
Detecting anomalies in multivariate time series
from automotive systems

A Thesis submitted for the degree of Doctor of Philosophy

by

Andreas Theissler

Brunel University
London, United Kingdom
School of Engineering & Design

December 9, 2013

Abstract

In the automotive industry test drives are conducted during the development of new
vehicle models or as a part of quality assurance for series vehicles. During the test
drives, data is recorded for the use of fault analysis resulting in millions of data points.
Since multiple vehicles are tested in parallel, the amount of data that is to be analysed
is tremendous. Hence, manually analysing each recording is not feasible. Further-
more the complexity of vehicles is ever-increasing leading to an increase of the data
volume and complexity of the recordings. Only by effective means of analysing the
recordings, one can make sure that the effort put in the conducting of test drives pays
off. Consequently, effective means of test drive analysis can become a competitive
advantage.

This Thesis researches ways to detect unknown or unmodelled faults in recordings
from test drives with the following two aims: (1) in a data base of recordings, the
expert shall be pointed to potential errors by reporting anomalies, and (2) the time
required for the manual analysis of one recording shall be shortened.

The idea to achieve the first aim is to learn the normal behaviour from a training
set of recordings and then to autonomously detect anomalies. The one-class classifier
“support vector data description” (SVDD) is identified to be most suitable, though it
suffers from the need to specify parameters beforehand. One main contribution of this
Thesis is a new autonomous parameter tuning approach, making SVDD applicable to
the problem at hand. Another vital contribution is a novel approach enhancing SVDD
to work with multivariate time series. The outcome is the classifier “SVDDsubseq”
that is directly applicable to test drive data, without the need for expert knowledge
to configure or tune the classifier. The second aim is achieved by adapting visual
data mining techniques to make the manual analysis of test drives more efficient.
The methods of “parallel coordinates” and “scatter plot matrices” are enhanced by
sophisticated filter and query operations, combined with a query tool that allows to
graphically formulate search patterns.

As a combination of the autonomous classifier “SVDDsubseq” and user-driven visual
data mining techniques, a novel, data-driven, semi-autonomous approach to detect

unmodelled faults in recordings from test drives is proposed and successfully validated
on recordings from test drives. The methodologies in this Thesis can be used as a
guideline when setting up an anomaly detection system for own vehicle data.

Acknowledgements

I have heard people describing a PhD study as a long journey of ups and downs. Since
Jule Verne’s “Around the World in Eighty Days”, we know how far you can travel
within just 80 days. So in terms of this metaphor I would describe writing a PhD
Thesis as going around the world several times. By all means, it takes a prominent
place in one’s life over a period of several years. Especially in the final year, everything
revolved around writing up the Thesis. While I always believed that I would reach the
end, I was not always sure about how and when.

I would like to express my gratitude to a number of people and institutions that
supported me throughout my study in one way or the other.

I want to thank Brunel University for making it possible to write my PhD in industry in
Germany. In particular, utmost gratitude to my supervisor Dr Ian Dear who supported
me throughout the entire time of the PhD. He always managed to find time slots in his
busy schedule where we had various extensive meetings that were precedent-setting
for the study. I would also like to thank my second supervisor Prof John Stonham
for insightful discussions and questions from an additional point of view and I wish to
thank Prof. Dr. Dominik Schoop for insightful discussions, especially in the beginning
of the PhD.

This work was conducted in a research project run by IT-Designers GmbH and STZ
Softwaretechnik in Esslingen, Germany. I am most grateful for their funding of this
research project, in particular to Prof. Dr. rer. nat. Joachim Goll for creating an
environment that gave me enough free space to follow my ideas, for his comments and
questions on my work, and for keeping most of the day-to-day work away from me
during the time of writing up the Thesis. Furthermore, I want to thank the participants
of the biannual PhD workshop, in particular the organiser Prof. Dr. rer. nat. Manfred
Dausmann.

I wish to thank my colleagues at IT-Designers GmbH and STZ Softwaretechnik, espe-
cially the entire development team of “Tedradis”, a system for recording and analysis of
test drives. This was the origin for the research presented in this work and some of the

implementation results will be or have already been integrated in this product. I am
thrilled to see part of the research work being transferred from research to industrial
usage. Furthermore I want to thank Angelika, Gudrun, Maria, and Petra.

In the research project a high number of students and various colleagues were em-
ployed. Normally due to time constraints in a PhD, a rapid prototype to validate the
ideas is developed. The high number of students and colleagues allowed the develop-
ment of a fully functioning system.

Sincere thanks to Daniel Hommel, Stephan Pressler, Steffen Brauns, Falk Kleehammer,
Matthias Kohles, Daniel Weber, Alexander Kraft, Paul Sprecher, Mikhail Orleansky,
Oleksandr Pavlichenko, Roland van der Schoot, Stephan Frey, Marc Gerhard, Fikret
Kaplan, Jens Ehlert, Moritz Bahr, and in particular to Gunnar Niess who has worked
with me over a period of more than two years.

Thank you to the proof readers who helped to find those weaknesses in the text that the
author himself is blind to: Micky Sung, Jens Ehlert, Gunnar Niess, Ralf Schmidgall,
Peter Schlumberger, and Steffen Wahl.

Many thanks to the various test drivers, in particular Jens Ehlert, Bernd Theissler,
and Gunnar Niess, and to the car repair shop Kfz & Zweiradtechnik Schwarzer for
valuable hints on fault injection.

A supportive environment is important to get through a PhD, so my sincere thanks
for the support of my friends, parents, brothers, and parents-in-law. A special “thank
you” to my former colleague Niko, who encouraged me to go to university after my
apprenticeship by saying the following sentence in his German with Croatian accent
again and again: “Boy, go back to school when you are still young. You’ll have enough
time to work when you are older.”

Finally, my utmost gratitude to those people who suffered most from me doing my
PhD: my wife Sandra, my daughter Emily, and my son Julian (“Vielen Dank für
die Unterstützung!”). They say, if you watch children growing up, you’ll notice how
you are getting older. Doing your doctorate you’ll also notice, how long it takes to get
a PhD.

Thank you!

Contents

1 Introduction 1
1.1 Assuring quality in vehicle electronics 3

1.1.1 Quality assurance in the laboratory 3
1.1.2 Quality assurance by test drives 4

1.2 Vehicle electronics: State of the art . 7
1.3 Vehicle electronics: Forecasts and implications 10
1.4 Motivation and aims . 13
1.5 Related work . 17
1.6 Conclusion . 18
1.7 Own Publications . 19
1.8 Outline of the chapters . 20

2 From errors in test drives to faults in the vehicle 23
2.1 The process of test drives . 24

2.1.1 Test drives in research phase . 25
2.1.2 Test drives in development phase 26
2.1.3 Test drives in pre-series phase 26
2.1.4 Test drives in production phase 26

2.2 Why are errors likely to occur during test drives? 27
2.2.1 Final integration of all components in the vehicle 27
2.2.2 Incomplete simulation models for test drives 28
2.2.3 The automotive development process 28
2.2.4 The supply chain in the automotive industry 29

2.3 Faults, errors and failures according to ISO 26262 30
2.4 Fault locations . 30

2.4.1 Example of a data flow . 31
2.4.2 Categorisation of fault locations 32

2.5 Conclusion . 35

3 Anomalies and anomaly detection 37
3.1 Recordings from test drives: Time series data 37
3.2 Defining anomalies . 41

Contents

3.3 Categorising anomalies in multivariate time series 42
3.3.1 Anomaly types . 43
3.3.2 Examples . 45
3.3.3 Discussion . 50

3.4 Anomaly detection . 51
3.4.1 Anomaly detection techniques 52
3.4.2 Discussion . 54

3.5 Conclusion . 56

4 Interactive anomaly detection 59
4.1 Surveying visual data mining . 59
4.2 Enhancing visual data mining for anomaly detection 61

4.2.1 Relating time series pairwise: Enhancing scatter plot matrices . 62
4.2.2 Relating n time series: Enhancing parallel coordinates 62
4.2.3 Time series pattern query: Searching for patterns in univariate

time series . 66
4.2.4 Interaction between the techniques 69

4.3 Experimental results on real data sets 69
4.3.1 Case studies based on recordings from an in-vehicle network . . 70
4.3.2 Case studies on long-term traffic measurements 78

4.4 Conclusion . 84

5 Anomaly detection as a classification problem 87
5.1 Machine learning – learning from sample data 88
5.2 Two-class classification . 91

5.2.1 Fundamentals of classification 93
5.2.2 Linear classifiers for anomaly detection 102
5.2.3 Non-linear classifiers for anomaly detection 108
5.2.4 Discussion . 118

5.3 Anomaly detection as a one-class classification problem 120
5.4 Conclusion . 123

6 One-class classifiers 127
6.1 One-class k-NN . 128

6.1.1 Thresholding k-NN . 128
6.1.2 Discussion . 129

6.2 Local outlier factor . 131
6.2.1 Functioning of LOF . 132
6.2.2 Thresholding LOF . 133

6.3 Support vector data description . 133
6.3.1 Finding the optimal hypersphere 134

Contents

6.3.2 Reducing the sensitivity to outliers 137
6.3.3 Solving the optimisation problem 138
6.3.4 Introducing non-spherical decision boundaries 142
6.3.5 Surveying ways to determine the SVDD parameters 148
6.3.6 Autonomously tuning the SVDD parameters 151
6.3.7 Discussion . 164

6.4 Experimental results on artificial and public domain data 164
6.4.1 Description of the data sets . 165
6.4.2 Results for k-NN, LOF, and SVDD 167

6.5 Experimental results on real data . 170
6.6 Evaluation . 172
6.7 Conclusion . 174

7 Enhancing SVDD to multivariate time series 175
7.1 Feature extraction . 176
7.2 Forming subsequences . 176
7.3 Assigning distances to subsequences . 177
7.4 Training and test . 178
7.5 Determining the threshold . 179
7.6 Determining the classification results 181
7.7 Experimental results on artificial data sets 182

7.7.1 Description of the data set . 183
7.7.2 Results . 184
7.7.3 Discussion on results on artificial data 191

7.8 Experimental results on real data . 193
7.8.1 Description of the data sets . 193
7.8.2 Results . 193
7.8.3 Discussion on results on real data 195

7.9 Conclusion . 195

8 The anomaly detection system 197
8.1 System overview . 198
8.2 The implementation . 200
8.3 Conclusion . 204

9 Experimental results on recordings from vehicles 205
9.1 Injected faults . 207
9.2 Experiments with vehicle in idle mode 211

9.2.1 Experiments on error-free recordings from idle mode 211
9.2.2 Experiments with recordings from idle mode containing errors . 214

9.3 Experiments with error-free recordings from test drives 216

Contents

9.3.1 The effect of different driving conditions 217
9.3.2 The effect of different drivers 225
9.3.3 The effect of different vehicles 228
9.3.4 Discussion . 229

9.4 Experiments with test drives containing errors 230
9.4.1 Results on recordings from different driving conditions 230
9.4.2 Results on recordings from different drivers and vehicles 235

9.5 Evaluation . 237
9.5.1 Scalability of the approach . 238
9.5.2 Effect of the length of the subsequences 238
9.5.3 Quantification of the effectiveness of the approach 239

9.6 Conclusion . 241

10 Conclusion 245
10.1 Main contributions . 246
10.2 Applicability of the approach . 246
10.3 Classification accuracy . 247
10.4 Scalability . 248
10.5 Limitations . 249
10.6 Benefits of the approach . 249

11 Outlook 251

List of Figures 255

List of Tables 263

Bibliography 265

Glossary

Glossary

pdf
Probability density function. 93–95, 97, 100, 101

SVDDSUBSEQ

The classification approach for multivariate time series proposed in this Thesis.
175, 178, 179, 182–184, 187, 193, 195, 197, 199, 201, 205, 206, 238, 242, 245, 246,
252

anomaly
A deviation in the behaviour of a univariate time series or in the relationship of
multiple univariate time series from expected behaviour. 37

AR
Autoregressive model. A model that can be used to predict future values of a
time series or to generate time series. 183

ARMA
Autoregressive moving average model. A model that can be used to predict
future values of a time series or to generate time series. 54, 183

AUTOSAR
Automotive Open System Architecture. A standardised layered automotive soft-
ware architecture. 12

CAN
Controller Area Network. Network technology used in vehicles to interconnect
electronic control units. 7

ECU
Electronic control unit. ECUs read data measured by sensors and calculate
control values based on the sensor input. The control values are then transmitted
to actuators. 1

error
The discrepancy between a computed, observed or measured value or condition,

Glossary

and the true, specified or theoretically correct value or condition. An error is
viewed as an anomaly in this work. 30

fault
An abnormal condition that can cause an element or an item to fail. 30

HiL
Hardware-in-the-loop. Test rigs where an ECU is tested in a simulated environ-
ment.. 3

k-NN
k-nearest neighbours. An instance-based classifier capable of learning non-linear
decision boundaries. 53, 110, 127

LIN
Local interconnect network. Cost-effective master-slave network technology used
in vehicles. 7

LOF
Local outlier factor. An instance-based technique that assigns LOF values to
individual instances based on distances and densities. 127

MA
Moving average models. A model that can be used to predict future values of a
time series or to generate time series. 183

MOST
Media Oriented Systems Transport. High-speed network technology used for
infotainment systems in vehicles. 7

multivariate time series
Consists of M > 1 univariate time series, i.e. for every time point ti there exist
M data points di. 38

OSEK
“Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug”.
Real-time operating system that runs on electronic control units. 7

Glossary

precision
The percentage of true anomalies in the result set of all instances classified as
anomaly. 92

RBF
Radial basis function. Kernel used in support vector machines, also referred to
as Gaussian kernel. 144

recording
Discrete time-stamped signal values recorded during vehicle tests. 38

SAX
Symbolic aggregate approximation. Symbolic representation of a time series. 67,
88

SiL
Software-in-the-loop. Test environment where an ECU’s software is tested in a
simulated environment. 3

SVDD
Support vector data description. A one-class classifier based on support vector
machines. 133

univariate time series
Finite sequence of data points ordered by time and denoted by XT . 38

Symbols

Symbols

P (ωc) Prior probability of class ωc. 93
W Length of subsequence in data points. 176
I Data set in input space. 89
Iv One instance in input space. 90
A Training data set in feature space. 89, 100, 102–104,

106, 107, 110, 112, 113, 120, 121, 151, 178, 179
B Test data set in feature space. 89, 121, 179
C Unseen data set in feature space. 89, 91
Cv Instance in unseen data set in feature space. 91, 93,

102–104, 107, 110, 113, 120
F Data set in feature space. 89, 98, 102, 108, 111, 151,

154, 158
Fv One instance in feature space, i.e. one feature vector.

90
N (xtest) Set of nearest neighbours. 128, 130, 132, 133
f A feature. 90, 94, 95, 109, 111
ωa Abnormal class. 91, 92, 94, 97, 99, 103–105, 108, 109,

111, 120, 164, 168–172
ωc Class c. 91, 93, 99, 110
ωn Normal class. 91, 92, 94, 97, 99, 103–105, 108, 109,

111, 120, 121, 164, 168–172, 175
φ Mapping function from input space to feature space.

89
φ(F) Transformed feature space. 151, 154, 157, 158
d(F) Decision function. 102
eBayes Bayesian error. 98–100, 124
eωn Error on the normal class. 151, 152, 154, 157, 158,

170, 172
p(fp|ωn) Probability density function of normal class. 121

FN False negatives, i.e. falsely detected anomalies. 91
FN/h Number of normal subsequences incorrectly classified

as abnormal in one hour of data. 215, 223, 225–227,
229, 231, 235, 236

FP False positives, i.e. number of anomalies falsely clas-
sified as normal. 91

Symbols

TN True negatives, i.e. number of correctly detected
anomalies. 91

TNR True negative rate, i.e. percentage of correctly de-
tected anomalies. 92

TP True positives, i.e. normal instances correctly classi-
fied as normal. 91

TPR True positive rate, i.e. percentage of normal in-
stances correctly classified as normal. 92

Chapter 1

Introduction

This chapter gives an introduction into vehicle electronics and identifies
the shortcomings in the current process of analysing recordings from test
drives in the automotive industry. Based on this, the scope and the aims
of the Thesis are identified.

125 years after the invention of the automobile in 1886, vehicles have turned
from mechanical machines into highly complex products dominated by

software and electronics. This applies in equal measure to cars, trucks, busses, and
agricultural engines (Schlingmann, 2008). Nowadays, the gross of innovations in the
automotive industry is achieved by means of software and electronics. Following an
expected annual growth between 6 percent (Dannenberg and Burgard, 2007) and 9
percent (Mayer, 2010d), the market for vehicle electronics is estimated to have a yearly
volume of approximately 200 billion British Pounds by the year 2015 (Mayer, 2010d).

Modern vehicles have 40 to 80 electronic control units (ECUs) communicating over
several bus systems. An example of an ECU would be the unit controlling the vehicle’s
engine. The ECUs read data measured by sensors and calculate control values based
on the sensor input. The control values are then transmitted to actuators. The

Chapter 1 Introduction

Figure 1.1: Electric and electronic components and in-vehicle network in a premium
class car (taken with permission from (Schmidgall, 2011))

sensors’ and actuators’ values are being transmitted over the bus systems and received
by further ECUs (Marscholik and Subke, 2008). This results in a highly complex,
heterogeneous network of software and hardware subsystems delivered by a variety of
suppliers. As a consequence, there is a high potential for faults either caused by one
individual subsystem or by the integration of those subsystems into the vehicle. An
example of how ECUs exchange signals is the determination of the vehicle’s velocity:
An ECU reads the raw data from the speed sensors in the wheels and calculates the
individual wheels’ velocities. The vehicle’s velocity in turn is calculated based on
the combination of the wheel speed values and is then transmitted to further ECUs
together with the velocities of the wheels. The electric and electronic components
together with the interconnecting networks inside a current premium class car are
shown in Figure 1.1.

This chapter surveys the measures of quality assurance for electric and electronic
components of vehicles and identifies the shortcomings, where this Thesis focuses on
test drives. Starting with an overview of the state of the art in vehicle electronics,
the driving factors of the automotive industry are identified and forecasts about the
development of vehicle electronics are stated. Conclusively the implications on the
analysis of recordings from test drives are deduced.

2

Chapter 1 Introduction

The underlying question that motivated this Thesis is:

How can we cope with the soaring data volume and complexity of recordings from
test drives caused by the ever-increasing complexity of vehicles?

1.1 Assuring quality in vehicle electronics

In (Lamberg, 2006) the test phases for electric and electronic components in vehi-
cles are sketched, starting with the testing of an executable function model, i.e. the
function itself is not implemented. The next steps are software tests, testing the im-
plemented function code, followed by hardware-in-the-loop (HiL) tests of individual
ECUs. Within the system test, an ECU is tested together with its immediate environ-
ment, like further ECUs or sensors. The last test phase is the integration test, where
all ECUs are integrated in the vehicle and the full vehicle is tested in the production
plant and on the road.

1.1.1 Quality assurance in the laboratory

The testing of a software component starts with software-in-the-loop simulation (SiL),
where the function is tested in a completely simulated environment. The software
component is not running on its target platform, but typically on a PC. At a later
stage, the software component is deployed on the ECU and tested by hardware-in-the-
loop (HiL) simulation, where the ECU is real and its environment, like sensors and
actuators, can be virtual or real (Schäuffele and Zurawka, 2005).

The entire test process validates that a function works as specified, that implausible
input values are handled properly, and that the list of specified vehicle faults are
detected by an ECU and the corresponding diagnostic trouble codes are stored. In none
but very simple cases is exhaustive testing feasible due to time and budget constraints.
One rather constrains himself to that subset of test cases, expected to have the highest
probability of detecting the most errors (Myers, 2004).

3

Chapter 1 Introduction

As opposed to testing, which by definition can never be used to prove the absence of
faults (Myers, 2004), the proof of correctness can be achieved by formal verification.
The application of formal verification to vehicle electronics has been reported, but is
currently at a research stage. In (Sander et al., 2009) it was shown for the verification of
a LIN communication controller. In (Endres et al., 2010), the authors could prove that
the scheduling of a prototypical automatic emergency call system based on FlexRay
is correct.

While the author views the approaches of formal verification as promising for the
verification of critical parts, as shown for the communication controller, the author
strongly believes that the full verification of an entire vehicle will remain infeasible.
This belief is backed by the observation that on the one hand the complexity of vehicles
increases, on the other hand the time for development and testing decreases.

1.1.2 Quality assurance by test drives

Even though various test phases are conducted for each ECU and for each vehicle func-
tion (Lamberg, 2006), the integration of all ECUs inside a vehicle, with real sensors,
actuators and the real in-vehicle network, is challenging – often unexpected prob-
lems occur. Hence, conducting test drives is inevitable. No other test phase works
under more realistic conditions. Faults that occurred during test drives but remain
undetected are likely to occur in the field as well, where they become obvious to
customers.

The importance of test drives is stated by a vehicle manufacturer in (Krämer et al.,
2009): before one of its premium class models came to market in 2009, 21 million
miles of test drives were conducted and based on these tests the degree of maturity
was deduced.

In order to be able to locate faults or to evaluate the behaviour of vehicle subsystems,
the communication on the in-vehicle network and in some cases internal variables of
ECUs are being recorded by data acquisition systems (automotive data loggers) during
the test drives. In addition, for specific tests external sensors are incorporated.

4

Chapter 1 Introduction

During fault analysis the recordings allow the reconstruction of the situation that the
vehicle was in, e.g. abrupt steering manoeuvres, the vehicle’s velocity, its yaw rate
or the battery voltage can be determined from the data. This kind of recordings are
conducted by manufacturers with prototype vehicles during test drives before start
of production or with series vehicles as part of the end of line tests in the process of
quality assurance.

The following approaches are currently followed by vehicle manufacturers in order to
detect errors occurring in test drives:

1. Illegal constellations of the signals are pre-configured and the measured data is
monitored by the data acquisition system.

2. During or after the test drive, diagnostic testers are used to read out the ECUs’
diagnostic trouble codes (Marscholik and Subke, 2008) to check if the ECUs’
fault detection mechanisms detected a fault.

3. After the test drive, the recordings are searched for known, pre-configured fault
patterns.

4. A test driver manually flags suspicious or erroneous vehicle behaviour during the
test drive.

5. Rarely, a small fraction of the recordings is manually investigated by an expert
after the test drive by random inspection.

Contemplating the measures taken during test drives, shows that the first three points
rely on pre-configured knowledge. As a consequence, only those faults are detected
that were modelled during the definition of the test strategy. The fourth and fifth point
solely rely on the experience of human beings. However, none of the listed measures
explicitly handles unmodelled faults.

The different ways currently used for analysing test drive data, subdivided into the
detection of known/modelled faults and unknown/unmodelled faults, are shown in
Figure 1.2.

5

Chapter 1 Introduction

Figure 1.2: Current process of test drive analysis.

Known and modelled faults are detected based on fault models either by data log-
gers during test drives or during post-processing of the data. Unmodelled faults are
detected by analysing test driver comments or investigating a small portion of the
recordings, selected either randomly or based on expert experience.

Figure 1.3 shows the improvement with the approach proposed in this Thesis. Instead
of data selection and detection of potential errors based on expert-knowledge, these
two steps are fully automated, saving the expert valuable time.

Testing vehicles on the road is a very cost-intensive process, because it involves a
high fraction of manual work: The test drives are conducted by test drivers or test
engineers. As opposed to testing techniques running on computers or test rigs, the
test equipment itself involves real vehicles – often hand-crafted, precious prototypes.
Hence, the author views the recordings of test drives themselves as very precious.

6

Chapter 1 Introduction

Figure 1.3: Process of test drive analysis with the approach proposed in this Thesis
automating the selection of subsets of data and the detection of potential
faults.

1.2 Vehicle electronics: State of the art

In this section the state of the art in vehicle electronics is introduced. Vehicle elec-
tronics comprises sensors, actuators, ECUs, the in-vehicle network connecting the
components, and software components running on ECUs.

The software on ECUs runs inside pre-scheduled tasks on real-time operating sys-
tems implementing the OSEK standard (Schäuffele and Zurawka, 2005). The ECUs
are interconnected by an in-vehicle network, which can be viewed as a heterogeneous
distributed system with a variety of different network technologies and hardware plat-
forms. The different subnetworks are connected by gateways. Figure 1.4 shows a
simplified example of an in-vehicle network with CAN, LIN, MOST, and FlexRay
subnetworks – currently the four most widely used standards. At the moment not all
manufacturers have introduced all of these standards.

7

Chapter 1 Introduction

Figure 1.4: A simplified example of an in-vehicle network with CAN, LIN, MOST and
FlexRay bus systems

8

Chapter 1 Introduction

At the time of writing, a vehicle network is dominated by CAN (Controller Area Net-
work) networks. CAN (Mayer, 2010a) is a non-deterministic network with a theoretical
maximum bandwidth of 1 MBit/s. In vehicles CAN is typically operated at 500 kBit/s
for high speed CAN (ISO 11898-2) and 125 kBit/s for low speed CAN (ISO 11898-3).
Bus access is controlled based on message priorities (Mayer, 2010a). Between two and
ten CAN subnets are currently present in modern vehicles. Applications can be found
throughout the entire vehicle, e.g. for powertrain and chassis functions.

As a cost-effective substitution for direct wiring of sensors and actuators, LIN (Local
Interconnect Network) (Mayer, 2010b) is used. LIN is a cost-effective master-slave
network technology for non-critical data communication with a maximum bandwidth
of 20 kBit/s. Applications can be found in a vehicle’s convenience area, e.g. mirror
adjustment or electric window openers.

For infotainment applications with high-bandwidth demands, manufacturers use MOST
(Media Oriented Systems Transport) (Grezemba, 2011), which is a high-bandwidth
network operating in a ring topology in master-slave mode. There are standards rang-
ing from 25 MBit/s up to 150 MBit/s. MOST is for example used for the streaming
of audio and video signals (Mayer, 2010d).

In order to overcome some of the weaknesses of the predominantely used CAN, the
FlexRay standard was developed. FlexRay (Mayer, 2010c) is a deterministic and
fault-tolerant network operating at a bandwidth of 10 MBit/s at each of two channels.
The communication follows a pre-defined communication schedule using Time Division
Multiple Access (TDMA) (Mayer, 2010c). The first application of FlexRay in a series
vehicle was the dynamic adaption of a vehicle’s dampers to the current driving situation
(Jautze et al., 2008).

