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ABSTRACT

In this paper, bandwidth acquisition and allocation
problem of a telecommunications Bandwidth Broker
(BB) is analyzed under uncertain end-user capacity re-
quests. Furthermore, related objective functicn coeffi-
cients such as revenue and costs are modeled as fuzzy
numbers in order to cope with vague market conditions.
By using fuzzy mathematical programming solution ap-
proach suggested by Zhang et al. (2003) determinis-
tic equivalent of single objective profit maximization
problem of BB is obtained. Two performance stafis-
tics namely fuzzy EVPI and fuzzy VSS are defined
to demostrate the efficiency of proposed methodology
compared to deterministic approach. Numerical exper-
iments showed that fuzzy stochastic method provides
approximately over 10% more profit depending upon
problem size in comparison with deterministic strategy.

KEYWORDS
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1 INTRODUCTION AND RELATED
WORKS

Telecommunication network problems are subject to
uncertainties like other real world problems. The
sources of the uncertainties in the telecommunications
may be environmental or originated from the system
itself. In all circumstances, neglected uncertainties in
the models may result in inaccurate solutions (Turan,
2012). Hence, we model and solve bandwidth acqui-
sition and allocation problem of a telecommunications
Bandwidth Broker (BB), which is inherently complex
and structurally uncertain.

We consider BB’s profit maxirmization problem in
an environment in which the firm can lease network
capacity at competitive prices from different backbone
providers (BPs) with different service quality (QoS). In
order to gain profit, BB has to first acquire (lease) the

capacity (bandwidth) from BPs then lease bandwidth to
end-users. After leasing decision, BB has to allocate
leased bandwidth into acquired capacities by meeting
QoS requirements of each customer.

The solution of the proposed model provide essen-
tial strategic planning information to the decision mak-
ers of BB such as how much bandwidth for how long
should be leased from each BP, which service providers
should be chosen by considering QoS levels, after real-
ization of customers’ demands which customer’s band-
width request should be accepted and which of them
should be rejected and finally how accepted bandwidth
demands should be allocated into leased capacity by
considering quality of service parameters such as delay
and jitter.

There are some studies related to modeling differ-
ent parameters as fuzzy numbers in the telecom liter-
ature. The existing studies concern both design and
implementation of network infrastructure and operating
policies including QoS issues. Turan et al. (2012) in-
vestigate bandwidth allocation problem of firms that use
bandwidth to complete their operations. They model de-
lay and jitter amounts guaranteed by network providers
and maximum delay and jitter levels tolerable as fuzzy
numbers. Carlson et al. (1998a) discuss lower level
telecommunications problem such as instillation of new
equipments and routing of data flow in the network. In
their model, only cost parameters are modeled as fuzzy
numbers. The demands of customers are assumed to
be deterministic in the discussed model. Carlson ef al.
(1998b) examine again a lower level telecommunica-
tions network problem of the backbone provider un-
der uncertain customers demands. The uncertain de-
mands of customers are integrated into model as trian-
gular fuzzy numbers. The researchers assume that rest
of the parameters such as costs terms and link capacities
are known in advance and stay fixed through planning
horizon.

Alminana et al.(2007) use mixed 0-1 two-stage
stochastic programming methodology to solve re-
routing problem under uncertainty. Riis et al. (2005)
design internet protocol network of largest network
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provider of Denmark (TDC) by utilizing two-stage lin-
ear programming algorithm. Authors assume demand
for capacity is uncertain. Terblanche et gl (2011) not
only investigate problems of routin 2 but also investigate
choosing and installation of network equipments in or-
der to find the most efficient configuration and design.
They claim that amount of data traffic can not be known
in advance. Furthermore, they use stochastic and robust
optimization techniques in their research.

The rest of the paper organized as follows: Sec-
tion 2 provides a brief summary of fuzzy mathemati-
cal programming afterwards discuss proposed method-
ology and fuzzy stochastic profit maximization problem
of BB. Extensive computational study and definition of
new performance measures are given in Section 3. Fi-
nally, Section 4 draws conclusions about study.

