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Abstract

We give necessary and sufficient conditions for a semi-Riemannian manifold of arbi-
trary signature to be locally isometrically immersed into a warped product +1 x, M™(c),
where I C R and M"(c¢) is a semi-Riemannian space of constant nonzero sectional cur-
vature. Then, we describe a way to use the structure equations of such immersions to
construct foliations of marginally trapped surfaces in a four-dimensional Lorentzian space-
times. We point out that, sometimes, Gaufl and Codazzi equations are not sufficient to
ensure the existence of a local isometric immersion of a semi-Riemannian manifold as
a hypersurface of another manifold. We finally give two low-dimensional examples to
illustrate our results.

1 Introduction

One of the fundamental problems in submanifold theory deals with the existence of isomet-
ric immersions from one manifold into another. The Gauf}, Ricci and Codazzi equations
are very well-known as the structure equations, meaning that any submanifold of any semi-
Riemannian manifold must satisfy them. A classical result states that, conversely, they are
necessary and sufficient conditions for a Riemannian n-manifold to admit a (local) immer-
sion in the Euclidean (n + 1)-space. In addition, E. Cartan developed the so-called moving
frames technique, obtaining a necessary and sufficient condition to construct a map from a
(differential) manifold M into a Lie group. If a Lie group G is a group of diffeomorphisms of
a manifold P, Cartan’s technique then may provide a map from M to P with nice properties.
Sometimes, the map from M to G can exist thanks to Gaul; Codazzi and Ricci equations,
like for instance in [4].

Another point of view is the celebrated Nash Theorem, which states that any Riemann
manifold can be embedded in the Euclidean space, but at the price of a high codimension.
Following that line, O. Miiller and M. Sanchez obtained a characterization of the Lorenztian
manifolds which can be embedded in a high dimensional Minkowski space (see [5].)

On the other hand, B. Daniel obtained in [2] a fundamental theorem for hypersurfaces
in the Riemannian products S™ x R and H” x R, looking for tools to work with minimal
surfaces in such manifolds when n = 2. J. Roth generalized B. Daniel’s theorem to spacelike
hypersurfaces in some Lorentzian products (see [7]). In their works, they needed some extra
tools such as a tangent vector field T to the submanifold and some functions, in order to
obtain the local metric immersions into the desired ambient spaces. Note that the Ricci
equation provides no information for hypersurfaces.



Our main aim is to obtain a fundamental theorem for non-degenerate hypersurfaces in a
semi-Riemannian warped product, namely ¢ I X, M7 (c), where e = £1,a: I C R — R" is the
scale factor and M} (c) is the semi-Riemannian space form of index k and constant curvature
¢ = *£1. For a hypersurface M in eI x, Mj(c), the vector field 0; (¢ € I) decomposes in its
tangent and normal parts, i. e., Oy = T + e41Tnt16n+1 Where e,41 is a (local) normal unit
vector field, €,4+1 = +1 shows its causal character and 7,1 is the corresponding coordinate.
In addition to the shape operator A, on Gaufl and Codazzi equations there appear the vector
field T, its dual 1-form n, some constants as well as some functions like 7,11. However, the
covariant derivative of T' must satisfy a specific formula, which cannot be obtained from Gauf}
and Codazzi equations by the authors. Based on these necessary conditions, we state in Def-
inition 1 all needed tools on an abstract semi-Riemannian manifold M, for the existence of a
(local) metric immersion x : U C M — €I x,MJ(c) (see Theorem 1.) Later, we apply this re-
sult to non-degenerate hypersurfaces of a Friedman-Lemétre-Robertson-Walker 4-spacetimes
(RW 4-spacetimes.) In Corollary 2, we show sufficient conditions for such hypersurfaces to
exist.

We would like to point out that our computations, as well as B. Daniel and J. Roth’s
results, show that Gaufl and Codazzi equations are not sufficient to ensure the existence of a
local isometric immersion of a given Riemannian manifold endowed with a second fundamental
form in a spacetime as a spacelike hypersurface.

Next, if we admit in a very wide sense that a horizon in a 4-spacetime is a 3-dimensional
hypersurface which is foliated by marginally trapped surfaces (i. e., surfaces whose mean
curvature vector is timelike), then we describe a condition to obtain non-degenerate horizons
in RW 4-spacetimes in our framework (see Corollary 3).

We end the paper with two low-dimensional examples to illustrate the theoretical results.
The first one describes a surface in a RW toy model S? — —I x, S?, a (simple) graph over a
rest space {tp} x S?. The second example is a helicoidal surface in —1I x, HZ.

2 Preliminaries

Let (P, gp) be a semi-Riemannian manifold of dimension dim P = m. We consider a smooth
function @ : I C R — R*, a (sign) constant € = 41 and the warped product

Pl — eI x, P, (,)=edt® +d*(t)gp.

Clearly, the unit vector field % = 0, will play a crucial role on the manifold P"*!. We will
use the following convention for the curvature operator R of a connection D:

R(X,Y)Z =DxDyZ — DyDxZ — Dix y)Z.

Let Rp and Rp be the curvature operator of P! and P, respectively. Let D be the Levi-
Civita connection of P""!. We recall the following formulae from [6].

Lemma 1. On the semi-Riemannian manifold P"T1, the following statements hold, for any
V, W lifts of vector fields tangent to P:

1. Dy, =0, Dydy =2V,

2. grad(a) = ed0;.



3. DyW = VEW — £V, W),
4. Rp(V,0,)0 = — %V, Rp(dy, V)W = —e%(V,W)d;, Rp(V,W)d; = 0.

Proof. Note that the definition of the curvature operator on [6] has the opposite sign than
the usual one. We show a proof of item (4). By recalling Dp,0; = 0 and [V, 0;] = 0, we have
D / "o ()2

Rp(V, )0 = DyDy,8— Dy, D,V —Dyy5,0; = —D,Dy,V = —Dy, (%V) = @y
%’DatV = —%”V. Next, we show Rp(d;, V)W = —wDat(grada) = —MD@(E&’&) =

a a
—5M8t. Finally, Rp(V,W)d; = 0 is a direct consequence of item 1. O

a

Now, let M be a non-degenerate hypersurface of P!, with VM its Levi-Civita con-
nection, o the second fundamental form and R4 the curvature operator of M, respectively.
Given a (local) unit normal vector field v of M in P™"1 with § = (v,v) = 1, let A be the
shape operator associated with v. The Gaufl and Weingarten’s formulae are

DyxY = VY +0(X,Y), Dyrv=—AX,
for any X,Y € T M. The second fundamental form can be written as
o(X,Y) = 6(AX,Y)v, for any X, Y € TM.

Recall that the mean curvature vector of M is defined by

1

H=———"Tr(o).
dim(M) (o)
Next, the Codazzi equation of M takes the general form (Rp(X,Y)Z)* = (Dxo)(Y, Z) —

(Dyo)(X, Z), for any X,Y, Z tangent to M, which is equivalent to

Rp(X,Y, Z,v) = (DxAY — (DyA)X, Z), (1)

for any X,Y,Z € TM. Further, the general Gaufl equation is given by

RP(XaYszv W) = RM(X,Y, Z7W)
= Ru(X,Y, Z,W)

- <U(K Z)>0-(X¢ W)> + <J(Ya W),O'(X, Z)> (2)
— 0(AY, Z)(AX, W) + 6(AY, W) (AX, Z),
with XY, Z, W tangent to M.

We consider now the special case where the manifold P = E"t! = RZ“, i. e., the standard
Euclidean semi-Riemannian space of dimension n+1 > 3 and index k. Following the previous
notation, we construct P"? = eI x,E"*!. Let R be the curvature tensor of P"*2. We have

Proposition 1. Let X,Y,Z, W € T(TP"2).

Ry zw) = 9L (2w - vz
a a’ 2
+ ( - ) (X, 2)(Y, 80 (W, 01) — (v, Z)(X, ) (W, 1)

(X, W)Y, 00(Z, 01) + (Y, W)(X, 0)(Z, 01)).