In addition, consumer electronics like portable music players are connected to the
vehicle using Bluetooth or USB. Also, Wireless LAN is likely to be introduced in fu-
ture vehicles allowing for car-2-car or car-2-infrastructure functionality (Grimm et al.,
2007). To a minor extent, legacy or proprietary network technology can be found in
subnets of current vehicles. Finally, in order to allow workshops to access the ECUs,
there is one mandatory CAN bus connecting the in-vehicle network via a gateway to

9

Chapter 1 Introduction

a standardised socket, the so-called onboard-diagnostics (OBD) interface (Marscholik
and Subke, 2008).

1.3 Vehicle electronics: Forecasts and implications

Based on the contemplation of current trends, forecasts are deduced and the implica-
tions on the data volume and complexity of recordings from test drives are discussed
in this section.

The automotive industry is driven by a number of factors that will lead to technological
advancements. The author believes that most technological advancements of vehicles
will be observable as an increase in the complexity and variability of the in-vehicle
network communication. In (Dannenberg and Burgard, 2007) it is stated, that 60%
of the innovations in the automotive industry are driven by vehicle electronics. The
identified key factors are given in this section.

A major challenge for the automotive industry is the reduction of the vehicle emis-
sions. This challenge is addressed by advancements of combustion engines and by the
introduction of vehicles with alternative drive trains, e.g. pure electric vehicles, fuel
cell vehicles, and different hybrid concepts of combustion and electric engines. In order
to keep development and production costs low, manufacturers are aiming to have more
variable drive train concepts for the same vehicle platform (Wolfsried, 2009; Hacken-
berg, 2008). A vehicle will be available with different drive trains, e.g. using plug-in
concepts. The author expects this to result in a higher complexity of the communica-
tion on the in-vehicle network, which is backed by the assessment given in (Weinmann
et al., 2009).

Efforts to save energy also change the in-vehicle network from a static to a dynamic
topology. While up to now all ECUs are permanently active, as long as the ignition
is switched on, in the near future ECUs will be selectively switched to sleep mode in
order to save energy. This means that the constellation of currently active network
nodes will dynamically change. In (Schlinkheider, 2010) the definition of subsets of

10

Chapter 1 Introduction

ECUs that will be switched together is proposed. An example of 16 subsets shows the
additional dimension of complexity that is introduced. While at the moment all ECUs
are either switched on or off, with 16 subsets, the number of different, valid states is
216 if distinguished between the states on and off. Additional states like standby-mode
are also possible.

Furthermore, advancements in vehicle electronics are indirectly driven by legislation,
e.g. by the introduction of an upper limit of acceptable vehicle emissions or by the
demand of an electronic stability control (ESC) (Liebemann et al., 2004) for new
vehicles in the future in the European Union and the USA (von Glasner and Micke,
2010).

The complexity of in-vehicle networks will further increase in order to satisfy the mar-
ket’s demands. Customers demand electronic safety functions like collision mitigation
systems (Jones, 2001) or autonomous lane keeping. This kind of driver assistant func-
tions combine data from various sensors (Pons et al., 2010). In other words, the data
of one sensor is shared by different vehicle functions running on different ECUs, which
means the data needs to be transmitted over the network. In addition, more advanced
comfort functions have been developed, like e.g. autonomous parking. Current research
addresses autonomous driving (Berger and Rumpe, 2012).

The number of vehicle functions implemented as software on the ECUs is in the region
of 1000 in a premium class car (Wernicke, 2010). An example of intensive networking
between ECUs is given by a vehicle manufacturer in (Wolff, 2009) for a premium class
car in the year 2009. The adaptive cruise control system, a driver assistance function
(von Glasner and Micke, 2010) monitoring the distance to the preceding vehicle and
thereby controlling the vehicle’s velocity, integrates the number of 26 ECUs. The
trend of an increasing number of vehicle functions realised by the interconnection of
several ECUs and sensors will continue, resulting in a further increase in complexity.
The increase of the number of functions and ECUs in a car is shown in Figure 1.5
which was taken from (Dannenberg and Burgard, 2007). It is further shown that a
growing number of innovations is not implemented as an isolated subsystem but rather
by combining vehicle subsystems.

11

Chapter 1 Introduction

Figure 1.5: An excerpt of the increasing number of functions and ECUs taken from
(Dannenberg and Burgard, 2007).

Finally, the in-vehicle network communication will be affected by advancements in
vehicle electronics itself, like the introduction of the standard AUTOSAR (Auto-
motive Open System Architecture) (Fuerst, 2010). AUTOSAR allows for platform-
independent development of vehicle functions by introducing a layered architecture,
comparable to virtual machines on PCs. At design stage, all software components
communicate over a so called virtual function bus (VFB), only during deployment the
decision is made on which of the ECUs a software component will run and thereby
which of the signals will be exchanged via the network. Conclusively AUTOSAR al-
lows for a more flexible distribution of functions among ECUs, which as a consequence
is believed by the author to lead to a wider variety in the network communication.

Further changes can be observed as a result of advancements in the network technology,
as can currently be seen by the introduction of the bus system FlexRay. With a
bandwidth of 10 MBit/s, the data volume transmittable over FlexRay is higher than
it is using the widely used CAN bus with a maximum bandwidth of 1 MBit/s. But
more importantly, as opposed to the CAN bus, FlexRay is a deterministic bus system,
allowing the use of the in-vehicle network for applications with real-time demands,

12

Chapter 1 Introduction

so e.g. closed-loop control can be distributed among several ECUs using FlexRay.
Network technology with deterministic and fault-tolerant behaviour allows for the
development of x-by-wire systems like steer-by-wire and brake-by-wire (Mayer, 2010c).
At the time of writing, various manufacturers have started to use FlexRay in series
vehicles. Additionally, a new standard for CAN is currently developed allowing for a
higher bandwidth (CAN-FD) and Ethernet is introduced in current vehicles.

Conclusively the author states that the identified driving factors of the automotive
industry will lead to an increasing complexity of vehicle electronics observable by an
increasing communication effort on the in-vehicle network. Hence, in order to keep
quality constant, a higher effort for quality assurance will be necessary.

1.4 Motivation and aims

Analysing the recordings of test drives manually is time consuming and exhausting.
Each recording has to be contemplated and evaluated by a domain-expert. The amount
of data resulting from each recording is huge. Depending on the configuration of the
data acquisition system, thousands of signals with cycle times being in the region
of milliseconds can be recorded over a time of several hours resulting in huge data
volumes. So for example, recording 1000 signals with an assumed average cycle time
of 50 ms over a period of one hour leads to 1000∗ 3600s

0.05s
= 72 million data points. Since

multiple vehicles are being tested in parallel, the amount of data to be analysed is
tremendous. Assuming a vehicle fleet of 50 vehicles, with each vehicle driven 10 hours
a day, the data to be analysed is 36 billion data points per day.

Consequently, manually analysing each recording using current techniques is not fea-
sible due to the huge amount of data. The expert should (1) be disburdened from
analysing the entire recordings in great detail and (2) be supported during the man-
ual analysis of one recording. A system supporting the expert by preventing her/him
from contemplating irrelevant data and rather pointing the expert to the relevant parts
would be very beneficial.

13

Chapter 1 Introduction

The benefit of such an approach shall be made clear by looking at an example of
the currently used random inspection by an expert. Say, there are 1000 recordings
of equal length and data volume. If it takes an expert one hour to properly analyse
one recording and there is an available time budget of 20 hours, the expert will pick
20 recordings by random inspection and analyse them. In other words, most of the
recordings will not be analysed, which is what happens in practise.

This Thesis researches ways of optimising the described process of analysing record-
ings from test drives with the following two aims:

Aim 1: in a data base of recordings from test drives point the expert to
potential errors by reporting anomalies in the recordings

Aim 2: shorten the time required for the manual analysis of one recording

Achieving these aims would improve the detection rate of unmodelled faults, reduce
the time required for fault detection and thereby allowing to conduct the analysis of
suspicious data at a greater depth.

In Figure 1.6 the current and the new approach are compared. From the data base
of recordings Dall, k fixed-size fractions d are selected. Currently this is done by
an expert, randomly or based on experience resulting in a subset of the data sets
Dselection. With the new approach proposed in this Thesis a subset Dpotential errors will
automatically be selected, that contains potential errors. Later in this Thesis, the
term subsequence is introduced, that corresponds to one fraction d.

The estimated number of detected faults Ndetected faults is given by

Ndetected faults = p(fault|d) ∗ Tbudget
Tdiagnosis

= p(fault|d) ∗ k (1.1)

where p(fault|d) is the probability of a fault in one data set d, Tbudget is the available
time budget, and Tdiagnosis is the time required for the diagnosis of one data set d.
Alternatively k is the number of diagnosed data sets d.

14

Chapter 1 Introduction

Figure 1.6: Estimated number of detected faults with the current and the new ap-
proach (p(fault|d): probability of a fault in one data set d, Tbudget: avail-
able time budget, Tdiagnosis: time required for the diagnosis of one data set
d).

15

Chapter 1 Introduction

Assuming a fixed time budget Tbudget and considering eq. (1.1), the number of detected
faults Ndetected faults can be increased by decreasing Tdiagnosis, corresponding to Aim
2. Ways for doing so will be discussed in Chapter 4.

A significant improvement would be if the probability p(fault|d) of finding a fault in
a diagnosed data set d could be increased. This will be the focus of this Thesis and
will be shown in Chapter 6 to Chapter 9. Instead of randomly selecting Dselection, the
approach in this Thesis automatically selects the subset Dpotential errors which contains
potential errors which corresponds to Aim 1.

Summarising, the approach in this Thesis will improve Ndetected faults from eq. (1.1) by
introducing Tdiagnosis_new and p(fault|dpotential errors) such that:

1. Tdiagnosis_new > Tdiagnosis_current

2. p(fault|dpotential errors)� p(fault|dselection)

The goal of this Thesis is to bridge the gap between testing, which is conducted
to a degree that is economically and technically feasible, and the theoretical, but
unreachable, optimum of proving correctness for the full system. The underlying idea
is not to pre-configure the normal behaviour but rather to extract it from available
recordings and then to autonomously detect unexpected deviations.

More specifically, this Thesis addresses the problem of detecting unexpected occurrences
in recordings from test drives. Unexpected occurrences will be referred to as anomalies
(see e.g. (Chandola et al., 2009)). Anomalies can be faults that were either not thought
of during the design of the testing strategy, arbitrary faults, or faults not modelled due
to their complexity or due to constraints of the data acquisition system. Examples
are faults in the underlying vehicle, like erroneous sensors or actuators, faults in the
software, hardware or parameterisation of electronic control units, or faults in the in-
vehicle network. The problem of searching for known fault-patterns is not the focus
of this Thesis, since this can be done using one of the methods described in Section
1.1.2.

16

Chapter 1 Introduction

1.5 Related work

Publications specifically addressing the detection of faults in mass data from test drives
are rare. Only in rare cases are researchers granted access to the data. However, the
detection of faults or anomalies in automotive data has been addressed by a growing
number of researchers. The fact that most of the work was published recently shows
that the topic gains importance.

In (Suwatthikul et al., 2011) a data-driven approach to classify the health state of
an in-vehicle network based on the occurrences of error frames on the CAN bus is
proposed. In contrast to this Thesis, (Suwatthikul et al., 2011) bases on a training set
of recordings from fault-free and faulty mode.

(Cong et al., 2013) uses anomaly detection on vehicle data in the field of road condition
monitoring. Based on a training set of recordings from drives in normal operation
mode, potholes are identified as anomalies. Fault detection is not addressed.

In (Mueter and Asaj, 2011) intrusion detection based on recordings from in-vehicle
network communication is presented. The underlying assumption is, that the commu-
nication on the in-vehicle network has a certain degree of randomness, i.e. entropy.
From data recorded in normal operation mode, the normal value of entropy is learnt.
An attack, like increasing the frequency of specific messages or message flooding, ap-
pears less random and thereby alters the entropy. This way attacks are reported to be
detected. As stated in the paper, the value of the normal entropy is likely to depend
on the situation the vehicle is in. This is likely to result in a high number of falsely
reported anomalies when testing on arbitrary data. This problem is not investigated
in the paper, though.

The authors of (Svensson et al., 2008; Byttner et al., 2011) propose fault detection for
predictive maintenance of commercial vehicles without modelling effort. As a first step,
relevant features in the communication on the in-vehicle network are identified, where
close relationship between signals is viewed as relevant. In a second step, data from
different vehicles is compared and outliers are detected in an unsupervised manner

17

Chapter 1 Introduction

being those vehicles deviating from the others. The size of the features is constrained
since they are transmitted from vehicles to a central system.

Literature on fault and anomaly detection in general will be surveyed in Chapter 3.

1.6 Conclusion

A vehicle is a high-technology product with a high fraction of vehicle electronics. The
gross of innovations is achieved by means of vehicle electronics, which is backed by
the fact that the market is growing. Even though massive testing is conducted and
research activities are reported on formal verification, there are shortcomings in the
analysis of recordings from test drives.

The importance of test drives as a measure for quality assurance is widely accepted.
Due to the high costs for conducting of test drives caused by the high fraction of
manual work, the recordings of test drives should be viewed as very precious.

Only by effective means of analysing the recordings, one can make sure that the effort
put in the conducting of test drives pays off. Existing problems that remain undetected
in test drives have a high chance of being detected by customers. The data base of
product recalls (Auto Service Praxis, 2013) holds 295 cases for the year 2012 where
vehicles had to be recalled and it is uncertain if this list is complete. Consequently, the
author believes that effective means of test drive analysis can become a competitive
advantage.

18

Chapter 1 Introduction

1.7 Own Publications

During the writing of this Thesis the following papers were published by the author,
with various researchers co-authoring:

• 2010: In the paper “Interactive Knowledge Discovery in recordings from vehicle
tests” an approach was proposed to interactively explore recordings from test
drives using techniques from the fields of visual data mining and temporal data
mining (Theissler et al., 2010).

• 2011: In the paper “Interactive Anomaly Detection in time series resulting from
local traffic measurements” it was shown how a visual data mining approach
can be used for the offline-analysis of long-term traffic measurements. “Parallel
coordinates” were adapted to cope with the spatio-temporal structure of traffic
measurements, allowing to interactively explore the data (Theissler et al., 2011).

• 2012: The paper “Detecting anomalies in recordings from test drives based on a
training set of normal instances” proposed to use machine learning to support
domain-experts by pointing them to the relevant parts in recordings. The idea
was validated on data from a test rig with a DC motor (Theissler and Dear,
2012).

• 2013: The paper “Autonomously determining the parameters for SVDD with
RBF kernel from a one-class training set” proposed an approach to find the
optimal set of parameters for the one-class support vector machine “SVDD” solely
based on a training set from one class and without any user parameterisation
(Theissler and Dear, 2013b).

• 2013: In the paper “An anomaly detection approach to detect unexpected faults
in recordings from test drives” a one-class classification approach is proposed
that allows to detect unexpected faults in recordings from test drives without
modelling effort (Theissler and Dear, 2013a).

19

Chapter 1 Introduction

1.8 Outline of the chapters

This Thesis is organised in 11 chapters. Each chapter starts with a brief summary,
allowing the reader to rapidly understand the chapter’s content. The list of figures
and tables can be found at the end of the Thesis. In order to allow for fluent reading,
instead of keeping the literature survey and own methodologies in distinct chapters,
the author refers to literature where work bases on previous work. For example in
Chapter 4 and Chapter 6 literature is surveyed followed by own enhancements.

The following chapters are in this Thesis:

1. Introduction: In the current chapter the problem of the complexity of modern
vehicles was introduced and shortcomings in the current process of analysing test
drive data were identified. Subsequently the aims of the Thesis were presented.

2. From errors in test drives to faults in the vehicle: The second chapter
discusses why errors are likely to occur in test drives, and surveys potential fault
locations in a vehicle.

3. Anomalies and anomaly detection: In this chapter the properties of the
recordings from test drives are described and the term anomaly is introduced
and related to the terms fault, error, and failure. Finally a categorisation of
anomalies based on the definition of multivariate time series is given.

4. Interactive anomaly detection: A user-driven approach for anomaly detec-
tion using visual data mining is introduced in this chapter. It is shown how
the analysis of test drive recordings can be improved with adapted visualisation
techniques.

5. Anomaly detection as a classification problem: This chapter discusses
autonomous anomaly detection using classification techniques that learn from
training data. The fundamentals of classification theory are given, and common
classifiers are introduced. One-class classification is identified to be most suitable
for the problem discussed in this Thesis.

20

Chapter 1 Introduction

6. One-class classifiers: In this chapter adaptations of the classifiers k-NN and
LOF are compared with the one-class classifier support vector data description
(SVDD). SVDD is identified to be most suitable for anomaly detection, though
suffers from the problem of having to specify parameters beforehand. In order
to solve this problem, a novel parameter tuning approach is proposed.

7. Enhancing SVDD to multivariate time series: In this chapter, the classifier
SVDD is enhanced to work on recordings from test drives, i.e. on multivariate
time series.

8. The anomaly detection system: This chapter introduces the anomaly de-
tection system used for test drive analysis. The detection system uses the clas-
sification approach proposed in the previous chapter, accompanied by enhanced
visual data mining techniques.

9. Experimental results on recordings from vehicles: A variety of experi-
mental results on recordings from vehicles are presented in this chapter. The
effects of different constitutions of the training set, like integrating data from
different drivers and different vehicles, are investigated.

10. Conclusion: This chapter summarises the Thesis, identifies the main contribu-
tions, and discusses benefits and limitations of the proposed approach.

11. Outlook: In the final chapter possible enhancements of the approach are dis-
cussed and further research directions are identified.

21

Chapter 2

From errors in test drives to
faults in the vehicle

This chapter emphasises the importance of conducting test drives, dis-
cusses the reasons for errors occurring during test drives, and gives an
overview of potential fault locations in a vehicle.

This chapter discusses the process of conducting test drives and acquiring data during
test drives for later data analysis. Afterwards the reasons are identified why errors
are likely to occur during test drives, despite the fact that massive testing effort has
been spent in the previous stages. Following that, the terms fault, error and failure
are defined. In order to allow for a systematic evaluation of the detection techniques
discussed in this Thesis, a categorisation of where in a vehicle faults can be located is
presented.

Chapter 2 From errors in test drives to faults in the vehicle

2.1 The process of test drives

This section surveys how test drives are conducted and how the data is recorded using
data acquisition systems.

Testing a vehicle under the most realistic conditions by driving it on the road is an
integral part of each vehicle manufacturer’s process in the development and production
of vehicles. In addition to the term test drive, the terms test run, or road trial are
commonly used in industry and in literature.

Test drives are conducted by vehicle manufacturers and suppliers throughout various
vehicle phases from initial research activities to manufacturing of the vehicle. Hence
the vehicle subsystems, for example the ECUs, have different stages in terms of degree
of maturity, compatibility and test coverage. The vehicle phases are referred to as
research phase, development phase, pre-series phase, and production phase (see Figure
2.1).

Figure 2.1: Test drives are conducted throughout various vehicle phases ranging from
research phase to after start of production

The variety of test drives is enormous, with no two drives being identical. The test
drives are conducted by professional test drivers, test engineers, development engineers,
researchers, common company employees, in some cases by customers, and sporadically
by managers, up to the company’s CEO. In addition, at the time of writing this Thesis,
driving robots are finding their way into testing vehicles.

The test drives take place either on test tracks or in public traffic, ranging from short-
term tests of just a few hundred metres to long-term tests lasting several weeks. In
addition, test drives differ in how much the driver is being guided. For example a
test drive can be pre-defined by a drive plan subdivided into test cases to be followed

24

Chapter 2 From errors in test drives to faults in the vehicle

by the driver or the driver does not follow any specifications, aiming to operate the
vehicle in everyday use.

During test drives, data is recorded by data acquisition systems for later data analysis.
The most common approach is to use data loggers to record the communication on the
in-vehicle network. This has the main advantage that, except for some way of accessing
the in-vehicle network, the vehicle remains unchanged. At the time of writing, it is
common to record the communication from the following network technologies: CAN
(Mayer, 2010a), LIN (Mayer, 2010b), FlexRay (Mayer, 2010c), and MOST (Grezemba,
2011).

If the desired data is not available on the in-vehicle network, measurement systems
with additional sensors are used to measure e.g. temperatures or voltages. Some
prototype vehicles are equipped with additional sensors and a transformer unit sending
the measured data over the network, which allows for in-vehicle network data loggers
to be used. In addition, some data acquisition systems read internal variables or
diagnostic trouble codes (DTCs) from ECUs (Marscholik and Subke, 2008).

2.1.1 Test drives in research phase

During the research phase new vehicle systems, like the concept of a new driver assis-
tance system, are integrated in prototype vehicles (Athanasas and Dear, 2004) or in
vehicles of previous model ranges and evaluated in test drives. It lies in the nature of
research that faults can be manifold. Some likely faults are incompatible or erroneous
software components and unreliable sensors.

The software components are not deployed on the target platform, so timing behaviour
that is different to the behaviour expected on the target platform occurs which can
lead to errors.

25

Chapter 2 From errors in test drives to faults in the vehicle

2.1.2 Test drives in development phase

In the development phase the current software versions are continuously tested on the
road. Some of the encountered faults are incorrect or incomplete specification or incor-
rect implementation. Another fault that is often encountered lies in the mapping from
a variable in memory to a signal on the bus system. The mapping is done in the ECU
software and may operate incorrectly owing to one of the following reasons: an over-
flow in a signal value due to an insufficient number of assigned bits, an inappropriate
scaling factor, or an incorrect mapping algorithm.

2.1.3 Test drives in pre-series phase

Prior to a model ranges’ start of production, vehicle fleets are manufactured in the so
called pre-series phase and are tested on the road with the aim to assure the quality
of the model range as well as of the production and testing processes (Friedrich et al.,
2009).

The vehicles are partly hand-crafted, the ECU software and its parameterisation are
manually downloaded to the ECUs. Hence, faults in the versions or variants of an
ECU’s software, or parameterisation of an ECU that is incompatible to further ECUs
in the network are likely faults.

2.1.4 Test drives in production phase

Accompanying the production phase, test drives are conducted with series vehicles
after start of production. In order to assure quality of the vehicles, a fraction is
selected for test drives. In some cases, field data is collected from customers of leased
electric and fuel-cell vehicles and from fleets of commercial vehicles.

Likely faults to occur in production phase are manufacturing faults like improper
wiring, e.g. open or short circuits, or incompatible software versions or variants.

26

Chapter 2 From errors in test drives to faults in the vehicle

2.2 Why are errors likely to occur during test drives?

This section discusses why errors are likely to occur during test drives, even though
intensive testing has been done on the vehicle’s individual components prior to a test
drive.

Despite massive testing effort prior to integration of the components in the vehicle,
errors are yet likely to occur during test drives. The following key reasons were
identified:

1. final integration of all components takes place in the vehicle

2. incomplete simulation models for test drives

3. the automotive development process

4. the supply chain in the automotive industry

2.2.1 Final integration of all components in the vehicle

All individual vehicle components have been tested in laboratory environment, yet
the integration of all ECUs, sensors and actuators in the vehicle puts the components
under real conditions for the first time. The previous tests are based on specifications
and implicit assumptions using test cases, simulations, and test rigs.

It is in the vehicle, where problems from the likes of incompatible software versions or
parameter sets, or with the integration of new technology, occur. In the vehicle there
are no assumptions about subsystems and no simulations.

27

Chapter 2 From errors in test drives to faults in the vehicle

2.2.2 Incomplete simulation models for test drives

The vehicle’s components are tested with simulation models. However the variety of
test drives is not covered by the models.

Test drives are conducted in a wide range of different conditions ranging from very
hot to very cold climate, with bad road conditions, differing traffic flow, heavy load,
and different driver behaviour.

One type of tests is to operate the vehicle under defined harsh conditions to cover the
expected vehicle lifetime within a much shorter period of time (Friedrich et al., 2009),
which means that e.g. wear-out of mechanical components can be encountered even
for pre-series vehicles that are only a few months old.

2.2.3 The automotive development process

The development cycles of vehicle models are shrinking and it is economically not
reasonable to follow a strictly sequential development process. Hence, components
under development are tested against other software or hardware components which
themselves are in a pre-series stage.

One approach of testing prototype vehicle subsystems on the road at an early stage is
to integrate the new components into vehicles of previous models that are similar but
not fully identical to the target vehicle.

In the development of new models or for model upgrading, manufactures do not develop
the model ranges from scratch. They rather use and adapt parts of existing models,
i.e. some components will be used from previous vehicles. One approach is to integrate
the new components in the environment of previous vehicles, which are likely to be
not fully compatible to the newly developed vehicle subsystems.

28

Chapter 2 From errors in test drives to faults in the vehicle

Components are developed in accordance to a specification, but in general, the software
and hardware versions and the specification of components integrated in the series
vehicle evolves over the development and pre-series phase.

Generally it can be observed that the implementation of an in-vehicle network is
never an optimal solution from the viewpoint of software or electronics. It is rather a
compromise of many additional interdisciplinary factors such as cost, weight of wiring,
space for wiring and ECUs, legislative obligations and the structure of the supply
chain.

2.2.4 The supply chain in the automotive industry

Contemplating the structure of the automotive industry, it becomes obvious that the
gross of vehicle functions are not developed by vehicle manufacturers, but rather by
suppliers according to the manufacturers’ specification by means of subcontracts. A
typical supply chain has multiple tiers of suppliers. The first tier supplier supplies a
vehicle function like e.g. the adaptive cruise control system, but in turn procures soft-
ware and hardware components from further, more specialised suppliers and integrates
them into the vehicle subsystem.

There is a number of different scenarios of supply chains ranging from one supplier
supplying all components to a scenario where sensors, actuators, ECU hardware, ECU
base software, and ECU application software are supplied by different suppliers. In
addition, for vehicle functions using data from multiple sensors, the different sensors
are likely to be supplied by different suppliers.

In the integration tests, manufacturers treat ECUs as black boxes and only view
them through the specified interface or access data via standardised diagnostic services
(Marscholik and Subke, 2008).