2 FUZZY STOCHASTIC LINEAR PRO-
GRAMMING MODEL

A fuzzy linear programming (FLP) model can be writ-
ten as in Eq.(1) by using definition and notations intro-
duced by Zhang et al. (2003).
1l
<&z >p= ) &,
=1
Az < b, 20, (€8]

Maximize:

Subject to:

where <> operator denoting the scalar multiplication of
vectors. ¢ = (&1, ¢é2,. .., C,) represents array of fuzzy
numbers. A is a matrix with dimensions m x n and
b € R™ is a vector.

We assume that all fuzzy numbers used in math-
ematical model have triangular membership function.
In other words, any objective function coefficient can
be redefined as ¢; = (c{‘, cf” , cU) The linear multi-
objective programming equivalent of model (1) is given
in Eq.(2).
Maximize: (<ctz> <Mz >, <V, z>)7,

Subject to: <b, x>0, )]

Following is the single objective counterpart of the
model (2):

Maximize <w,éz>=(w <clz >+
wyp <M x> +ws <,z >),
Subject to: Az <b, z 20, 3)

In model (3), w is defined as w = (w1, wq, w3) > 0.
Model turns into parametric linear programming prob-
lem, if w is chosen as w; + wg + w3 = 1 and set to
ws — wy = €. Here, €, has to be altered between -1 and
1 (Zhang et al, 2003).

All of the sets, parameters and decision variables
used in mathematical formulation are presented in Ta-
ble 1. The objective function of volume based pric-
ing policy with fuzzy coefficients is presented in Eq.
(4). Fuzzy revenues and fuzzy opportunity costs de-
pend on scenarios therefore, the expected values for
these terms have to be calculated. The fuzzy expected
costs/revenues are obtained after mentioned terms are
multiplied by realization probability of each scenarios
ps and summed all over possible scenario set. The
problem of BB is to maximize fuzzy expected profit
under volume based pricing scheme. New model is
a fuzzy stochastic linear programming model (FSLP)
with fuzzy objective parameters.

fuzzy leasing cost

Z Z Ps'gjsyjs - Zﬁia

sENJET, i€l
L —

Maximize

expected fuzzy revenue

_Z ZPSUJS (1 = yjs) 4)

s€ENjEJ,

expexcted fuzzy oppurtunity cost

Eq.(5) explains how function = is evaluated in terms of
problem parameters.

E (w1, {9", ", v"}) = wy (Z Z PsOT s~
sEQFET,
Zﬂz - yjs)) (5]

PR
i€l sEQ jEJT,

After applying the methodology suggested by Zhang et

al.(2003) on objective function of BB in Eq. (4), trans-

formed linear objective equation is showed in Eq.(6).

Where unit revenues ( s = (05, 074, 9%,)

s Y8
o L
costs (Tzs = (vl v}, vY) and & = (c] ,cf”, c?)) are
modeled as triangular fuzzy number (TEN). In compu-
tational experiments, different w values are selected and

run to provide useful statics to decision makers of BB.

and unit

Maximize = (wy, {97, ", v"}) +
E(wZ,{ﬂM,CM,UM}) (w3,{19U,c » U U}) (6)

Eqgs.(7-16) presents FSLP model constraints. Constraint
set (7) guarantees that it is not possible to allocate to-
tal customer demand that is more than the purchased
capacity from corresponding BP under each scenario.
Total capacity allocated to a particular backbone has to
smaller than or equal to the acquired bandwidth from
corresponding supplier minus capacity losses. Eq.(8)
ensures that amount of bandwidth purchased from any

ISCSE 2013 (http://iscse2013. gediz.edu.tr)

October 24-25, 2013, Kusadasi, Aydin, Turkey

—L———_—_



Gediz University

3rd International Symposium on Computing in Science & Engineering

Table 1: Mathemartical model notations.

