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Abstract During the inflationary epoch, the geometry of
the universe may be described by a quasi-de Sitter space.
On the other hand, the maximally extended de Sitter metric
in the comoving coordinates accords with a special FLRW
model with positive spatial curvature; therefore, the focus
of the present paper is on the positively curved inflation-
ary paradigm, for which we first of all derive the power
spectra of comoving curvature perturbation and primordial
gravitational waves in a positively curved FLRW universe
according to the slowly rolling inflationary scenario. It can
be shown that the curvature spectral index in this model auto-
matically has a small negative running parameter, compatible
with observational measurements. Afterwards, by taking into
account the curvature factor, it investigates the relative ampli-
tude of the scalar and tensor perturbations, clarifying that the
tensor–scalar ratio for this model, against the spatially flat
one, directly depends on the wavelength of the perturbative
modes.

1 Introduction

Inflationary cosmology, which was proposed in the early
1980s, extends the standard Big-Bang model by postulat-
ing an early epoch of nearly exponential expansion in order
to resolve a number of puzzles of the Big-Bang cosmology,
such as the flatness, horizon, and monopole problems [1–3].
Inflation also explains the origin of the CMB anisotropies
and the large scale structure of the cosmos. Indeed quantum
vacuum fluctuations of the inflation field(s) got magnified
to cosmic-sized classical perturbations after the horizon exit
time and became the seeds for the growth of the structure and
CMB anisotropies in the universe [4–7]. Before the advent
of inflation the initial perturbations were postulated and their
spectrum was supposed to be scalar-invariant in order to fit
the observational data [8–10]. On the other hand, inflation-
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ary theory not only truly explains the origin of the primordial
inhomogeneities but also predicts their spectrum. The spec-
trum of these inhomogeneities and the spectrum of the cos-
mological gravitational waves produced during the inflation
are two observational tests of the inflationary theories. Cos-
mological observations are consistent with the simplest infla-
tion model within the slow-roll paradigm [11,12]. According
to this scenario, the curvature power of the spectrum is nearly
flat [13–20], i.e.

Ro
q ∝ q− 3

2 −2ε−δ, (1)

where Rq is the Fourier component of a comoving curvature
perturbation with comoving wave number q (the superscript
“o” stands for “outside the Hubble horizon”). Furthermore,
ε and δ are, respectively, the first and the second slow-roll
parameters. According to the observational data ε ≤ 0.008
and δ ≤ 0.018 [11]. R characterizes the adiabatic scalar per-
turbations which for super-Hubble scales are roughly con-
stant [21–23]. On the other hand, all inflationary models
predict the existence of cosmological gravitational waves
which produce a B-mode polarization pattern in the CMB
anisotropies. Recently, this mode has been detected by the
BICEP2 collaboration [24]. In the slow-roll approximation
we have [13]

Do
q ∝ q− 3

2 −ε, (2)

whereDq is the amplitude of inflationary gravitational waves.
The relative amplitude, characterized by the tensor–scalar

ratio r = 4|Do
q

Ro
q
|2, is a probe of the energy scale in the infla-

tionary epoch. It can be shown that in a slow-roll approxi-
mation with a single scalar field r = 16ε [13]. The BICEP2
collaboration has reported r � 0.2, which is greater than the
upper limit r < 0.11 obtained by the Planck collaboration
[11]. However, a joint analysis by the BICEP2/Keck Array
team and the Planck collaboration shows that the BICEP2
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detection of the B-mode is mainly due to the dust and can-
not be attributed to primordial gravity waves, produced dur-
ing inflation [25]. In addition to this inconsistency, there
is another discrepancy which refers to the running param-
eter of the curvature spectral index. In the slow-roll single
field inflation the running parameter is of the second order
in terms of the slow-roll parameters, but the Planck data pre-
fer Nr = ∂Ns