Proof. Let X = X +20, = X + e(X,0;)0;, where X is a vector field tangent to ]?”*2.
We will use similar notations for other vector fields. In particular, we see that (X,Y) =
(X,Y) —e(X,0)(Y, 0). By using the symmetry properties of the curvature tensor, we get

R(X,Y,Z,W)=R(X,Y,Z, W)+ R(X,Y,Z,wd) + R(X,Y, 20;, W)
+R(X7yatvza W)
+ R(z0., Y, Z, W) +

+ R(X,y0, Z,wdy) + R(X,ydy, 201, W)
R( Y, Z,wat) (ac@t,Y, 20y, W)
By Lemma 1, we obtain directly

R(X,Y,20,W) =0, R(X,Y,Z,wd)=—R(X,Y,wd,Z) =0,

R(e0, Y. Z.V) = REZW . 20,¥) = 0. R(X.y0h 2.W) = —R(Z. V400, %) = 0.
Since the curvature tensor of E"*! vanishes, by [6, p. 210], we get

RIX,Y,Z,W) = —5(222(<17,Z><X,W> (X, 20 (Y, W)).

Moreover, with Lemma 2.2, using again Lemma 1.4 and as (0, 9;) = ¢,

" "

R(X,ydy, Z,wdy) = —R(ydy, X, Z,wdy) = E‘L<X 2 y8y, wdy) = %(Y, ONW, 0)(X, Z).

By similar computations, we obtain

R(X,Y,Z,W) = _ ) ((17 INX, W) — (X, Z)(Y W>)
Y, Z, S (V. 2)(x, LZNY,

a’ o

+ (00, 0)(X, Z) = (Y, 0)(Z,0)(X. W) 3)

— (X ONW, 0V, Z) + (X, 042, OV, W) ).
Now, straightforward computations yield
(Y, Z) (X, W) = (X, 2)(Y, W) + (Y, 0)(Z,0) (X, ) (W, D)) — (X, Z)(Y, W)
+ (X, Z)(Y, 00)(W, 0r) + (X, 0:)(Z, 0)(Y, W) — (X, 00)(Z, 0)(Y, Op) (W, Op)
= <Y7 Z><X7 W> - €<Yv Z><X7 8t><W7 at> - 5<Y7 8t><Z7 at><X7 W> - <Xa Z><K W>
+&(X, Z)(Y, 00) (W, Or) + e(X, 0u)(Z, 0) (Y, W),

and
(Y, 00 (W, 0)(X, Z) = (Y, 00{Z, 0 (X, W) — (X, 0) (W, 0)(Y , Z) + (X, 0:){Z, 0 (Y, W)
=Y, 0)W,0(X, Z) = (Y,0)(Z, 0 )(X, W) — (X, 00) (W, 01)(Y, Z) + (X, 0:)(Z, 0) (Y, W).
By inserting in (3), we finally get the result. O

Let M} (c) be the semi-Riemannian space form of constant sectional curvature ¢ = 1 and
index k, with metric g and let P"*! = eI x, M}(c), with metric (,). We denote by R the
curvature operator of € I x, M} (c). Also, we put

Ry, i MP(c) =HP, c=-1,

—— {R”“, if M2'(c) =S}, ¢=+1,
k+1>



with its standard metric g, and Levi-Civita connection V°. We recall that

F={p€E"™" i golp,p) = +1}, H} = {p € E"" : go(p,p) = —1}.

From the usual totally umbilical embedding = : M} (c) — E"*! we construct the following
isometric embedding

!

E: (eI xa M(e),(,)) — (eI xa E",())2),  (t,p) = (,E(p)).

In the sequel, for the sake of simplicity, we will also use the notation (,)2 = (,). Let V and
V be the Levi-Civita connection on e x, E"™! and I x, M7(c), respectively. It is well-
known that £ = =/c is a unit normal vector field satisfying V& = X/c for any X tangent to
T,M7?(c). Thus, we can consider the normal vector field of Z: e T x, MP(c) — eI x, E"! as

eo(t,p) = (0,£(p)/a(t)) = (0,p/(ca(t))), for any (t,p) € eI xq My (c).

We also set g9 = (ep,ep) = £1. Since MZ(c) lies naturally in E"™, the normal vec-
tor field ¢ satisfies go(&,§) = ¢. In addition, €9 = (eo,e0) = ((0,p/(ac)),(0,p/(ac))) =
a’g,(p,p)/(a%c?) = c. In this way, by Lemma 1,

6ateo = a2 (075) + 26&(075) = %(075) + %%(Ové) =0.

Moreover, if (0,7) L eg, then Z 1 &, so that

= 1~ 1

Z
Vioneo = =V0.2)(0.6) = ~ (V¢ - W

1

grada) =—(0,2).
ac

This means that the Weingarten operator S associated with eg has the expression

SY = i(Y —&({Y,0;)0;), for any Y € TP, (4)
ac

Proposition 2. The curvature tensor of P"™ = e x, M} (c) is

R(X,Y,Z,W) = <5 (2/2)2

€0

> (<X, IVNY, W) — (Y, Z)(X, W))

a2

a” a 2
N <_< ) ﬁ;;) (¢, 200y, 00(W,00) = (¥, 2)(X,0)(W,0)  (5)

a a?

— (X W)Y 0)(2.00) + (Y, W)(X,0)(Z,0,)),

for any X,Y,Z,W in TP+,

Proof. We just need to resort to (2), Proposition 1 and (4). O

3 Hypersurfaces

Let M™, n > 2, be an immersed, non-degenerate hypersurface in P"*!. Let V be the Levi-
Civita connections on M. Let e,41 be a (locally defined) normal unit vector field to M, with



En+1 = (€n+1,ent1) = £1. Along M, the vector field 9; can be decomposed as its tangent
and normal parts, i. e.,

oy = T+f€n+1,

where T' is tangent to M and f = €,41(0¢, ent+1). We also define the 1-form on M given by
n(X) = (X,T), for any X € I'(T'M). Given a tangent vector X to M, we again decompose it
in the part tangent to {¢} x M?(c) and its component in the direction of &; as X = X + z0;.
Similarly, Y = Y + yOr and ey 41 = €11 + N0

Lemma 2. Under the previous conditions,
1. en = (ent1,01) = en+1f, ex = (X, 0) = (X, T), ey = (Y, 0) = (Y, T),
2. (X, 8n11) = —eeni1 f(X, T),
3. (X,Y) = (X,Y) — (X, TNY,T).

Proof. From e,11 = €,41 + ndy, it is immediate that en = (0}, ep4+1) = ep+1f. Further,
(X,01) = (X, T + fens1) = (X, T) = (X + 204, ) = ex. Next, 0= (X, en11) = (X, Enr1) +
ane = (X, énq1) + eenp1 (X, T). Finally, (X,Y) = (X + 28, Y 4+ y9,) = (X,Y) + exy =
(X,Y) +e(X, TVY,T). O

Let A be the shape operator of M associated with ey 1.

Proposition 3. The Gauf equation of M in el x, MJ(c) is

(@) e

a? a?

R(X,Y,Z, W) = (e

. <a” (a')? . 550) (<X7 ZNY, TYW,T) — (Y, Z\(X, TY(W, T)

a a? a?

) (e 2wy - . z)xw)

(X, W)Y, 80)(Z, T) + (Y, W)(X, T)(2,T))

tens1 ({AY, 2)(AX, W) — (AY, W){AX, 2) ),
forany X, Y, Z W € TM.
Proof. We resort to (2), Proposition 2 and Lemma 2. O
Proposition 4. The Codazzi equation of M in eI x,MJ(c) is given by

VA — (@)X = et (L - CL =) (vnx - eny). @

a

for any X, Y tangent to M.



Proof. By (1), we have to compute R(X,Y,Z,e,1) for any tangent vectors X,Y,Z to M.
To do so, we recall Proposition 2. Thus,

R(X,Y, Z,ens1) = <5(“'2)2 - Zg) ((X, VY, eng1) — (Y, Z)(X, em_l))

# (% 2) (2000 e ) — (20,00 e, 0

a a? a?
— (X ear)) (VL O0Z,0) + (Y, enin) (X, 0)(2,0))

= ens (5 - 12420 (v 2) - (1. 2).