29

Chapter 2 From errors in test drives to faults in the vehicle

2.3 Faults, errors and failures according to ISO 26262

The behaviour of a system not acting as expected is colloquially described as a fault,
a failure, a malfunction, or an error. The definition of exact terms is controversially
discussed in the literature. In this Thesis, the terms fault, error, and failure are used
as defined by ISO 26262-1 (ISO 26262-1, 2011). A fault may manifest itself as an error,
which in turn may cause a failure (Sommerville, 2001). Faults can be subdivided into
permanent, intermittent and transient faults.

Definition 2.1 Fault: A fault is an “abnormal condition that can cause an element
or an item to fail” (ISO 26262-1, 2011).

Definition 2.2 Error: An error is the “discrepancy between a computed, observed or
measured value or condition, and the true, specified or theoretically correct value or
condition” (ISO 26262-1, 2011).

Definition 2.3 Failure: A failure is the “termination of the ability of an element, to
perform a function as required” (ISO 26262-1, 2011).

An example is an incomplete branch statement in the source code of an ECU’s software,
which corresponds to a fault, in this case to a software bug. This fault is permanently
present in the vehicle, but will not necessarily ever reveal itself. Only specific input
parameters, for example values read from a sensor, that are not properly covered by
the branch statement lead to an observable deviation from expected behaviour. This
deviation corresponds to an error, which in turn may cause a failure, e.g. a driver
assistance system stops to function.

2.4 Fault locations

After having discussed the reasons for errors occurring during test drives and having
defined faults, errors and failures, this section identifies a categorisation of where in

30

Chapter 2 From errors in test drives to faults in the vehicle

a vehicle faults can occur. From an observed error, the next step is to identify and
locate the fault that caused the error. This process is commonly referred to as fault
detection and diagnosis (FDD) (Isermann, 2006).

A coarse categorisation of fault locations can be found in (Suwatthikul, 2008), where
the three levels network, feature, and component are used. The component level
contemplates each network node individually, the feature level contemplates individ-
ual vehicle functions and the network level considers the entire inter-networking. In
(Jeutter, 2008), the author categorises faults with respect to the layers of the Open
Systems Interconnection model (OSI). The physical level is concerned with the elec-
trical signals on the wire, the protocol level analyses the data flow, and the data level
contemplates the data as seen by the ECUs and finally the system level is concerned
with vehicle sub-systems. In addition, the timing is considered across all levels ranging
from physical to system level. The authors in (Stein et al., 2006) subdivide fault loca-
tions in vehicle electronics into sensors/actuators, electric, buses, and ECUs. In this
section an own, more detailed categorisation of fault location is given, that is partly
based on (Stein et al., 2006).

2.4.1 Example of a data flow

An example of a data flow from reading sensor data to controlling an actuator is shown
in Figure 2.2. The components in this example are either directly powered by a power
supply or as in the case of the sensor and the actuator by an ECU. As illustrated in
Figure 2.2, the components are interconnected by cables and connectors.

Signals of “vehicle subsystem 1” are measured by a sensor. The sensor data is read
and processed by “ECU1”, embedded into a data frame and transmitted over the sub-
network “bus 1” via the gateway to the sub-network “bus 2”, where the data frame is
read by “ECU2” and the signal values are restored. Based on the input value from
“vehicle subsystem 1”, “ECU2” controls an actuator which in turn influences “vehicle
subsystem 2”. In order to allow for analysis, the data transmitted over the two bus
systems is recorded by a data acquisition system.

31

Chapter 2 From errors in test drives to faults in the vehicle

Figure 2.2: Fault locations in an in-vehicle network

2.4.2 Categorisation of fault locations

In the described data flow, some potential fault locations are evident, like faults in
the connectors or cables, or faults in an ECU’s software. The identified locations are
described in the rest of this section and a categorisation is given in Figure 2.3. At the
first level the locations are categorised into function specifications, network, sensors,
actuators, ECUs, gateways, power supply, vehicle subsystems, and the data acquisition
system.

The author refers to a function specification as the specification of a vehicle function,
which is any built-in functionality offered by the vehicle. A vehicle function can range
from something as simple as the indicator or the windscreen wipers to complex systems
like adaptive cruise control.

The network as a potential fault location includes the cable harness, the physical topol-
ogy and the network’s configuration. The cable harness is composed of connectors and
cables which in turn consist of wires and shielding. Faults can be from the likes of open

32

Chapter 2 From errors in test drives to faults in the vehicle

Figure 2.3: Categorisation of fault locations in an in-vehicle network

circuits, short circuits to either battery voltage or ground, or short circuits between
wires (Krauß, 2010). Faults located in the cables can be caused by electromagnetic in-
terference due to improper or damaged shielding. Concerning the connectors, incorrect
pin assignments is a common problem in early vehicle phases. Improper scheduling
of messages or implementation faults can lead to any of the following errors: lost
messages, too many messages (Suwatthikul, 2008), delayed or corrupted messages.

The physical topology is the layout of the network and describes how many nodes
(ECUs, gateways, sensors and actuators) are in the network, the partitioning of the
network into sub-networks using gateways, and the used network technologies. The
author refers to the network configuration as any settings of the network that do
not affect the physical topology. Depending on the type of bus system the network’s
configuration consists of different settings, examples are cycle times and priorities of
messages in the case of CAN, or number of slots per cycle in the case of FlexRay.

Faults occur in sensors and actuators, which are either directly wired to the ECUs
as analogue or digital input/output signals or by means of a bus system. A defective
sensor may reveal a change of gain or an offset (Isermann, 2006). Also either no values,
or values that are out of the valid range can be supplied by a sensor. More difficult to

33

Chapter 2 From errors in test drives to faults in the vehicle

detect is a scenario where a sensor supplies erroneous values, that are within the valid
range, but are implausible with respect to further input values (Krauß, 2010). Faults
located in the actuators can be an invalid calibration or wear-out.

In terms of ECUs one distinguishes between physical and virtual ECUs. Due to space
and weight restrictions, several virtual ECUs are sometimes placed in one enclosure.
The virtual ECUs are hence connected to the same power supply and to the same
bus system. So in addition to the visible physical ECUs in the physical layout of an
in-vehicle network as shown in Figure 1.1, additional virtual ECUs can be found in a
vehicle.

Further potential fault locations are an ECU’s software or hardware. An ECU’s soft-
ware can be further categorised into (1) application software, (2) base software, i.e. the
operating system and implementation of protocols and drivers, and (3) parameterisa-
tion, which is composed of characteristic curves and coding parameters adapting the
vehicle to extra equipment or to a region, e.g. right- or left-hand-drive. The parameter-
isation can either be incorrect or incompatible to the vehicle. Further fault locations
are the versions and variants of the ECU software. In isolated tests the software
versions may function properly, but the software versions of ECUs are incompatible
among each other. Similarly, faults occur in the variants of the software, if for exam-
ple the variant is not compatible to the vehicle’s extra equipment or to the deployed
hardware.

In addition to faults in the ECU software, the ECU’s hardware is a potential fault
location. The hardware can be subdivided into the ECU’s layout and the ECU’s
internal components, where giving an exhaustive list is not relevant for this Thesis.
The most relevant fault locations are internal power supply, the processor and the
memory. In addition, as with software components, faults in the ECU’s hardware can
be due to incorrect versions and variants. Additionally there can be incompatibilities
of software and hardware versions and variants.

Gateways connect the different sub-networks and are ECUs themselves. In practice,
the gateway functionality is usually embedded as a virtual ECU into a physical ECU.
Yet, the distinction between gateway and ECU is made in this Thesis because faults

34

Chapter 2 From errors in test drives to faults in the vehicle

in the gateway functionality can lead to entire sub-networks not being able to commu-
nicate. Faults in a gateway would be the permanent or sporadic violation of timing
constraints in the forwarding of messages, lost messages, or improper data transfor-
mation between sub-networks using different technologies.

As shown in Figure 2.2, the vehicle’s components are powered by the vehicle’s power
supply, which typically is the battery voltage. Hence this is a central location for
faults. Finally, mechanical vehicle subsystems interfacing with vehicle electronics are
potential fault locations. Faults in vehicle subsystems, which for example are the
engine or the braking system, can be observed in the signals measured by sensors.

The data is recorded by data acquisition systems, which can potentially induce faults
into the vehicle or into the recording. An example of the latter one would be messages
exchanged by ECUs via the in-vehicle network that were sporadically not properly
recorded due to a malfunction of the data acquisition system.

2.5 Conclusion

In this chapter it was shown that test drives are conducted throughout the entire vehi-
cle life cycle. Despite massive testing effort prior to the integration of the components,
test drives are inevitable. Errors occur during test drives since a test drive is a test
under the most realistic conditions.

From an observed error, the underlying fault can be identified. As discussed, the po-
tential fault locations in a vehicle are manifold. Faults can be present in specification,
software, hardware, and wiring. General techniques to detect faults or anomalies in
data will be surveyed in the next chapter.

35

Chapter 3

Anomalies and anomaly detection

This chapter describes the properties of recordings from test drives, intro-
duces the term anomaly and relates it to the terms fault, error, and failure.
It further categorises anomalies in multivariate time series into three types
and surveys anomaly detection techniques.

This Thesis is concerned with the detection of anomalies in recordings from test drives.
The recordings are viewed as multivariate time series data. The terms time series
and anomaly as used in this Thesis will be defined in this chapter. Following that,
anomalies in multivariate time series are categorised into three types.

3.1 Recordings from test drives: Time series data

This section describes the properties of the recordings from test drives. The recordings
are obtained by data acquisition systems and contain either signals or raw messages
from which signals can be extracted. The messages and signals are time stamped,

Chapter 3 Anomalies and anomaly detection

hence a recording is viewed as time series data, as it can easily be transformed to time
series.

One recording contains a variety of signals where the number can be in the region
of several thousand. Some signals have interdependencies, for example the vehicle
speed signal typically depends on the signal holding the accelerator pedal’s current
position.

Definition 3.1 Recording: A recording refers to discrete time-stamped signal values
recorded during tests. A recording may contain multiple signals.

Figure 3.1 shows an excerpt of a test drive recorded by a data acquisition system
1. The signals speed, steer angle and engine rpm were extracted from the recorded
in-vehicle network communication.

A recording corresponds to time series data or can be resampled equidistantly to be-
come time series data. Time series can be univariate or multivariate (Mitsa, 2010),
where observations of one variable are referred to as univariate time series and obser-
vations of multiple variables are referred to as multivariate time series. An example of
a univariate time series is the recording of the vehicle’s speed signal over some period
of time. A multivariate time series would be the vehicle’s speed together with further
signals like yaw rate, steering wheel angle and engine speed.

Definition 3.2 Univariate time series: A univariate time series XT is a finite sequence
of N data points ordered by time. For every time point ti in ~T there exists one data
point xi in ~X, where 1 ≤ i ≤ N . The distance ∆t = ti − ti−1 is finite and equidistant
for all i > 1. A single data point is denoted by xti.

XT : ~T 7→ ~X with ~T = (t1, t2, . . . , tN) and ~X = (x1, x2, . . . , xN) (3.1)

1Recorded and visualised using “Tedradis” by IT-Designers GmbH (Koch and Theissler, 2007;
Marscholik and Subke, 2008)

38

Chapter 3 Anomalies and anomaly detection

Figure 3.1: Time series data extracted from two minutes of in-vehicle network commu-
nication recorded during a test drive showing the steer angle, engine rpm,
and vehicle speed.

Definition 3.3 Multivariate time series: A multivariate time series YT consists of at
least two univariate time series, which are denoted by XTu with 1 ≤ u ≤ M . The
number of data points N and the vector of time stamps ~T is identical for all XTu.
Hence for every time point ti there exist M data points. A single data point is denoted
by xu,ti.

YT = (XT1 , XT2 , . . . , XTM) (3.2)

which can be rewritten in matrix form

39

Chapter 3 Anomalies and anomaly detection

YT =

 x1,t1 . . . x1,tN
...

xM,t1 . . . xM,tN

 (3.3)

Univariate time series contained in a multivariate time series are possibly, but not
necessarily, correlated. So XT1 might be input data from a sensor, XT2 a calculated
time series based on the sensor data and XT3 the resulting output data transmitted to
a connected actuator.

Working with time series data, the entire time series, parts of the time series or indi-
vidual data points can be contemplated. Therefore the terms subsequence and sets of
subsequences are introduced.

Definition 3.4 Subsequence: A subsequence is any univariate time series having 1

to N consecutive data points contained in a univariate or multivariate time series. In
a univariate time series a subsequence shall be denoted by Xtj ...tk with 1 ≤ j ≤ k ≤ N

and in a multivariate time series it shall be denoted by Yu,tj ...tk with u indexing the
univariate time series.

Xtj ...tk : (tj, . . . , tk) 7→ (xj, . . . , xk) with 1 ≤ j ≤ k ≤ N (3.4)

Following definition 3.4, a subsequence of a time series XT can either be an individual
data point, some consecutive data points, or the entire univariate time series XT .

Each subsequence is fully addressed by its first point, indexed by j, length W , and in
the case of multivariate time series by the index of the univariate time series u. This
way a subsequence can be allocated to its exact position in the time series it originated
from.

In addition it is appropriate to be able to describe a group of subsequences:

40

Chapter 3 Anomalies and anomaly detection

Definition 3.5 Set of subsequences: A set of subsequences is denoted by S. The
contained subsequences are denoted by si with i = 1, ..., |S|, i.e. S = {s1, s2, ..., s|S|}.

3.2 Defining anomalies

Searching a data base of recordings from test drives for previously defined fault-
patterns, e.g. values that are out of the valid value range, is a challenge due to the
vast amount of data. However, the problem of searching for known fault-patterns is
not the focus of this Thesis, since this can be achieved by techniques that have been
extensively researched, e.g. pattern matching.

This Thesis addresses the problem of detecting unexpected occurrences in a data
base holding recordings from test drives. Unexpected occurrences are referred to as
anomalies (Chandola et al., 2009). An anomaly may be observed due to an error,
and may point an expert to a fault in the vehicle. While an error is always viewed
as an anomaly, the opposite is not true (Figure 3.2).

The term anomaly is used for occurrences that do not conform to normality, where
normality is in no way absolute. What is “normal” can be learnt from a training data
set, be described using models or be expressed by a domain expert. In ISO-26262
(ISO 26262-1, 2011) the term anomaly is defined as a “condition that deviates from
expectations, based, for example, on requirements, specifications, design documents,
user documents, standards, or on experience”. Other terms corresponding to the term
anomaly used in literature are novelty, outlier (Hodge and Austin, 2004) and discord
(Keogh et al., 2006). The description of anomalies from (Chandola et al., 2009) is
adapted in order to describe anomalies in multivariate time series.

Definition 3.6 Anomaly: In this Thesis an anomaly is a deviation in the behaviour
of a univariate time series or in the relationship of multiple univariate time series
from expected behaviour.

41

Chapter 3 Anomalies and anomaly detection

Figure 3.2: An anomaly is a potential error. An error is caused by a fault and may
cause a failure.

Anomalies could be detected manually, semi-autonomously, or fully autonomously.
Generally speaking, subsequences are classified by a function fa as normal or abnormal,
as defined in definition 3.7.

Definition 3.7 Let fa be a function that, applied on a set S, returns 1 if S is normal
or empty and −1 if S is abnormal.

fa(S) =

+1 : if S is normal or S = ∅

−1 : if S is abnormal
(3.5)

3.3 Categorising anomalies in multivariate time series

The types of anomalies in multivariate time series are categorised in this section.
A distinction is made whether the anomaly occurs either in one of the individual
univariate time series or in their relationship.

42

Chapter 3 Anomalies and anomaly detection

3.3.1 Anomaly types

In (Chandola et al., 2009), anomalies are categorised as point, contextual, and collec-
tive anomalies. The idea of point and contextual anomalies was borrowed and applied
to multivariate time series.

As defined in definition 3.3, a multivariate time series consists of multiple univariate
time series. Therefore in a multivariate time series, anomalies of a univariate time
series can occur. Additionally, in multivariate time series, anomalies in the relationship
between the contained univariate time series can occur.

The following three types of anomalies, also shown in Figure 3.3, are distinguished in
this Thesis:

1. Type 1: subsequence anomaly in univariate time series: An individual subse-
quence Xtj ...tk that can be classified as normal or abnormal without contem-
plating further subsequences. This can, for example, be done by comparing
the subsequence with some threshold defining the border between normal and
abnormal. Any subsequence violating the valid value range is a subsequence
anomaly.

2. Type 2: contextual anomaly in univariate time series: An individual subse-
quence Xtj ...tk that cannot be classified as normal or abnormal. The classi-
fication requires knowledge about the context, i.e. about other subsequences
within the same univariate time series, for example neighbouring subsequences
like Xtj−2...tj−1

and Xtk+1...tk+2
.

3. Type 3: contextual anomaly in multivariate time series: An individual subse-
quence Y1,tj ...tk in a multivariate time series Yt that cannot be classified as normal
or abnormal. The classification requires knowledge about the context, i.e. about
subsequences of additional univariate time series within Yt, like Y2,tj ...tk . The set
S containing the subsequences Y1,tj ...tk and Y2,tj ...tk is an anomaly.

43

Chapter 3 Anomalies and anomaly detection

Figure 3.3: Categorisation of anomalies in multivariate time series.

A subsequence anomaly is an individual subsequence, while a contextual anomaly is a
set of subsequences.

Furthermore, if there exists knowledge about causal dependencies between the univari-
ate time series, a set S may be partitioned into the contextual set Sc and the indicator
set Si, i.e. S pair(Si, Sc) with Si ∪ Sc = S.

Definition 3.8 Contextual set: A contextual set is a set holding contextual informa-
tion and is denoted by Sc. The definition of context is done a priori.

Definition 3.9 Indicator set: An indicator set is a set that requires consideration of
a contextual set and is denoted by Si.

When S pair(Si, Sc) and fa(pair(Si, Sc)) = −1, following statements about S can
be made:

1. If Si 6= ∅ and Sc 6= ∅, then S is a contextual anomaly (type 2 or 3).

2. If the number of elements |Si| = 1 and Sc = ∅, then S is a subsequence anomaly
(type 1).

44

Chapter 3 Anomalies and anomaly detection

3.3.2 Examples

This section gives examples for each of the three types of anomalies given in the
categorisation in Figure 3.3. In order to demonstrate the proposed categorisation of
anomalies with a real-world data set, the test rig shown in Figure 3.4 was built. A
brushless DC motor2 was mounted on a retainer with a miniature wheel attached. A
brushless DC motor was chosen, since this type of motor is widely used in vehicles
e.g. as auxiliary units like automatic seat adjustment or the window opener. More
powerful electric motors of this type are used as part of the power train in hybrid,
pure electric or fuel-cell vehicles. This test rig is also used for experiments in later
chapters.

Figure 3.4: DC motor test rig.

The motor was operated in servo mode, meaning it runs in closed-loop control mode.
Observing the signals, no external sensors are needed. It is based on the motor’s
input and output signals only, referred to as sensorless detection, see e.g. (Moseler
and Isermann, 2000). The following procedure was executed by the test rig, while the
motor’s position and the DC current were recorded.

1. 10 revolutions in forward direction

2. hold position for 10 seconds
2Faulhaber GmbH & Co. KG: Series 3564. Brushless DC servo-motor with integrated motion
controller and RS232 interface.

45

Chapter 3 Anomalies and anomaly detection

3. 10 revolutions in backward direction

4. hold position for 5 seconds

5. goto step 1

Figure 3.5: Position and DC current of a DC motor in normal operation mode.

The data recorded in normal operation mode is viewed as a reference data set. The
position and DC current signal of the motor in normal operation mode over a period
of approximately two minutes are shown in Figure 3.5. A position value of 3000
corresponds to one revolution, i.e. 360 degrees. It can be seen that peaks in the DC
current are correlated with the acceleration and deceleration of the motor, where the
high peaks correspond to the motor accelerating and medium peaks to the motor
decelerating.

46

Chapter 3 Anomalies and anomaly detection

The following examples of anomalies are subsequences or sets of subsequences deviating
from the behaviour shown in the reference data set. The anomalies were manually
injected by varying the load on the motor.

3.3.2.1 Subsequence anomalies in univariate time series

The following normal behaviour for the DC current signal can be deduced from the
recordings in normal operation mode shown in Figure 3.5:

1. the minimum normal DC current value is 27 mA

2. the maximum normal DC current value is 2514 mA

Figure 3.6 shows a recording of the DC current over a period of 100 seconds. The two
dashed lines represent the valid value range. The subsequence s1 marked in Figure
3.6 is obviously not within this range, and is therefore an anomaly. Since no further
subsequences need to be contemplated in order to make the decision, the marked
subsequence s1 is an anomaly of type 1 (subsequence anomaly in univariate time
series). The anomaly was injected by blocking the motor for a short period of time.

Figure 3.6: Example of a subsequence anomaly in univariate time series (type 1). The
values of subsequence s1 exceed the valid value range.

47

Chapter 3 Anomalies and anomaly detection

3.3.2.2 Contextual anomalies in univariate time series

Another recording of the DC current signal is shown in Figure 3.7. The signal could
be segmented into subsequences of the following types: low values, medium peak and
high peak. The following rules can then be deduced from the reference data set:

1. a high peak is always preceded by a subsequence with low values

2. a medium peak is always preceded by a high peak

Figure 3.7: Example of a contextual anomaly in a univariate time series (type 2) in
the DC current of the motor. The set S = {s2, s3} is abnormal.

In Figure 3.7 the subsequence s2 (medium peak) is preceded by s1 (high peak). In
accordance with the second learnt rule, s2 is therefore normal. The subsequence s3
(medium peak) is preceded by s2 (medium peak) violating the first rule. The set
of subsequences S = {s2, s3} is therefore a type 2 anomaly (contextual anomaly in
univariate time series).

The anomaly was injected by manually trying to readjust the wheel attached to the
motor, which leads to an increase in the DC current signal in order for the motor to
hold its position.

48

Chapter 3 Anomalies and anomaly detection

3.3.2.3 Contextual anomalies in multivariate time series

In addition to the two types of anomalies that may occur in individual univariate time
series, the relation between the signals of the multivariate time series recorded from
the test rig can be abnormal.

In the reference data set in Figure 3.5 it can be seen that subsequences with constant
position values occur coinstantaneously with subsequences with low values of the DC
current. The following correlations can be observed:

1. an acceleration in the position signal leads to a high peak in the DC current

2. a deceleration in the position signal leads to a medium peak in the DC current

3. a subsequence with constant values of the position signal leads to a subsequence
of low values in the DC current

Figure 3.8: Contextual anomaly in the dependency within the multivariate time series.

49

Chapter 3 Anomalies and anomaly detection

While s1 in Figure 3.8 is a subsequence of constant values, s2 shows a medium peak,
violating the third learnt rule. Therefore the set S = {s1, s2} is an anomaly of type 3
(contextual anomaly in multivariate time series).

3.3.3 Discussion

The categorisation of anomaly types is considered essential in order to evaluate anomaly
detection techniques. Depending on the type of anomaly, different anomaly detection
techniques are required. One approach is to focus on one type of anomaly. If no
knowledge exists about the types of anomalies expected in a data set, a combination
of different detection techniques needs to be used in order to be able to detect all
types.

The idea to integrate some kind of additional information like a context was addressed
by several researchers. In (Song et al., 2007) the term conditional anomaly is used
rather than contextual anomaly. It is argued that integrating contextual knowledge
improves the chance that reported anomalies are interesting for the user. It is pro-
posed, to have the user partition the input data into environmental and indicator
attributes prior to anomaly detection, where environmental attributes correspond to
the contextual attributes in (Chandola et al., 2009) and indicator attributes corre-
spond to the behavioural attributes in (Chandola et al., 2009). In (Hauskrecht et al.,
2010) an approach for clinical alerting is proposed that, in addition to variables like
medication given at certain points in time, considers the condition of the patient at
that time.

Subsequence anomalies are the easiest to detect, since detection is based upon com-
parison of one instance against some threshold. One approach in anomaly detection
is trying to transform complex anomalies to subsequence anomalies, which allows for
simpler anomaly detection mechanisms. Contextual anomalies for example can be
transformed into subsequence anomalies, if the dependencies between the univariate
time series can be mapped to features.

50

Chapter 3 Anomalies and anomaly detection

3.4 Anomaly detection

As anomalies may point to potential faults, literature about fault detection is surveyed
in this section to illuminate the techniques used in this research field followed by
techniques that could be used for fault detection.

According to (Venkatasubramanian et al., 2003c) fault detection is always based on
some kind of redundancy. Hardware redundancy uses redundant signals in a system
to check for plausibility, e.g. using two sensors measuring the same value (Hwang
et al., 2010). Analytical redundancy uses mathematical models. Model-based fault
detection generates residuals, i.e. the differences between the observed values and the
values calculated by a model (Hwang et al., 2010). From the residuals, faults are
determined. The residuals are expected to be close to 0 if the system is in a fault-free
state (Hwang et al., 2010).

Among the most important properties of a fault diagnostic system, (Venkatasubra-
manian et al., 2003c) identifies the capability to detect faults that were not modelled.
Further important properties are identified, like high user confidence into the system’s
classification accuracy, an error estimate enabling to come up with a confidence level,
and that the modelling effort should be as minimal as possible.

Following (Venkatasubramanian et al., 2003c), fault detection ranges from accurate
modelling to not using any model but strictly relying on historical data. (Venkata-
subramanian et al., 2003c) categorises fault detection into quantitative model-based
methods, qualitative model-based methods, and process history based methods. While
quantitative models are based on mathematical formulations, qualitative models use
qualitative knowledge (Venkatasubramanian et al., 2003a) such as a knowledge base
consisting of pre-defined if-else rules or a fault tree (Venkatasubramanian et al., 2003a).
In (Venkatasubramanian et al., 2003b) fault detection and diagnosis techniques are dis-
cussed that rely on historical data. From the historical data, features are extracted.
This corresponds to a machine learning approach.

51

Chapter 3 Anomalies and anomaly detection

In (Venkatasubramanian et al., 2003c) the conclusion is drawn that quantitative model-
based methods are often not applicable in industrial applications due to the high
dimensionality of the data, the system’s complexity and non-linearity.