∂lnq � −0.015 [11], which is of the first order
slow-roll parameters and, consequently has no justification
in the slow-rolling inflationary model. In other words, the
running parameter has a magnitude significantly greater than
the slow-roll paradigm prediction in a spatially flat inflation-
ary universe. On the other hand, there are some anomalies in
the CMB power spectrum, such as suppression of the low-
est CMB multiples [26] and lack of temperature correlations
on scales beyond 70◦ [27], that may be pieces of evidence
for a discrete spectrum and non-trivial spherical topologies
[26,28]. In other words, some positive curvature models with
a non-trivial topology can solve the problem of the CMB
quadrupole and octopole suppression as well as the mys-
tery of missing fluctuations which appear in the concordance
model [29–33]. Furthermore, as well known, the inflationary
universe background is described by a quasi-de Sitter space;
however, the maximally extended de Sitter space, known as
the Lorentzian de Sitter space, is included in the FLRW mod-
els with K = +1 and, therefore, has a positive spatial curva-
ture [34]. Lorentzian de Sitter space is geodesically complete
too. Besides, the last observational data do not rule out the
�K < 0 case as well [35]. It is noteworthy that if the spatial
curvature of the universe is positive, the curvature is dom-
inant at the early stages of the inflationary era [28,36], so
the curvature might be significant in primordial spectra of
the perturbations and cannot be ignored. The dynamics of
the inflationary universe with positive spatial curvature has
been studied by Ellis et al. [36,37] who showed that however
the number of e-foldings increases, the curvature parameter
decreases and the universe would be closer to flat today [36].
On the other hand, Vilenkin discussed a cosmological model
in which the inflationary universe is created by quantum tun-
neling from nothing [38–40]. This model does not include a
Big-Bang singularity and predicts that the inflationary uni-
verse is positively curved. Although Linde has claimed that
it is very difficult to obtain a realistic model of a closed infla-
tionary universe [41], Ellis and Maartens constructed a single
field inflationary model in the closed universe, known as the
eternal emergent universe scenario [42,43]. This model is a
nonsingular closed inflationary cosmology that begins from
a meta-stable Einstein static state. Another closed inflation-
ary model with positive curvature index has been introduced
by Lasenby and Doran [44].

The calculation of the scalar (curvature) power spectrum
during an inflationary epoch with nonzero spatial curvature
was first performed by Starobinsky [45]. His work, however,

did not include the tensor power spectrum. Moreover, the
background of the inflationary universe was assumed to be
exact de Sitter space. Moreover, Massó et al. [46] investigated
the imprint of spatial curvature on the scalar power spectrum
in a non-flat inflationary universe with an exact de Sitter space
as the background. They evaluated the power spectrum at
the horizon exit instant and discussed the effect of curvature
on the angular power spectrum of CMB. In addition, Lyth
and Stwart [47] and Rarita and Peebles [48] studied quasi-
de Sitter models for spatially open universes. The present
paper investigates the slow-rolling inflationary scenario in
a spatially closed background with trivial topology, namely
a positively curved FLRW universe, for which the curva-
ture power spectrum has been obtained in an inflationary
universe with positive spatial curvature by imposing appro-
priate initial conditions. The remarkable point of this work
is that it investigates a quasi-de Sitter model by means of a
slow-roll paradigm. Furthermore, tensor perturbations have
been studied and finally the tensor–scalar ratio for spatially
closed universe has been derived. The layout of the article
is as follows: in Sect. 2, we derive the generalized Sasaki–
Mukhanov equation, associated with the positively curved
universe. Then the slow-roll parameters along with Sasaki–
Mukhanov variable is generalized to the inflationary universe
with positive curvature index. This section concludes by cal-
culating the comoving power spectrum. Section 3 is for the
investigation of a gravitational wave spectrum in the posi-
tively curved universe, while Sect. sec:4 contains the calcu-
lation of the tensor–scalar ratio in the FLRW universe with
positive curvature index. Finally the last section is dedicated
to the conclusion.

2 Curvature power spectrum in the positively curved
FLRW universe

2.1 The Sasaki–Mukhanov equation associated with the
positively curved inflationary universe

In order to find the curvature power spectrum in a spatially
closed universe, the ordinary Sasaki–Mukhanov equation [7,
13,49,50] should be generalized to the case K = +1, in
which K is the curvature index in the FLRW metric. This
equation describes the evolution of the comoving curvature
perturbation in the inflationary epoch. For this purpose, it
is supposed that the homogeneous inflation field �̄ (t) has
been perturbed by a small fluctuation δ� (t, x) during the
inflation era (hereafter a bar over any quantity stands for its
unperturbed value). Such fluctuations are accompanied by
the (scalar) perturbation in the FLRW metric (with K =
+1), based on which the line element of the universe may be
written as [13]
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ds2 = − (1 + E) dt2 + 2a (∂i F) dtdxi

+ a2 (1 + 2R) g̃i j dxi dx j ,

g̃i j = δi j + xi x j

1 − x2 , (3)

which is the FLRW metric with K = +1 in the comoving
quasi-Cartesian coordinates xi plus the scalar linear perturba-
tion in the comoving gauge. Here E and R are, respectively,
the lapse function and comoving curvature perturbation. It
can be shown that in the comoving gauge [13]

δρ = δp = −1

2
E ˙̄�2, (4)

δ� = 0, (5)

where ρ and p are the energy density and pressure of the
perfect fluid associated to the inflaton (the dot stands for
the derivation respect to the cosmic time t). On the other
hand, according to the perturbative field equations as well
as the energy conservation law E , F , and R do not evolve
independently and therefore [51]