This yields the result. O

a2

Lemma 3. The following equations hold for any X tangent to M :

/

1. ?Xﬁt = %(X — €<X, T>8t)
2. VxT = ©(X — (X, T)T) + fAX.
3. X(f) = —ent1(AT, X) — ©(X,T) f.

Proof. First, we recall that X :75( + EngX)at. Therefore, iXat = ﬁf(at = %Xﬁz %(X —
e(X,T)0). Next, we compute VxT = Vx (0 — ent1) = VxO — X(f)ent1 — fVxent1 =

/

CL(*X _€<X7T>8t) _X(f)en—I—l +fAX = %I(X _€<X7T>(T+fen+1)) _X(f)en-‘rl +fAX =

a

(X —e(X,T)T) — EJ;“/ en+t1)) — X(f)ent1 + fAX. Now, each equation is just the tangential

a

and the normal part of VxT = VxT + e, 11(AX, T)en 1. O

4 Moving frames

Elie Cartan developed the mowving frame technique. Definitions, basic results and some other
details can be found in [3, p. 18]. We will use the following convention on the ranges of
indices, unless mentioned otherwise:

1<i,5,kl<n 1<uv,w,...<n+1; 0<a,8,7,...<n+1.

We recall that M is a hypersurface of P"*1 hence n = dim M. Let (eq,e1, ..., en,ent1) be a
local orthonormal frame on M, such that ey, ..., e, are tangent to M and e, is normal to
M in P with ey = (eq, eq) = £1. We define the matrix G = (£4045). Let (wo, ..., wnt1)
be the dual basis of eq, i.e. wa(eg) = dap, where wy|7ar =0, r € {0,n +1}. The dual 1-forms
wq can be obtained as wq (X) = eq(eq, X).

Given (Ey, ..., E,) a parallel orthonormal frame of E"*!, we construct (Eo, ..., Fpy1) =
(Ee .%, d;), which is an orthonormal frame of eI x, E"™!. If necessary, we reorder the

a )"

basis (Ey, ..., E,11) to obtain
<Ea7Ea> = Ea; EnJrl = at-

Next, we define the functions B,g := (Fq,eg) and the matrix B = (B,g). We have:

> euBuaBus =Y By ea) (By,eg) = (€aep) = €adag.
M M

7



This equation reduces to B!GB = G, which implies B~! = GB!G, where B! is the transpose
of B and B~! = (B*%). Next, from the fact that B‘GB = G, we define the sets

S ={Z € My12(R)|Z'GZ =G, det Z = 1},
s = {H € My »(R)|H'G + GH = 0}.

The set S is the connected component of the identity matrix, and IS hence isometric to the
Lie group O*T(n + 2,q), where the index of the metric is ¢ = k + e 1' + |E U Clearly, s is
the Lie algebra associated with S. In other words, we have constructed a map B: M — S,
and therefore, we immediately obtain the s-valued 1-form B~'dB on M. Let us now define
the connection 1-forms Q = (wag3),

wap(X) = 5a<ea,6xeg>, for any X € TM.

The matrix 2 satisfies Q'G + GQ = 0, or equivalently, wg, = —€4Eswap. In particular,
Ve; = Zwkiek, Ve, = Zwvuev, Veo = waev, (7)
k v vy

We now define the 1-form 7(X) = (T, X) and functions T = (ex,T), Tnt1 = ent1f and
Ty = 0. Clearly, >, Tywy = 1. Obviously, we can recover the vectors eg = 27 eyBygE,.
Consequently, by (7),

66(16[3 = Zwuﬁ (ea)en = ZE’Y(Z(“)HB (ea) w)

:%ea(zevBWE) stdBﬁ(ea E, +ZeyauBWBvﬁv B,
v Yy

By now, we just care for the last summand. To do so,

V- FE - 1~ a —
En+1E'rL+1 = Vatat = 0, V ETL+1 —vEuat — EEU)
~ o a o o
En+1Eu = _?Eu_}_*vatEu: _EEU—FEEU_O,
= = 1~ E,FE 5 /
Ve B = 5Ve.Ee= V" By — <;”>grad(a) — _%@.

Consequently, by using the fact that the terms for 4 = n + 1 vanish, we have

Veaep — Z eydByg(ea) By = Z EWEMBWBWVELEW
g 1y

= eveuBuaBus Vg, By +Za‘oeuBWBoW Ey

u,v

— 50(1 —
= 505 z@: 6v-BUaBOBEv - T zu: 5uBuoaBuBEO-
By comparing coordinates, we get for vy =n + 1

a/
Z Bhy1pwup(€a) = dBpiiplea) — o Z €uBuaBug. (8)
o u



and for v =0,...,n,

ea’
> Brysup(ea) = dBys(ea) + =~ BraBni1s. (9)
17

Using the fact that Bua = > Buywy(ea), we get for equation (8), -, Bnt1uwus —dBny1g =
=& 2 2 EuBugBuywy = =% 32 euBugBuywy e 32 Bny1 pBny14wy, and for equation
(9), Zu B, wus = dBg+ %“/ > Bnt18Byrwy, for any v = 0,...,n+1. Finally, for all v = «

ea a
Z Bauwuﬁ = dBaﬁ + 7Bn+1/3 Z Ba'yw'y — 5513(504”4_1(«}/3.
1% v
Moreover, we have Zu B4, 0epwg = B“OEBL% = egeacBoaws, that is,

/

Wag = Z Ba‘udBluﬁ -+ % (Bn+1 BWa — EBEQBn+1 awg) . (10)
o
Finally, we obtain
-1 ea’
Q- X = BB, Xag= " (But1 w0 — £32aBut1as)- (11)
a

We point out that Bpt1a = (Ent1,€a) = (O, €a) = Th.

5 Main Theorem

Let (M, {(,)) be a semi-Riemannian manifold with its Levi-Civita connection V, its Riemann
tensor R. We choose numbers ¢,£p,e,41 € {—1,1} and ¢ = ¢p, and smooth functions a :
ICR—-R", Thi1: M — Rand 7 : M — I. We construct the vector field T € X(M) by
T = egrad(m), with its 1-form n(X) = (X, T). Also, consider a tensor A of type (1,1) on M.

Definition 1. Under the previous conditions, we will say that M satisfies the structure
conditions if the following conditions hold:

(A) Ais (,)-self adjoint;
(B) e =(T\T) + en1 T4

(C) VxT = 25X —en(X)T) + epp1Tni1AX, for any X € TM;

aoT

(D) X(Tni1) = —(AT, X) — 22T, 119(X), for any X € T'M;

aoT
(E) Codazzi equation: for any X,Y € T'M, it holds

a"om  (a om)? €€

(VxA)Y — (Vy A)X = Tpiy ( - _+ 2) (11X = n(x)Y);

aom  (aom) (aom)




(F) Gauf equation: for any X,Y,Z, W € TM, it holds

_(_(dom)? _ %o _
R(X,Y,Z,W) = (a aor? (aoﬂ)2> (¢, 207, W) = (v, 2)(x, W)
a’om (' om)?
< aom ((a o 77))2 " (a5082)2> (<X’ Zn(Y )n(W) = (Y, Z)n(X)n(W)

(X, Wyn(Y)n(Z) + (Y, Wn(X)n(2)) + ensr ({AY, Z)(AX, W) — (AY,W)(AX, 2) ).

We recall the warped product (P"™! =T x M} (c), (,)1 = edt® + a’g,).