For techniques relying on historical data, the problem is identified that typically no
data set with all faults is available that would allow to fully learn the fault behaviour.
On the other hand, data sets with normal behaviour are usually available (Venkata-
subramanian et al., 2003c).

The process of fault detection is sketched in (Venkatasubramanian et al., 2003c) as
follows. The input variables are referred to as the measurement space, which is mapped
to feature space using a priori knowledge (e.g. feature selection). This mapping follows
the assumption that the input variables can be better classified in the selected feature
space. Based on the feature space, some function is used to come up with decisions.

Fault detection is one part of fault diagnosis which comprises fault detection and
fault isolation (Isermann, 2006). In (Isermann, 2006) two ways of fault diagnosis are
distinguished, where the latter one corresponds to a machine learning approach:

1. theoretical modelling: creation of a model based on mathematical formulations

2. experimental modelling: learning from measurements, possibly starting with a
priori knowledge

According to (Isermann, 2006), model-based fault diagnosis approaches are not fea-
sible for highly complex applications, due to the models’ complexity. In those cases
data driven fault diagnosis can be utilised using measurements of a process in normal
operation.

3.4.1 Anomaly detection techniques

Anomalies in time series can either be detected in the raw time series or based on
features extractable from time series data. The raw time series can be pre-processed

52

Chapter 3 Anomalies and anomaly detection

in order to reduce the dimensionality (Han and Kamber, 2006) or transformed to an
alternative representation (Keogh and Lin, 2005). Various approaches for anomaly
detection that can be used for time series data, have been proposed in the literature.
Some examples are listed here:

• User-driven techniques: Anomalies can be manually detected by domain experts
supported by intelligent ways of presenting the data (Theissler et al., 2010).

• Instance-based techniques: Instance-based techniques like k-nearest neighbour
(k-NN) can be used to classify unseen data to one of the classes normal or
abnormal (Hodge and Austin, 2004). Classification is based on the distances to
instances in a knowledge base. Either the entire time series or feature vectors
can be stored in the k-NN knowledge base. An advantage is that the calculated
distance can be used as an anomaly score.

• Rules or decision trees: Using Allen’s interval logic (Allen, 1983), temporal rules
can be discovered (Hoeppner, 2002) and a set of rules or a decision tree (Mitchell,
1997) be created. Instances not obeying the rules can be classified as abnormal.

• Statistical methods: Normal and abnormal data can be distinguished by mod-
elling the probability distribution functions of the normal data and the faults.

• Clustering techniques: Clustering techniques like k-means can be used to find
clusters of normal data (Hodge and Austin, 2004; Mitsa, 2010).

• Artificial neural networks: Artificial neural networks (ANNs) (Bishop, 1995) can
either be used in feature space to distinguish between the normal and abnormal
class or on the raw time series by predicting future values and evaluating the
prediction error.

• Hidden Markov models: Hidden Markov models (Laxman and Sastry, 2006) can
be used to determine whether the order of subsequences is normal.

• Limit checking (Isermann, 2006): In univariate time series faults can be detected
by limit checking, i.e. based on minimum and maximum thresholds. More

53

Chapter 3 Anomalies and anomaly detection

advanced techniques monitor trend, mean value and variance. Limit checking
can be improved using adaptive thresholds, i.e. adapting the threshold to the
current operation mode.

• Signal models: Fault in periodic signals can be detected using Fourier analysis.
For non-periodic signals, short-time Fourier transformation or wavelet transfor-
mation can be utilised (Isermann, 2006).

• ARMA models: ARMA models (Laxman and Sastry, 2006), also referred to
as Box Jenkins-models, can be used to fit a model to either the entire time
series or subsequences. Anomaly detection can then be done based on distances
between the model parameters or on the probability that a certain model created
a sequence. It was shown to work in (Deng et al., 1997), but is not viewed as a
promising approach because the order and the coefficients of the models have to
be determined.

• Application-specific models: Application-specific models describing the correct
system behaviour can be used. The creation of the models can be complex de-
pending on the application. Detection is based on the comparison between the
behaviour of the process with the behaviour of the application-specific model.
The difference is referred to as residuals. The underlying assumption is that a
fault introduces a detectable change to these residuals (Isermann, 2006). Alter-
natively fault models can be used.

3.4.2 Discussion

From the discussion on fault and anomaly detection, the following two issues are
identified as most important: (1) the capability to identify unknown or unmodelled
faults and (2) the statement that fully modelling a process is infeasible for complex
systems. This should guide the creation of an anomaly detection system throughout
the subsequent chapters.

54

Chapter 3 Anomalies and anomaly detection

Two further distinctions between anomaly detection techniques are viewed as impor-
tant for this Thesis: whether the detection technique can be used for online- or offline
detection and if it outputs a class label or a continuous anomaly score.

It is a crucial difference whether the anomalies are to be detected in an online manner,
or offline on previously recorded data. Online detection puts real-time constraints
on the detection system. The detection must not be time consuming, which restricts
the choice of the technique to a subset of the known anomaly detection approaches. If
e.g. machine learning approaches are used, the training period may be computationally
expensive but not the detection process. So for example a decision tree could be learnt
using a training set. During evaluation of unseen data instances, only a few simple
tests need to be done on the data instance in order to determine the branches of the
learnt decision tree.

This Thesis focuses on the evaluation of previously recorded time series. Therefore,
it focuses on offline anomaly detection, i.e. there are no real-time constraints on the
detection process. This means that anomaly detection techniques, where the detection
process is computationally expensive, may be taken into account.

Anomaly detection techniques differ in the type of the provided output. One type
of output is a label stating whether a data instance is normal or abnormal. Looking
at two detected anomalies, no statement can be made in terms of which one is more
relevant.

In contrast to providing just one of two labels, some techniques return an anomaly
score. The anomaly score is a figure to rank the anomaly, which can be a distance,
a confidence value or an application-specific figure. Normal and abnormal data can
then be distinguished by introducing a threshold.

Having an anomaly score attached to each data instance is particularly advantageous
when many anomalies are expected to be reported. Based on the anomaly score the
presented anomalies can be ordered and thereby prioritised. The number of results
can easily be reduced by simply altering the threshold – adaptively or user-defined.
Therefore an anomaly score is desirable.

55

Chapter 3 Anomalies and anomaly detection

3.5 Conclusion

Finding anomalies can be done in a user-driven, interactive way, which in this Thesis
is referred to as interactive anomaly detection. The user manually detects anomalies
based on knowledge and experience using an intelligent computer system to support
the investigation. The user is required to have a deep understanding of the time series
to be investigated, i.e. she/he has to be a domain expert and has to be familiar with
the detection system.

In contrast, semi-autonomous or autonomous approaches work by either manually pre-
configuring a knowledge base or by learning from historical data. When learning from
historical data, as a first step, knowledge is extracted from a training data set. The goal
is to extract knowledge in a way to be able to classify unseen data. Subsequently a test
period is conducted using a test data set containing instances with known class labels
to evaluate the classification results. The training and test period may be repeated
several times in order to optimise parameters or the constitution of the training data
set. Based on the extracted knowledge, unseen data is classified as normal or abnormal
in the performance period.

Summarising, approaches to detect anomalies can be categorised by the level of user
interaction required during anomaly detection:

1. interactive anomaly detection: The user manually detects the anomalies based on
her/his domain knowledge and experience, supported by an intelligent computer
system.

2. semi-autonomous anomaly detection: A system suggests anomalies, the results
are evaluated by a domain expert during the entire operating time.

3. autonomous anomaly detection: After initial learning or configuration, a system
fully autonomously classifies instances as normal or abnormal.

56

Chapter 3 Anomalies and anomaly detection

In the next chapter, interactive anomaly detection utilising visual data mining tech-
niques is introduced. Following that, autonomous anomaly detection is investigated
in Chapter 5 and an approach is proposed in Chapter 6 and Chapter 7.

57

Chapter 4

Interactive anomaly detection

This chapter introduces visual data mining as a user-driven approach for
anomaly detection. By conducting case studies with real-world data, it is
shown how the analysis of test drive recordings can be improved. Conclu-
sively, the shortcomings of a user-driven approach are discussed.

In this chapter, visual data mining techniques are surveyed and an adapted approach
for the detection of anomalies in time series is proposed. The user-driven analysis
of recordings from vehicle tests and long-term traffic measurements is shown in case
studies. Some of the results were published by this Thesis’ author in (Theissler et al.,
2010) and (Theissler et al., 2011).

4.1 Surveying visual data mining

In a survey paper on visual data mining (Ferreira and Levkowitz, 2003) the authors
state that the presence of temporal dimensions in the data is a determinant factor for
the appropriate visual representation technique. Proper visualisation techniques can

Chapter 4 Interactive anomaly detection

support the user during interactive exploration of the data (visual data exploration).
Furthermore, visualisation can be used for classical data mining tasks like cluster
detection, classification or pattern discovery, and hence can be used for anomaly de-
tection.

Numerous different techniques are known starting with standard 2D- or 3D-plots or
charts as known from calculation tools to geometric techniques or iconic displays. In
(Keim, 1997) Keim gives a variety of examples: Geometric techniques are concerned
with multidimensional data, data that cannot be visualised using e.g. standard x/y
plots. The landscape technique for example visualises the data as a perspective land-
scape. The parallel coordinates technique (Few, 2006) maps the dimensions of the
data to axes in a chart. Further techniques are scatter plot matrices relating time
series pairwisely.

Following the definition of Fayyad (Fayyad et al., 1996), knowledge discovery is the
“nontrivial process of identifying valid, novel, potentially useful, and ultimately under-
standable patterns in data”. This can for example be done in an automatic manner
by applying data mining algorithms (Han and Kamber, 2006), or using application-
specific models, or in an interactive way by integrating the user into the process. In this
chapter the latter one is described and referred to as interactive anomaly detection.

The term information-seeking mantra, which could be described as the steps to be
taken to discover knowledge (Fayyad et al., 1996) from visualised data in general, was
introduced by Shneiderman in (Shneiderman, 1996). Keim related this principle to
visual data exploration in (Keim, 2001), where the exploration process takes place in
an interactive way.

In the survey paper (Ferreira and Levkowitz, 2003), the evolution from visual data
exploration to visual data mining is discussed. The more recent term visual analyt-
ics was introduced in (Thomas and Cook, 2005), which is defined as the science of
analytical reasoning facilitated by interactive visual interfaces.

Although there is a variety of visualisation techniques, meaningful visualisation tech-
niques for multivariate time series data with many variables are rare. Most of the
current visualisation techniques were not especially developed to be applied on time

60

Chapter 4 Interactive anomaly detection

series data or use only a few time-dependent variables. For the analysis of multivariate
time series, enhanced visualisation techniques are required.

4.2 Enhancing visual data mining for anomaly

detection

The classical way to visualise time series data is to plot line graphs, where the values
are plotted as a function of time. If several data items are to be visualised, this typically
leads to overplotting and relating several variables is not possible. In recordings from
test drives there is a variety of different time series that have to be related.

In order to detect anomalies in an interactive manner, techniques from the field of
visual data exploration (Ferreira and Levkowitz, 2003) and temporal data mining (An-
tunes and Oliveira, 2001; Mitsa, 2010) were identified to be most promising. Existing
techniques were adapted and enhanced in order to cope with multivariate time series
data, so that the data can be visually related or queried. For example outliers within
one of the univariate time series, deviations in the relationship of multiple dependent
time series, or unexpected correlations between independent univariate time series can
be detected.

In this chapter an interactive approach is proposed that is designed to work on time
series data. The approach combines the two existing visual data mining techniques
“parallel coordinates” (Inselberg, 1985) and “scatter plot matrix”(Keim, 2002). The
two techniques are enhanced to cope with multivariate time series data and to enable
the user to formulate sophisticated filtering and querying operations. This is combined
with a time series query tool that allows to graphically formulate a search pattern that
is searched in the recordings based on shape-based distance measures. Additionally,
a variety of techniques to pre-process and transform the input time series are inte-
grated.

61

Chapter 4 Interactive anomaly detection

4.2.1 Relating time series pairwise: Enhancing scatter plot

matrices

Visually relating two variables can be done using a scatter plot, where each attribute
is mapped to one Cartesian axis. For several variables a so called scatter plot matrix
can be used, which consists of a matrix of pairwise projections of the attributes as
shown in Figure 4.1.

Information about time is not contained in those individual x/y-diagrams. Visualising
several time series using scatter plot matrices will therefore enable the user to detect
anomalies in the pair-wise dependencies between signals, but without being able to
draw conclusions about the point in time.

The idea of a scatter plot matrix was enhanced in this Thesis by a number of features:
data points in one of the x/y-plots can be highlighted by the user by drawing a
rectangle in one of the x/y-plots. Each data point is identified by its timestamp.
Based on the timestamp, the highlighting is propagated to the values of all time series
in the remaining x/y-plots. Sophisticated queries can be formulated incrementally by
allowing subsequent operations to be linked by the Boolean operators AND, OR and
NAND which allows to interactively search for interesting parts in the data by refining
or extending the currently highlighted data points. If a high number of data points
is highlighted, it is beneficial to highlight the data points using a colour gradient, in
order to distinguish the data points.

Depending on the number of data points and size of the display up to fifteen different
attributes can be related that way. The relation though is strictly done pairwise.
However, in recordings from a vehicle, one signal is often dependent on a combination
of several variables.

4.2.2 Relating n time series: Enhancing parallel coordinates

Relating n variables can be done using parallel coordinates, introduced by Inselberg in
(Inselberg, 1985). In this Thesis, an enhancement of parallel coordinates is proposed

62

Chapter 4 Interactive anomaly detection

Figure 4.1: Scatter plot matrix relating the signals engine rpm, vehicle speed, and
throttle position from a test drive. All data points where the vehicle speed
was greater than 90 km/h are highlighted.

63

Chapter 4 Interactive anomaly detection

to cope with the time series data from recordings of test drives. Relating n time series
of equal length d is done by drawing n+ 1 parallel axes. The time stamps are mapped
to the first axis and each time series is mapped to one further axis. The values are
mapped to the corresponding position on the axes, starting with low values at the
bottom of the screen, and then connected by line segments as shown in Figure 4.2.

Figure 4.2: Mapping of multivariate time series with 3 signals and 5 time stamps T1
. . .T5 to parallel coordinates.

A parallel coordinates plot of a large data set leads to a visualisation that does not
reveal useful information due to massive overplotting. One way to cope with this is to
draw transparent lines. This is done using the α-channel of the colour (Wegman, 2003).
Ranges with a high density of data items get coloured in a more intense way while
the remaining parts appear transparent. Data distribution, general dependencies, and
outliers can be spotted this way as can be seen in Figure 4.3.

In addition, colouring the data items of the parallel coordinates plot using a colour
gradient (Wegman, 2003) w.r.t. a selected dimension leads to a visualisation that
allows the overall-structure of the data to be recognised. The level of transparency as
well as the axis the colour gradient is based on, can be interactively influenced by the
user.

A value range can be selected and thereby highlighted by the user (Few, 2006), referred
to as brushing. Individual brushing operations work on selected axes. In this Thesis,
the enhancement was made that consecutive brushing operations can be linked by
Boolean operators. The Boolean operators are applied to the set of currently brushed

64

Chapter 4 Interactive anomaly detection

Figure 4.3: Parallel coordinates with transparent items showing which value ranges
were dominant during one test drive.

data items and the data items contained in the current brushing operation. This way,
sophisticated queries can be formulated on a time series data base. For example in
Figure 4.4, all data points where the vehicle was in the 3rd gear while going between
40 and 50 km/h are shown. The query was formulated as follows:

1. the velocity signal is in the range of 40 . . . 50 km/h

2. AND the vehicle is in the 3rd gear

The highlighted data items can be coloured based on a colour gradient in order to
distinguish the individual data items. In order to focus on the relevant parts of the
data, brushed or unbrushed data items can be removed.

As opposed to visual analytics tools for the analysis of unstructured data, working on
time series allows to integrate functions defined for time series like differentiation, inte-
gration, point-wise arithmetic, and time series distance measures (Moerchen, 2006).

65

Chapter 4 Interactive anomaly detection

Figure 4.4: Parallel coordinates with Boolean brushing operations applied to highlight
subsequences where the vehicle’s velocity is in the range of 40 . . . 50 km/h
and the vehicle is in the 3rd gear.

4.2.3 Time series pattern query: Searching for patterns in

univariate time series

An approach, inspired by (Wattenberg, 2001), was developed that allows to query a
time series data base for a user-specified search pattern. The search pattern can be
formulated graphically as can be seen in the left panel at the bottom in Figure 4.5.
The found matches are marked in the input time series as shown in the top panel in
Figure 4.5.

The search pattern is moved over the input time series and the distances for each time
point are calculated. The two common distance measures Euclidean distance (Mitsa,
2010) and dynamic time warping (Mitsa, 2010) are used. The Euclidean distance is
calculated point-wise and summed up as given in eq. (4.1). Small misalignments on
the time axis, e.g. a stretched pattern, lead to a big distance. The way the Euclidean
distance is calculated between a search pattern and an input time series is graphically
shown in Figure 4.6.

66

Chapter 4 Interactive anomaly detection

Figure 4.5: Graphically formulating a query for a specific driving manoeuvre where a
right curve is followed by a left curve.

D(XT1, XT2) =

√√√√ n∑
i=1

(XT1ti
−XT2ti

)2 (4.1)

To assign smaller distances to patterns that are similar but differ in length, dynamic
time warping (DTW) is used, where the distance is not calculated strictly pairwise,
but neighbouring data points are considered as well. The calculation of the distance
is visualised in Figure 4.7(a). The DTW distance is the smallest distance between
two time series taking into account misalignments. It is determined by the so-called
warping path illustrated in Figure 4.7(b).

If not the absolute values of the search patterns are relevant, but rather the shape,
the time series can be searched for multiple scaled versions of the search pattern.
In (Furnas and Buja, 1994) the authors propose to use a scaling factor l and create
variations of the given time series in the interval [l,1

l
]. Additionally, the input time

series can be transformed to an alternative time series representation – e.g. the sym-
bolic representation SAX (Keogh et al., 2006), which allows to develop faster search
algorithms.

67

Chapter 4 Interactive anomaly detection

Figure 4.6: Euclidean distance between a search pattern (black, dashed line) and an
input time series (green, solid line).

(a) Distance between a search pattern
(black, dashed line) and an input time
series (green, solid line) calculated
with DTW.

(b) The warping path to calculate the
DTW distance.

Figure 4.7: Distance between a search pattern and an input time series calculated with
the dynamic time warping distance measure.

68

Chapter 4 Interactive anomaly detection

4.2.4 Interaction between the techniques

The key to the interpretation of the recordings is linking the techniques and propa-
gating selected data items between the visualisations as illustrated in Figure 4.8.

Figure 4.8: Interaction between the used visual data mining techniques.

The combination of the parallel coordinates plot with a scatter plot matrix offers
functionality like the identification of outliers in the scatter plot matrix and the prop-
agation of the highlighting to the parallel coordinates plot or vice versa. This way, the
benefits of both techniques can be used.

The additional integration of the tool to graphically query a time series for a search
pattern offers the additional benefit of being able to formulate very specific shape-
based search queries. The search results can be highlighted in the parallel coordinates
or scatter plot matrix and can thereby be refined by applying the Boolean brushing
operations, or the results can be related to further signals.

4.3 Experimental results on real data sets

The section discusses how the introduced visual data mining techniques can be used
for the detection of anomalies. To investigate the effectiveness of the approach, ex-
perimental results are shown on data recorded during test drives with a vehicle, data
from a HiL system, and on traffic measurements.

69

Chapter 4 Interactive anomaly detection

4.3.1 Case studies based on recordings from an in-vehicle

network

In this section, experimental results obtained from applying the visual data mining
techniques to real-world measurements from in-vehicle networks are presented. It is
shown, how the visual data mining techniques can be used for detailed analysis of one
or multiple recordings.

4.3.1.1 Description of the data sets

In the remainder of this section, recordings from an in-vehicle network are analysed.
The data was recorded from the CAN-bus (see Section 1.2) during test drives with a
vehicle or from a HiL-system. In order to obtain a common time base and equidistant
time series, the data was resampled prior to the analysis. Approximately 10 minutes
of a recording from a test drive are shown in Figure 4.9, where a pre-selection of 6
signals is plotted. The plot shows the vehicle’s velocity, absolute value of the steer
angle, yaw rate, gear, and wheel speeds of the rear wheels.

4.3.1.2 Case study: Querying a recording of a test drive

A recording from a vehicle with automatic transmission is investigated. As part of the
user-driven fault detection, all subsequences in the recording shown in Figure 4.9 are
searched, where the gear is changed while the vehicle is going through a curve.

From the recording, the relevant signals are extracted and visualised using the en-
hanced parallel coordinates, where each signal results in one axis. Utilising the high-
lighting mechanism with Boolean operators yields the result set after four steps. The
following query was iteratively formulated:

1. copying and derivation of the signal holding the gear

2. selection of the entire range of gears

70

Chapter 4 Interactive anomaly detection

Figure 4.9: Recordings from an in-vehicle network from a test drive.

3. refining of the selection to all values where gearderived
!

= 0

4. further refining of the selection to all values where the vehicle is going through
a curve, i.e. where the absolute value of the steer angle is � 0

The search results are highlighted in Figure 4.10. From the first axis it can now be seen
that the requested search pattern occurred four times and it was only geared down
from third to second gear. In addition, the difference of the wheel speeds between left
and right rear wheel, while the gear was shifted can be seen from the axes “wheel left”
and “wheel right”.

To keep this example simple, a recording of just 10 minutes was used. When applying
this query mechanism to recordings of several hours it becomes especially powerful for
user-driven data analysis.

71

Chapter 4 Interactive anomaly detection

Figure 4.10: Parallel coordinates highlighting all changes of the gear, where the vehicle
was going through a curve.

4.3.1.3 Case study: Timing analysis of recordings from an in-vehicle network

Using parallel coordinates, a new way is proposed to present the timing behaviour of
the entire in-vehicle network at one glance.

The ECUs inside the vehicle communicate by sending messages on the bus system.
The majority of messages on the CAN bus is sent in a cyclic manner, following a
pre-defined cycle time. Real-time operating systems are running on the ECUs with
scheduled tasks reading signals, calculating results and sending the results on the
bus. Failure to meet the given timing requirements can result in failure of a vehicle
function.

The CAN bus (Mayer, 2010a) is not deterministic, the message priority on the bus is
based on the message id. A systematic jitter is observable for cyclic messages.

In order for a vehicle function to work properly, the properties of the operating system
task, the wall clock time of the algorithm running in the task and the message priority
on the bus system need to be adjusted. An improper constellation of these parameters
is one reason for erroneous deviations from a pre-defined cycle time. The deviation

72

Chapter 4 Interactive anomaly detection

could occur for certain operating points of an ECU, if for example an algorithm’s wall
clock time exceeds a pre-defined tolerance for certain input values.

The data for this experiment was recorded from a HiL-system. For each message the
time stamp, message id, cycle time, and length of the payload is available. Based on
this data further attributes are deduced in a pre-processing step. The following data
items are deduced and plotted as shown in Figure 4.11.

1. time stamps of messages

2. time span between two consecutive messages

3. time span between two messages with same id

4. deviation from cycle time in µs

5. deviation from cycle time in %

6. cycle time

7. CAN id

8. length of payload (DLC)

Timing deviations for all messages can be detected by highlighting deviations from
cycle time by more than 10% with a colour gradient (green, yellow, red), where the
deviations marked in red are most critical (see Figure 4.11). For further analysis, the
message ids and the point in time can be deduced from the highlighted fraction of
the data. As a consequence, it is now possible to see if timing violations occurred for
specific message ids, for certain lengths of the payload or during a certain time span.

Further analysis showed that for one of the messages the cycle time was incorrectly
configured at the HiL test stand. In addition there was a burst of timing violations at
the end of the recording, which was caused by shutting down the test run while still
recording.

73

Chapter 4 Interactive anomaly detection

Figure 4.11: Timing analysis of in-vehicle network traffic recorded from a HiL test
stand. The time stamps, data length, and can identifier of messages
violating the cycle time can be identified.

74

Chapter 4 Interactive anomaly detection

4.3.1.4 Case study: Detecting abnormal driving situations throughout various
test drives

The previous case study worked on one individual recording. A challenge often en-
countered is the need to include various recordings into the analysis. In this case study,
the recordings of four test drives are included. The four recordings are imported and
an additional axis holding the number of the recording is generated. In order to get
a quick overview, the data items are coloured following a colour gradient [blue, green,
yellow, red], based on the axis holding the steer angle.

The relation between the steer angle and the vehicle’s yaw is usually anti-proportional,
in other words the direction of the vehicle follows the steering wheel angle. When the
vehicle is going through a left curve, the steering wheel angle is a negative integer,
the yaw in turn is a positive integer. A deviation from this relation can be detected
following some of the red lines connecting high values on the axes holding the steer
angle and the axis holding the yaw signal, marked in Figure 4.12.

In order to focus on this anomaly, the data items are selected using the subsequent
brushing operations:

1. steering wheel angle right

2. refining selection to values where the yaw rate indicates that the vehicle was
turning left

3. further refinement by excluding the data points where the vehicle acceleration is
close to 0

From the resulting visualisation shown in Figure 4.13 it can be seen that the searched
constellation occured in two of the test drives. One of the test drives was conducted
on icy road conditions, so the vehicle was sliding at that point in time. The second
occurrence points to a situation where a steering maneouvre to the left was abruptly
followed by a steering maneouvre to the right.

75

Chapter 4 Interactive anomaly detection

Figure 4.12: Parallel coordinates with a colour gradient showing the structure of the
data. An abnormal deviation of the anti-proportional dependency be-
tween the steering wheel angle and the yaw signal can be detected.

Figure 4.13: Isolating abnormal driving situations by querying using Boolean
operators.

76

Chapter 4 Interactive anomaly detection

4.3.1.5 Case study: Querying for specific driving manoeuvres

If specific patterns are known, e.g. profiles of one of the signals, the recordings can
be queried as shown in this case study. In order to find all occurrences of right curves
followed by left curves, the user graphically defines a search pattern based on the signal
holding the steering wheel angle.

The distance between the search pattern and the steer angle signal is calculated for
each data point, which results in a distance vector. The user configures the allowable
deviation from the search pattern by adjusting a threshold. Two occurrences were
detected and are marked as matches in Figure 4.14.