4R
a2 + Ha∇2 F − 6HṘ − R̈

+
(

3H2 + Ḣ
)

E + 1

2
H Ė + ∇2R = 0, (6)

2Ṙ − H E + 2

a
F = 0, (7)

4HaF + 2aḞ + E + 2R = 0, (8)

δ̇ρ − ˙̄�2
(

a∇2 F − 3Ṙ + 3H E
)

= 0, (9)

where Eq. (9) is the energy conservation law. Notice that
∇2 = 1

a2 g̃i j∇i∇ j is the Laplace–Beltrami operator with

respect to a2 g̃i j . After some tedious and lengthy calculations,
these equations can be combined, and an explicit equation
can be extracted in terms of R,
[

Ha2
(

n2 − 4
)

+ 1

H
− Ḣa2

H

]
R̈n

+
[

Ha2 χ̇

χ

(
n2 − 4

)
− Ḣa2

(
2n2 − 5

)

+ 3H2a2
(

n2 − 4
)

+ 3
]
Ṙn

+
[

H
(

n2 − 4
) (

n2 − 5
)

+ Ḣ

H

(
n2 − 3

)

+ 1

Ha2

(
n2 − 5

)
− χ̇

χ

(
n2 − 4

)]
Rn = 0, (10)

where χ = Ḣ − 1
a2 and Rn is the Fourier component of

R with comoving canonical wave number n. Notice that
n = (n, l, m) where n = 3, 4, ..., 0 ≤ l ≤ n − 1 and |m| ≤ l
[51]. Here, due to the compactness of the spatial section of
spacetime, the comoving wave number is discrete. Further-
more, wave numbers n = 1, 2 correspond to the pure gauge

[52,53], hence they could be totally ignored. One can rewrite
Eq. (10) in terms of the conformal time τ :

[(
n2 − 3

)
H + 1

H − H′

H
]
R′′

n

+
[

pg2
(

n2 − 3
)
H2 − 2

(
n2 − 3

)
H′

+
(

n2 − 4
)
Hχ ′

χ
+ 2

]
R′

n

+
[(

n2 − 3
) (

n2 − 5
)
H +

(
n2 − 3

) H′

H
+

(
n2 − 5

) 1

H −
(

n2 − 4
) χ ′

χ

]
Rn = 0, (11)

where the prime symbol indicates derivation with respect
to the conformal time. Moreover, H = Ha is the comov-
ing Hubble parameter and χ = H2 − H′ + 1 = 4πGφ̄′2
(indeed χ = − χ

a2 ). Equation (11) is the generalized Sasaki–
Mukhanov equation for the inflationary universe with posi-
tive curvature index.

2.2 Re-definition of the slow-roll parameters; generalized
Sasaki–Mukhanov variable

Now let us consider the slow-roll inflation which guaran-
tees slow variation of inflation by considering a Coleman–
Weinberg type potential. In general, slow-roll inflation may
be described by the two flatness conditions [7,13]

˙̄φ2 � V
(
φ̄
)
, (12)

| ¨̄φ| � H | ˙̄φ|. (13)

In the spatially flat case Eqs. (12) and (13) are reduced to

ε := − Ḣ

H2 � 1, (14)

δ := Ḧ

2H Ḣ
� 1, (15)

where ε and δ are, respectively, the first and the second slow-
roll parameters, considered as being roughly constant. On the
other hand, for the positively curved inflationary universe, the
flatness conditions may be written in the same way as Eqs.
(14) and (15) by re-defining the slow-roll parameters

ε := − χ

H2 + 1
a2

= H2 − H′ + 1

H2 + 1
� 1, (16)

δ := 1

2H

χ̇

χ
= 1

2H
χ ′

χ
− 1 � 1. (17)
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One can rewrite Eq. (16) as

(
1

H
)′

= − (1 − ε)

(
1 + 1

H2

)
, (18)

which results in

H = − cot
[
(1 − ε) τ − cot−1 n

]
. (19)

Here it is assumed that τ = τn = − ∫ tn
t

dη
a(η)

where tn is the
horizon exit time for the inhomogeneity mode n (n = H (tn)).
Furthermore, combination of Eqs. (17) and (19) results in

χ ′

χ
= −2 (1 + δ) cot , (20)

where  = (1 − ε) τ − cot−1 n. Now by substituting Eqs.
(19) and (20) in Eq. (11) it can be deduced that
[(

n2 − 4
)

+ ε

cos2 

]
R′′

n

−
[

4
(

n2 − 4
)

cot 2 + 4ε
n2 − 3

sin 2

+ 2δ
(

n2 − 4
)

cot 

]
R′

n

+
[(

n2 − 4
) (

n2 − 5
)

