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Abstract In this paper we show that the golden ratio
is present in the Schwarzschild–Kottler metric. For null
geodesics with maximal radial acceleration, the turning
points of the orbits are in the golden ratio Φ = (

√
5 − 1)/2.

This is a general result which is independent of the value and
sign of the cosmological constant Λ.

1 Introduction

The presence of a non-zero vacuum energy (the cosmolog-
ical constant Λ) in the main models of theoretical physics
such as the superstring and the standard Einstein cosmolog-
ical models have motivated consideration of spherical sym-
metric spacetimes with non-zero vacuum energy in order to
study the well-known effects predicted by general relativity
for planetary orbits and massless particles in the context of
the Schwarzschild spacetime [1], which can be found, for
example, in [2–6], among others. This study involves deter-
mining the geodesic structure of Kottler spacetimes [7] and
then using a classical test to proof the influence of Λ. In
this sense, the literature dealing with the application of the
classical test of general relativity is extensive. To mention
a few, the bending of light was examined by Lake [8], who
found that the cosmological constant produces no change in
this effect; Kraniotis and Whitehouse [9] obtained the com-
pact calculation of the perihelion precession of Mercury by
means of genus-2 Siegelsche modular forms. Both tests were
applied by Freire et al. [10] in the Schwarzschild–Kottler
spacetime plus a conical defect, so they found that the param-
eter characterizing such a conical defect is less than 10−9.
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The study of geodesics is also comprehensive. Some proper-
ties of the motion of test particles on Schwarzschild–Kottler
spacetimes can be found in [11]. Timelike geodesics for pos-
itive cosmological constant were investigated in [12], using
only the method of an effective potential in order to found the
conditions for the existence of bound orbits. An analysis of
the effective potential for radial null geodesics in Reissner–
Nordström–de Sitter and Kerr–de Sitter spacetimes was per-
formed in [13], whereas some properties of the Reissner–
Nordström black hole and naked singularity spacetimes with
a non-zero cosmological constant can be found in [14]. Null
geodesics in a charged anti-de Sitter spacetime was studied
by Villanueva et al. [15]. Podolsky [16] investigated all pos-
sible geodesic motions for extreme Schwarzschild–de Sitter
spacetimes. The motion of massive particles in the Kerr and
Kerr–anti-de Sitter gravitational fields was investigated in
[17], where the geodesic equations are derived by solving the
Hamilton–Jacobi partial differential equation. Equatorial cir-
cular orbits in the Kerr–de Sitter spacetimes was performed
by Stuchlík and Slaný [18]. A study which included null
geodesics and timelike geodesics in Schwarzschild–anti-de
Sitter spacetimes was conducted in [19].

The main purpose of this article is to show a general behav-
ior of non-radial null geodesics, common to Schwarzschild,
Schwarzschild–de Sitter, and Schwarzschil–anti-de Sitter
spacetimes. This general property does not depend on the
value of the cosmological constant and appears in the ratio
between the apastron and periastron of two non-radial pho-
tons, which possess the same constant of motion E but
their movements are allowed in regions separated by the
effective potential barrier of the equivalent one-dimensional
problem for the radial coordinate r . We have found that
this ratio is the golden ratio Φ = (

√
5 − 1)/2. We have

solved explicitly, in terms of the Jacobi elliptic functions,
non-radial null geodesics in Schwarzschild–anti-de Sitter and
Schwarzschild–de Sitter spacetimes.
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It is well known that Φ appears quite frequently in biology,
where many growth patterns exhibit the Fibonacci numbers
in which the next number is the sum of the previous 2 num-
bers (1, 1, 2, 3, 5, 8, 13, 21, etc.). The Fibonacci sequence is
connected with the golden ratio. What is of interest in biology
is the existence of systems that can grow and evolve. Never-
theless, in non-equilibrium phase transitions, which appear
for example in condensed matter, it is possible to find this
number. Dammer et al. [20] investigated the properties of
a direct bond percolation process for a complex percolation
parameter p. They found that, for p = −Φ, 1 + Φ, and 2,
the survival probability of a cluster can be computed exactly.
Also, the golden ratio appears in the study of some specific
features of spectral bands location in the infrared spectra of
crystal and liquids [21].