Theorem 1. Let (M,{(,)) a semi-Riemannian manifold satisfying the structure conditions.
Then, for each point p € M, there exists a neighborhood U of p on M, a metric immersion
x: (U, ()) = (PP {)1) and a normal unit vector field e, .1 along x such that:

1. ent1 = (ent1,€nt1)1;

2. mpox =m, where wy : €1 x4 MJl(c) = I is the projection;

3. The shape operator associated with e,y1 is A;

4. (E) is the Codazzi equation, and (F') is the Gaufs equation,

5. and along x, it holds Oy =T + epp1Tn+1€n+1-

Proof. Given a point x € M, around it we consider a local orthonormal frame {ey,...,e,}
on M, with their signs €; = g(e;,e;) = £1, and its corresponding dual basis of 1-forms
{wi,...,wn}. We point out that an alternative definition for these 1-forms is w;(X) =
eife;, X), for any X € TM. We also need to define w,+1 = wp = 0. With the help of
the tensor SY = —(Y —en(Y)T) /(ac), for any Y € TM, we construct the following 1-forms

wij(X) = ¢eiles, Vxej), wing1(X) = —ei(e;, AX),

ee
wio(X) = —eile;, SX), wpt10=— ntl

WTnJrlna Wap = —E€afpWia, (12)

for any X € TM, known as the connection 1-forms. In this way, we consider the s-valued
matrix 2 = (weg). As a consequence, we get Ve; = >, wyier. Now, we define the functions
T; = n(ei), i € {1,...,n}, To = 0. We point out that by condition (B), we have e =3 sVT,f.
Next, we also construct the matrices X = (X,g) and T as

ea

XQB = (Tgwa — €Q€BTQW5), T=0-X. (13)

a
A simple computation shows

AT +TAYT =d2—-dX+ QN2 -OQANX -XAQ+XAX.

Thus, our target consist of proving that the second half of this equality vanishes. Since the
computation is rather lengthy, we will split it in some lemmata.

Lemma 4. dn = 0.

10



Proof. Since T = e grad(m), we obtain that n = edw. Therefore, dn = 0. O

We define the matrices w = (wq) and I' = (I'y3) = d2 + Q A Q.

Lemma 5.

dw = —Q N w, Fag = —Eaégrga,
a 2 a” a’ 2
Fij = 5{-:]'7( a2) Wj N w; — <a — %) (Tjwl — Eié‘jﬂw]') A 7,
a” a 2
Lint1= Tn—i—l(; - (GQ) )77 ANwi, Tyo =0,

Proof. Given XY € T M, since wy1+1 = wy = 0, we have
dwi(X,Y) = X(wi(Y)) = Y(wi(X)) —wi([X,Y])
= €i<vX€i, Y) + 5i<€i7 VXy> — €Z'<Vy€i, X> — 5i<€’ia VYX> — €i<€ia [X, Y]>
=i ) wr(X)(er, V) — i Y wri(Y){er, X) = = ) wiy Ay (X,Y).
k k

v

On the other hand, by (12),

an‘f’l’“{ /\wv(Xa Y) = an-i-lk /\Wk(va)
Y k

= (ens1{en AX)erlen, Y) — engi(en, AY Derler, X))
k
= ent1((Y, AX) — (X, AY)) =0 = —dw,11(X,Y).
Also,

ZWOV Nwy(X,Y) = Zwok ANwr(X,Y)
k

.

= i Z ( — 80(<6k7 X) - ETkn(X»(UIg(Y) + 60(<€k, Y> — ETkU(Y))wk(X)>
k

= 22 (— (¥, X) +en(¥)n(X) + (X,Y) —en(X)n(Y)) = 0 = —duwo(X, ).

Next, given X,Y € T M, we compute

dwij(X,Y) = X (wij(Y)) = Y (wij (X)) — wij ([X, Y])
=& X((ei, Vyej)) — &Y ((ei, Vxe;)) — eifei, Vixyie))
= 6¢<VX61‘, Vy€j> — €¢<Vy€i, Vxej> + EiR(X, Y, €, ei).
On the other hand, by (7), (Vxei, Vye;) = > crwii(X)wi; (V) = — >4 ciwin(X)wp; (V).
Therefore,

dwii(X,Y) = = > wix Awij (X,Y) — &iR(X, Y, e, ¢5),
k

11



which implies

dwij(X, Y) + Z Wiy A ww(X, Y)
vy
= wip A\ Woj (X, Y) + Win+t1 N Wntl,j (X, Y) + EZ'R(X, Y, €5, ei)
= —€i€n+1 <€i, AX> <6j, AY) + 5i5n+1<eia AY) <6j, AX> — E;€0 <6i, SX> <€j, SY>

+ eicolen, SY)eg, SX) + & ((s (Z’f go) (<X, )Y, i) — (Y, e,)(X, ei>)

a?

(54 - 1) (entnte) - (GOt
— (X, em(Y)n(es) + (Y, en(X)m(e;))
+ent1 (<AY, eV AX, &) — (AY, &) (AX, ej>) n 50(<sy, eV (SX, e;) — (SY, ;) (SX, ej>)>

(a/)Q a// (a/)Q
:€€jaTWj /\CUZ(X,Y)— ;— a2

) (Tjwi — giejTiw;) An(X,Y).

Next, given X,Y € T M, we compute
dwin+1(X,Y) = X (wint1(Y)) — Y (win+1(X)) — win+1([X, Y])
= —€¢<Vxei, AY> + 5i<VYei7 AX> + €¢<€i, (VyA)X — (VXA)Y>

==& > wri(X)(er, AY) + & Y wii(Y)(er, AX) +eiles, (Vy A)X — (VX A)Y)
k

k
=3 (whn1 (K)win(Y) = w1 (Vwin X)) +esfes, (Ty A)X = (VxA)Y)
k

a// ( a/)?
a2

:—Zwm/\wvn_i_l(X,Y)—l—TnH( )nAwi(Y,X).

v

a
The next case is

dwio(X,Y) = X(wio(Y)) = ¥ (wio(X)) — wio([X,Y])
= Ei(<Vyei,SX> - (VXeZ-,SY) - <ei, (VyS)X - (V)@S)Y))

On one hand, for any U € X(M), it holds Vy (Z2U) = ;%n(Y)U — LVyU, so that

(VyS)X — (sz)y =VySX —SVyX —VxSY +5VxY

ea’ 1 1 €
= — (V)X = en(X)T) = —Vy(X = en(X)T) + —Vy X = —n(Vy X)T
ea 1 1 €
— @U(X) (Y — 877(Y)T) + &VX(Y —en(Y)T) + &VXY — %n(VXY)T

ea’

= S ()X =n(X)Y) + = (n(X0)VyT = n(Y)VxT)

= S () AY — (V) AX).

ac

12



Therefore, we have

n T’Vl
dwin(X,Y) = & ((Vyes, SX) = (Vxer, SY) + 5 e n(X)AY — 5(Y)AX))

= e 3 (¥ e SX) — w(X) e, 5Y)) + L o () AY (v AX) )

- ac
eent1d,
=— Zwm AN wyo(X,Y) + wing1 Awng1,0(X,Y) — %U A Wint1(X,Y)
S
- Zwm Awyo(X,Y).
v
Next, we easily see dw;, 11,0 = —5626“ dT,+1 A n. Therefore,
€e €e
dwnt10(X,Y) = — ;;rldTnH An(X,Y) = — ;;rldTnH (X(Tn+1)?7(Y) - Y(Tn+1)77(X))
=ent1 Y e ((AX, ex)(SY, ex) — (AY, ) (SX, 1))
k
==Y wnpk Awro(X,Y) = =D w1y Awg(X,Y), 0
k ¥
Lemma 6.
dXOf,B == —8a€ﬁdX5a, quo == 0,
a’a —2(a)? ea’
dXij = 7a2 ( ) n A (TJUJZ — 61'6]'1—%(4)]') + 7 (TdeZ — siszidwj)

!/

2 /
a ea
+2€€j <a) wj A wj + 7 E T, (wuj N Wi — E€jWys N U.)j),
u

a’a — 2(a)? ea’
dXins1 = a2()Tn+177 A wi + e ( Z Trwgn+1 AN wi + Tn+1dwi)~
k

Proof. Since X, = —c425Xgq, we trivially have dX,5 = —e,e3dX 4. Next,

ea’
dXop =d <a (Tawa — 6a65Taw5)>
/

= ( E €L <€a> wk> VAN (Tﬁwa — SaelgTawg)
a
k

/
+ s (dTg A Wo +Tgdwe — eqegdTo Awg — 5angadwg>
a
a'a — (a/)2
= Tn N (Tawa — €aggTawp)
ea
+ — (dTg Nwo +Tgdws — eaegdTo Nwg — €a€5Tade).
a

For = 0 and any v > 0, since Ty = 0 and wy = 0, then dX,0 = 0. For 3 = n+ 1 and
1 < n+1, since wp+1 = 0, we have

a’a — (a')? ea
dXint1 = CLQ()TnJrln N w; + 7 (dTn+1 N w; + Tanwi) .