+ 2
(

n2 − 4
)

tan2 

− ε
n2 − 3

cos2 
− 2δ

(
n2 − 4

)]
Rn = 0. (21)

Hereafter, only linear perturbations are investigated, i.e.
terms such as ε2, δ2, εδ, etc. shall be ignored. Now let us
define the new variable Vn as

Vn = T Rn, T = C
exp

[
− ε

2(n2−4) cos2 

]

|sin |1+2ε+δ |cos | . (22)

(Here C is a constant, to be obtained soon.) Thus, Eq. (21)
may be written in terms of Vn:

V ′′
n +

[ (
n2 − 5

)
− 2 cot2  + ε

(
1 + cot2 

)

×
(

2
1 − cot2 

cot2 
+ 1

n2 − 4

3 − cot2 

cot4 

)

−δ
(

1 + 3 cot2 
) ]

Vn = 0. (23)

Before solving Eq. (23), let us find the constant C . For
this purpose, one may invoke the relation

ε′

ε
= 2H (ε + δ), (24)

which can be derived from the logarithmic derivation of Eq.
(16). Provided that ε and δ are constant, Eq. (24) yields

( a

R

)ε+δ = √
ε. (25)

Here R is a characteristic scale, appearing as the integral
constant in Eq. (25).

On the other hand, Eq. (19) results in

a = 1

H
|sin |−(ε+δ) , H =

√
8πG

3
ρ̄. (26)

Consequently,

|sin |ε+δ = (RH)−(ε+δ)

√
ε

. (27)

Meanwhile, using Eqs. (19), (22) as well as (16) and (17)
one can show

T ′

T
= a′

a
− H′

H + φ̄′′

φ̄′ + 1

n2 − 4

(
1

H − H′

H3 + 1

H3

)
, (28)

which results in

T = aφ̄′

H exp

[
1

n2 − 4

(
1

2H2 +
∫ H2 + 1

H3 dτ

)]
. (29)

Now let us suppose n −→ +∞, thus Eq. (29) takes the
form

lim
n→+∞T = C

|sin |1+2ε+δ |cos | = aφ̄′

H = Z . (30)

For the severe sub-Hubble modes, the curvature has a neg-
ligible imprint and may be disregarded, so it coincides with
the K = 0 case. Besides, it can be shown that

aφ̄′

H = a

H

√
H2 − H′ + 1

4πG

= a

√(
1 + 1

H2

)
ε

4πG

= 1

H
|sin |−1−ε |cos |−1

√
ε

4πG
. (31)

Therefore, the combination of Eqs. (31), (30), and (27)
yields

C = 1√
4πG

1

H (RH)ε+δ
. (32)
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So

Rn = √
4πGH (RH)ε+δ |sin |1+2ε+δ |cos | exp

×
[

ε

2
(
n2 − 4

)
cos2 

]
Vn. (33)

Notice that Vn is the generalized Sasaki–Mukhanov vari-
able for the inflationary universe with positive curvature
index.

2.3 Curvature power spectrum

Now let us find the solutions of Eq. (23). For this purpose, it
is assumed that x = cos , thus Eq. (23) reduces to

(
1 − x2

) d2Vn

dx2 − x
dVn

dx

+
[(

n2 − 3
)

(1 + 2ε) + 2δ − 2 + 6ε + 3δ

1 − x2

+2ε

(
1 − 2

n2 − 4

)
1

x2 + 3ε

n2 − 4

1

x4

]
Vn = 0. (34)

The following solution may be proposed:

Vn = Vn + εVn, (35)

where

Vn = A
4
√

1 − x2 Pμ
ν (x) + B

4
√

1 − x2 Qμ
ν (x) , (36)

{
μ := 3

2 + 2ε + δ,

ν := (1 + ε)
√

n2 − 3 + δ√
n2−3

− 1
2 .

(37)

Notice that Pμ
ν and Qμ

ν are associated Legendre func-
tions. By inserting the ansatz (35) in Eq. (34) and neglecting
higher order infinitesimal terms, one may obtain a second
order nonhomogeneous equation in terms of Vn

(
1 − x2

) d2Vn

dx2 − x
dVn

dx

+
[(

n2 − 3
)

(1 + 2ε) + 2δ − 2 + 6ε + 3δ

1 − x2

]
Vn

= − 1

n2 − 4

(
2

n2 − 6

x2 + 3

x4

)

×
[
A

(
1 − x2

) 1
4

Pμ
ν (x) + B

(
1 − x2

) 1
4

Qμ
ν (x)

]
,

(38)

which has the special solution

Vn = 1

n2 − 4

� (ν − μ + 1)

� (ν + μ + 1)

4
√

1 − x2

×
{[

A Pμ
ν (x) − BQμ

ν (x)
]