Index

Sets

I Set of telecommunications BPs

Q Set of scenarios that may occur

Js Set of end-users under scenario s(s € )

Parameters

djs: Amount of bandwidth request for j.end-user
under scenario &

Ejsz Fuzzy revenue carned by meeting j.end-user’s
demand under scenario s

Uje: Fuzzy opporturity cost for not meeting j.end-
user’s demand under scenario s

Ds: Realization probability of scenario s

o Capacity loss ratio for BP 4 (as € [0,1])

Ci: Fuzzy unit bandwidth cost for leasing capacity
from BP ¢

Uj: Maximum amount of bandwidth that can be
leased from BP ¢

D, Uy Random variables to denote delay and jitter dis-
tribution of BP %, respectively

,uf, ol Mean and standard deviation values corre-
sponding to delay random variable of BP ¢, re-
spectively

wl ol Mean and standard deviation values corre-
sponding to jitter random variable of BP 4, re-
spectively

fos, @;’s: Minimum required service level probabilities
for delay and jitter measures in order to ful-
fill j.end-user demand under scenario s, respec-
tively

8;s,Pjs:  Maximum tolerable delay and jitter amounts for

end-user j under scenario s, respectively
m Minimum required demand fulfillment ratio
IIy,,,IT,, Membership functions for revenue and oppor-
tunity, respectively
I, : Membership functions for leasing costs

’UjS

Z(,,{}): function to evaluate objective value

Decision

variables

Bi: Amount of bandwidth leased from BP ¢

Yij s The Proportion of bandwidth demand of j.end-
user allocated into BP i under scenario s

Yjs: Total proportion of bandwidth demand of j.end-

user meet under scenario s

BP can not be more than BPs’ capacity that is sold at
the market.

D vijedie < (1= 04)Bi, Vi € IVs € Q (7)
JEJs
Bi<U;, Viel (8)

Eq.(9) guarantees that bandwidth request of any end-
user under any scenario can only be assigned to a pur-
chased capacity that satisfies delay requirement of user

above some predefined probability.

P{ys;s(®; —855) <0} 2 O e € QVie LVje J,
®)
Similarly, Eq.(10) ensures that bandwidth demand of
any end-user under any scenario can only be allocated
to a particular purchased capacity that meets jitter re-
quirement of customer above predefined probability.

]P){yijs(\lji_pjs) < 0} > C—)?s,‘v’s S Q,V’L S I,V_] S Js

(10)
It is generally assumed that QoS parameters are dis-
tributed normally. Based on this assumption, determin-
istic counter parts of Eqs.(9) and (1() can be rewritten
as in Eqgs.(11) and (12), respectively. F@;s_s and FG;’S
denote quartile function values for standard normal dis-
tribution.

.5js _/J’;‘s . . . .
Yijs —'—'O_'(S——FQ?I ZO\V/S':Q,V‘]EJS,V’LEI

Both inequalities are in linear form. so FSLP of BB can
be solved via traditional linear programming texhniques
such as simple%( algorithm.

Yijs % ~Ter, ) 20Vs€QVje Vil

i A

Eq.(13) is used for ensuring the minimum demand sat-
isfaction level met under each scenario considered. Eq.
(14) ensures that total amount of allocated (satisfied)
bandwidth portion of each end-user can not be more
than their requests under zll scenarios. The constraint
set (15) guarantees that total amoun: of satisfied band-
width demand of a customer has to be equal to sum of
allocated bandwidth portions of that demand into BPs.