13



By condition (C), and the fact T' = Y, exTyey, we see dT5,41(X) = —(AX,T) — E%Tn+1n(X)
= —> repTiler, AX) — 5Tn+1%n(X), and consequently dT,41(X) = >, Thwint1(X) —
eTy41%n(X). With this,

a’a — (a/)Q

ea’ a’
dXip1 = 3 Thiin Aw; + . ( Z Tpwgnt1 A wi — EETn+177 A w; + Tn+1dwi>
k

a

a’a —2(a’)? ca’
a a k

Next, for a = ¢ and 8 = j, we have
a’a — (a/)2

dXZ'j = 5

- n A (Tjwi — eiejTiw;)
!

+ s (de N w; + Tjdwi — EiédeZ' Nwj — z-:iejTidwj> .
a
We need the following computation dT, = Y-, e;((T ex))wi = 3, ((Ve, T, e )wi + (T, Ve,ex) )wy
=3 ((%’(el —eTiT) + ept1Tn+14ep, ex) + Zj wjk(el)Tj>wl, which implies

a a
di = EEkw}c — SETM? + Z Tuwuk. (14)

u

In this way, a straight forward computation yields

a’a —2(a)? ea’
dX;; = CLQ( ) nA (T]wl — siajTiwj) + 0 <Tjdwi — e’-:iEj'Edwj')
geia ea
+ 2 C]L Wy /\wiJra(zu:Tu(wuj /\wieiejwm-/\wj)>. OJ
Lemma 7.
a\?
(X VAN X)ag = (a) ((Tgwa — €a€5TQW5) AN —eegwa N W5).

Proof. We recall (B). Also, given X € T'M, we have > Thwy(X) = > Trwi(X) = n(X).
Then,

/

ea’ ea
(XA X)ap = E (7 (Tywa — gagyTawy) A o (Thwy — EvgﬁTwwb’))
Y

2
a 2
= (a> E (TyTgwa Nwy — 856«,T,Ywa A wg

v

— €abyToTpwy N wy + ereqeacpTaTywy A w5>

I\ 2
= <a> ((Tﬁwa — 5a56Taw,B) AN —eegwg N wﬁ) . L]
a

Now, we put d =QA X + X A Q.
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Lemma 8.

(I)aﬁ = _EaEB(I)Baa (I)uo = 07 (15)
ea’
(192']' = 7 (Eiﬁjﬂdwj' — T]dwz + ZTu (wi N Wyj — €jE€4Winy N wj)) (16)
u
ea’
q)in+1 = 7(*Tn+1dwl +ZTkwl /\Ldkn+1). (17)
k

Proof. By construction, X,3 = —£4,£3Xgq. This shows ®,53 = —c,e5Pg,. In general, we get

ea’
Q5 = Zwaﬂ, < , (Tawy — epeyTywg) ) + Z (Tywa — eveaTawy) A wyp

5
ead’
= (Taway A wy — €geyTyway Awg + Tywa A wyg — EaeyTawy A wyg) .
.
By Lemma 5,
ed
Pap = (eaeﬁTadwﬁ — Tadwa + Y (Tywa A wyg — €584 TyWary A Wﬂ))'

~

For the case a =4, 8 = n+ 1, the result is immediate due to the fact w, 1 = 0. For the case
a =1, 5 =0, since wg = 0 and Ty = 0, we begin by writing down ®;9 = %‘ll E T wiAw~o. How-
ever, by Condition (C), >_ Thwyo(X) = >, Tiwio(X) + Tht1wnt1,0(X) = >, L (5(e, X) —

i ac

eeiTm(X)) — €€n+1T"+17](X) = L (X eilen, Th{en X) —e( X, eT?)n(X) —eenTan(X)),

and hence
D Tywyo(X) = 0. (18)
y

The case a =n + 1 and 8 = 0 trivially vanishes due to wy4+1 = wp = 0. O
Lemma 9. dY+ T AT =0.

Proof. This is equivalent to prove dX —dQ —QAQ - XAX + X AQ+QAX =0. The case
a =u, 8 =0 is trivial. For the case o =4 and § = j, we have

(dX—dQ—Q/\Q—X/\X+X/\Q+Q/\X)ij
a’a —2(a)? ea
= 012()7] VAN (Tjwi - €Z'EjTiwj') + — (Tjdwi — Ez‘é‘jﬂdw]‘)

+26€]( )2 +— ZT Wi A Wi — €€ jwyi A wj)
2 uj % 1€ Wyg J

(a')?
+e€ 22 gjwi Nwj —

a2
( 2) _ a) (Tng - siejTiw]-) AN

a
a\?

— <> ((Tjwl — 52-5]-Tiwj) AN —egjw; N Wj>
a
/

ea
+ o (asﬂ}dwj — Tjdw; + ZTu (wi A waj — gjeutiu A wj)) =0.
u
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Next, for a =i, § =n + 1, we compute

(X —dQ—QAQ—XAX +XAQ+QAX)ins1

a’a — 2(a)? ea’
— %Tn—&—ln ANw; + — ( ZTkwkn+1 ANw; + Tn+1dwi>
a a k

a" (a/)Q a 2
—dnt1 (a T2 > nAw;— <a> <(Tn+1wi - 5i5n+1Tiwn+1) A1 — EEnt1wi A wn+1)

ea’

+ . ( — Thyrdw; + ; Trw; A wkn+1)

a'a — 2(a’)2 a’ a2 a 2
= aQ()Tn+1n ANwi —Thi1 (a (az) > nAw; — <a> (Ths1wi) An=0. U

It is clear that the map
5:8S = SE"™) = {X e E"2|(X, X)} =¢ent1}, Z+ (Znt10s-- s Znsins1)
is a submersion. Given a point x € M, we define the set
Z(x) ={Z € S|Zpt18 =Tp(x), B=0,...,n+1}.

Now, we prove the following

Lemma 10. Let (M, (,)) be a semi-Riemannian manifold satisfying the structure conditions.
For each xg € M and By € Z(xq), there exists a neighborhood U of xy in M and a unique
map B : U — S, such that

B'dB=Q-X, foralxclU, B(zx)c Z(x), By= B(x).
Proof. Given U be an open neighborhood of x¢g € M, we define the set
F={(zx,Z2) eU xS|Z € Z(x)}.
Since the map s is submersion, F is a submanifold of M x S with

(n+1)(n+2)
2

—(n—i—l)zw—i-n.

dimF =n+ 5

Moreover, given (x,Z) € F,
TonyF ={(U,V) € .U D TzS|Vyy1p = (d15).(U), =0,...,n+1}.
We consider on F the distribution ®(z, Z) = ker O, z), where © = T — Z 4z =0 -X -

Z~'dZ. In other words, given (U, V) € T(, z)F, we have O, 7 (U, V) = Q,(U) — X, (U) —
Z7'V. Next, we see that dim® = n. We consider the space H = {H € s|(ZH)pi15 =

0, 8 =0,...,n+ 1}. It is clear that H € H if and only if H € ker(ds)s,,,. But the
map s is a submersion, hence dim(kerdsy, ,,) = dimH = ("gl)”. We notice that (Z20),415 =
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(ZV)n+18—(ZX)py18—(d2)ny18 = (ZQ)n118—(ZX) 18 —dTs. Consequently using equation
(14) and Tp = 0 we get

(Z@)n—l-lk = Z Zn—&-l'y“*yk - Z Zn+17X7k - *5kwk + 5 Tkn ZTuwuk
ol

= Z Tywyg — ZT Tkwfy 676kT7wk) - —Ekwk +e— Tk’n ZTuUJuk

!/
a’ a’ ea’ a
= ——(Tn — evep T Thwy) — —epwg +e—Trn = — exep T Thwr — —epwi = 0,
G(W Ev:vk'yvk) PRl o kN a%:vkvvk g kR

since € = (T, T) + £,4172, ;. Similarly,

(ZO)nt1nt1 = Z Tywyni1 — Z T (Ths1wy — eyEns1 Tywns1) — dTpta
= Zvawn-‘rl —npin — Z Tywint1 + ETn+1*77 =0,
%

and with equation (18), it is clear
Z@ n+1 0= ZTV("JWO ZT — T()(,u,y €7€0T,y(,c)0) - dT() = 0.