×
∫ x

x0

(
1 − y2

)(
2

n2 − 6

y2 + 3

y4

)

×Pμ
ν (y) Qμ

ν (y) dy − A Qμ
ν (x)

×
∫ x

x0

(
1 − y2

)(
2

n2 − 6

y2 + 3

y4

)[
Pμ

ν (y)
]2

dy

+BPμ
ν (x)

∫ x

x0

(
1 − y2

) (
2

n2 − 6

y2

+ 3

y4

)[
Qμ

ν (y)
]2

dy

}
. (39)

Here, x0 is an arbitrary constant for which |x0| � 1. Con-
sequently, the general solution of Eq. (23) reduces to

Vn (τ ) = √|sin |
[
A Pμ

ν (cos ) + BQμ
ν (cos )

]

+ ε

n2 − 4

� (ν − μ + 1)

� (ν + μ + 1)

√|sin |

×
{[

− A Pμ
ν (cos ) + BQμ

ν (cos )
]

×
∫ 

0

sin3 ϒ

(
2

n2 − 6

cos2 ϒ
+ 3

cos4 ϒ

)

× Pμ
ν (cos ϒ) Qμ

ν (cos ϒ) dϒ

+ A Qμ
ν (cos )

∫ 

0

sin3 ϒ

(
2

n2 − 6

cos2 ϒ
+ 3

cos4 ϒ

)

×
[

Pμ
ν (cos ϒ)

]2
dϒ

× −BPμ
ν (cos )

∫ 

0

sin3 ϒ

(
2

n2 − 6

cos2 ϒ

+ 3

cos4 ϒ

)[
Qμ

ν (cos ϒ)
]2

dϒ

}
. (40)

Hereafter, we put 0 = − cot−1 n (it is completely com-
patible with the conformal initial condition which is intro-
duced below).

In order to determine the constants A and B one may
use the conformal (Bunch–Davies) initial condition, which
states [54,55]

lim
n→+∞Vn = 1√

2n
exp (−inτ). (41)

Thus, according to the asymptotic formulas of Pμ
ν and Qμ

ν

for large values of ν [56]

Pμ
ν (cos θ) ∼ � (μ + ν + 1)

�
(
ν + 3

2

)
√

2

π sin θ
sin

×
[(

ν + 1

2

)
θ + π

4
+ μπ

2

]
+ O

(
ν−1

)
, (42)
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Qμ
ν (cos θ) ∼ � (μ + ν + 1)

�
(
ν + 3

2

)
√

π

2 sin θ
cos

×
[(

ν + 1

2

)
θ + π

4
+ μπ

2

]
+ O

(
ν−1

)
, (43)

and noting that lim
n→+∞

(n+α)!
n! ∼ nα , after a lot of lengthy but

straightforward calculations, it can be shown that

⎧⎪⎪⎨
⎪⎪⎩

A = i
√

π

2
n− 3

2 −2ε−δ,

B = − 1√
π

n− 3
2 −2ε−δ.

(44)

Thus

Vn (τ ) = √|sin |n−μ

{
i
√

π

2
Pμ

ν (cos )

− 1√
π

Qμ
ν (cos ) − ε

n2 − 4

� (ν − μ + 1)

� (ν + μ + 1)

×
[ i

√
π

2
Pμ

ν (cos ) + 1√
π

Qμ
ν (cos )

]

×
∫ (1−ε)τ

0
sin3 ϒ

(
2

n2 − 6

cos2 ϒ
+ 3

cos4 ϒ

)

× Pμ
ν (cos ϒ) Qμ

ν (cos ϒ) dη

+ i
√

π

2

ε

n2 − 4

� (ν − μ + 1)

� (ν + μ + 1)
Qμ

ν (cos )

×
∫ (1−ε)τ

0
sin3 ϒ

(
2

n2 − 6

cos2 ϒ
+ 3

cos4 ϒ

)

×
[

Pμ
ν (cos ϒ)

]2
dη

+ 1√
π

ε

n2 − 4

� (ν − μ + 1)

� (ν + μ + 1)
Pμ

ν (cos )

×
∫ (1−ε)τ

0
sin3 ϒ

(
2

n2 − 6

cos2 ϒ
+ 3

cos4 ϒ

)

×
[

Qμ
ν (cos ϒ)

]2
dη

}
. (45)

Furthermore, by ignoring the non-linear terms, Rn takes
the form

Rn (τ ) = √
4πGH (RH)ε+δ

∣∣∣∣
sin �

n

∣∣∣∣
μ

|cos �|

×
[ i

√
π

2
Pμ

ν (cos �) − 1√
π

Qμ
ν (cos �)

]