> yisdie—m Y de Z0,¥s€Q  (13)

=
Zlesgl,vSeQ1v’_’eJ5 (14)
el

€Js (15)

yjs = Zyi.?s’ Vs Q, V_}
el

Biy Yijs: Yjs = 0. Vs € Q,Vj € Jg, Vi € I(16)

3 COMPUTATIONAL EXPERIMENTS

Three different types of problem setting with varying
number of BPs (|7]), end-users (].J|) and scenarios (|S|)
are chosen for numerical experimentations. Five differ-
ent and independent problem instances are generated for
each type of problem setting. For example, problem set
115J50S10 in Table 2 indicates a problem instance in
which there exists 15 BPs, 50 end-users at telecom mar-
ket and there are total of 10 possible future bandwidth
demand scenarios that BB may encounter.
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All of the generated problem sets are tested
by using different w;,ws, ws values. Chang-
ing values of (wi,ws,w3) are chosen from set
{(1,0,0),(0,1,0),(0,0,1)} in order to find the most
pessimistic, the most expected and the most optimistic
values of net profit.

In each test instance and under all scenarios, each
end-user’s demand d;, is generated from normal dis-
tribution. In addition, to prevent negative bandwidth re-
quest for normal distribution, truncated normal distribu-
tion is used. The Realization probabilities of each sce-
nario are generated from uniform distribution between
[0, 1] afterwards these probabilities are normalized.

The objective function value of FSLP model dis-
cussed model between Eqgs.(6)-(16) is denoted as ZRP,
In order to test applicability of proposed model, two
new models which are called as WS and EEV have to
set up and solved. WS model defines wait-and-see so-
lution of the model and its optimal objective function
value is ¥, The expected value of perfect information
(EVPI) measures the maximum amount that a decision
maker is willing to pay in order to know the value of a
random variable before making his/her decision (Birge
et al., 1997). In this paper, fuzzy EVPI is calculated as
following,

EVPI WS g FRP

© does not indicate fuzzy subracation operation, due to
the fact that decision maker of BB may choose same
w values while solving both RP and WS models. The
suggested fuzzy EVPI algorithm is presented in Fig-
ure 1. Just solving RP and WS models do not provide

for s=1,..., |9

Fix (wl,wz,wg) = (1, 0,0)
Solve Eqs. (5-16)

Save zL

Fix (w1, w2, w3) = (0, 1,0)
Solve Egs. (5-16)

Save 2z}

Fix (w]_,wz,'u)s) = (O, 0, 1)
Solve Egs. (5-16)

Save z¥

end for

w 192 L
zy 5 zs=1 PsZy

s 12
1\“4/ S Es=1 pszf’!

Calculate and Assign

EVPIL  z}V5 — 8P
EVPIM ( ;5 _ ;RP

fo N
EVPIY « Af § z;?i’

Calculate and Assign

Figure 1: The proposed EVPI algorithm.
too much information to decision makers therefore, ex-
pected value problem (EEV) also has to be solved. EEV
model is obtained by replacing each random variable by
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their corresponding expected value. The optimal fuzzy
objective value of EEV model is denoted as ZEZV . The
difference between z7F and 2BEVis called as value of
stochastic solution(VSS) which is also a fuzzy number.
VSS measures the cost of ignoring uncertainty while
making a decision (Turan, 2012). Eq. 17 shows how
F/Efs* is calculated.

755 7o8v

ZRP o a7
Here, again © does not indicate fuzzy subtraction op-
eration, due to the fact that decision maker of BB may
choose same w values while solving both RP and EEV
models. The detailed discussion about fuzzy VSS algo-
rithm can be found in Turan (2012).

Table 2 summarizes results gathered from running
fuzzy VSS and fuzzy EVPI algorithms for each prob-
lem set on RP, EEV and WS models. All of the results
are presented in TFN format. Problem set 115J50S10_3
does not have a feasible solution, ‘@l&h is indicated via
***_ As problem size gets larger, V.S'S value increases
due to the increasing uncertainty added by increasing
number of scenarios, end-users and BPs. In addition,
V SS values always greater than zero (> 0) which im-
plies the fact that solving RP model rather than EEV
model leads to more profit in fuzzy sense. In other
words, ignoring uncertainty in the bandwidth demand
and treating BB’s problem as deterministic model result
in profit loss. It should be also noted that for all of the

test instances solved optimally V58S - E/ﬁl inequal-
ity holds.