Figure 4.14: Search results for right curves followed by left curves.

4.3.1.6 Case study: Anomalies in dependent signals

In Figure 4.15 the vehicle’s velocity, revolutions, steering wheel angle and the wheel
speed left and right are put into relation. From the visualisation it becomes obvious
that the speed of the right wheel was stuck at 255 for a short period of time marked
with a circle. This error was manually injected into the data set and could have been
caused by an erroneous sensor or a software fault.

77

Chapter 4 Interactive anomaly detection

Figure 4.15: Dependency between speed of left and right wheel is violated for a short
period of time (marked red).

4.3.2 Case studies on long-term traffic measurements

The case studies in this section are based on real-world traffic data. The data set is
higher-dimensional than the ones used in Section 4.3.1.

The following will be shown: (1) the detection of errors in the underlying detector
network, (2) the identification of problem sections on a motorway based on long-term
measurements, and (3) the detection of abnormal traffic situations.

Detection of anomalies in the traffic measurements can have several goals: either
to investigate atypical traffic behaviour in a goal-oriented manner or to remove the

78

Chapter 4 Interactive anomaly detection

Figure 4.16: Enhanced parallel coordinates showing one hour and three detectors

anomalies in order not to consider them in the deduction of general statements about
the traffic behaviour for a given road section.

4.3.2.1 Description of the data set

The data was recorded between November 2009 and January 2010 by 33 stationary
loop-detectors positioned non-equidistantly at a 40 km long section of a German mo-
torway. The detectors measure the velocities and quantities of passing vehicles in one
direction of the motorway 24 hours a day with a sample rate of one minute. The
vehicles’ velocities were used resulting in approximately 4 million data points.

4.3.2.2 Introductory example

In Figure 4.16 a small subset of the data is visualised using the enhanced parallel
coordinates. The velocity values of three of the 33 detectors are visualised over a
period of one hour. Additional information was added in dark blue indicating how the
time, the location, and the vehicle speed are illustrated in the plot.

The first vertical axis in Figure 4.16 shows the timestamps, 8.00 a.m.-8.59 a.m. of
one pre-selected day in this example. Each of the remaining vertical axes shows the
velocities measured by one detector in that period. The location of the individual

79

Chapter 4 Interactive anomaly detection

detectors is shown in horizontal direction. The axes holding the velocities are ordered
in a way that a vehicle would pass the detectors from the most left axis to the most
right axis. Each of the axes is labelled according to the detector’s position, so for
example the axis labelled ’081.9_v’ shows the velocities measured by the detector at
motorway position 81.9 km.

Each line connecting the axes from left to right corresponds to the vehicles’ velocities
at one point in time. The three axes holding the velocities are aligned to have a
common minimum and maximum value, i.e. one horizontal line connecting the axes
would correspond to equal velocities at all detectors. In order to be able to distinguish
the temporal and spatial information, the detector axes are indicated by a black square
at the bottom of the axis. Axes without a black square hold the temporal information.
Due to the fact that the detectors output one velocity value per minute and one hour
is contemplated, there are 60 lines connecting the axes in this example.

The benefit of the parallel coordinates plot is the possibility to easily formulate queries
by highlighting selected data items. In Figure 4.16, the data set was queried to show
velocities below 30 km/h at the detector at 81.9 km, indicated by the rectangle on the
bottom of the second axis. The brushed data items are coloured in green. Following
the green lines, two statements can be deduced in this example plot: (1) at which
points in time the low velocities occurred and (2) what the velocities were at that time
at the remaining two detector positions.

4.3.2.3 Mapping of raw data to the visualisation

The mapping of the data to the vertical axes in the enhanced parallel coordinates
visualisation is crucial and can be done in various ways. A first approach could be to
plot three axes: one axis holding time stamps, a second axis holding the detectors, i.e.
the spatial information, and a third axis holding the velocities. Due to the high data
volume mapped to only three axes, this results in heavy overplotting. Therefore, the
temporal information is plotted in vertical and the spatial information in horizontal
direction as one axis per detector as shown in Figure 4.16.

80

Chapter 4 Interactive anomaly detection

The time span between 6 a.m.-10 p.m. was chosen to be visualised, resulting in
approximately 2.8 million data points. In addition, as opposed to plotting the raw
time stamps, the temporal information was pre-processed, allowing for more goal-
oriented queries. Mapping of the data to the vertical axes is done as follows (left to
right):

1. index of data set

2. year and month

3. day

4. time of day (6 a.m.-10 p.m.)

5. weekday (0 = Sunday, 1 = Monday, ..., 6 = Saturday)

6. 32 axes corresponding to 32 detectors in the range of 81.9 - 120.4 km. The axes’
positions on the screen from left to right correspond to the detectors’ positions
on the motorway in ascending order.

4.3.2.4 Case study: Detecting errors in the detector network

Relying on measured data from detectors, the evaluation of the underlying detector
network is essential. In a pre-processing step, invalid or unavailable detector values
were replaced with an error value of -10 km/h, the error value was chosen arbitrarily.

Highlighting the invalid values of one detector in Figure 4.17(a) shows that invalid
values occur very sporadically for this detector. In Figure 4.17(b) the invalid values of
a different detector were highlighted. A high number of error values becomes obvious
at the axis of the detector at position 117 km. The erroneous detector values were
highlighted using the brushing operation. The number of erroneous values can be
obtained this way: 2223 erroneous values were detected, corresponding to 3.9% or an
overall of 37 hours over the contemplated period of three months. As can be seen from
the plot, other detectors show abnormal values as well, but to a much lesser extent.

81

Chapter 4 Interactive anomaly detection

(a) Sporadic invalid values for one detector. (b) Frequent invalid values for multiple detec-
tors.

Figure 4.17: Evaluation of detector network by querying for abnormal values on two
detectors.

The erroneous detector values in Figure 4.17 correspond to a “subsequence anomaly
in a univariate time series” (see Section 3.3).

An evaluation whether the measured data of just one specific detector or a collection
of detectors is erroneous at a given point in time is also possible, allowing to deduce
conclusions about the cause of the error.

4.3.2.5 Case study: Identifying bottlenecks in a road-network

This case study has the goal to identify bottlenecks in a road-network. After the
removal of one unreliable detector, the aim was the identification of problem sections
on the motorway based on the time series data of the remaining 32 detectors.

The data set was plotted using transparent lines. Light grey lines correspond to
individual values, while dark regions express the majority of values. Interactively
adjusting the α-channel of the lines and thereby adjusting their transparency results
in the visualisation shown in Figure 4.18.

82

Chapter 4 Interactive anomaly detection

Figure 4.18: Identification of problem sections on a motorway.

Assuming that low velocities on a motorway indicate problems like traffic jams, valu-
able information can be deduced from Figure 4.18. Based on the contemplated three
months, the following problem sections were identified for the motorway (marked by
four red rectangles): 81 - 88 km, 98.8 km, 107 - 109 km, 115 km.

4.3.2.6 Case study: Detecting abnormal traffic situations

Investigating the reasons for traffic jams at specific locations requires to first identify
where and when they were observed. Hence, goal-oriented search for specific traffic
situations is beneficial. With the help of the introduced Boolean brushing operations,
queries for traffic jams at specific sections can easily be formulated. In Figure 4.19(a)
all traffic jams between position 95.4 km and 98.8 km were highlighted, by incremen-
tally querying the detectors’ axes for velocities ≤ 30 km/h. The resulting visualisation
in Figure 4.19(a) allows (1) to evaluate the frequency of traffic jams at that subsection
and (2) to obtain their points in time.

Contemplating the axis holding the weekday in Figure Figure 4.19(a) reveals the fol-
lowing: a small portion of the highlighted traffic jams occurred on a Saturday, which
is unexpected. Enhancing the query in order to only highlight the subset of jams that
occurred on a Saturday, results in Figure 4.19(b).

83

Chapter 4 Interactive anomaly detection

(a) Query for traffic jams at specific motorway
subsection.

(b) Refined query for abnormal jams on Satur-
days.

Figure 4.19: Queries for traffic jams.

From the plot two occurrences can be detected, both on Saturday 30th January 2010
(1) between 3.03 pm and 4.44 pm and (2) at 9.57 pm. The second occurrence was
only one minute long and is therefore viewed as an irrelevant outlier. Research on the
internet revealed the reason for the low velocities. On the 30th January 2010, there
were dramatic road conditions in Germany due to snow and ice.

The detected anomaly integrates several variables and is a “contextual anomaly in
multivariate time series” introduced as type 3 in Section 3.3.

4.4 Conclusion

In this chapter, visual data mining techniques were enhanced and applied to time
series data from the automotive industry. Parallel coordinates, scatter plot matrices
and a query mechanism for univariate time series were utilised.

With numerous experiments it was shown that the techniques are beneficial and allow
for user-driven anomaly detection. Aim 2 of this Thesis, decreasing the time needed
for manual analysis of test drive recordings (see Section 1.4), was reached.

84

Chapter 4 Interactive anomaly detection

Detection accuracies cannot be generally measured as the approach relies on expert-
knowledge. The user needs to have an understanding of the test drive data sets and
needs to be familiar with the visualisation techniques. The approach supports the
expert, but eventually relies on the expert to detect anomalies.

A problem that is inherent in all user-driven techniques is that the data analysis
becomes infeasible for a high number of recordings due to the time an expert can
spend for the analysis. An approach autonomously reporting anomalies would not
be limited by the availability of an expert. The autonomous detection of anomalies
using classifiers that are trained on training data sets will be addressed in the next
chapter.

Summarising, the visual data mining techniques introduced in this chapter are vital
for this research for following tasks:

1. user-driven anomaly detection as shown by the case studies

2. data reduction to focus on specific scenarios in test drives

3. selection of a training data set for autonomous classifiers

4. analysis of the results of an autonomous detection approach, leading the user
from reported anomalies to faults

In addition to these points, the techniques were crucial for the author’s own research
during this PhD. The development of an approach that works towards autonomous
detection of anomalies would not have been possible without the visual data mining
techniques. Only by their application was it possible to analyse the results, understand
and evaluate the classifier’s outputs, and understand the available training and test
sets as will be shown in Section 9.3.2.

85

Chapter 5

Anomaly detection as a
classification problem

This chapter discusses anomaly detection using classification techniques
that learn from training data. The topic machine learning is surveyed,
the fundamentals of classification theory are given, and common classifiers
are introduced. Finally the shortcomings of two-class classification for the
problem discussed in this Thesis are identified, and consequently one-class
classification is introduced.

As concluded in the previous chapter, a user-driven approach is error-prone and does
not scale well for large data bases of recordings. The underlying idea to reach Aim
1 of this Thesis (Section 1.4), pointing the expert to potential errors in test drive
recordings, is not to pre-configure search criteria, but rather extract knowledge from
available recordings from test drives and then to autonomously detect anomalies in
unseen data sets. This demands an approach capable of learning from sample data.
Therefore in this chapter the field of machine learning is introduced and anomaly
detection is discussed as a classification problem.

Chapter 5 Anomaly detection as a classification problem

5.1 Machine learning – learning from sample data

Following the definition of (Mitchell, 1997), machine learning is concerned with the
construction of computer programs that automatically improve with experience –
i.e. computer programs having the ability to learn. The tasks of machine learning
are manifold, e.g. classification, clustering, or prediction. This chapter focusses on the
task of classification.

Definition 5.1 Learning system: A system is said to have the ability to learn if for
a given task T , the performance P improves with experience E (Mitchell, 1997).

Applied to the field of anomaly detection, the task T corresponds to the detection of
anomalies. The performance measure P expresses a system’s ability to classify unseen
data instances correctly. The term experience E given in the definition corresponds to
the ability for generalisation from a given training data set. Best accuracy on unseen
data is reached, when the underlying process of the data is learnt rather than the
specifics of the training data set, a problem referred to as overfitting. When a highly
flexible decision boundary is learnt that tightly encloses each individual instance, the
decision boundary is likely to be overfitted to the training set.

The general steps in a machine learning system are illustrated in Figure 5.1. The first
step is the data acquisition step, which comprises obtaining and selection of data sets.
Optionally the input data can be pre-processed, for example by resampling or removal
of invalid data. Following that, a further optional step is the transformation of the
data set to an alternative representation that, for example, allows for better distinction
of classes or for more efficient processing. Examples are the mapping of the floating
point values of a time series to a limited number of digits or symbols, e.g. using
SAX (Keogh et al., 2006), or the transformation to frequency domain using Fourier
or wavelet transformation. Subsequently, a vital step is the extraction of features, a
machine learning algorithm can work on. As a final step, the features relevant for the
given machine learning task are selected.

88

Chapter 5 Anomaly detection as a classification problem

Figure 5.1: General steps in a machine learning system ranging from the acquisition
of data to the application of a machine learning algorithm.

The described steps are conducted in the so-called training period, where knowledge
is extracted from a training data set. The goal is to extract knowledge in a way
to be able to classify unseen data. Subsequently a test period is conducted using
a test data set containing instances with known class labels and the classification
results are evaluated. The training and test period may be repeated various times
in order to optimise parameters or the constitution of the training data set. Based
on the extracted knowledge, unseen data is classified as normal or abnormal in the
performance period. The training data set in feature space is denoted by A, the test
data set by B, and the unseen data set by C.

Machine learning algorithms are typically not applied on the raw input data, but
rather on extracted features. Features are an abstraction of the original input data,
characterising the data.

A data set in the original input space, i.e. the raw data set, is denoted by I and a data
set in feature space is referred to as F . The mapping function from original input
space to feature space, i.e. feature extraction, is denoted by φ. The mapping from
input to feature space is hence formulated as

89

Chapter 5 Anomaly detection as a classification problem

F = φ(I) (5.1)

An instance in the original input space is denoted by Iv and in feature space by Fv.
Fv is referred to as a feature vector, which is l-dimensional, i.e. it contains l features
f .

An example of an instance in input space Iv would be a univariate time series repre-
sented by its raw values. Mapping to feature space could be done by extracting statisti-
cal features (Mitsa, 2010), e.g. mean value and standard deviation. The representation
of Iv in feature space could then be the feature vector Fv = [µ, σ] = [3.42, 2.25]. In
that case, the mapping function Fv = φ(Iv) corresponds to the calculation of µ and
σ.

Features extractable from time series data can be categorised into statistical and struc-
tural features (Olszewski, 2001). Statistical features are based upon quantitative prop-
erties of the data, e.g. mean value, standard deviation, minimum/maximum value, me-
dian or binned frequency counts (histograms). Structural features on the other hand
describe the organisation of subpatterns (e.g. shapes) and their interrelationships in
the data. The ordering of the data is taken into consideration.

Adding more distinctive features contained inside the data during a machine learning
task can improve the classification accuracy, until a certain point is reached, where
the accuracy actually decreases. This is due to the phenomenon referred to as curse
of dimensionality which was found by Richard Bellmann (Bishop, 1995). As a rule
of thumb, adding dimensions requires the number of training samples to grow expo-
nentially, to avoid performance reduction. The number of training samples is often
limited, though.

90

Chapter 5 Anomaly detection as a classification problem

5.2 Two-class classification

Classification is the task of assigning an instance Cv to one of k classes ωc. The number
of classes and their labels are known beforehand.

The problem of anomaly detection can be viewed as a two-class classification problem
(Chandola et al., 2009). The task is to assign an unclassified instance from C to either
the normal class ωn or the abnormal class ωa based on a set of features f . Hence, this
chapter discusses two-class classification with the target class ωn and the outlier class
ωa.

The task of classification can also be described as learning a function that maps input
variables to a pre-defined set of output variables, i.e. the class labels. An example
would be the classification of a sensor signal as either normal or abnormal based on
the features mean value, standard deviation, minimum and maximum values.

The accuracy of classification results is expressed with a confusion matrix (Fawcett,
2004) based on classification results obtained from classifying a test data set with
known class labels as shown in Table 5.1. The confusion matrix consists of the true
negatives (TN), which in accordance with (Tax, 2001) is the number of abnormal
instances correctly classified as abnormal, the false positives (FP), the false negatives
(FN), and the true positives (TP).

Confusion matrix
Classification result

Class label Normal Anomaly
Normal TP FN
Anomaly FP TN

Table 5.1: Confusion matrix showing classification results with: TN = true negatives,
i.e. an anomaly classified as abnormal, FP = false positives, FN = false
negatives and TP = true positives.

Based on the confusion matrix, a variety of measures can be deduced. In this Thesis, in
addition to the results in the confusion matrix, the following measures from (Fawcett,
2004) are utilised:

91

Chapter 5 Anomaly detection as a classification problem

• True positive rate: The true positive rate (TPR) indicates whether a positive
instance is classified as positive. A true positive rate of 100% means that all
positive instances are classified as positive. It does not consider the fraction of
instances falsely classified as positive, though. It is calculated by

TPR =
TP

TP + FN
(5.2)

• True negative rate: The true negative rate (TNR) gives the percentage of de-
tected anomalies. It is given by

TNR =
TN

TN + FP
(5.3)

• Precision: The precision expresses the percentage of true anomalies in the result
set of all instances classified as anomaly. If all instances classified as abnormal
are anomalies, the precision is 100%. It makes no statement about what fraction
of anomalies were falsely classified as normal, though.

precision =
TN

TN + FN
(5.4)

Anomaly detection techniques based on classification approaches can be categorised
based on the properties of the training data set. The training data set can either
contain labelled instances from both classes – normal (ωn) and abnormal (ωa) – or
only from one of the classes, typically from the normal class. Additionally a training
data set may contain unlabelled instances only. This leads to the categorisation as
given in (Hodge and Austin, 2004; Chandola et al., 2009):

• supervised anomaly detection: The training data set contains labelled instances
from the normal and abnormal class. Unseen data instances are classified as
normal or abnormal.

92

Chapter 5 Anomaly detection as a classification problem

• semi-supervised anomaly detection: The training data set contains only normal
instances. The goal is to learn the normal behaviour. Data instances deviating
from the learnt normal behaviour are classified as anomalies.

• unsupervised anomaly detection: The training data set contains unlabelled in-
stances only. The underlying assumption is that normal instances are much more
frequent than anomalies. The frequent instances are classified as normal.

5.2.1 Fundamentals of classification

Statistical classification based on the Bayes theorem forms the fundamentals of clas-
sification theory. The goal of Bayesian learning is to minimise the probability of mis-
classification (Bishop, 1995). It is a probabilistic approach to machine learning based
on the assumption that the data obeys probability distributions. Either the proba-
bility distributions are known or they are estimated (Mitchell, 1997). For a given,
unclassified instance Cv, classification is conducted by determining the most probable
class ωc using the Bayes theorem:

p(ωc|f) =
p(f |ωc)P (ωc)

P (f)
(5.5)

• p(ωc|f): the posterior probability, i.e. the probability that when observing a
feature value of f the instance is of class ωc

• p(f |ωc): the probability density function (pdf), i.e. the probability of observing
the feature value f in instances of the class ωc, also referred to as the likelihood
(Duda et al., 2001)

• P (ωc): prior probability that an instance of class ωc will be observed in the data
set, also termed as the class-conditional probability (Duda et al., 2001)

• P (f): prior probability that a given feature value of f will be observed, also
referred to as the evidence (Duda et al., 2001)

93

Chapter 5 Anomaly detection as a classification problem

Figure 5.2: Probability density function p(f |ωn) for one class and one feature.

Contemplating one class ωn with one feature f and assuming a normal distribution
(Gaussian distribution) leads to a probability density function (pdf) as shown in Figure
5.2.

The probability density function p(f |ωn) shows how the values of the feature f are
distributed for class ωn, or formally stated: Given an instance is of class ωn, what is
the probability to observe a specific feature value f . The pdf p(f |ωn) sums up to 1 as
given by

∫ +∞
−∞ p(f |ωn) df = 1.

5.2.1.1 Probability density functions of two classes

An example of probability density functions of a normal class ωn and an anomaly
class ωa are illustrated in Figure 5.3. Instances can be classified by contemplating the
feature value f and assigning the class ωn for feature values < f0 and the class ωa for
feature values > f0 .

The case f = f0 can be handled either by arbitrary class assignment, by favouring one
class, or by rejection of a classification result. Yet, assuming a real-valued feature f
which of the suggested solutions is chosen is not very relevant for the classification
accuracy in practical considerations.

94

Chapter 5 Anomaly detection as a classification problem

Figure 5.3: Probability density functions of two classes ωn and ωa with no apparent
class overlap

5.2.1.2 Probability density functions of two overlapping classes

In Figure 5.4 the probability density functions of the two classes ωn and ωa are con-
sidered. The decision boundary is the feature value f0 , where the two pdf s intersect.
For feature values close to f0 , the instance could be of both classes, because there is a
region where the pdf s overlap.

The Bayesian classifier discriminates the two classes based on the feature value f by
classifying the instance w.r.t. the maximum a posterior probability (MAP), thereby
minimising the probability of misclassification:

p(ωn|f)

p(ωa|f)

{
> 1 ωn

< 1 ωa
(5.6)

5.2.1.3 Probability density functions of two massively overlapping classes

In Figure 5.5 the pdf s of two classes with massive class overlapping are shown. Ob-
viously the classification accuracy significantly decreases compared to the previous
examples.

95

Chapter 5 Anomaly detection as a classification problem

Figure 5.4: Overlapping probability density functions of two classes ωn and ωa

Figure 5.5: Massively overlapping probability density functions of two classes ωn and
ωa .

The classification accuracy may be unsatisfactory, so the question arises, what the
options are to improve classification accuracy for the two given classes. A vital fact is
that it is not a matter of finding a better classifier, as the class overlap is independent
of the classifier. The problem is rather that the selected feature does not sufficiently
discriminate the two classes ωn and ωa, or simply stated, the instances cannot be
classified well based on the one observed feature.

The solution is to add additional features to the classification problem. Only in trivial
classification problems, will one in fact be able to find a single feature that separates
the classes sufficiently well.

96

Chapter 5 Anomaly detection as a classification problem

Figure 5.6: Probability density functions of two non-equiprobable classes ωn and ωa

5.2.1.4 Probability density functions of two non-equiprobable classes

Finally, classes with unequal probabilities are considered. The two classes in the pre-
vious example shown in Figure 5.4 are equiprobable, which means that the probability
of observing an instance from class ωn and ωa is equal, i.e. p(ωn) = p(ωa) = 0.5. This
is referred to as a balanced classification problem.

In many classification problems this is not the case. This is particularly true for the
task of anomaly detection. The occurrence of anomalies (ωa) is typically much less
probable than the occurrence of normal behaviour (ωa), i.e. p(ωn)� p(ωa). Anomaly
detection corresponds to an imbalanced two-class classification problem. Figure 5.6
shows the same pdf s as given in Figure 5.4, but with unequal prior probabilities p(ωn)

p(ωa)
=

3
2
. As shown the prior probabilities influence the decision boundary f0 .

5.2.1.5 The Bayesian error

The region where instances are misclassified by the Bayesian classifier using the de-
cision boundary f0 as shown in Figures 5.4 - 5.6 is referred to as the Bayesian error
eBayes.

Misclassification takes place where the two probability density functions overlap. The
probability of misclassification, i.e. the Bayesian error eBayes, corresponds to the in-

97

Chapter 5 Anomaly detection as a classification problem

tersection area of the two probability density functions. Hence the Bayesian error can
be formulated as the following integral (Theodoridis and Koutroumbas, 2009):

eBayes =
1

2

∫ f0

−∞
p(f |ωa) df +

1

2

∫ +∞

f0
p(f |ωn) df (5.7)

Generally, the error rate of any classifier cannot be below the Bayesian error eBayes.
However, in an experiment, the measured error rate may be below the Bayesian error
for a small number of instances by randomly guessing correctly, but the error rate will
converge to the Bayesian error eBayes for a larger number of classified instances.

The Bayesian error eBayes lower bounds the error rate for any classifier. It is impor-
tant to note that the error is formulated independently of classifier properties, the
error exclusively depends on the properties of the data set in feature space F .

5.2.1.6 Discussion

In this section, the Bayesian error and classification based on the Bayes theorem
was introduced. It was shown that a classifier assigning the maximum a posteriori
probability according to the Bayes theorem is optimal in a sense that no classifier can
reach a higher classification accuracy in the given feature space F .

So the question arises, why one would use any other type of classifier. The answer is
that some strong assumptions were implicitly made in the introduction of the Bayesian
framework. The calculation of the Bayesian error eBayes according to eq. (5.7) as well

98

Chapter 5 Anomaly detection as a classification problem

as classification based on the Bayes theorem given in eq. (5.5), postulates that the
following properties are known:

1. the type of probability density functions

2. the statistical parameters of the probability distributions

3. the prior class probabilities

In the examples, a normal (Gaussian) distribution with known parameters µ and σ

was assumed. In practical applications the true distribution is typically not known,
because this would mean that the underlying process that generated the data is fully
understood and modelled mathematically correct. If this is the case, one would not use
a machine learning approach, but rather base the classification on the mathematical
model.

Further, the prior class probabilities have to be known for all classes, i.e. the true
probability that an instance is of class ωc. Thinking of one class as the anomaly class,
the class containing the potential errors, this would mean that the true probability of
a potential error has to be known a priori. This is unlikely to be known in practice.

So, is classification based on the Bayes theorem just a theoretical framework proving
to be useless in practical applications?

In fact, the Bayesian framework is fundamental for understanding classification. The
notion of the Bayesian error eBayes is useful, since it forms a lower bound for the error
rate that is classifier-independent. Also, there are situations where the required a
priori knowledge is known: For the evaluation of classifiers, often artificial data sets
are used, that were generated following some probability distribution. In that case,
the error rates of the evaluated classifiers can be compared to the Bayesian error.

Also for practical applications, classification based on the Bayes theorem can be used.
The required a priori knowledge, i.e. the probabilities, can be estimated from the data
set. The prior probabilities are estimated based on the frequency of instances of the
classes ωn and ωa. The probability density function is estimated by assuming some type

99

Chapter 5 Anomaly detection as a classification problem

Figure 5.7: From a given probability density function (blue) a data set is generated.
From the generated data set a histogram is calculated, and the probability
density function is estimated (red).

of pdf or testing several candidate pdf s. However, estimating probability distributions
becomes very challenging in high-dimensional space. Instances in high-dimensional
space are sparsely distributed, hence a high number of instances are required.