+ ε
√

4πGH (RH)ε+δ

∣∣∣∣
sin �

n

∣∣∣∣
μ

|cos �|

×
{

− i
√

π

2
τ

d Pμ
ν (cos �)

dτ
+ 1√

π
τ

dQμ
ν (cos �)

dτ

−
[
2τ cot 2� + 1

2
τ cot � − 1

2
(
n2 − 4

)
cos2 �

]

×
[ i

√
π

2
Pμ

ν (cos �) − 1√
π

Qμ
ν (cos �)

]

− 1

n2 − 4

� (ν − μ + 1)

� (ν + μ + 1)

×
[ i

√
π

2
Pμ

ν (cos �) + 1√
π

Qμ
ν (cos �)

]

×
∫ τ

0
sin3 ϒ

(
2

n2 − 6

cos2 ϒ
+ 3

cos4 ϒ

)

× Pμ
ν (cos ϒ) Qμ

ν (cos ϒ) dη

+ i
√

π

2

1

n2 − 4

� (ν − μ + 1)

� (ν + μ + 1)
Qμ

ν (cos �)

×
∫ τ

0
sin3 ϒ

(
2

n2 − 6

cos2 ϒ
+ 3

cos4 ϒ

)

×
[

Pμ
ν (cos ϒ)

]2
dη

+ 1√
π

1

n2 − 4

� (ν − μ + 1)

� (ν + μ + 1)
Pμ

ν (cos �)

×
∫ τ

0
sin3 ϒ

(
2

n2 − 6

cos2 ϒ
+ 3

cos4 ϒ

)

×
[

Qμ
ν (cos ϒ)

]2
dη

}
, (46)

where � = τ − cot−1 n and ϒ = η − cot−1 n.
It is important to evaluate the comoving curvature pertur-

bation at the horizon exit time τ = 0 i.e. when the quantum
fluctuations of the inflaton came to be classical perturba-
tions. Besides, by inserting τ = 0 in Eq. (46) the arguments
of Pμ

ν and Qμ
ν become cos

(
cot−1 n

) = n√
n2+1

; for n ≥ 3,

0.94 ≤ n√
n2+1

< 1, so it may be plausible to use asymp-
totic formulas of the associated Legendre functions near 1,
i.e. [57]

θ −→ 0 : Pμ
ν (cos θ) ∼ 1

π
� (μ) sin μπ

(
2

1−cos θ

)μ
2

,

(47)

θ −→ 0 : Qμ
ν (cos θ) ∼ 1

2
� (μ) cos μπ

(
2

1−cos θ

)μ
2

.

(48)

So by doing some straightforward calculations, it can be
shown

Ro
n = −√

GH (RH)ε+δ � (μ) exp (−iμπ)
n1−μ

√
n2 + 1

×
(

2 + 2n√
n2 + 1

)μ
2
(

1 + n2 + 1

2n2
(
n2 − 4

)ε

)
. (49)
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Let us approximate n√
n2+1

∼ 1, thus Eq. (49) takes the
form

Ro
n � −√

GH (RH)ε+δ 2
3
2 +2ε+δ� (μ) exp (−iμπ) n−μ

×
(

1 + ε

2
(
n2 − 4

)
)

. (50)

Consequently, the curvature power spectrum in the maxi-
mally extended inflationary universe with single field reduces
to

Po
R (n) ∝ n−3−4ε−2δ

(
1 + ε

n2 − 4

)
. (51)

Except the additional factor 1 + ε
n2−4

, the spectrum (51)
is similar to the nearly flat spectrum which can be deduced
from the slow-rolling inflationary scenario with spatially flat
background [13]. By defining the curvature spectral index as

Po
R (n) ∝ nNs (n)−4, (52)

one can show that

Ns (n) = 1 − 4ε − 2δ + 2ε(
n2 − 4

)
ln n

. (53)

Because n ≥ 3,

1 − 4ε − 2δ < Ns (n) � 1 − 3.64ε − 2δ. (54)

It means the curvature spectral index in the maximally
extended universe shall be a bit larger than the K = 0 corre-
sponding model (for the K = 0 case, Ns (n) = 1−4ε −2δ).
Moreover, Ns directly depends on the comoving wave num-
ber (n) and so the spectrum is running. In other words, the
running parameter of Ns does not vanish,

Nr (n) = n
∂Ns

∂n
= −2ε

(
n2 − 4

) + 2n2 ln n
(
n2 − 4

)2 ln2 n
< 0. (55)

It is remarkable that the sign of Nr coincides with the
experimental data. Moreover, the running parameter in the
maximally extended background inflationary model is pro-
portional to ε i.e. Nr is of the first order slow-roll parameters
in full accordance with the reports [11], despite the spatially
flat case in which against the Planck reports it is roughly zero.