Hence, Im(©) C H = ker(ds)y,,,,- Now, given the space {(0, ZH)|H € H} C T{, z)F, we have
O2,2)(0, ZH) = ~Z~YZH) = —H, which means that O(4,7) is a submersion unto H, and
Im(©) = H. Now, we get dimD(x, Z) = dimker O, z) = dim T, z)F — dimImO, 7 = n.

Next, we prove that ® is integrable. On one hand, since ® = ker® and dY + T A Y =0,
we compute dO© = dY +ZYdZANZ7 dZ =dT+ (T -O)A(T—-0) = -TAO-OAT+OAO.
Therefore, given U,V € ©, dO(U,V) = U(O(V)) - V(O(U)) — 6([U,V]) = —6([U,V]) =
(- TA®—-OAT+0OA0O)U,V) =0, which implies [U,V] € D.

Next, let £ C F be an integral manifold through (zo, By). For each (0,V) € D, p,) =
T, L, we have O, g (V) = Bglv = 0, and hence V = 0, since By € S. This implies
D (wo,B0) N [{0} x T, 8] = {0}. In particular, by shrinking U/ if necessary, £ is the graph of a
unique map B : U — S. Also, since £ C F, then for each z € U, B(z) € Z(z). Finally since
© =0 on L, B satisfies by definition B~'dB = Q — X. O

Define now the map y : U — R"*2 by
X0 =¢€0Boo,  Xi =¢€iBio,  Xnt1 =T

Notice that, since B(z) € Z(z) C S, then By11,0 = To = 0, whic implies X3 + > €iXF =
S _oeaB2y = €0 = ¢, thus obtaining that (xo,...,Xxs) lies in MZ(c), which means Im(x) C
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el x4 M} (c). Now, we have by definition dB = BQ) — BX. Hence

n+1
dyi(er) = eidBio(ex) = > _ €i(Biawao(ex) — BiaXao(ex))
a=0
n+1 n+1 6(1
= &4 Bia « — &4 Bia( ik « - aTa )
€ O; waoleg) — € az::l " (Towa(er) — coeaTawo(er)

n
=g Z Bijwjo(er) + Bintiwntio(ex)
j—l

1
=g Z BZy z-:] ej,ex) —ee;Tim(er)) — Bmﬂezan%Tan(ek)

1 EEn+1 €;
= &i—Bir — — 2 Bini1Tn1 T = —Big
ac ac ac
A similar computation yields dyo(er) = EoéBOk and dxnt1(ex) = enlex) = €Ty = €Bpi1k-
Hence, we have that dy = CBw, with

go/ca 0 0
0 . T
C: . ) w:(O,wl,-‘-wn,O) )
’ enfca 0
0 0 En+1

or equivalently, dy(ex)o = (CB)qk, meaning that in the frame 8 the vector dx(ey) is given
by the k-th column of the matrix CB and in the frame E, by the k th column of the matrix B.
In other words, dx(ex) = >, €aBakEq. C is an invertible matrix as well as B. Consequently,
dx has rank n and it is an immersion. Moreover, for any ¢, j, since B € S, we have

<dX(62 dX 6] Z 5aBo¢onu Z 5fyB'y]E Z 5O¢Bo¢iBaj = Siéiju
Y

Hence, x is isometric. Moreover, along x, we obtain

0
Z 52 62 dX(ez) + 5n-&-1<a 6n—|—1>€n—&-1 =T+ 5n+1Tn+16n+1-

t’

Next, we would like to compute the shape operator of the immersion. Recall E,, ;1 = ;. We
show that the shape operator of the immersion is exactly what we need, namely dyo Aody~".
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Indeed,

<?dx(ei)dX(ej)7€n+1> = <Z ?aaBaiEagﬂBﬂjEl??en-Fﬁ = (Z &‘a&‘ﬁvBmEaBﬂjE_’ﬁ,en_,_ﬁ

af af
= [cagpey BaiBpiBynt1(Vip, Bp, By) + £5dBg;(ei)Boni1] + ) epdBy;(ei) Bona
aBy B
1> 1) 5(1, — a/ _ _
= Z [Eugvngutiijn—i—l(_%at?E’y> + Eugn—&-lnguiBn—i-ljB'yn—i—l<gEua E’y>]
uvy
+ > eadBg;(ei) Bania
B
_ sy > BuiBu; + 1% > euBuiBunt1 + ent1(B dB)n i1 (e:)
- a n+1ln+1 EuDyiDyj a n+1j EuDyiDun+1 En+l n+1j\€s
u u
ed

= _73n+1n+1([€i(5ij — nt1Bn11iBnyj]

€n+1a’

+ Bri1j[€i0in11 — Ent1Bns1iBriint1] + ens1(B71dB)ny1j(ei)

_ Ea
= ntt [(BTHAB)ns15(dX(e) = —len+18iTur1ws(e) = Tiwnra (@)
= ent1[(BTHdB) 1) + Xnt1j] = entiwntij(er) = {ej, Aes).

Finally, the uniqueness of the local immersion follows from the uniqueness of the map B in
Lemma 10. O

Corollary 1. 1. If the hypersurface M satisfies n =0, then, M is a slice of € I xq M} (c).
2. If n # 0 everywhere, then M is admits a foliation of codimension 1.

Proof. Ttem 1 is an immediate consequence of item 5 of Theorem 1. For item 2, by Lemma
4, we know dn = 0. This implies that kern is integrable. Indeed, given X,Y € kern,
0=dn(X,Y)=X(nY)) - Y(n(X)) —n(X,Y]) = —n([X,Y]), which shows [X,Y] € kern.
In other words, it has to admit a foliation whose leaves are of codimension 1 in M. In fact,
T is a normal vector field to the leaves. O

Remark: Under the same assumption on (M, (,),V,R), we can find another equivalent
formulation for Theorem 1. In fact, consider again a (, )-self adjoint (1,1)-tensor A on M, a
nowhere vanishing vector field T' € X(M) and its associated 1-form n(X) = (X,T) for any
X € TM. We also assume the existence of smooth functions p, p, p, Tn+1 : M — R. Let the
following conditions be satisfied:

(a) p>0,dp=¢epn, dp=epn;
(b) e =(T,T) + en1To3;
(¢) VxT = 2(X —en(X)T) + en1Tni1 AX, for any X € TM;

(d) X(Tn—i-l) = _<ATa X> - Eng—Hn(X)a for any X € TM;
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(e) (Codazzi equation). For any X, Y, Z, W € TM

EEN

(VxA)Y = (Vy )X = Toia (Z - (ﬁ)Q > ) (n(¥)x = n(x)Y).

p
(f) (GauB equation). For any X, Y, Z W € TM

R(X,Y,Z,W) = <g (‘;)2 - ;‘;) ((X, ZVY, W) — (Y, Z)(X, W>)

_ ~\ 2
I (P _ (Z) + p;) (<X, Zyn(Y)n(W) = (Y, Z)n(X)n(W)
— (X, W In(Z) + (Y, W)n(X)n(Z)) + 2ni1 ((AY, Z)(AX, W) — (AY, W)(AX, Z)).