Table 2: Fuzzy VSS and EVPI values for each problem set.

Problem Set VSS EVPI

115)50510_0
1157505810_1
115J50810_2
115J50510_3
115J50510_4

(134.37, 168.39, 208.35)
(512.87, 663.86, 814.63)
((951.67, 1068.25, 1183.52)

KRR ARE KNk
’ ’

(1499.31, 1673.50, 1850.60)

(35.72, 59.61, 63.32)
(164.48, 174.91, 186.66)
(100.94, 118.40, 139.06)
(520.52, 607.66, 692.04)
(207.18, 253,38, 294 84)

Average (776.96, 03.76, 1033.48) (209,77, 242.79, 275.18)

Problem Set V&S EVPI

130J100850_0
130J100550_1
130J100550_2
130J100550_3
1307100850_4

(1394.51, 1755.50, 2116.63)
(1221.35, 1542.25, 1854.57)
(927.40, 1190.52, 1452.70)
(2431.03, 3051.87, 3690.88)
(1B27.09, 2297 66, 2777.53)

(276.13, 327.98, 371.44)
(247.08, 295.03, 344.69)
(420.09, 492.81, 556.95)
(646.67, 763.28, 872.95)
[360.96, 674.12, 786.42)

Average (1560.28, 1967.56, 2378.46)  (430.19, 510,64, 586.49)

Problem Set VSS EVPI

15011008100_0
15051005 100_1
150J1008100_2
150J1005100_3
15071005100_4

(1728.44, 2150.82,
(2243.64, 2834.07, 3421.93)
(1817.50, 2306.58, 2790.38)
(1190.82, 1504.82, 1799.91)
(1996.56, 2496.65, 2997.80)

2595.03)  (357.88, 433.65, 506.07)
(469.44, 559.06, 643.20)
(509.34, 602.77, 694.18)
(325.80, 395.06, 460.78)

(217.10, 253.60, 293.26)

Average (1795.39, 2258.59, 2721.81) (375.91, 448 B3, 519.50)

By using data presented in Table 2, the improvement
ratios attained by RP model over EEV model can be cal-
culated. In the same manner, the improvement ratios
that can be achieved by knowing the future bandwidth
demands and prices may also be calculated from pre-
sented data. Besides, decision maker of BB may set
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up a lower threshold ratio based on his experiences to
determine which model to solve (RP or EEV). For men-
tioned reasons two new statistics are defined as follows:

o SL VSSM U
(=VSSoz8FY = ([ZiEV’ MLEEV’ ;/jsiv
(18)
+ == _pp (EVPI* EVPIY EVPIY
g:EVPI@Z =< L,RP ' MLRP UsRP )
(19)

Emeasures the advantage of fuzzy stochastic approach
(RP) over deterministic approach (RP), and £ measures
how much more profit can be obtained by knowing the
future bandwidth demands, prices and market condi-
tions in advance. Table 3 presents calculated Eand E
values.

Table 3: Calculated E and E values for each problem in-
stances.

Problem Set

¢
(0.018, 0.022, 0.026)
(0.076, 0,098, 0.119)
(0.142,0.157, 0.172)
(R rERE R )
115J50S10_4 (0.253, 0.284, 0.315)
Avernge (0,115, 0,133, 0.150)

115J50810_0
115J50510_1
115150810_2
115150510_3

3
(0.007, 0.008, 0.008)
(0,023, 0.023, 0.024)
(0.013,0.015, 0.017)
(0.069, 0.078, 0.087)
(0.028, 0.033, 0.038)
(0.028, 0.032, 0.035)