It has been pointed out by Livio [22] that the golden ratio
appears in the physics of black holes. A well-known result
[23] is the infinity discontinuity of the specific heat at some
values of the angular momentum and the charge of Kerr–
Newman black holes. The specific heat changes from nega-
tive to positive for Kerr black holes when the ratio a = J/M
satisfies a � 0.68 M . This last value is very close to the value
of the golden ratio Φ = 0.618033 . . ., but is not exactly the
same. In the study of photon geodesics in gravitational fields
described by general relativity, the golden ratio has been
reported by Coelho et al. [24]. In that work, the circular pho-
ton orbits in the Weyl solution describing two Schwarzschild
black holes were considered. It was found that as the dis-
tance between the two black holes increases, photon orbits
approach one another and merge when MK = ΦL , where
MK is the Komar mass of each black hole. In the context
of supersymmetry, Hubsch et al. [25] found that the golden
ratio controlled chaos in the dynamics associated with some
supersymmetric Lagrangians. Also, Φ has been reported in
higher-dimensional black holes [26,27]. Also, some studies
dealing aspects of the special relativity and the golden ratio
can be found in [28–30], among others.

In this paper we report how the golden ratio appears in
the rather simple field of Schwarzschild black holes with
a cosmological constant. Their appearance in the geodesic
structure of black holes and their association with a gen-
eral behavior of null particles was quite surprising for
us.

Our paper is organized as follows: in Sect. 2, we derive the
geodesic equations of motion for non-radial photons using
the variational problem associated with the corresponding
spacetime metric. Using the effective potential related to the
equivalent one-dimensional problem for the r coordinate,
we found a Newton type law of force, evaluating the points
where the maximum acceleration r̈ occurs. Explicit solutions
are found for this case in terms of Jacobi integrals. In these
solutions the golden ratio is explicitly shown. Finally, in Sect.
3 we discuss our results.

2 Null geodesics

As a starting point, we will consider the most general metric
for a static, spherically symmetric spacetime with a cosmo-
logical constant Λ, which reads

ds2 = − f (r) dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θ dφ2), (1)

where f (r) is the lapse function given by

f (r) = 1 − 2M

r
− Λ

3
r2. (2)

From this lapse function and depending on the value of the
cosmological constant, we can study the location of the hori-
zons by analyzing the three different configurations sepa-
rately:

1. Schwarzschild case (Λ = 0): As the cosmological con-
stant vanishes, the spacetime allows a unique horizon (the
event horizon), which is located at

r+ = 2M. (3)

2. Schwarzschild–anti-de Sitter case (Λ = − 3
�2 < 0):

When the cosmological constant is negative, the space-
time allows a unique horizon (the event horizon), which
must be the real positive solution to the cubic equation

r3 + �2r − 2M�2 = 0, (4)

and its result is [19]

r+ =
√

4 �2

3
sinh

[
1

3
arcsinh

(
3
√

3 M

�

)]
. (5)

3. Schwarzschild–de Sitter case (Λ > 0): When a positive
cosmological constant satisfies Λ < 1/9M2, the space-
time allows two horizons (the event horizon r+ and the
cosmological horizon r++), which are obtained from the
cubic equation [12]

r3 − 3

Λ
r + 6M

Λ
= 0. (6)

Therefore, by defining Θ = arccos(−3M
√

Λ)/3, their
expressions are given by

r+ = 1√
Λ

(√
3 sin Θ − cos Θ

)
(7)

and

r++ = 2√
Λ

cos Θ. (8)
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The geodesic motion of photons in a spacetime described by
(1) and (2) can be obtained by solving the Euler–Lagrange
equations associated with this metric (see [2,3,19], for
instance):

Π̇q − ∂L
∂q

= 0, (9)

where Πq = ∂L/∂q̇ is the generalized conjugate momen-
tum of the coordinate q. Recalling that for massless particles
( ds

dτ
)2 = 2L = 0, the Lagrangian is given by

L = −1

2
f (r) ṫ2 + 1

2
f −1(r) ṙ2+ 1

2
r2 θ̇2 + 1

2
r2 sin2 θ φ̇2,

(10)

where a dot represents the derivative with respect to an affine
parameter, τ , along the geodesic. Clearly (t, φ) are cyclic
coordinates, so their corresponding conjugate momenta are
conserved leading to the following expressions:

Πt = − f (r) ṫ = −√
E (11)

and

Πφ = r2 sin2 θ φ̇ = L , (12)

where E and L are constants of motion. Since the metric (1) is
asymptotically flat only when Λ = 0, the constant of motion
E can be associated with the energy for the Schwarzschild
case. On the other hand, since the motion is confined to an
invariant plane, without loss of generality we can choose
θ = π/2 so θ̇ = 0. Therefore, using (11) and (12) into Eq.
(10), we obtain the equation of motion for the unidimensional
equivalent problem

ṙ2 = E − Veff(r). (13)

where Veff defines an effective potential given by

Veff = L2 f (r)

r2 . (14)

In Fig. 1, we plot the effective potential as a function of
the radial coordinate for the Schwarzschild case Λ = 0,
the Schwarzschild anti-de Sitter case Λ < 0, and the
Schwarzschild de Sitter case Λ > 0.

