a software ar-
chitecture for the design and simulation of uav-based sensor networks,”
in ICRA’03, 2003, pp. 3321–3326.

[9] L. Meier, P. Tanskanen, L. Heng, G. Lee, F. Fraundorfer, and M. Polle-
feys, “Pixhawk: A micro aerial vehicle design for autonomous flight
using onboard computer vision,” Autonomous Robots, vol. 33, pp. 21–
39, 2012.

[10] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[11] A. Huang, E. Olson, and D. Moore, “Lcm: Lightweight communications
and marshalling,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, 2010, pp. 4057–4062.

[12] I. Maza, K. Kondak, M. Bernard, and A. Ollero, “Multi-uav cooperation
and control for load transportation and deployment,” J. Intell. Robotics
Syst., vol. 57, no. 1-4, pp. 417–449, Jan. 2010.

[13] J. López, P. Royo, E. Pastor, C. Barrado, and E. Santamaria, “A
middleware architecture for unmanned aircraft avionics,” in Proceedings
of the 2007 ACM/IFIP/USENIX international conference on Middleware
companion, ser. MC ’07. New York, NY, USA: ACM, 2007, pp. 24:1–
24:6.

[14] C. Honvault, M. Le Roy, P. Gula, J. C. Fabre, G. Le Lann, and E. Born-
schlegl, “Novel generic middleware building blocks for dependable
modular avionics systems,” in Proceedings of the 5th European confer-
ence on Dependable Computing, ser. EDCC’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 140–153.