Then Theorem 1 can be reformulated in the following way:

Theorem 2. Let (M, (,)) a simply connected semi-Riemannian manifold satisfying the pre-
vious conditions. Then, there exists smooth functions w: M — I, I an interval, a: I CR —
R, a metric immersion x : (M, (,)) = (eI xq M}(c), (,)1) and a normal unit vector field
ent+1 along x such that:

1. eny1 = (€n+1,€nt1)15

2. mrox =m, where my : el xq M}(c) = I is the projection;
3. p=aom,p=domand p=a"omn;

4. The shape operator associated with ep+1 is A;

5. (e) is the Codazzi equation and (f) is the Gauf$ equation;

6. and along x, Oy =T + epy1Thr16nt1 holds.
Proof. First of all, from the expression VxT = g(X —en(X)T) + ens1Tn1AX, for any
X € TM, we are going to check that the 1-form n satisfies dn = 0.
dn(e;, e5) = ei(n(e;)) — ej(n(e;)) — n(Ve,ej) +n(Vesei) = (e, Ve, T) — (€i, Ve, T)

= (ej, ~(ei —en(e:)T) + ent1Tnr14ei) — (e, %(ej —en(e;)T) + ent1Tn+14¢e5)

D ™

= §(<€ja ei) —enei)n(e;)) + ens1Tnt1(ej, Aes) — = ((es e5) —enlei)n(e;))

T ™

- 5n+1Tn+1<6i7 A6j> =0.

Since M is simply connected, we can obtain a new function 7 : M — R such that n = edn.
This implies that T = egrad(m). Next, we need to obtain function a. On one hand, since
M is connected, I = w(M) is an interval. Moreover, since T # 0, we see that each value
t € I is a regular value of 7, which means that each level set 77 1(t) C M, t € I, is a
hypersurface of M. Choose t € I. Given X € Tw~!(t), since 7 is constant along its level
subsets, we see dp(X) = epn(X) = pdn(X) = 0. In other words, function p is constant
along the level sets of . This allows us to define a : I — R™ as follows. Given t € I, there
exists p € M such that ¢ = 7(p), so that a(t) := p(p). Clearly, p = a ox. In addition,
dp = (a' om)dr = (a’ o w)en = epn, and therefore p = a’ o 7. Similarly, a” o 7 = p. Now, we
just need to resort to Theorem 1. O
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6 An Application to Horizons in RW 4-spacetimes

We consider now the simply connected Riemannian 3-dimensional space M?(c) of constant
sectional curvature ¢ = 1. Let (M3, (,)) be a semi-Riemannian manifold of index 0 or 1.
For us, a surface M? is called marginally trapped if its mean curvature vector H satisfies
(ﬁ JH ) = 0. In this way, we are including maximal surfaces, MOTS, and mixed cases in our
definition.

We put € = —1, gg = ¢, 4 = £1, and smooth functionsa : I CR — Rt Ty : M — R
and 7 : M — I. We construct the vector field T' € X(M) by T = —grad(w), with its 1-form
n(X) = (X,T). Also, consider a tensor A of type (1,1) on M. We assume the above datas
satisfy the structure conditions of Definition 1 . We recall that the Robertson-Walker space-
time is the space(P* = I x M3(c), (,)1 = —dt? + a®g,), hence a special case of the warped
products considered in this paper. From Theorem 1, we get immediately the following

Corollary 2. Let (M, {(,)) a semi-Riemannian manifold of dim M = 3, satisfying the previous
conditions. Then, for each point p € M, there exists a neighborhood U of p on M, a metric
immersion x : (U,{,)) — (P%{,)1) and a normal unit vector field ey along x such that
g4 = (eq,e4)1, A is the shape operator associated to the immersion, T is the projection of Oy
on TM and wy o x = 7, where 7 : I x M3(c) — I is the projection.

In addition, if T # 0 everywhere, the family {x(U) N7~ {t} : t € R} provides a foliation
of x(U) by space-like surfaces.

Next, let L be one of the leafs of U. Let o be its second fundamental form in P*. Clearly,
T+L = Span{T,e4}, where T = T/\/|(T,T)|. We take e7 = sign({T,T)). Since the leaves
are spacelike and (e4, e4) = €4 = £1 is constant, ey = %1 is constant, with e4e7 = —1. Then,
forany X, Y € T'L,

_ _ 1
o(X,Y) =ep(VxY, T)T + e4(VxY, eq)eq = W(Y, VxT)T 4 e4(Y, AX)ey,

Given a local orthonormal frame {u;,u2} of L, the mean curvature vector Hof Lis

2ﬁ = z@: U(uiv ul) = EZ: <<£%<U27 VuiT>T + €4<’U,Z', Aui>e4)

— <T,;> ZZRU“ Zluz‘ + eq Ty Au;)T + ¢4 (trace(A) B <24T1:’T1;>)64
i (O + oo G ) et = G

I , 2
We put h = trace(A) — %g,ﬁ?. As a result, we obtain 4(H, H) = <T1T> (2% +54T4h) +e4h?.

— 12 2 / ’
Then  is null if, and only if, —e4h = ey (22 +&4Tih) " = by (415 + Tgn2 4 402 Tib),

/ 2
which is equivalent to h? — %h - 454(1# = 0. Since epeq = —1, we see that —e4(T,T) > 0,

and so, by solving this equation, we obtain the following

Corollary 3. The leaves of kern are marginally trapped surfaces in —I xoM?3(c) if, and only
if, the immersion x : M — —I x, M3(c) satisfies the following equality:

AT, T) VITT.

(T,T)

!/

trace(A) — = 2a'Ty + 2ep

a
a
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7 Examples

Example 1. A graph surface in —R* x, S2.
We start by considering the warping function a : Rt — R*, a(t) = ¢, and the warped product
—R* x,S?, with metric (,). Given h: (0,7) — R* a smooth function such that h(u) > |’ (u)|
for any u € RT, we introduce the map

X:M=(0,7) x (=7/2,7/2) = —I x4 S?,

X(u,v) = (cos(u), sin(u) cos(v), sin(u) sin(v), h(u)),

Note that m(u,v) = h(u). We consider the following frame along y, with some natural
identifications:
1
ey = (cos(u), cos(v) sin(u), sin(u) sin(v), 0),
h(u)
1
€1 =x«€1 = = ( —sin(u), cos(u) cos(v), cos(u) sin(v), A’ (u)),

Vh(w)? = (W (u))
1
€9 =x«€2 = m(o, —sin(v), cos(v), 0),
1
— sin(u)h/ (u), cos(u) cos(v)h' (u), cos(u) sin(v)h (u), h(uw)),
T SN (), cos(a) costo) () cos() sin(u) 1), ()
where e1,es are the normalizations of x.d, and x.0,, respectively, and es is a unit vector

field of M along x on —RT x, S%. Also, the matrix G = ({eq,es)) = Diag(1,1,1,—1). The
dual 1-forms on M are

wo =0, w1 =+h(u) (u))?du, wo = h(u)sin(u)dv, w3 =0.

€3 =

Since Rt x §? ¢ R* x R3, we consider the orthonormal basis

— 1 1 — 1 _
o= 7 ( = +(0,1,0,0), Fy=1(0,0,1,0), Fs=2,.

Now, we can compute the map B : M — S, B = ((Eq, e3)),

170)0)0)7 El

. — cos(v) sin(u) % sin(v) _\;‘:(“)COS(v)h;(g)
— sin(u) sin(v) % — cos(v) ﬁ(g);in(v)h’(u)
N e Y o=

From this, a straightforward computation gives the s-valued 1-form ¥ = B~'dB = (Yag),

Toa =0, Yo =-Ti9= \/h(;)g(f)(i:’t(u))f To2 = —To9 = —sin(u)dv,
—h’( )du —h(u) cos(u)dv
Yoz = T30 = ;o Tig=-To = :
Vh(u) (u))? Vh(u)? — (W (u))?
. _T,_M>M<><<uﬂd S o) oo
BTN T TR = W) T T T R - )
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A lenghty computation shows dT + T AT = 0. Next, the tangent vector T' is

T =T = <8t, €1>61 + <8t, €2>6

2
_ ( sin(u)h/(u)  — cos(u) cos(v)h'(u) — cos(u)sin(v)h'(u) — (W (u))? )
h(w)? = (W(w)?" h(w)? = (W(w)* " h(w)* = (W'(w)* " h(u)? — (b (u))*/”

Thus, its dual 1-form and the associated functions T, are

— 1 () du _ — W (w) - —
n= h ( )d 5 To 0, T1 \/h(u)2 = (h’(u))Q’ T2 O, T3 Tl.