Differentiation of Eq. (13) with respect to the affine param-
eter τ allows us to find a Newton type law of effective force
for the radial coordinate given by

r̈ = −d(Veff)

dr
= 2L2 (r − 3M)

r4 . (15)

This radial acceleration is an indication of the variation of
the radial coordinate due to the curvature of the photon tra-
jectory. For radial photons with L = 0 this acceleration is
zero, as we can see from the above equation. Notice that the
above expression is independent of the cosmological con-
stant Λ, which implies that the location of the maximum of
the effective potential rm = 3M is common for the three

r

V  (r)eff

Λ > 0

Λ < 0

Λ = 0

r rr m+ ++

r

V  (r)eff

rr m+

rpra

Fig. 1 Top the figure shows the typical effective potential for non-
radial photons in the three cases: Λ = 0 (Schwarzschild case), Λ < 0
(SAdS case) and Λ > 0 (SdS case). The maximums are coincident
at rm = 3M , regardless of the value of the cosmological constant Λ.
Bottom scheme of the positions of the apoastron ra and periastron rp
distance

spacetimes (see Fig. 1). In other words, the zero effective
force on the photons is independent of Λ. Also, notice that
the radial acceleration has a maximum at rc = 4M , equal to

r̈c = L2

128 M3 . (16)

In Fig. 2 we show the radial acceleration r̈ as a function of
the radial coordinate r .

When the photons possess the maximum radial effective
acceleration, their impact parameter b = L/

√
E becomes

bΦ =
(

1

32M2 − Λ

3

)− 1
2

, (17)

whereas when the photons possess zero radial acceleration,
their energies read

b0 =
(

1

27M2 − Λ

3

)− 1
2

. (18)
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Fig. 2 The plot shows the radial acceleration r̈ as a function of the
coordinate r . It possesses a maximum at r = 4M and goes to zero
at r = 3M . So for r < 3M , the photons possess a negative radial
acceleration, which corresponds to the fact that the photons are falling
into the event horizon

From the two last equations, it is not hard to prove that b0 <

bΦ .
Our goal is perform a description of the orbits of the first

and second kind, which represent the orbits for photons with
b0 < b < ∞, so the effective potential imposes the existence
of a turning point, ra for orbits of the first kind, and rp for
orbits of the second kind (see right panel of Fig. 1). Therefore,
we start considering the zeros of Eq. (13), which obliges us
to solve the cubic equation

P3(r) ≡ r3 − B2 r + 2 M B2 = 0, (19)

where B is the anomalous impact parameter defined by the
relation [19]

1

B2 = 1

b2 + Λ

3
. (20)

Notice that in the Schwarzschild case the anomalous impact
parameter coincides with the usual impact parameter. Also,
from Eqs. (17), (18), and (20) it is not hard to see that
B0 = √

27 M = √
3 rm and BΦ = √

32 M = √
2 rc, so,

by defining

Υ = 2
√

3B
3

, Ξ = 1

3
arccos

(
−B0

B
)

, (21)

the turning points are given by

rp = Υ cos Ξ, (22)

ra = Υ

2

(√
3 sin Ξ − cos Ξ

)
, (23)

whereas the other root of the cubic polynomial (without phys-
ical meaning) is given by

rn = −Υ

2

(√
3 cos Ξ + sin Ξ

)
. (24)

An important and novel result is found when we consider
the ratio between the turning points (22) and (23) defined by

ζ(b, M) = ra
rp

=
√

3 tan Ξ − 1

2
. (25)

Therefore, when massless particles are close to having a max-
imum radial acceleration, their impact parameter b → bΦ ,
and then we obtain the identity

Φ = lim
b→bΦ

ζ(b, M)=
√

3

2
tan

[
1

3
arccos

(
−

√
27

32

)]
− 1

2
,

(26)

where Φ = 0.618034 · · · = 1/(1+Φ) is the golden ratio. An
important corollary of the previous statement is obtained in
the Schwarzschild–de Sitter case. From Eq. (17), bΦ → ∞
when Λ = 3B−2

Φ , and therefore, it is not hard to see from
Eqs. (7) and (8) that r++ = 4M and r+ = 4MΦ, i.e., the
horizons are in the golden ratio.