Based on these estimations, classification can be conducted and the Bayesian error can
be calculated. Since this error calculation is based on estimations, it is not equal to
the true Bayesian error eBayes. The quality of the classification and the accuracy of the
estimated Bayesian error depends on the quality of the estimations. If the estimations
are poor, the classification results will be poor as well.

In an experiment, estimating probabilities of one class is done on a training data set A
with 100 instances. A normally distributed 1-dimensional data set is generated with
µgenerated and σgenerated. Now the values µestimated and σestimated are calculated from the
generated data set assuming a normal distribution. The true and the esitmated pdf
are shown in Figure 5.7. The bigger the training data set, the better the estimation
will be, but in general µgenerated 6= µestimated and σgenerated 6= σestimated.

Estimating probabilities becomes harder for higher dimensional data sets, which can be
illustrated even for 2 dimensions, by contemplating a generated 2-dimensional data set
with two independent normal distributions, i.e. the covariances are 0. The underlying
pdf is shown in Figure 5.8(a). The properties of the generated data set differ as
can be seen in the 2-D histogram determined from the generated data as shown in
Figure 5.8(b). One could correctly assume two normal distributions, but based on the
histogram, other probability distributions could be estimated as well.

100

Chapter 5 Anomaly detection as a classification problem

(a) Probability density function of a two-
dimensional data set with independent nor-
mal distributions.

(b) Histograms of a generated two-dimensional
data set following an underlying probability
density function.

Figure 5.8: Estimation of the probability density function from a generated data set.

It should be noted that there are more advanced methods for estimating the pdf ,
instead of just assuming a normal distribution (Duda et al., 2001), e.g. using a mixture
of Gaussians.

101

Chapter 5 Anomaly detection as a classification problem

5.2.2 Linear classifiers for anomaly detection

Linear classifiers work by determining a linear function that separates the classes ωn
and ωa in the training data set A and classify an unseen instance Cv by determining on
which side of the decision function it is. Decision functions will be denoted by d(F).
Some linear classifiers, applicable to the detection of anomalies are discussed in this
section.

Functioning of a basic linear classifier (shown in Figure 5.9):

1. determination of a linear decision function d(F) from the training data set A

2. classification of an unseen instance Cv is done by determining on which side of
the decision function d(F) the instance resides

A linear decision function in l-dimensional feature space has the dimension l − 1. So,
the linear decision functions correspond to a straight line in a 2-dimensional feature
space, a plane in 3-dimensional space and a hyperplane in higher-dimensional space.
A linear decision function in 2-dimensional space (Figure 5.9) is described by:

d(F) = w1f1 + w2f2 + w0 (5.8)

where w1 and w2 are the weights1, f1 and f2 are the dimensions in feature space and
w0 is the bias corresponding to the distance of the decision function from the origin.
In literature, the bias is also denoted by b.

Generalising eq. (5.8) to l dimensions is achieved by combining w1..wl to the transposed
vector of weights denoted by wT and f1...fl to a vector of features F :

d(F) = wTF + w0 (5.9)
1Please note that w 6= ω. w denotes the weights and ω denotes the classes, in accordance with the
common notation in literature on classification (Duda et al., 2001; Theodoridis and Koutroumbas,
2009; de Sa, 2001).

102

Chapter 5 Anomaly detection as a classification problem

Figure 5.9: Linear classifier separating the normal class ωn from the abnormal class ωa

Having determined a decision function d(F), classification takes place by calculating
on which side of d(F) an instance Cv is by solving d(Cv).

In the rest of this section the common linear classifiers, nearest mean classifier, Fisher
classifier and linear support vector machines, are introduced.

5.2.2.1 Nearest mean classifier

The nearest mean classifier works by determining the classes’ mean value from the
training data set A and classifying an unseen instance Cv to the class with the nearest
mean value. The linear decision function dnmc(F) is determined by connecting the two
class means µωn and µωa and finding the decision function that orthogonally intersects
the connecting line at |µωn−µωa |

2
.

Functioning of nearest mean classifier:

1. determine mean value of classes ωn and ωa from the training data set A

2. for an unclassified instance Cv, find the class ωc that has the nearest mean value
and assign Cv to that class

103

Chapter 5 Anomaly detection as a classification problem

5.2.2.2 Fisher classifier

The Fisher classifier was introduced in (Fisher, 1936), an early and fundamental work
in classifying data based on a training data set. The classifier works by finding a linear
decision function that maximises the fraction of the variance between classes over the
variance within the classes in the training data set A. If the variances are equal, the
Fisher classifier corresponds to the nearest mean classifiers. The decision function is
given by (Duda et al., 2001):

dFisher(F) = max(
|µωn − µωa |

2

σ2
ωn + σ2

ωa

) (5.10)

Functioning of Fisher classifier:

1. determine mean value and standard deviation of classes ωn and ωa from the
training data set A

2. determine the linear decision function utilising eq. (5.10)

3. classify an unseen instance Cv using dFisher(F)

5.2.2.3 Support vector machine as a linear classifier

A support vector machine (SVM) can be used for two-class classification and thereby
for anomaly detection. Support vector machines (Abe, 2010; Han and Kamber, 2006;
Theodoridis and Koutroumbas, 2009) have shown to yield good results for classification
problems. In a classification problem of two classes, they determine a hyperplane
separating the classes.

An SVM is a so-called maximum margin classifier. The separating hyperplane is deter-
mined from the training data set A, by demanding a class separation with maximum
margin. No assumptions about probability distributions are made. Classification is
exclusively done based on the instances at the boundaries of the classes.

104

Chapter 5 Anomaly detection as a classification problem

The way of finding the decision function is introduced by using the 2-dimensional data
set shown in Figure 5.10. The first step is finding two parallel lines g1(F) and g2(F)

intersecting one or more of the instances at the boundaries of the two classes ωn and
ωa. The number of possible line pairs is infinite, so a further criterion is needed in
order to find a unique decision function. SVMs find the one decision function that
maximises the margin between the classes. This is done by finding those two parallel
lines with maximum distance to each other. The optimal decision function dSVM(F) is
now the line that is in the middle of the two parallel lines g1(F) and g2(F). In higher-
dimensional feature spaces the decision function is a plane or hyperplane instead of a
line.

Figure 5.10: Linear decision function determined by a hard-margin support vector ma-
chine. g1(F) and g2(F) are illustrated with dashed lines.

Formulating g1(F) and g2(F), w and w0 are scaled so that their distance to the sepa-
rating hyperplane is equal to ±1:

g1(F) = wTF + w0 ≥ +1 for all instances in ωn
g2(F) = wTF + w0 ≤ −1 for all instances in ωa

(5.11)

The decision function dSVM(F) is that hyperplane, that is parallel to and has equal
distances to g1(F) and g2(F). The linear decision function can be described by:

105

Chapter 5 Anomaly detection as a classification problem

Figure 5.11: Soft-margin support vector machine allowing some instances in the train-
ing data set to be misclassified

dSVM(F) = wTF + w0 (5.12)

A major advantage of SVMs is that finding the optimal decision function dSVM(F)

leads to a convex optimisation problem (Abe, 2010). As opposed to for example the
parameter tuning in neural networks, in finding the separating hyperplane there are
no local minima: there is only one hyperplane separating the training data set with a
maximum margin as shown in Figure 5.10.

If the classes in A are not 100% separable, the hard-margin support vector machine
will not find a solution, as no linear decision function can be found. This means that
one instance in A, possibly an outlier, can prevent a support vector machine to be
applicable. This problem is solved by relaxing the constraint given by eq. (5.11) of
separating all instances in the training data set correctly. This is achieved by intro-
ducing slack variables, allowing some instances to be outside the decision boundary.
This type of support vector machine is referred to as a soft-margin SVM, shown in
Figure 5.11.

106

Chapter 5 Anomaly detection as a classification problem

Figure 5.12: Example of linear classifiers: Fisher classifier (green), nearest mean classi-
fier (blue), decision stump (magenta), and linear support vector machine
(cyan) applied to separate the normal and abnormal class obeying Gaus-
sian distributions (created with (PRTools, 2012)).

5.2.2.4 Classification examples of linear classifiers

The application of different linear classifiers and their differences are shown in Figure
5.12 by linearly separating the two classes ωn and ωa in an artificially generated 2-
dimensional data set A. The instances of the two classes obey normal distributions
with standard deviations of σωn = σωa = 1 and mean values of µωn = (3, 4), µωa =

(8, 3).

As can be seen in Figure 5.12, different classifiers have different decision functions on
the same data set A. In practical applications the challenge lies in finding a classifier,
that best matches the properties of a data set. However, the task is not to optimally
classify the training data set A but rather to optimally classify unseen instances Cv.

107

Chapter 5 Anomaly detection as a classification problem

Figure 5.13: The XOR problem shows two classes in two-dimensional feature space
that are not linearly separable.

5.2.3 Non-linear classifiers for anomaly detection

The benefit of linear classifiers is their simplicity and their compact representation of
the decision boundary. Classification corresponds to determining on which side of the
linear decision function an unseen instance is, allowing for very fast classification.

However, classes are often not linearly separable in the given feature space F . An
example is the so-called XOR problem (Bishop, 1995), shown in Figure 5.13. The four
instances, two of each class ωn and ωa, are not linearly separable.

In general there are two approaches to separate classes that are not linearly separa-
ble:

1. using a classifier capable of learning a non-linear decision function

2. mapping the feature space to a higher-dimensional feature space, where the
classes can be linearly separated

An example of a classifier able to learn a non-linear decision function would be a
polynomial classifier of degree > 1 like a quadratic decision function, or a nearest
neighbour classifier which can build arbitrary non-linear decision functions. Other
types of classifiers map the feature space to a higher dimension prior to classification

108

Chapter 5 Anomaly detection as a classification problem

Figure 5.14: Example of a non-linear decision function separating classes ωn an ωa.

by introducing additional features, derived from the existing features. An example of
such a classifier is a support vector machine using so-called kernels (Abe, 2010).

An example of a non-linearly separable data set separated by a non-linear decision
function is shown in Figure 5.14. Common non-linear classifiers are introduced in the
rest of this section.

5.2.3.1 Decision trees

The basic variant of a decision tree (Mitchell, 1997) tests each feature f at one node.
Learning corresponds to building a tree with the challenge of determining what to test
at which tree node, so-called decision tree induction (Han and Kamber, 2006). Two
basic algorithms to learn a decision tree from a training data set are ID3 and C4.5
(Mitchell, 1997).

Anomaly detection can then be done by traversing the tree starting at the root node.
The reached leaf node will then output either ωn or ωa.

109

Chapter 5 Anomaly detection as a classification problem

5.2.3.2 k-nearest neighbour classifier

Due to its simplicity and its capability to learn arbitrarily formed decision boundaries,
k-nearest neighbours (k-NN)(Mitchell, 1997; Theodoridis and Koutroumbas, 2009) is a
well-known classifier. It works by storing all instances from the training data set A and
classifying an unseen instance Cv with respect to A. Classification is done by finding
the nearest neighbours of Cv by calculating distances between Cv and all instances in
A. The test instance is classified according to the most frequent class in the found k
neighbours.

No explicit decision function is calculated in the training period. Classification is
exclusively done by determining the nearest neighbours for each Cv. For this reason,
nearest neighbour classifiers are also referred to as lazy learners (Han and Kamber,
2006). Widely used nearest neighbour classifiers are 1-NN, k-NN, or weighted k-NN
(Mitchell, 1997).

Functioning of the basic k-nearest neighbour classifier as illustrated in Figure 5.15:

1. store all instances from training data set A

2. select or determine the parameter k

3. for an unclassified instance, find the k nearest neighbours in A by calculating dis-
tances between the unclassified instance Cv and the instances in A, as illustrated
in Figure 5.15

4. classify Cv based on the majority class ωc in the k nearest neighbours

5.2.3.3 Artificial neural networks

This section discusses artificial neural networks (ANNs) (Bishop, 1995). The basic
variant is a multi-layer perceptron with backpropagation. The idea of neural networks

110

Chapter 5 Anomaly detection as a classification problem

Figure 5.15: k-nearest neighbour classifier with k = 3: classifying an unseen instance
by finding the 3 nearest neighbours. The test instance will be classified
as ωa, by a 2:1 vote.

is to mimic the way human beings think, by building a structure similar to the human
brain, which consists of neurons interconnected by synapses.

A multi-layer perceptron neural network is a layered network of interconnected nodes
called perceptrons. Each node has multiple inputs and a single output, where the
nodes’ outputs of layer N act as the inputs of the nodes of layer N+1. A node’s inputs
are aggregated using a weighted sum and are transformed to a single output using a
so-called activation function. Common activation functions are the sign function to
have a binary output or the sigmoid to have a real-valued output.

The network’s topology is pre-configured, the parameters are the number of layers
and the number of nodes per layer. Each input node processes one feature f , hence
the number of input nodes is given by the dimension of the feature space F . In
classification tasks, the number of output nodes corresponds to the number of class
labels. In anomaly detection, separating the normal class ωn from the abnormal class
ωa can be achieved by an output layer with two nodes. The layers between input and
output layer are referred to as hidden layers.

111

Chapter 5 Anomaly detection as a classification problem

Figure 5.16: Exemplary topology of an artificial neural network with three layers,
capable of classifying 3-dimensional feature vectors as either normal or
abnormal

A single perceptron on its own can be used as a linear classifier. Neural networks with
three layers are capable of learning arbitrary non-linear mappings. Figure 5.16 shows
the layout of a neural network with three layers: three nodes in the input layer, one
hidden layer and two output nodes 2.

The neural network is trained by iteratively classifying a fraction of the instances in
the training data set A and determining the error e which is the difference between the
network’s output and the desired class labels. For a given data set and a given network
topology, the error depends on the weights. Hence, learning the decision function is a
matter of adjusting the network’s weights w.

Using the backprogation technique to optimise the weights, the error is propagated
to the network nodes starting at the output layer. The weights for the next run are
determined using gradient descent in the direction with the highest decrease of the
error:

wrun = wrun−1 − η
∂e

∂w
(5.13)

where wrun is the vector of weights for the current run, wrun−1 the weights of the
previous run, η is the learning rate, and ∂e

∂w
are the partial derivatives of the error.

2The way the number of layers is specified is not consistent throughout literature. In this Thesis
the input nodes are accounted as a layer, in accordance with (Duda et al., 2001). (Bishop, 1995)
refers to the same network as a network with “two layers of adjustable weights”.

112

Chapter 5 Anomaly detection as a classification problem

Summarising, the functioning of neural networks using backpropagation is as follows:

1. pre-define the network topology and initialise the vector of weights w

2. classify a fraction of the instances from the training data set A

3. determine the error rate e of the current run

4. adjust the weights w using gradient descent, in order to reduce the error rate

5. repeat the process to optimise the error rate until the optimum is found

6. classify an unseen instance Cv, based on the pre-defined topology and the opti-
mised weights w, by passing the instance to the input nodes

5.2.3.4 The support vector machine as a non-linear classifier

Support vector machines, that were introduced in Section 5.2.2.3 as linear classifiers,
can be enhanced to function as non-linear classifiers. This is achieved by mapping
the input feature space to a higher-dimensional feature space, where the data can be
linearly separated by a hyperplane. Finding the decision function is then done as
described in Section 5.2.2.3.

The functioning of such a mapping is explained with an example. Figure 5.17 shows
a contrived XOR data set with two classes that look easily separable. However, it is
impossible to linearly separate the two classes in the given feature space. For that
reason a support vector machine, as described in Section 5.2.2.3, is not capable of
learning a good decision function for this data set.

The data set can be mapped to a higher-dimensional space Z with a mapping func-
tion φ(). In (Ben-Hur and Weston, 2010; Theodoridis and Koutroumbas, 2009) the
following mapping was used as an example:

113

Chapter 5 Anomaly detection as a classification problem

Figure 5.17: Contrived XOR data set with two classes (black points and blue stars),
that are linearly inseparable.

z1 := x21

z2 :=
√

2x1x2

z3 := x22

(5.14)

Using this mapping, the two-dimensional data set is mapped to a three-dimensional
feature space as shown in Figure 5.18. It can be seen that the classes can now be
linearly separated by a plane in the transformed feature space.

Figure 5.18: Two-dimensional XOR data set with two classes, that become linearly
separable after mapping to three-dimensional feature space.

114

Chapter 5 Anomaly detection as a classification problem

Figure 5.19: The mapping eq. (5.14) is quadratic in the number of dimensions in the
transformed feature space.

Applying eq. (5.14) to an input space of 3 features, the transformed feature space has 6
dimensions (x21, x22, x23,

√
2x1x2,

√
2x2x3,

√
2x1x3). With the help of

(
n
k

)
, the number of

dimensions dtransformed w.r.t. the number of features dinput for this example mapping
is given by

dtransformed =

(
dinput

2

)
+ dinput (5.15)

Although the mapping function was ideal for the given data set, it has some draw-
backs.

• It is parameterless, so it is not adaptable to different data sets.

• From eq. (5.15) it can be seen that the mapping function does not scale well.
It is quadratic in the number of dimensions in the transformed feature space as
depicted in Figure 5.19.

• The mapping function φ() has to be known.

115

Chapter 5 Anomaly detection as a classification problem

The so-called kernel trick (Theodoridis and Koutroumbas, 2009) is used to overcome
these drawbacks. The weight vector w in the linear decision function given in eq. (5.12)
is orthogonal to the hyperplane. As a first step, w is expressed as a linear combination
of the training vectors, i.e. as

∑
αixi:

dSVM(F) =
∑

αix
T
i F + w0 (5.16)

Now the training instances and the vector of features are transformed by φ().

dSVM(F) =
∑

αiφ(xi)
Tφ(F) + w0 (5.17)

In eq. (5.17) φ(xi) and φ(F) are present as inner products of the mapped vectors. The
kernel trick is to replace the inner products by a kernel function. The mapping is then
implicitly achieved by solving K(xi, xj) = φ(xi) · φ(xj).

A comprehensible introduction to support vector machines together with the kernel
trick can be found in (Ben-Hur and Weston, 2010; Theodoridis and Koutroumbas,
2009). Advanced topics are covered in (Abe, 2010).

5.2.3.5 Classification examples of non-linear classifiers

In Figure 5.20 the non-linear decision functions determined by a quadratic classifier,
a Parzen classifier and a k-NN classifier are shown. The decision functions learnt for
the same training data set by a neural network, a decision tree and a support vector
machine are shown in Figure 5.21.

116

Chapter 5 Anomaly detection as a classification problem

Figure 5.20: Example of non-linear classifiers: quadratic classifier (green), Parzen
(blue), k-NN (magenta), created with (PRTools, 2012).

Figure 5.21: Example of non-linear classifiers: neural network (green), decision tree
(blue), and non-linear support vector machine (cyan), created with
(PRTools, 2012).

117

Chapter 5 Anomaly detection as a classification problem

5.2.4 Discussion

The focus of this Thesis is the autonomous detection of anomalies in multivariate time
series. It has been shown that machine learning approaches can be used to detect
anomalies in multivariate time series (Chandola et al., 2009). According to the def-
inition of anomalies, the goal is to detect unexpected behaviour. Using a machine
learning approach this goal can be achieved by teaching the system normal and ab-
normal behaviour by means of normal and abnormal training data sets and have the
system classify unseen data as either normal or abnormal. In the case of normal and
abnormal corresponding to one class each, a two-class classification approach can be
used.

Two limitations of such a traditional classification approach for the problem discussed
in this Thesis were identified:

1. No abnormal data sets : In many applications there are no abnormal data sets.
On the other hand the amount of training data containing normal instances is
not constrained, since the training data can be obtained by recording data from
a system in normal operation mode.

2. Non-representative abnormal data sets : By using normal and abnormal training
data sets, the classification is influenced by the choice of the abnormal data. Us-
ing a non-representative training data set of anomalies, an incorrect description
of the abnormal class is learnt.

The consequence of the first limitation is obvious. A two-class classification cannot be
conducted, if there is no training data from the abnormal class. The consequence of
applying two class-classification in the case of a non-representative training data set,
shall be illustrated in an example.

Say, the training is conducted on recordings from a vehicle subsystem, where three
types of anomalies A1, A2 and A3 may occur. This is shown in a contrived two-
dimensional feature space in Figure 5.22(a). The instance to be classified, represented
by a question mark, will be classified as abnormal due to its closeness to A3. In real-

118

Chapter 5 Anomaly detection as a classification problem

(a) Training set with representative instances
from the abnormal class.

(b) Training set with missing instances from
the abnormal class.

Figure 5.22: Fully representative and non-representative training set.

world applications, one cannot assume to have a training data set with representative
anomalies, unless knowledge of all fault states of a system together with recordings
of these fault states exists. If the training is conducted with a training set that only
contains A1 and A2, the same instance will in this example be falsely classified as
normal due to its closeness to the region of normal instances as shown in Figure
5.22(b).

Obtaining or creating abnormal training data is very intricate in many real-world
applications. Normal data sets on the other hand can be obtained easily, e.g. by
observing a system in all its normal operation modes over an arbitrarily long period
of time.

To overcome the mentioned limitations of two class-classification approaches, the idea
is to use a different approach. As opposed to learning normal and abnormal behaviour,
only the normal behaviour shall be learnt, and deviations from this normal behaviour
be classified as abnormal as shown in Figure 5.23. This classification technique is
referred to as one-class classification, which will be discussed in the next section.

119

Chapter 5 Anomaly detection as a classification problem

Figure 5.23: Feature space containing only normal instances

5.3 Anomaly detection as a one-class classification

problem

In the previous section two-class classification was discussed. The training data set
consists of instances from the normal and the abnormal class, allowing the boundary
between the classes to be learnt using information from both of the classes. The
boundary is thereby adjusted supported by instances from both classes.

For the detection of anomalies in test drives, there are no or non-representative ab-
normal instances available as training data. For that reason, the problem of anomaly
detection is formulated as a one-class classification problem (Tax, 2001): from a train-
ing set A of labelled normal instances a classifier shall be learnt without contemplating
instances labelled as abnormal. This is referred to as semi-supervised anomaly detec-
tion in (Chandola, 2009). The challenge in one-class classification is to learn the
boundaries of the normal region, as the decision function will not be adjusted based
on instances from two classes. Based on the learnt classifier, unseen instances are then
classified as either normal ωn or abnormal ωa. So the question is:

Can unseen instances Cv be classified as either normal ωn or abnormal ωa by learning
from a training data set A that exclusively contains normal data?

120

Chapter 5 Anomaly detection as a classification problem

A major challenge is that optimising the trade-off between true and false positives is
not possible using a test data set containing only normal instances, as in this case only
true positives and false negatives are reported. Measuring true negatives postulates
that anomalies are present in the test data set B. Hence, in one-class classification
problems, one inherent parameter is always present: a threshold. Classifying an un-
known instance, its distance to the normal region is calculated. Based on this distance
a threshold is required that separates between normal and abnormal. The threshold
is a parameter, which can be

1. pre-defined by a user

2. fitted to yield a pre-defined number of anomalies as proposed in (Chandola,
2009), i.e. the expected fraction of anomalies has to be known

3. a data-driven threshold determined from the training data set A, e.g. distances
between the instances in the training data set

4. optimised with respect to an additional parameter

The fundamentals on statistical classification introduced in Section 5.2.1 are now ap-
plied to the problem of one-class classification.

The two overlapping classes from the previous section, that were represented by their
probability density functions in Figure 5.4, shall be separated by only integrating
knowledge about the normal class ωn. The aim is to learn a closed boundary around
the normal class, because potentially there could be anomalies on the left hand side
of p(fp|ωn) as well. In Figure 5.24 the threshold (dashed lines) was arbitrarily set to
±2σ. It can be seen that this decision function is not as good w.r.t. the Bayes error,
as it was the case when training with both classes.

In (Moya and Hush, 1996) the problem to exclusively learn normal behaviour and
automatically classify unseen instances deviating from the learnt behaviour as either
normal or abnormal was addressed and the term one-class classification was introduced.
An architecture of three combined neural networks is proposed. One-class classification

121

Chapter 5 Anomaly detection as a classification problem

Figure 5.24: Decision function between ωn and ωa, with unknown ωa. The yellow area
corresponds to the false positives, the red areas to the false negatives.

using support vector machines was first addressed by Schoelkopf et al in (Schölkopf
et al., 2001).

In (Chandola, 2009), Chandola contemplates the problem in the context of time series
data and refers to the problem as semi-supervised anomaly detection. Based on an
anomaly score, the test instances are ranked and the top p instances are reported as
anomalies. Other publications refer to the problem as single class classification.

The techniques require a priori knowledge of the expected fraction of anomalies in the
data in order to define a threshold, i.e. the decision boundary.

In (Tax, 2001), Tax discusses a way to automatically determine the threshold from
the data. Based on support vector machines (SVM), an approach named support
vector data description (SVDD) is proposed. A trade-off between the number of false
positives and the volume of the normal region is proposed. On the one hand the region
of normality is desired to capture as many normal training data sets as possible, while
on the other hand keeping the region’s volume at a minimum.

This Thesis aims to automatically classify unseen instances as either normal or ab-
normal based on a training data set of normal data only, without having to explicitly
specify the fraction of expected anomalies a priori. The following key requirements for
a classifier were identified:

122

Chapter 5 Anomaly detection as a classification problem

1. The training period should be based on normal time series only.

2. The classifiers should be robust to noise in the training set, i.e. hidden anomalies
in the training set.

3. Due to the complexity of the data, falsely reported anomalies (false negatives) are
expected. Therefore a detected anomaly should have an anomaly score expressing
the extent of the anomaly in order to be able to rank the reported anomalies.

4. An anomaly’s time span should be reported.

5. During the operation time of the anomaly detection system, anomalies will be
detected. Therefore the one-class classifier should be extensible by data from the
abnormal class.

6. No machine learning expert should be required to adjust parameters.

5.4 Conclusion

This chapter discussed anomaly detection using classification techniques from the field
of machine learning. Common linear and non-linear classifiers were introduced. Tra-
ditionally, classifiers are used for two-class or multi-class classification. It was argued
that this is not suitable for the detection of anomalies in test drive recordings, since no
representative training set of anomalies exists. Consequently, one-class classification
was introduced, where a classifier is trained on a data set of normal instances.