3 Primordial gravitational waves power spectrum
in the positively curved universe

The primordial gravitational waves during inflationary epoch
can be treated in the same way as the comoving curvature per-
turbation, considered in the previous section. In fact, quantum

fluctuations of the inflaton may result in tensorial perturba-
tions, described by a symmetric traceless divergenceless ten-
sor field Di j (t, x), which perturbs the FLRW metric as [13]

ds2 = −dt2 + a2 (
g̃i j + Di j

)
dxi d j . (56)

The propagation of Di j in the positively curved FLRW
universe is described by [51]

a2∇2 Di j − 3aȧ Ḋi j − a2 D̈i j − 2Di j = −16πGa2�T
i j . (57)

Here �T
i j (t, x) is the anisotropic inertia tensor that van-

ishes for the scalar fields, so

a2∇2 Di j − 3aȧ Ḋi j − a2 D̈i j − 2Di j = 0. (58)

One may expand Di j in terms of the t-t tensor spherical
harmonics on S

3 (a) [51]

Di j (t, x) =
∑
nlm

[
DO

nlm (t)
(
TO

i j

)
nlm + DE

nlm (t)
(
TE

i j

)
nlm

]
,

(59)

where DO
n and DE

n correspond to two different polarizations

of the gravitational waves. Notice that
{(

TO

i j

)
nlm,

(
TE

i j

)
nlm

}

constitutes a complete orthonormal basis for the expansion
of any symmetric traceless divergence-free covariant tensor
field of rank 2 on S

3 (a). Furthermore [51],

∇2(TO

i j

)
nlm = 3 − n2

a2

(
TO

i j

)
nlm, n = 3, 4, ..., (60)

∇2(TE

i j

)
nlm = 3 − n2

a2

(
TE

i j

)
nlm, n = 3, 4, ... (61)

Thus Eq. (59) reduces to two independent equations,

{
D̈O

n (t) + 3HḊO
n (t) + n2−1

a2 DO
n (t) = 0,

D̈E
n (t) + 3HḊE

n (t) + n2−1
a2 DE

n (t) = 0.
(62)

Hereafter the superscripts O and E are omitted because
both of DO

n and DE
n satisfy the equation

D̈n (t) + 3HḊn (t) + n2 − 1

a2 Dn (t) = 0. (63)

Dn (t) is amplitude of the gravitational wave Di j (t, x) as
well as a tensor random field on S

3 (a). By converting the
cosmic time to the conformal time Eq. (63) takes the form

D′′
n (τ ) + 2HD′

n (τ ) +
(

n2 − 1
)
Dn (τ ) = 0. (64)
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During the slow-rolling inflationary epoch it can be written
that

D′′
n (τ ) − 2 cot D′

n (τ ) +
(

n2 − 1
)
Dn (τ ) = 0. (65)

We assume x = cos  Eq. (65) can be written as

(
1 − x2

) d2Dn

d2 + (1 + 2ε) x
dDn

d

+ (1 + 2ε)
(

n2 − 1
)
Dn (x) = 0, (66)

which has the general solution

Dn (x) =
(

1 − x2
) 2ε+3

4
[
PP

ε+ 3
2

n(1+ε)− 1
2
(x)

+QQ
ε+ 3

2

n(1+ε)− 1
2
(x)

]
. (67)

HereP andQ are two arbitrary constants. So the solution
of Eq. (65) is

Dn (τ ) = |sin |ι
[
PP ι

κ (cos ) + QQι
κ (cos )

]
, (68)

where

{
ι := ε + 3

2 ,

κ := n (1 + ε) − 1
2 .

(69)

Besides, the initial condition that must be satisfied by Dn

is very similar to the Bunch–Davies initial condition applied
to the Sasaki–Mukhanov variable [13]

lim
n→+∞Dn =

√
16πG

a (t)

1√
2n

exp (−inτ) , (70)

which is applicable for both polarization modes distinctly.
By considering the asymptotic formulas (42) and (44) and
Eq. (26) as well, one can obtain

{
P = 2π iH

√
Gn−ι,

Q = −4H
√

Gn−ι.
(71)

Thus

Dn (τ ) = 2
√

GH

∣∣∣∣
sin 

n

∣∣∣∣
ι [

π i P ι
κ (cos ) − 2Qι

κ (cos )
]
.

(72)

Do
n may be determined by considering Dn at the time of

horizon crossing (τ = 0),

Do
n = −2

√
GH� (ι) exp (−i ιπ) n−ι

(
2 + 2n√

n2 + 1

) ι
2

.