Problem Set ¢

1BOJ1D0S50_0 (0.089, 0.109, 0.128)
130J100S850_1 (0.087, 0.108, 0.129)
13071005850_2 (0.065, 0.082, 0.098)
130J100850_3 (0.201, 0.259, 0.323)
130J100850_4 (0.134, 0.168, 0.203)
Average (0.112, 0.140, 0.168)

3
{0,016, 0.015, 0.020)
(0.016, 0019, 0.021)
(0.027, 0.031, 0.034)
(0.045, 0.051, 0.058)
(0.036, 0.042, 0.048)
(0,028, 0.032, 0.035)

Problem Set 5

[50J1005100_0 [0.125, 0.155, 0.186)
150J1005100_1 (0.160, 0.200, 0.239)
150J100S100_2 (0.123,0.153, 0.181)
150J1005100_3 (0.076, 0.092, 0.107)
15071008100_4 (0.133, 0.163, 0.191)

£

)
(0.023, 0.027, 0.030)
(0.029, 0.033, 0.036)
(0.031, 0.035, 0.038)
(0019, 0.022, 0.025)
(0.013, 0.014, 0.016)

Average (0.122, 0.151, 0.178) (0.023, 0.026, 0.029)

One of the most important results is the statistic E
is always positive and bigger than the £ value, which
indicates superiority of RP (fuzzy stochastic) modeling
over EEV. The close investigation of Table 3 reveals that
averages of mentioned statistics gets larger as increas-
ing problem size in other words increasing uncertainty
in both market prices and demand is correlated with ¢
value,

Another important issue for decision makers is to
test the stability of solution methodology under dy-
namic settings such as changing fuzzy revenues and
costs. In this direction, the largest problem set
I507100S100 is tested under varying fuzzy objective pa-
rameters.

As a first part of sensitivity analysis on fuzzy ob-
jective parameters, fuzzy unit revenues are altered be-
tween (9;5) £10% from their original values. RP, WS
and EEV models are run undcir thesie new settings and
main performance indicators (¢ and £) are evaluated and

compared to original cases.

Figure 2 and 3 depict results of sensitivity runs on
revenue coefficients. The increasing revenues lead to

Membership 12
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06 \ 13
04 | ———

{ ! I". e Original
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f \ / e 10%
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Figure 2: Effect of change in fuzzy unit revenues by +10%
on (. B

decrease in Evalues proving that randomness should be
taken into account due to the fact that very high compe-
tition in telecom market and limited profit margins. The
fuzzy unit cost namely leasing and opportunity costs
(vjs, ¢;) are changed between +10% from their original
settings simultaneously in order to conduct sensitivity
analysis on objective parameters. Figure 4 and 5 depict
results of sensitivity runs on cost coefficients.
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Figure 3: Effect of change in fuzzy unit revenues by +10%
oné.

The rising costs cause E to rise as well, which veri-
fies that RP model better to be chosen and used by BB
under pessimistic market conditions.
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Figure 4: Effect of change in fuzzy unit costs by 10% on E

Membership 1,2

Degree
1. ey ey e | -
08— : =
\ - 105h
06 Il — sw(riginal Case
¥ \
04 \ b= e 10%
02 S Ty S e

0 A—to -
002 002 90024 0006 0028 003 003

& Value

Figure 5: Effect of change in fuzzy unit costs by +10% on E

4 CONCLUSIONS

In this research, an optimization problem of BB is an-
alyzed when acquiring and allocating bandwidth from
a market in which demands of end-users, prices and
QoS levels are not know in advance. In order to handle
randomness and vagueness, an integration of stochas-
tic and fuzzy linear programming techniques are em-
ployed. Extensive computational study on randomly
generated test instances showed that proposed method-
ology provides more than 10% more profit even in worst
case scenarios. Moreover, it is also concluded that in-
creasing problem size makes suggested approach more
compelling than deterministic methodology for BB’s
decision makers. Finally, carried out sensitivity analysis
on fuzzy objective parameters demonstrated the robust-
ness of procedure.
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