The question is, which of the introduced classifiers satisfies the identified key require-
ments.

The linear classifiers can be ruled out due to their inability to separate arbitrary data.
Hence, the non-linear classifiers are evaluated in the rest of this section. While all
described classifiers are two- or multi-class classifiers, they can be adapted to work for
the one-class case.

123

Chapter 5 Anomaly detection as a classification problem

The benefit of decision trees is the human-readable representation. It is easy to in-
terpret how the classifier came up with a result, by contemplating the traversed path.
The decision function however is not very flexible, it is piecewise linear.

Standard k-nearest neighbour techniques require storing all learnt instances. While a
huge training data set is beneficial in order to achieve good generalisation (Mitchell,
1997), storing all instances is particularly problematic for time series data due to the
big amount of data per instance.

While k-NN is a simple classifier, arbitrarily-shaped boundaries can be learnt and the
distribution of the data set does not have to be known. Following e.g. (Theodoridis
and Koutroumbas, 2009), k-NN yields good classification results on training data sets
with many instances. Another benefit is that theoretically a worst case error can be
specified. It can be shown that k-NN performs no worse than twice the Bayes error
eBayes (Theodoridis and Koutroumbas, 2009) for a huge training data set (N → ∞).
In order to really quantify the worst case error in practice (1) the Bayes error must
be known and (2) it must be known if the size of the training data set is big enough.
In addition, since k-NN works on distances, it can be used to classify arbitrary data
sets, as long as a distance measure can be defined.

By simply storing the entire training data set, training with k-NN is very fast. Clas-
sification on the other hand is quadratic in the number of training instances (O(kN2)

(Theodoridis and Koutroumbas, 2009)). For large data sets, nearest neighbour tech-
niques are still feasible using variants of k-NN that do not require to keep all instances,
but rather some representative instances.

Artificial neural networks have probably been the most popular technique in machine
learning in the last 30 years. However, the training for neural networks with backprop-
agation is not straightforward. A disadvantage is that the network structure has to
be pre-defined. The gradient descent optimisation has random parts, for example the
weights are initialised randomly and the results can depend on the order the instances
are presented to the neural network. A further drawback is that there are local minima
in the optimisation process. Various classification tasks have been solved with neural
networks, however the one-class case is a challenge. In (Moya and Hush, 1996), it was

124

Chapter 5 Anomaly detection as a classification problem

shown that one-class classification using ANNs is possible, but the proposed approach
is rather complex comprising three neural networks.

Finally, support vector machines have the major advantage that the optimisation prob-
lem yields the global minimum. The decision function is determined purely mathe-
matically, without random fractions and the classification process is fast. Another
advantage is that the decision function is expressed by a small number of support
vectors.

In conclusion to this, from the discussed techniques, k-nearest neighbour was selected
as a candidate due to its simplicity and good interpretability of the results. Due
to the deterministic way of determining the decision function and the compact way
of representing it, support vector machines were identified as a further promising
candidate.

125

Chapter 6

One-class classifiers

This chapter compares adaptations of the classifiers k-nearest neighbours
and local outlier factor with the one-class classifier support vector data
description (SVDD). SVDD is identified to be most suitable for anomaly
detection, though suffers from the problem of having to specify parameters
beforehand. To solve this problem, a novel parameter tuning approach is
proposed, making SVDD applicable to the problem at hand.

In this chapter the multi-class classifier k-NN is thresholded in order to operate as a
one-class classifier. Following that, it is discussed how the outlier detection technique
local outlier factor (LOF) could be used for one-class classification. Conclusively a one-
class support vector machine is enhanced to be applicable to the problem discussed in
this Thesis.

Chapter 6 One-class classifiers

6.1 One-class k-NN

This section discusses how k-NN, introduced in Section 5.2.3, could be adapted to the
problem of one-class classification.

As a first step, the training takes place analogously to Section 5.2.3 by storing all
instances in the knowledge base. In order to classify a test instance xtest, the set of
the k nearest neighbours N (xtest) is determined. Classification in two-class problems
would then be based on the class labels in N (xtest). However, in one-class problems
there is only one class label. The only information available is, how close xtest lies to
the instances in the training set, i.e. the k distances to N (xtest).

As a score of how far apart a test instance is from its k nearest neighbours N (xtest),
the maximum of the k distances could be used, i.e. the distance to its most remote
neighbour in N (xtest). However, the reason to set k > 1 is to limit the influence of one
individual instance. So in terms of determining the threshold this would turn k-NN
into 1-NN. So for each xtest, the averaged distance to the k neighbours is used, which
is given by

distavg(xtest) =
1

k

∑
xi∈N (xtest)

dist(xtest, xi) (6.1)

Based on distavg(xtest), the test instances can be scored and ranked. Autonomous
classification is not straightforward though. Since the value range of the distances
depends on the data set, it is not possible for a user to pre-define a threshold for an
abnormal instance.

6.1.1 Thresholding k-NN

The idea is to determine the threshold in the training period from the inner distances
of the training set. For a training data set with M instances, M distances distavg are
obtained and stored in the vector of inner distances D.

128

Chapter 6 One-class classifiers

The threshold should be determined based on the following trade-off:

1. prevent the threshold from being too small, because that would classify instances
that fall into sparser regions within the cluster as abnormal, i.e. would introduce
holes into the clusters

2. prevent the threshold from being too large, since the threshold forms a boundary
based on the radii around the cluster’s outmost instances

It is proposed to determine the threshold from the entire training set. From the vector
of distances D, the maximum inner distance max(D) is used as the threshold.

thresholdkNN = max(distavgi∀i) (6.2)

Independent of the threshold’s value, an overestimation of the normal class is sys-
tematic, since the decision boundary is given by the radius thresholdkNN around the
outmost instances. Hence, the classifier has a bias towards the normal class, so it is
likely to have an unnecessarily high false positive rate. This is depicted in Figure 6.1 for
1-NN. For an anomaly detection system, initialising the threshold with thresholdkNN
and having the user adjust the threshold over the runtime of the system, would be a
good approach.

6.1.2 Discussion

Due to the way the threshold is determined, the training period is computationally
expensive for huge data sets. The threshold can be regarded as global, because it is
independent of where xtest lies in feature space. This is only a good approach if the
training set contains clusters with equal densities.

To overcome this problem it is necessary to not solely rely on the distance from xtest

to its nearest neighbours, but incorporate the neighbours of the nearest neighbours.
This has been used in (de Ridder et al., 1998) for 1-NN, where the ratio of the distance

129

Chapter 6 One-class classifiers

Figure 6.1: Adaptation of k-NN to function as a one-class classifier by determining
a threshold from the training set using the maximum nearest neighbours
distance (blue circle). The region of the abnormal class is depicted in grey.

from xtest to its nearest neighbour N (xtest) and the distance between N (xtest) and its
nearest neighbour is used.

130

Chapter 6 One-class classifiers

6.2 Local outlier factor

Distance-based approaches like k-NN rely on the distance between an instance xtest
and its k nearest neighbours. If the distance dist(xtest) is greater than some global
threshold, xtest is classified as abnormal.

In Figure 6.2 an example is illustrated. k-NN solely relies on distances and applies the
same global threshold to xtest1 and xtest2 . Hence, either both or none are classified as
anomaly. However, xtest1 is likely to be an anomaly, while xtest2 could belong to the
neighbouring cluster. Intuitively it is desired that an instance is classified as abnormal,
if it is slightly outside a dense cluster or far outside a sparse cluster.

Figure 6.2: Data set with two clusters with unequal densities.

To achieve this, the local outlier factor (LOF) was proposed in (Breunig et al., 2000).
LOF incorporates the so-called local density in addition to the neighbourhood. The
local density of xtest is compared with the local densities of its nearest neighbours.
This way LOF works well for data sets with several clusters with unequal densities,
while k-NN does not.

131

Chapter 6 One-class classifiers

6.2.1 Functioning of LOF

As a first step, the k nearest neighbours are determined. The distance to the kth nearest
neighbour is referred to as the k-distance distk and the set of nearest neighbours is
denoted by N (xtest). If more than one instance is distk away from xtest, N (xtest) has
more than k instances.

Based on distk, the reachability distance rdist(xtest, xi) is defined in accordance with
(Breunig et al., 2000), where xi is one instance in the set of nearest neighbours:

rdist(xtest, xi) = max {distk(xi), dist(xtest, xi)} (6.3)

For instances far apart, rdist(xtest) is the distance between xtest and xi, while for
instances close to each other, it is the k-distance. The reachability distance, aver-
aged over all nearest neighbours in N (xtest) is given by the following equation, where
‖N (xtest)‖ is the number of nearest neighbours:

rdistavg(xtest) =

∑
xi∈N (xtest)

rdist(xtest, xi)

‖N (xtest)‖
(6.4)

Based on this, the reachability density rdens(xtest) is defined, which is the inverse of
the averaged reachability distance, i.e. 1

rdistavg

rdens(xtest) =
‖N (xtest)‖∑

xi∈N (xtest)

rdist(xtest, xi)
(6.5)

Finally, the local outlier factor for xtest is determined by summing up the ratios of the
density of each neighbouring instance in N (xtest) and the density of xtest, normalised
by the number of neighbouring instances (Breunig et al., 2000).

132

Chapter 6 One-class classifiers

LOF (xtest) =

∑
xi∈N (xtest)

rdens(xi)
rdens(xtest)

‖N (xtest)‖
(6.6)

6.2.2 Thresholding LOF

Assuming equal densities for xtest and all instances in N (xtest), the LOF becomes 1.
If the densities of the neighbouring instances are higher than the density of xtest, the
LOF is > 1. Hence, for an LOF � 1, an instance can be regarded as an anomaly.
However, there is no absolute LOF value that could be used as a threshold, since the
values depend on the data set.

For the experiments in this Thesis, the maximum LOF value within the training set
is used as the threshold.

thresholdLOF = max(LOF (xi)∀i) (6.7)

Determining the threshold is computationally expensive, since the LOF for each in-
stance has to be calculated.

6.3 Support vector data description

While two-class support vector machines separate the data by a hyperplane (Theodor-
idis and Koutroumbas, 2009; Abe, 2010), in (Tax and Duin, 1999) support vector data
description1 (SVDD) was introduced to cope with the problem of one-class classifica-
tion. While in publications (Tax and Duin, 1999, 2004), the fundamentals of SVDD are
given in a condensed form, this chapter gives a more thorough insight into SVDD.

1When SVDD was introduced in (Tax and Duin, 1999) it was termed support vector domain de-
scription, but in later publications (Tax, 2001; Tax and Duin, 2004) renamed to support vector
data description.

133

Chapter 6 One-class classifiers

SVDD finds a closed decision boundary around the normal instances in the train-
ing data set. Therefor SVDD uses a hypersphere, which is a sphere generalised to
multi-dimensional space, corresponding to a circle in two and a sphere in three dimen-
sions respectively. The hypersphere is fully determined by its radius R and its center
a, as illustrated in Figure 6.3, and is found by solving the optimisation problem of
minimising:

1. the error on the normal class (false negatives)

2. the chance of misclassifying data from the abnormal class (false positives)

Minimising the error on the normal class is achieved by adjusting R and a in a way
that all instances of the training data set are contained in the hypersphere. On the
other hand, minimising the chance of misclassifying data from the abnormal class
cannot be achieved straightforward, since in the absence of abnormal training data,
false positives cannot be measured during the optimisation step.

Figure 6.3: A hypersphere in a 2-dimensional feature space with radius R and center
a, described by the three support vectors SV1 · · ·SV3.

6.3.1 Finding the optimal hypersphere

A hypersphere with an infinite volume would obviously enclose all instances but mis-
classify all abnormal instances. So the hypersphere’s volume is used as a second

134

Chapter 6 One-class classifiers

optimisation criterion. The trade-off between the number of misclassified normal in-
stances and the volume of the normal region is optimised. On the one hand the decision
boundary is desired to capture the normal instances, while on the other hand keeping
the hypersphere’s volume at a minimum. This follows (Moya and Hush, 1996), where
minimising the error and the volume of the size of the decision boundary is proposed.

While the volume of a 3-dimensional sphere is given by Vsphere = 4
3
πR3, determining

the volume of a hypersphere in more than three dimensions is not straightforward.
Minimising the hypersphere’s volume is equivalent to minimising the area A of the
hypersphere’s 2-dimensional projection, which corresponds to a circle given by

Acircle = πR2 (6.8)

Since π is irrelevant for the optimisation problem, this reduces to determining the
hypersphere’s radius and center such that R2 is minimised. In addition it is demanded
that all instances of the training data set are contained in the hypersphere. Hence,
the following optimisation problem is to be solved:

minimise

F (R, a) = R2 (6.9)

subject to

‖xi − a‖2 ≤ R2 ∀i i = 1, ..,M (6.10)

where xi denotes the instances and M the number of instances in the training data
set, a is the hypersphere’s center, and ‖xi − a‖ is the distance between xi and a.

The distance ‖xi − a‖ is calculated by
√

(xi − a) · (xi − a). Since calculating the
square root is computationally expensive, the squared distance ‖xi − a‖2 is used and

135

Chapter 6 One-class classifiers

compared to the squared radius R2. The squared distance can be reformulated using
the binomial theorem which is beneficial, as will become clear in Section 6.3.4. Hence,
in accordance to (Tax and Duin, 1999), the squared distance and the squared radius
are used in this Thesis.

The decision boundary, i.e. the hypersphere, is described by selected instances from
the training data set, so-called support vectors. The center a is implicitly described by
a linear combination of the support vectors. The remaining instances are discarded.

Having solved the optimisation problem eq. (6.9) and eq. (6.10) and hence having
found the hypersphere, for each xi one of two terms is satisfied. This is used to select
those xi that become support vectors:

‖xi − a‖2 < R2 → xi is within the hypersphere, i.e can be discarded (6.11)

‖xi − a‖2 = R2 → xi is selected as a support vector (6.12)

As an illustrative example one could think of a 2-dimensional training data set with
50 instances. In this case the decision boundary would be a circle, which is fully
described by three distinct points on its circumference. Hence, ideally three support
vectors would be selected and 47 instances be discarded as illustrated in Figure 6.3.

Classifying a test instance xtest is a matter of determining whether it is inside or outside
the hypersphere, which is done by solving

‖xtest − a‖2
≤ R2 : if xtest is inside the hypersphere, i.e. classified as positive

> R2 : if xtest is outside the hypersphere, i.e. classified as negative

(6.13)

136

Chapter 6 One-class classifiers

Figure 6.4: The introduction of the slack variables ξi allows for some instances of the
training data set to be outside the decision boundary. (a) without slack
variables (b) with slack variables.

6.3.2 Reducing the sensitivity to outliers

Demanding that all instances are contained in the hypersphere means that outliers
contained in the training data set will massively influence the decision boundary. So
SVDD in this form is very sensitive to outliers, which is not desired.

Analogous to the case of hard-margin SVMs, that can be transformed to soft-margin
SVMs by allowing some instances to be on the wrong side of the separating hyperplane
(Abe, 2010), in SVDD slack variables are introduced. These slack variables ξi, given
by eq. (6.14), allow for some instances xi in the training data set to be outside the
hypersphere as shown in Figure 6.4.

ξi =

‖xi − a‖2 −R2 : if (‖xi − a‖2 −R2) > 0

0 : if (‖xi − a‖2 −R2) ≤ 0
(6.14)

The parameter C is introduced controlling the influence of the slack variables and
thereby the error on the normal class and the hypersphere’s volume. So the optimisa-
tion problem of eq. (6.9) and eq. (6.10) becomes:

137

Chapter 6 One-class classifiers

minimise

F (R, a, ξi) = R2 + C

M∑
i=1

ξi (6.15)

subject to

‖xi − a‖2 ≤ R2 + ξi ∀i (6.16)

and

ξi ≥ 0 ∀i (6.17)

6.3.3 Solving the optimisation problem

As described in (Tax and Duin, 2004), the optimisation problem is solved by incor-
porating the constraints eq. (6.16) and eq. (6.17) into eq. (6.15) using the method of
Lagrange for positive inequality constraints (Jones, 2005). This allows transforming a
constrained optimisation problem into an unconstrained one by integrating the con-
straints into the equation to be optimised. First eq. (6.16) is rewritten to become a
positive inequality constraint:

R2 + ξi − ‖xi − a‖2 ≥ 0 (6.18)

For a function f and two constraints g1 ≥ b1 and g2 ≥ b2, the Lagrangian is formulated
as L = f−α(g1−b1)−β(g2−b2), introducing the so-called Lagrange multipliers αi and
βi. For the constraints eq. (6.17) and eq. (6.18) b1 and b2 are equal to 0. Incorporating

138

Chapter 6 One-class classifiers

the constraints eq. (6.17) and eq. (6.18) into eq. (6.15), the optimisation problem
changes into minimising

L(R, a, α, β, ξ) = R2 + C

M∑
i=1

ξi −
M∑
i=1

αi(R
2 + ξi − ‖xi − a‖2 − 0)−

M∑
i=1

βi(ξi − 0)

= R2 + C

M∑
i=1

ξi −
M∑
i=1

αi(R
2 + ξi − x2i + 2axi − a2)−

M∑
i=1

βiξi (6.19)

In order to find the minimum, the partial derivatives are set to 0. Since it is a convex
optimisation problem this uniquely yields the minimum. Setting the partial derivative
∂L
∂R

to 0

∂L

∂R
= 2R− 2R

M∑
i=1

αi = 0 (6.20)

yields the condition

M∑
i=1

αi = 1 (6.21)

Setting the partial derivative with respect to a to 0

∂L

∂a
= −2

M∑
i=1

(αixi − αia) = 0

=
M∑
i=1

αixi −
M∑
i=1

αia = 0 (6.22)

139

Chapter 6 One-class classifiers

yields the following condition

a =

∑M
i=1 αixi∑M
i=1 αi

with
M∑
i=1

αi = 1 from eq. (6.21)

a =
M∑
i=1

αixi (6.23)

which shows that the center a is expressed as a linear combination of the support
vectors. Finally, deriving with respect to ξi leads to

∂L

∂ξi
= C − αi − βi = 0 (6.24)

Since αi ≥ 0 and βi ≥ 0, and βi = C −αi this allows to drop βi by instead adding the
following constraint

0 ≤ αi ≤ C (6.25)

Assuming that eq. (6.19) is minimal, resubstituting the found constraints yields a less
complex equation. First eq. (6.19) is reformulated as

L =R2 + C

M∑
i=1

ξi −
M∑
i=1

αiR
2 −

M∑
i=1

αiξi

+
M∑
i=1

αix
2
i − 2

M∑
i=1

αiaxi +
M∑
i=1

αia
2 −

M∑
i=1

βiξi

(6.26)

140

Chapter 6 One-class classifiers

Substituting (
∑M

i=1 αi) = 1 from eq. (6.21) shows that the terms containing R2 cancel
each other out

L = C

M∑
i=1

ξi −
M∑
i=1

αiξi +
M∑
i=1

αix
2
i − 2

M∑
i=1

αiaxi +
M∑
i=1

αia
2 −

M∑
i=1

βiξi (6.27)

and substituting βi = C − αi from eq. (6.25), allows to drop the terms containing C
and ξi

L = C
M∑
i=1

ξi −
M∑
i=1

αiξi +
M∑
i=1

αix
2
i − 2

M∑
i=1

αiaxi +
M∑
i=1

αia
2 −

M∑
i=1

(C − αi)ξi

= C
M∑
i=1

ξi −
M∑
i=1

αiξi +
M∑
i=1

αix
2
i − 2

M∑
i=1

αiaxi +
M∑
i=1

αia
2 − C

M∑
i=1

ξi +
M∑
i=1

αiξi

=
M∑
i=1

αix
2
i − 2

M∑
i=1

αiaxi +
M∑
i=1

αia
2 (6.28)

Finally, substituting a = (
∑M

i=1 αixi) from eq. (6.22), the equation becomes

L =
M∑
i=1

αix
2
i − 2

M∑
i=1

αixi

M∑
j=1

αjxj +
M∑
i=1

αixi

M∑
j=1

αjxj (6.29)

So the optimisation problem changes into maximising2

2If the reader refers to the references: In his PhD Thesis (Tax, 2001), David Tax accidently stated
that the optimisation problem has to be minimised, while in (Tax and Duin, 1999, 2004) he
correctly stated it has to be maximised.

141

Chapter 6 One-class classifiers

L(α) =
M∑
i=1

αi(xi · xi)−
M∑
i,j=1

αiαj(xi · xj) (6.30)

with respect to α, subject to

0 ≤ αi ≤ C ∀i (6.31)

Hence, the original problem eq. (6.15) that had to be optimised w.r.t. R, a, and ξ with
two constraints, was simplified to optimising w.r.t. α, with box constraints on the αi.
The second term in eq. (6.30) indicates a quadratic form (for i = j, αiαj becomes α2

i).
This optimisation problem can be solved using quadratic programming. The resulting
values for αi indicate the position of an instance xi as follows:

αi

= 0 : xi is inside the hypersphere

> 0;< C : xi is on the boundary, xi becomes a support vector

= C : xi is outside the hypersphere, xi becomes a support vector

(6.32)

Having determined all αi, the parameters a and ξi can be deduced from the α’s. The
radius R is determined by picking an arbitrary support vector xi on the boundary, i.e.
with 0 < αi < C, and solving R = ‖xi − a‖.

6.3.4 Introducing non-spherical decision boundaries

At this point, SVDD is capable of surrounding the normal data by a hypersphere. It
is rare that in classification problems the distribution of the data is spherical. In the

142

Chapter 6 One-class classifiers

problem presented in this Thesis it is not realistic. Hence, SVDD in this form would
yield poor classification results.

Analogous to the traditional two-class support vector machines, SVDD uses the so-
called kernel trick (Theodoridis and Koutroumbas, 2009) to overcome this shortcoming.
The two-class support vector machines linearly separate the data by a hyperplane
which in most classification problems yields high error rates. Using a kernel function
the data is mapped to a higher-dimensional space, where it can be linearly separated as
described in Section 5.2.3.4. Using kernels known from SVMs, SVDDmaps the training
data set to a higher-dimensional space where it can be surrounded by a hypersphere.

The contrived two-dimensional data set in Figure 6.5(a) has instances from the normal
class distributed in two clusters. Enclosing all instances with a sphere would massively
overestimate the normal class. Using the polynomial mapping from Section 5.2.3.4 as
an example, the data set can be mapped to a three dimensional space, as shown in
Figure 6.5(b), where the instances can be surrounded by a sphere.

(a) Instances from the normal class dis-
tributed in two clusters. Enclosing all
instances with a sphere would mas-
sively overestimate the normal class.

(b) The instances of the contrived data set can be en-
closed by a sphere in the three-dimensional feature
space created by the mapping function.

Figure 6.5: Example of how a data set can be enclosed by a sphere by mapping it from
two- to three-dimensional feature space.

143

Chapter 6 One-class classifiers

As can be seen from eq. (6.30) xi and xj are solely incorporated as the inner products
(scalar products) (xi · xi) and (xi · xj) respectively. Instead of actually mapping each
instance to a higher-dimensional space using a mapping function φ()

L(α) =
M∑
i=1

αi(φ(xi) · φ(xi))−
M∑
i,j=1

αiαj(φ(xi) · φ(xj)) (6.33)

the kernel trick is to replace the inner products (φ(xi) · φ(xj)) by a kernel function
K(xi, xj). The mapping is implicitly done by solving K(xi, xj).

K(xi, xj) = φ(xi) · φ(xj) (6.34)

So eq. (6.30) becomes:

L(α) =
M∑
i=1

αiK(xi, xi)−
M∑
i,j=1

αiαjK(xi, xj) (6.35)

A variety of kernel functions have been proposed. Two widely used kernels are the
polynomial kernel, where d denotes the polynomial’s degree

K(xi, xj) = (xi · xj)d (6.36)

and the Gaussian kernel, also referred to as the radial basis function (RBF) kernel

K(xi, xj) = e−
‖xi−xj‖

2

σ2 (6.37)

where σ is referred to as the kernel width. In some publications the kernel parameter
is denoted as γ, where γ = 1

σ2 and eq. (6.37) becomes e−γ‖xi−xj‖2 .

144

Chapter 6 One-class classifiers

6.3.4.1 Classifying a test instance

In the classification step, a test instance xtest is classified by solving

‖xtest − a‖2 > R2 (6.38)

The squared distance ‖xtest − a‖2 can be rewritten as

xtest · xtest − 2xtest · a+ a · a (6.39)

Replacing a by its linear combination of support vectors from eq. (6.23) yields

xtest · xtest − 2
M∑
i=1

αi(xtest · xi) +
M∑
i,j=1

αiαj(xi · xj) (6.40)

Again, the inner products are replaced by the kernel function used during training. A
test instance is classified as abnormal, if the following inequality holds.

K(xtest, xtest)− 2
M∑
i=1

αiK(xtest, xi) +
M∑
i,j=1

αiαjK(xi, xj) > R2 (6.41)

As can be seen from eq. (6.41), classification is very fast compared to k-NN and LOF. It
involves basic vector algebra and the application of the kernel function on the support
vectors xi.

145

Chapter 6 One-class classifiers

6.3.4.2 The RBF kernel

The Gaussian kernel is reported to be most suitable to be used with SVDD in (Tax
and Duin, 2004). As opposed to the polynomial kernel, the Gaussian kernel does not
depend on the position of instances with respect to the origin (Tax and Duin, 2004).
A major advantage for the problem discussed in this Thesis is, that this kernel adds
only one parameter to the classification problem, the kernel width σ.

The essential integral part of SVDD is the use of the kernel trick. The formally correct
explanation that the data set is mapped to a higher-dimensional space without actually
conducting the mapping might be incomprehensible at first sight. An alternative to
gain insight into the kernel trick is as follows. In the case of a Gaussian kernel, another
way is to think of kernel functions as distance functions, where the influence degrades
according to a Gaussian function the more distant two instances xi and xj are. Since
this is done for all xi, this results in a non-linear mapping.

The kernel function e−
‖xi−xj‖

2

σ2 can take on values from the interval (0, 1] and converges
to 0 for big distances ‖xi − xj‖. The influence on neighbouring feature vectors for
different values of σ is shown in Figure 6.6(a). For a growing distance the function is
illustrated for different values of σ in Figure 6.6(b).