Also, we define the ξ ratio as

ξ(b, M) = − rn
rp

=
√

3 tan Ξ + 1

2
, (27)

and thus ξ = 1 + Φ = 1/Φ when b → bΦ . Notice that the
two last definitions make it possible to write the polynomial
(19) as P3(r) = |r − rp| |r − ζ rp| (r + ξ rp), so, using Eqs.
(12) and (13), and then introducing the new variable u = 1/r ,
the equation of motion reads

(
− du

dφ

)2

= 2M
∣∣u p − u

∣∣ ∣∣∣∣u p

ζ
− u

∣∣∣∣
(
u p

ξ
+ u

)
, (28)

where u p = 1/rp.

2.1 The golden motion

As previously mentioned, when the motion of photons is
characterized by an impact parameter equal to bΦ , Eqs. (22)–
(24) imply that rp = 4M , ra = 4M Φ and rn = −4M/Φ.
Therefore, for orbits of the first kind r > 4M , and the equa-
tion of motion (28) becomes

(
du

dφ

)2

= 2M

(
1

4M
− u

) (
u + Φ

4M

) (
1 + Φ

4M
− u

)
.

(29)

Performing the change of variable suggested in [2,19],

u = u p

[
1 − Φ

2
(1 + cos χ)

]
(u = u p when χ = π),

(30)
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we obtain the following quadrature:(
dχ

dφ

)2

= 2 Φ + 1

2

(
1−k sin2 χ

2

)
, with k= Φ + 1

2 Φ + 1
.

(31)

Therefore, the solution for the angular coordinate φ is given
by

φ = 1

α

[
K (k) − F

(χ

2
, k

)]
, (32)

where F(ψ, k) is the incomplete elliptic integral of the first
kind, K (k) ≡ F(π/2, k) is the complete elliptic integral of
the first kind, and α = (5/64)1/4. Therefore, inverting this
last equation, and returning to the original variable, we obtain
the equation of the orbit of the first kind

r(φ) = 4M

1 − Φ cn2 (K (k) − α φ)
, (33)

where cn(u) ≡ cn(u, k) is the Jacobi elliptic cosine function.
Additionally, for orbits of the second kind we have r ≤

4MΦ, and the equation of motion (28) is given by(
du

dφ

)2

= 2M

(
u − 1

4M

)(
u + Φ

4M

)(
u − 1

4MΦ

)
.

(34)

In this case, it is possible to obtain an easy quadrature per-
forming the following change of variable:

u = 1

4M

(
1 + Φ sec

χ

2

)
, (35)

such that u = ua when χ = 0, and u → ∞ when χ → π .
This substitution reduces Eq. (29) to the same form as Eq.
(31) with the same value of k, but now it must be written as

φ = 1

α
F

(χ

2
, k

)
, (36)

where the zero of φ is now at the apoastron, ra = 4MΦ.
Therefore, the trajectory can be obtained by inverting this
last equation, resulting in

r(φ) = 4M

1 + Φ nc(α φ)
, (37)

where nc(ψ) = 1/cn(ψ), and cn(ψ) ≡ cn(ψ, k) is the
Jacobi elliptic cosine function. In Fig. 3 we have plotted the
orbits of the first and second kind for photons with impact
parameter b = bΦ .

3 Final remarks

In this paper we have studied the motion of massless particles
in a background described by Schwarzschild–Kottler metric,
whose general form is given by Eqs. (1) and (2). It is given
as a solution to the Einstein equations, and is completely

r+

ra rp

Fig. 3 The polar plot shows the null geodesic of the first and second
kind. These trajectories correspond to the motion of photon, which
possess an impact parameter b = bΦ , such that rp = 4M and ra =
Φ rp , where Φ = 0.618034 . . . is the golden ratio

determined by its mass M and the cosmological constant Λ.
Here we have presented a review of the spacetime and the
corresponding equations of the angular motion, without any
restriction on the value of Λ.

An important feature for this class of spacetime occurs
when the acceleration of the radial coordinate is considered.
In such a situation, photons with maximum radial accelera-
tion have an impact parameter bΦ , and then their return points
are in the golden ratio. This result proves to be independent
of the value of the cosmological constant, and allows us to
express the golden ratio Φ as a limit of the function (26),
i.e., Φ = limb→bΦ ζ(b, M), where ζ is the ratio between
the apoastron and periastron distances. Thus, the golden
ratio, which characterizes the fractal structure of nature, also
appears in the geodesic structure of black holes, in particular
in the movements of null particles and independently of the
value and sign of the cosmological constant Λ.

The understanding of gravitational fields is strongly linked
to geometry: Newton’s theory is developed on a three-
dimensional plane space in Euclidean geometry. The change
that Einstein made was enormous in interpreting spacetime
as a curved manifold, i.e., a description of gravity through
Riemann’s geometry. In this way, when we find the golden
ratio in the geodesic structure of black holes, it gives us the
future possibility of studying gravitation with fractal geom-
etry, the geometry of nature.
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