(73)

Here again the asymptotic relations (47) and (48) have
been used. By the approximation n√

n2+1
∼ 1, Eq. (73)

acquires a simpler form,

Po
D (n) ∝ n−3−2ε, (74)

So by the definition of the tensor spectral index,

Po
D ∝ nNT −3, (75)

one can obtain

NT = −2ε, (76)

which is perfectly analogous to the tensor spectral index
derived in the classical slow-rolling inflationary theory [13].

4 Tensor–scalar ratio in the positively curved universe

Tensor–scalar ratio in the positively curved FLRW universe
may be defined as [13]

rn := 4
Po
D (n)

Po
R (n)

= 4

∣∣∣∣
Do

n

Ro
n

∣∣∣∣
2

. (77)

Here the factor 4 refers to two different polarization modes
of the gravitation waves. The significance of rn comes from
its measurability, indeed the tensor–scalar ratio can provide
an assay for the inflationary scenarios and some inflation the-
ories may be crossed out due to the contradiction with the
observational value of rn . According to the standard slow-
rolling inflationary theory rq = 16ε (q stands for the comov-
ing wave number of perturbations in the spatially flat uni-
verse) [13], so if it is supposed that ε = 0.008 [11], then
r = 0.128, which is greater than the data result BICEP2/Keck
Array and Planck released (r0.05 < 0.12) [25] whereby the
question is brought up of whether it is possible to eliminate
this flaw by considering a curvature factor. In order to answer,
let us calculate rn using Eqs. (49) and (73),

rn = 16 (RH)−2(ε+δ)

[
�

(
ε + 3

2

)

�
(
2ε + δ + 3

2

)
]2

n2(ε+δ)

×
(

2 + 2n√
n2 + 1

)−(ε+δ)

×
(

1 + 1

n2

)(
1 − n2 + 1

n2
(
n2 − 4

)ε

)
. (78)

Besides, one can write

n2(ε+δ) =
(
H2|τ=0

)ε+δ

=
(

cot2 |τ=0

)ε+δ =
(

cos2 |τ=0

)ε+δ
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×
(

sin2 |τ=0

)−(ε+δ)

=
(

1 + 1

n2

)−(ε+δ)

× (RH)2(ε+δ) ε. (79)

On the other hand, it is not hard to show that

�
(
2ε + δ + 3

2

)

�
(
ε + 3

2

) = 1 + (2 − γ − ln 2) (ε + δ) � exp

× [
(2 − γ − ln 2) (ε + δ)

]

� (2.074)ε+δ , (80)

where γ � 0.577 is the Euler–Mascheroni constant. In order
to derive Eq. (80) one can use the following relation [56]:

� (x + ε + 1)

� (x + 1)
= 1 + ε

[
−γ +

∞∑
n=1

(
1

n
− 1

x + n

)]
. (81)

By inserting Eqs. (79) and (80) in Eq. (78),

rn = 16ε exp
[
(−4 + 2γ + 2 ln 2) (ε + δ)

] (
1 + 1

n2

)1−(ε+δ)

×
(

2 + 2n√
n2 + 1

)−(ε+δ)
(

1 − n2 + 1

n2
(
n2 − 4

)ε

)
. (82)

For n � 1 Eq. (82) is reduced to

rn�1 � 16ε exp
[
(−4 + 2γ ) (ε + δ)

] � 16ε (0.058)ε+δ .

(83)

If one chooses ε = 0.008 and δ > −0.008, obviously
rn�1 > 16ε. On the other hand, in accordance with [25] let
us consider k∗ = 0.05 MPc−1 as the pivot wave number, so
the corresponding comoving wave number is

n∗ = a0k∗ = 7070,

where a0 = 1
H0

√−�K
according to the latest observational

data [35] is a0 = 1.414×105 MPc. Now by considering n∗ =
7070 as the pivot comoving wave number and ε = 0.008,
one can show r∗ < 0.12 provided that 0.0147 � δ < 0.018
(which is in the range permitted by the Planck data1 [11]), so
it may reduce the discrepancy between BICEP2/Keck Array
team and Planck collaboration results and slow-rolling infla-
tionary theory.

1 In the Planck collaboration paper, the slow-roll parameters are εV and
ηV , which are to be compared to the definitions, given in this paper, i.e.
εV = ε and ηV = ε − δ.

5 Conclusion and summary

In this article we investigated an inflationary model with pos-
itive curvature index and calculated scalar and tensor per-
turbations power spectra associated with it. For the severe
super-Hubble scales (i.e. n � 1) it seems that both spec-
tra are completely similar to the spatially flat correspond-
ing case. It is shown that this model yields a natural reso-
lution of the running number problem. We also calculated
the tensor–scalar ratio to show that it directly depends on
the wave number of the perturbative modes. In addition, we
showed that the tensor–scalar ratio in the positively curved
universe against the flat case explicitly depends on the second
slow-roll parameter.
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