Clearly, dn = 0. Also, note that T, = B3,. We recall that 2 = (weg) = B~'dB + X, where
X = (Xa8); Xopg = 5‘2/5; <Bn+15wa — 6a553n+1aw5>,

Xaa = Xao = Xoa =0, Xy3 =Xz =du,
—sin(u)h'(u)dv sin(u)h(u)dv

’ =X - :
VR — W2 T T hE = (W ()2

X = —Xo1 =

In this way, we have

—h(u)d .
Q= (Wap), wor =—wip= \/h(u)Q(U)(hI’L( ek w2 = —wzp = — sin(u)dwv,
—h'(u)d h(uw) + 1%
o = wio (u)du o1y =~y — _ cos(u)h(u ) sin u) (u )dv,

Vh(u) (u))?

cos(u)h/(u )—I—sm( Yh(u)

Vh(u)? — (1 (w))?

Now, we compute the shape operator. Since w;3(X) = —&;(AX, ¢;) = —w;(AX), then

X = Zwl(AX)el = —Zwig(X)e

w13 = W3] = du, woz =wsz =

B h( )2 —2(h (u))? + h(u)h" (u) u( X e cos(u)h/(u) + sin(u)h” (u) o(X)e
= - Wy e iRy duibes
Aoy — h(u)? — 2(h (u))? —i—h(u)h”(u)e1 Ay — cos(u)h'(u) + sin(u)h” (u )
h(u)(h(u)? — (I (u))?) ’ h(u)(h(u)? ( '(u))?)

Example 2. A helicoidal surface in R x, H?

We consider now H?(—1) as the surface H?(—1) = {(z,y,2) € L3 : 22 +y% — 22 = —1}, where
L3 is the Lorentz-Minkowski space endowed with the standard metric (,) = da? 4 dy? — dz>.
Given a real constant ¢ € R and a smooth function i : R — R with A’ > 0, we construct

X:M=R"xR—Rx,H? x(u,v) = (ucos(cv),usin(cv), vV 1+ u2, h(v))

Note that m(u,v) = h(v). We consider the following frame along y, with some natural
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identifications:

1 .
€o o) (ucos(cv),usin(cv), V1 + u?,0),
e1 = xx€1 _a(hl(v)) (cos(cv)\/ 14+ u?,sin(cv)V1 + u?, u, 0),
1 . ’
= Xx€2 = JEEah (o) £ W (o) ( — cu sin(cv), cu cos(cv), 0, k' (v)),
1 i ! —cos(cv)h (v cua(h(v
= ) T e e () eoslen) (00,0, cualh(),

where eq, es are the normalizations of 0, and J,, respectively, and es is a unit vector field of
M along x on R x, H?. The dual 1-forms on M are

a(h(v))
wo=0, w = du, 2u2a( 24+ A (v)2dv, w3=0.
0 1= =/ (v) 3

We need to introduce the basis

1 1 | _
Eo=~(0,0,1,0), Ei1=_(0,1,0,0), F2=(1,0,0,0), E3=0.

Now, we can compute the map B : M — S, B = ((Eq, eg)), with det B = 1,

—V1+u? —u 0 0
u sin(cv) V1 + u2sin(cw) \/6021;‘;(&}1:’()3)‘;21227))2 \/c2uCQOS(CU)h/(+)h'(’U)2
B=14 cos(cv) V1 + u2cos(cv) \/szzih(”))51ni$)( x \/CQUS;;l(cv)h’(Jr)h/( -
0 0 h'(v) cua(h(v))
VeuZa(h(v)2+0 (v)2 y/cRua(h(v)2+h' (v)?

Note that B does not lie in the orthogonal group O(4). From this, a straightforward compu-
tation gives the s-valued 1-form T = (Y,5) = B~'dB, where

du c2u2a(h( ))dv

Toa =0, Tor=Tio= Niwwmi To2 =T = B )+ )
cuh'( )dv c u\/l + u2 (h( ))dv
Yoz = T30 = T a0 E L W0 Tio=-To = a0 W)

cV1+ u2h’( )dv
Tis =T = Vu2a(h(v))? + W (v)2
Lo Y — a(h(v)R (v)du + u(a (h( ))h'(v) — a(h(v))h" (v))dv
23 =—Ig2=—c

c2ua(h(v))? + b/ (v)?
A straightforward computation shows dY + T AY = 0. Next, the tangent vector T is

h’( > .
VeuZa(h(v))? + K (v)?

T = x«T = (O, e1)e1 + (O, e2)ea =
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Its dual 1-form and the associated functions T, are

h’( ) T cua(h(v))
Ve2u2a(h(v))? + b (v)? ve2uZa(h(v)2 + 1 (v )2

n= h’(v)dv, TO = T1 = 0, TQ

Clearly, it holds dn = 0. Also, note that T,, = B3,. We recall that Q = (wag) = B 'dB + X,
where X = (X,3), Xap = E‘Z/OO;F (Bn+15wa — €a€5Bn+1awﬁ>,

X X X = 0. Xow = Xor — a'(h(v))h (v)du
oo O ab ’ 12 2 V1+u2y/c2u2a(h(v))? + h/(v)z’

cua(h(v))a'(h(v))du /
s = R = V1 +u2\/2u2a(h(v)? + B ()2 X3 = —Xsg2 = cua’(h(v))dv,
In this way,
O = (g), waa =0, won = w10 = — T gy = wpy = ——Cwalh)dv
V1+u? VE2a(h(v))2 + W (v)2
—cuh’( )dv
wo3 = w3o = JEEa o
Wi = —wo = @ (h{v ))hl< )du (u +u?)a(h(v))dv
V14 u2y/c2ula(h(v))? + B (v)?
o ualh(0)a (h(0)du + (1 + ) ()
V1 +u2\/c2u2a(h(v))? + W (v)? ’
g = —ugy = CUP)I (w)du + cu[ '(h(v))(*ua(h(v))? + 2K (v)?) = a(h(v) h"(v)]dv.

c2u?a(h(v))? + W' (v)?

(
Now, we compute the shape operator. Since w;3(X) = —¢;(AX, €;) = —w;(AX), then

AX = ZwZ(AX)eZ = —Zwig(X)e

ua(h(v))a'(h(v))du(X) + (1+U) "(v)dv(X)

- V1 +u2y/c2u2a(h(v))? + B (v)? “
_ ca(h(v))h' (v)du(X) + cula (h( ))(*ua(h(v))? + 2K/ (v)?) — a(h(v)R" (v)]dv(X) |
c2u?a(h(v))? + W' (v)? 2
— ' (h(v ))h’( ) —02ua(h(v))(ue1 — V14 U262)
A61 €9, A€2 = .
\/C2U2 + h/( ) \/C2u2 + h/( )

8 Conclusions

It is well-known that a non-degenerate hypersurface of a semi-Riemannian manifold must
satisfy Gau8 and Codazzi equations. Our main concern is the converse problem. Indeed,
we show that a semi-Riemannian manifold endowed with a tensor which plays the rule of a
second fundamental form, satisfying the Gaufl and Codazzi equations, and extra condition is
needed to obtain a local isometric immersion as a non-degenerate hypersurface of a warped
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product of an interval and a semi-Riemannian space of constant curvature. Indeed, among all
conditions of Definition 1, equation (D) cannot be deduced from Codazzi (E) and Gaufl (F)
equations. This means that, in general, one cannot consider a Riemannian manifold endowed
with a second fundamental form, and think of it as a spacelike hypersurface of some spacetime.
However, if one fixes the spacetime first and then consider a hypersurface, everything works
as expected.
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