Since K(xi, xi) = e−
‖xi−xi‖

2

σ2 = 1 and
∑M

i=1 αi = 1 the previous equations can be
simplified for the RBF kernel. The optimisation problem from eq. (6.35) to find the
optimal hypersphere is then given by:

maximise

L(α) = 1−
M∑
i,j=1

αiαjK(xi · xj) (6.42)

subject to

146

Chapter 6 One-class classifiers

(a) Kernel function e−
‖xi−xj‖

2

σ2 for different val-
ues of σ.

(b) The kernel function e−
‖xi−xj‖

2

σ2 converges to
0.

Figure 6.6: RBF kernel for different values of σ.

0 ≤ αi ≤ C ∀i (6.43)

The equation to classify an instance eq. (6.41) boils down to:

1− 2
M∑
i=1

αiK(xtest, xi) +
M∑
i,j=1

αiαjK(xi, xj) > R2 (6.44)

1− 2
M∑
i=1

αie
− ‖xtest−xi‖

2

σ2 +
M∑
i,j=1

αiαje
−
‖xi−xj‖

2

σ2 > R2 (6.45)

As an example, for three feature vectors x1 . . . x3 the center a shall be given by a linear
combination of the three vectors as illustrated in Figure 6.7 by

a = α1x1 + α2x2 + α3x3 (6.46)

147

Chapter 6 One-class classifiers

Figure 6.7: Non-linear decision function using the RBF kernel for three feature vectors
and the center a (green) described as the linear combination of the feature
vectors.

Now calculating the squared distance from the center ‖xi − a‖2 for any point in the
shown feature space and comparing the result to R2 yields the decision boundary
shown in Figure 6.7. As can be seen, the decision function is non-linear.

6.3.5 Surveying ways to determine the SVDD parameters

The optimisation problem eq. (6.15) is solved for a given set of parameters C and σ.
Determining those parameters is not straightforward. This section discusses ways of
finding the optimal parameter set.

The first parameter is the regularisation parameter C introduced in eq. (6.15). C

is lower-bound by 1
N
, where N is the number of instances in the training data set.

C = 1 corresponds to the hard-margin solution, where all instances are enclosed in
the decision boundary (Tax and Duin, 1999). So the value range of C is

1

N
≤ C ≤ 1 (6.47)

148

Chapter 6 One-class classifiers

Figure 6.8: The influence of the parameter σ on the decision boundary. The black
squares are the feature vectors and the circle is the determined center.

In this Thesis the RBF kernel is used, which adds the second parameter to be opti-
mised, the kernel width σ as given in eq. (6.37). For high values of σ the boundary
will become spherical with the risk of underfitting, while for small values of σ a high
fraction of instances are selected to be support vectors, hence the boundary is very
flexible and is prone to overfitting. The influence of σ on the kernel function is shown
for a small contrived data set in Figure 6.8.

In two-class classification problems, the classifier’s parameters are optimised using
cross-validation or leave-one-out validation based on a labelled training data set con-
taining both classes. For a given set of parameters, true positives, false positives,
true negatives, and false negatives are measured and listed in the so-called confusion
matrix. Based on the measured values the classifier’s parameters are optimised w.r.t.
for example the overall-accuracy, the true positive rate, or further metrics (Fawcett,
2004) depending on the application.

Since in one-class classification problems only instances from the normal class are
contained in the training data set, only true positives and false negatives can be
measured.

Several approaches to find the parameters for SVDD have been proposed. In (Tax and
Duin, 2004) hints are given about determining parameter C. If there is certainty that
no outliers exist in the training data set, C can be set to 1, so that the hypersphere

149

Chapter 6 One-class classifiers

will include all instances. If knowledge about the fraction of outliers ν in the training
data set exists, the parameter should be set to C ≤ 1

νN
.

In (Zhuang and Dai, 2006), the authors discuss optimising parameters for SVDD
in the context of text classification, where an imbalanced classification problem is
encountered. The normal class is much smaller sampled than the abnormal class.
SVDD is used to learn from the normal class and then optimised using instances from
the abnormal class (Zhuang and Dai, 2006). In (Mack and Waske, 2011) SVDD is
used for image classification, stating that in an image there are labelled instances
(pixels) that belong to the normal class and there is a huge amount of unlabelled
instances. An approach is proposed to select potential abnormal instances from the
unlabelled instances to be used for parameter optimisation. Neither (Zhuang and Dai,
2006) nor (Mack and Waske, 2011) address the problem of non-available outliers, but
rather propose how to transform the problem to two-class classification for parameter
tuning.

In the absence of outlier data, (Tax and Duin, 2001b) proposes to generate artificial
instances that are uniformly distributed in a hypersphere around the target class in-
cluding the region of the target class. Based on the fraction of instances classified as
normal an optimisation criterion is defined.

In (Tax and Duin, 2001a) an error function for the Gaussian kernel is defined utilising
the number of support vectors, that is used to optimise the two parameters without
the need to select or generate outliers. However, it has two drawbacks for the prob-
lem discussed in this Thesis: a trade-off parameter is introduced and the results are
reported to be far from satisfactory.

In (Tax and Duin, 2004) an estimation of the error on the target set is given, based on
the number of essential support vectors. Identifying the essential support vectors is
done using leave-one-out. Leaving out an essential support vector from the training set,
the decision boundary changes, while it remains unchanged if a non-essential support
vector or a normal instance is left out. However, leave-one-out is not practical for large
training sets due to its high execution time, e.g. for 10000 instances, 10000 training
runs are required.

150

Chapter 6 One-class classifiers

6.3.6 Autonomously tuning the SVDD parameters

Like most classifiers, SVDD has parameters that massively influence the classification
accuracy. While SVDD yields good classification results for the one-class problem,
manually adjusting the parameters C and σ makes it non-applicable for the problem
discussed in this Thesis.

As surveyed in Section 6.3.5, current approaches either work with available or gen-
erated data sets or by heuristically or experimentally setting the parameters. The
autonomous approach proposed in (Tax and Duin, 2001a) is reported to yield poor
decision boundaries and the approach in (Tax and Duin, 2004) is infeasible for large
data sets. This section presents an approach to autonomously tune the parameters by
solely working on the training set.

As proposed in (Hsu et al., 2003) for two-class SVMs, grid search is utilised for the
selection of parameter candidates. Based on an optimisation criterion the best pair
{Ci, σ} is determined.

The task is to tune the parameters so that the accuracy on the test set and on unseen
data is optimal. The input variables of one optimisation step are the training data set
A and the SVDD parameter candidates Ci, σi. Relevant measurable output variables
are the error rate eωn , the radius R, and the number of support vectors.

As described in Section 6.3.4, SVDD transforms the feature space F into the trans-
formed feature space φ(F) and then tries to find the optimal hypersphere surrounding
the instances in φ(F).

In order to equally weigh all incorporated features, prior to finding the hypersphere,
all features in F are independently normalised to a value range of [−1, 1] by min/max
normalisation.

151

Chapter 6 One-class classifiers

6.3.6.1 Selecting parameter candidates using grid search

The SVDD parameters C and σ are optimised using grid search in this Thesis. Within
a given value range, the grid search algorithm selects candidate values and tests all
candidates. The selection of candidate values is done iteratively. While this becomes
computationally expensive for many parameters, it is feasible for the two parameters
in the problem presented.

For SVDD as used in this Thesis, the required input parameters for grid search are
Cmin, Cmax, σmin, σmax, the number of candidates in the current range denoted by τ
and some stopping criterion like the number of iterations i.

For the parameter C, τ values are selected within the range of [Cmin;Cmax], and for
σ respectively. This sums up to τ 2 pairs {Ci, σi} as shown in Figure 6.9a. For all
{Ci, σi}, SVDD is trained and one optimal parameter set {Copt1, σopt1} is found.

This is refined in a second iteration by again selecting τ 2 pairs {Ci, σi} in the range of
[Copt1−1;Copt1+1] and [σopt1−1;σopt1+1] as shown in Figure 6.9b.

This process is repeated until some stopping criterion is met, e.g. until the value of
some optimisation criterion does not further decrease in an iteration or the desired
number of iterations is reached. Whether the parameter set has improved, is deter-
mined by assessing some optimisation criterion. Therefore it is crucial to identify a
good optimisation criterion.

6.3.6.2 Possible optimisation criteria

Obviously a low error rate is desired, so selecting {Ci, σi} where eωn is minimal could
be a good approach. However, as can be seen from experimental results, this approach
overestimates the region of the normal class by selecting too few support vectors (see
Figure 6.10). As a consequence the learnt decision boundary does not generalise well.

152

Chapter 6 One-class classifiers

Figure 6.9: Functioning of grid search to optimise the SVDD parameter C and σ with
τ = 5 and linear partitioning of the ranges. (a) first iteration (b) second
iteration

(a) “banana” data set with only 3 support
vectors (black squares: support vec-
tors).

(b) “2 clusters” data set with two support
vectors (black squares: support vec-
tors).

Figure 6.10: Results of parameter tuning by minimising the error rate visualised in
input feature space, where the selected support vectors do not tightly
enclose the training set.

153

Chapter 6 One-class classifiers

A solution could be to minimise eωn , while at the same time maximising the number
of support vectors. But, as reported in (Tax, 2001) and confirmed by experiments, the
error rate and the number of support vectors are approximately linearly correlated.
Hence, optimising the trade-off between eωn and the number of support vectors is not
possible.

6.3.6.3 Proposed optimisation criterion

The parameters C and σ are optimal if in the transformed feature space, the instances
are arranged in a spherical way. Only then will a hypersphere be the ideal decision
boundary. So the idea is, to find an optimisation criterion which selects that pair of
parameters that best map the data set to one spherical cluster in φ(F).

Following the kernel trick discussed in Section 6.3.4, the mapping F 7→ φ(F) is not
explicitely conducted, it is just an implicit mapping. So how can one determine if the
mapping is ideal, without actually conducting the mapping?

The data in the transformed feature space φ(F) cannot be visualised because (1) it
is high-dimensional and (2) it is an implicit mapping. In order to make the point
clear, assume that φ(F) is a known two-dimensional feature space, so that it can be
visualised.

The hypersphere’s radius can be determined by selecting an arbitrary support vector
on the boundary xb, where xb can be any xi for which 0 < αi < C holds. The radius
is then the distance between xb and the center a

R2 = ‖xb − a‖2 (6.48)

which after applying the binomial theorem and incorporating the RBF kernel is given
by

154

Chapter 6 One-class classifiers

R2 = 1− 2
M∑
i=1

αiK(xb, xi) +
M∑
i,j=1

αiαjK(xi, xj) (6.49)

From eq. (6.49) two observations are made:

1. The third term in eq. (6.49) is exactly the term that is minimised in the optimi-
sation problem eq. (6.42). The geometric interpretation in the original space is
that a · a is minimised when ‖a‖ is minimised, which is the case when the center
a is located at the origin (0, 0, . . .).

2. The second term
∑M

i=1 αiK(xb, xi) in eq. (6.49) incorporates one selected support
vector xb on the left side of the kernel function and all support vectors xi on the
right side, which is a subset of the third term

∑M
i,j=1 αiαjK(xi, xj), where all

support vectors are incorporated on both sides of the kernel function.

From the second observation, the assumption is deduced, that the second and third
terms in eq. (6.49) are proportional. In Figure 6.11 the values of term3 w.r.t. 0.5*term2
are depicted for the entire range of C and σ for four data sets. Experiments have
confirmed that the assumption of term2 and term3 being proportional holds for all
tested data sets over the entire range of parameters, they in fact are linearly related.

Substituting the 3rd term in eq. (6.49) by b

b :=
M∑
i,j=1

αiαjK(xi, xj) (6.50)

and expressing the 2nd term with a proportionality factor c

2
M∑
i=1

αiK(xb, xi) = bc (6.51)

155

Chapter 6 One-class classifiers

Figure 6.11: The second and third term are proportional for all tested data sets over
the entire range of the parameters C and σ.

simplifies eq. (6.49) into following equation

R2 = 1− bc+ b (6.52)

which can be rewritten as

R =
√

1− b(c− 1) (6.53)

From eq. (6.53) it can be seen that the smaller b is, the closer the radius is to 1. Since
b is exactly the term to be minimised, a radius of R → 1 can be considered optimal.
Figure 6.12 shows the optimal solution in terms of the radius: the center is at (0, 0)

and the radius at 1, i.e. the decision boundary is a unit sphere. Hence, for parameter
tuning a radius of 1 is considered as the optimal radius. This finding is based on the
observations in the bachelor thesis (Pavlichenko, 2011), which was supervised by the
author.

156

Chapter 6 One-class classifiers

Figure 6.12: Optimal mapping in a constructed transformed feature space. The in-
stances are arranged in a spherical way.

From the kernel function e−
‖xi−xj‖

2

σ2 it can be seen that the smaller σ is, the closer R
will be to 1. So small values of σ are favoured when optimising R. However, for small
values of σ, very flexible decision boundaries are obtained as was shown in Figure 6.8,
i.e. a high number of support vectors is selected. This tends to overfit the training set,
which in turn yields a high error rate. So only optimising for the radius is insufficient.

In order to find {Copt, σopt} (see Figure 6.9), the following optimisation criterion is
formulated. Informally spoken, R is desired to be close to 1, while at the same time
eωn is to be minimised.

Finding R close to 1 is equivalent to minimising |1 − R|. Equally weighting error
rate and radius this boils down to finding the pair {eωn i, Ri} closest to the origin by
minimising:

λi =

√
eωn

2
i + |1−Ri|2 ∀i (6.54)

This way, non-optimal mappings are assigned larger distances by eq. (6.54), because
non-spherical shapes in φ(F) are likely to result in a surrounding sphere with R 6= 1,
as illustrated in Figure 6.13.

157

Chapter 6 One-class classifiers

(a) Instances in mapped feature space ar-
ranged in a square.

(b) Instances in mapped feature space ar-
ranged in an ellipse.

Figure 6.13: Two constructed examples of non-optimal mappings resulting in spheres
with R > 1.

For each optimisation step, the error rate eωn and the radius R are determined using
k-fold. The training set is randomly split into k folds. The instances are classified k
times with each fold used as the validation set once and eωn and R are averaged over
the k runs.

Figure 6.14 shows results based on the proposed optimisation criterion. For two arti-
ficial two-dimensional data sets, the support vectors that are autonomously selected
enclose the training set in the input feature space F . In the case of more than one clus-
ter in input space, with an ideal mapping, SVDD maps all instances to one spherical-
shaped cluster in φ(F), as shown for the two clusters in Figure 6.14b.

6.3.6.4 Functioning of the tuning algorithm

To show the functioning of the tuning algorithm, the data sets in Table 6.1 were used,
where ‖F ‖ is the number of features and ‖A‖ is the size of the training set.

158

Chapter 6 One-class classifiers

(a) Banana-shaped cluster (black squares:
support vectors).

(b) Two circular clusters following a Gaus-
sian distribution with different densi-
ties (black squares: support vectors).

Figure 6.14: Parameter tuning of SVDD on artificial two-dimensional data sets visu-
alised in input feature space.

data set ‖F ‖ ‖A‖
banana 2 490
2 clusters 2 1000
Iris 4 25
thyroid 21 100

Table 6.1: Properties of data sets used for parameter tuning.

Using grid search, the parameter range was linearly split into 20 candidates, i.e. for
the two parameters a grid of 400 (20 × 20) candidate pairs {Ci, σi} was selected per
iteration. The parameter ranges were refined by 10 iterations, summing up to 4000
steps. Within each step k-fold is conducted with k = 7. Experiments have shown that
such a high number of steps is far from being necessary, it was chosen to have a fine
resolution for the plots. The development of the ranges w.r.t. the optimisation steps
are shown in Figure 6.15.

As depicted in Figure 6.16, the error rate converges to its minimum, while the radius
takes on values close to 1. The optimisation parameter λ rapidly converges to its
minimum as can be seen in Figure 6.16(c).

159

Chapter 6 One-class classifiers

(a) Tuning of SVDD parameter C.

(b) Tuning of SVDD parameter σ.

Figure 6.15: Tuning of SVDD parameters using grid search on the “banana”, “2 cluster”,
“Iris”, and “thyroid” data set.

Figure 6.17 reveals interesting correlations between C, σ, the radius, the error rate,
and the number of support vectors. The influence of the parameters on the radius
becomes obvious. As shown by Figure 6.17(a) the radius is anti-proportional to σ. For
small values of C, smaller values for the radius are observed. For higher values of C,
more training instances are enclosed by the hypersphere, yielding a bigger radius.

As C increases, the error rate eωn decreases, which is easily understood. The parameter
C regularises the fraction of outliers in the training set. So, for high values of C, the
decision boundary tries to enclose all instances, while for low values of C a higher
number of instances is left outside. This leads to a higher number of misclassified
instances in the validation set and hence to a higher error rate. Leaving out instances

160

Chapter 6 One-class classifiers

leads to a flexible boundary, requiring more support vectors. This explains why the
number of support vectors decreases as C increases as shown in Figure 6.17(d).

Conclusively, the influence of the SVDD parameters C and σ on the solution are
summarised as follows:

C ↑ ⇒

R ↑error, SV s, λ ↓ (6.55)

σ ↑ ⇒

λ ↑error, SV s,R ↓ (6.56)

161

Chapter 6 One-class classifiers

(a) Error rate eωn w.r.t. the optimisation step.

(b) Radius w.r.t. the optimisation step.

(c) Optimisation parameter λ w.r.t. the optimisation step.

Figure 6.16: Error rate eωn , radius R, and optimisation parameter λ.

162

Chapter 6 One-class classifiers

(a) The radius w.r.t. σ. (b) The radius w.r.t. C.

(c) The error on the normal class eωn
w.r.t. C.

(d) The number of support vectors w.r.t.
C.

Figure 6.17: Correlation between σ and the radius. C influences the radius, the number
of support vectors and eωn .

163

Chapter 6 One-class classifiers

6.3.7 Discussion

In the lack of a test set with both classes ωn and ωa, a found decision boundary could
be evaluated by visualising the training data set with support vectors, as can be seen
in Figure 6.14. However, this is not possible for higher-dimensional data sets, since
more than two features make it hard to evaluate the visualisation.

It is essential for the usability of the entire approach presented in this Thesis to have
an autonomous way to determine the parameters. Users are interested in reported
abnormal subsequences in the recordings for further analysis, but should not have
to get involved with classification theory and the inner workings of the classifier.
The proposed parameter tuning approach offers a major benefit, a valid solution was
found that entirely works on the training data set, without any parameterisation.

Summarising, the proposed tuning approach finds the optimal parameter set based on
the error rate and the radius solely on the training set and without the need for the
user to adjust parameters.

6.4 Experimental results on artificial and public domain

data

In this section the three discussed one-class classifiers k-NN, LOF, and SVDD are
compared based on experimental results on artificial or public domain data sets ranging
from 2 up to 60 features. The characteristics of the data sets are described in the first
section. Subsequently experiments are conducted with thresholded k-NN as discussed
in Section 6.1, followed by experiments with LOF as discussed in Section 6.2. Finally
SVDD with the proposed autonomous parameter tuning approach is tested on the
same data sets.

164

Chapter 6 One-class classifiers

6.4.1 Description of the data sets

The two-dimensional “banana” data set, shown in Figure 6.18(a), was created with
PRTools (PRTools, 2012) and consists of two classes that are linearly inseparable. The
“2 clusters” data set is an own artificial two-dimensional data set, where the normal
class comprises two clusters with different densities following a Gaussian distribution
and the abnormal class is a ring around each cluster as shown in Figure 6.18(b).

(a) “banana” data set. (b) “2 clusters” data set.

Figure 6.18: Two artificial data sets used for the experiments: the “banana”, and the
“2 clusters” data set (blue: normal class, green: abnormal class).

Since widely used, Fisher’s four-dimensional “Iris” data set was utilised. The class
“versicolour” was taken as the normal class, where the training was conducted on the
first 50% of instances.

Further real-world data sets were taken from (KEEL, 2012), where more detailed infor-
mation can be found. The “wine” data set has 13 features, e.g. alcohol or magnesium,
determined by chemical analysis of Italian wines from three different cultivars. The
first cultivar was used as the normal class.

For the “vehicle” data set (KEEL, 2012) the task is to classify four types of vehicles
based on 18 features extracted from their silhouettes viewed from different angles. The
class “van” was used as the normal class.

165

Chapter 6 One-class classifiers

The “twonorm” data set (KEEL, 2012) is an artificial data set with two classes, fol-
lowing a multivariate normal distribution in 20 dimensions.

The “thyroid” data set (KEEL, 2012) contains 21 features, that are used to determine
whether a patient is normal or suffers from either hyperthyroidism or hypothyroidism.
This data set is special in a way, that the number of normal instances is small compared
to the abnormal instances.

Finally the “sonar” data set from (KEEL, 2012) was used, where rocks are to be
distinguished from mines. Each instance consists of the energy within 60 frequency
bands, i.e. the data set has 60 features. The class “rock” was used as the normal class.
This data set has many features but only very few training instances.

A general rule for machine learning algorithms is, the more features a data set contains,
the bigger the size of the training set should be. The number of features w.r.t. the size
of the training set for all data sets is shown in Figure 6.19. From the plot it can be
expected that the “banana” and “2 clusters” data set should yield good classification
results, while the “sonar” data set is likely to yield weak results. In addition to the
number of features and the size of the training set, the accuracy depends on the
separability of the classes for each specific data set.

For all data sets, the features were individually normalised to a value range of [−1; +1]

prior to classification. The normalisation factors were determined solely from the
training set and used to normalise the training and the test set. This way the test set
remains a real blind test set.

Since solely the classifiers were to be compared, no further steps to improve the clas-
sification results were taken. In applications, feature selection and feature reduction
like principal component analysis (PCA) can be conducted.

166

Chapter 6 One-class classifiers

Figure 6.19: Number of features w.r.t. the size of the training set for the 8 data sets.

6.4.2 Results for k-NN, LOF, and SVDD

The results for k-NN with k=1 are given in Table 6.2 and for k=5 are given in Table
6.3, where ‖F ‖ is the number of features, ‖A‖ refers to the number of instances in
the training set, and ‖B‖ to the number of instances in the test set respectively. The
column “threshold” holds the classification threshold determined from the training set.
TPR is the true positive rate, i.e. the fraction of normal instances correctly classified
as normal, and TNR is the true negative rate, i.e. the fraction of correctly detected
anomalies. The last column holds the precision on the abnormal class TN

TN+FN
.

The k-NN classifier was used with k=1 and k=5, because k=1 is very sensitive to
individual outliers and k=5 is less sensitive. As can be seen from Table 6.2 and Table
6.3, the normal class is overestimated. The true positive rate (TPR) is very high, while
a high fraction of the data from the abnormal class was not detected as shown by the
column holding the true negative rate (TNR). The high true positive rate results in
the high percentages for the precision.

167

Chapter 6 One-class classifiers

data set ‖F ‖ ‖A‖ ‖B‖: ωn/ωa threshold TPR TNR prec. ωa
banana 2 490 489/510 0.251 100.0% 72.4% 100.0%
2 clusters 2 1000 1000/2000 0.223 100.0% 51.2% 100.0%
Iris 4 25 25/100 0.687 100.0% 94.0% 100.0%
wine 13 40 19/119 1.751 94.7% 97.5% 99.1%
vehicle 18 122 77/269 1.674 98.7% 58.0% 99.4%
twonorm 20 2000 1703/3697 1.426 99.6% 19.6% 99.2%
thyroid 21 100 66/7034 2.137 98.5% 60.9% 100.0%
sonar 60 50 47/111 4.562 95.7% 18.9% 91.3%

Table 6.2: Results for one-class 1-NN on 8 artificial or public domain data sets ranging
from 2 up to 60 features. The fraction of detected anomalies was above 70%
for just three of the data sets as shown in the column “TNR”.

data set ‖F ‖ ‖A‖ ‖B‖: ωn/ωa threshold TPR TNR prec. ωa
banana 2 490 489/510 0.302 100.0% 78.0% 100.0%
2 clusters 2 1000 1000/2000 0.277 100.0% 48.2% 100.0%
Iris 4 25 25/100 1.139 100.0% 93.0% 100.0%
wine 13 40 19/119 2.056 94.7% 98.3% 99.2%
vehicle 18 122 77/269 2.751 100.0% 43.9% 100.0%
twonorm 20 2000 1703/3697 1.545 99.8% 15.1% 99.3%
thyroid 21 100 66/7034 2.448 98.5% 56.5% 100.0%
sonar 60 50 47/111 5.238 100.0% 18.0% 100.0%

Table 6.3: Results on the 8 selected data sets for one-class 5-NN. The results do not
significantly differ from 1-NN.

For k=1, the fraction of detected anomalies was above 70% for just three of the data
sets. In those data sets, the classes are far apart and can be easily separated. The
“sonar” data set yields the weakest results. This data set has a high number of features
and a very small size of the training set. This kind of constellation is problematic
for classification problems in general, but poses even greater problems for one-class
classifiers. The results for k=5 do not significantly differ from the results for k=1.

Analogous to k-NN, LOF was used with k=1 and k=5. Some of the results are very
poor as shown in the column holding the true negative rate in Table 6.4 and Table 6.5.
In general, LOF is assumed to be superior to k-NN for outlier detection, but the naive
way of determining the threshold from the training set appears to be not suitable for
LOF.

168

Chapter 6 One-class classifiers

data set ‖F ‖ ‖A‖ ‖B‖: ωn/ωa threshold TPR TNR prec. ωa
banana 2 490 489/510 26.66 99.8% 0.0% 0.0%
2 clusters 2 1000 1000/2000 18.58 100.0% 1.4% 100.0%
Iris 4 25 25/100 1.65 100.0% 84.0% 100.0%
wine 13 40 19/119 1.64 100.0% 89.9% 100.0%
vehicle 18 122 77/269 8.76 100.0% 17.5% 100.0%
twonorm 20 2000 1703/3697 1.86 99.9% 2.4% 98.9%
thyroid 21 100 66/7034 4.37 95.5% 36.2% 99.9%
sonar 60 50 47/111 1.81 95.7% 0.0% 0.0%

Table 6.4: Results for LOF with k=1. The number of detected anomalies is acceptable
for two data sets, but very weak on the remaining ones.

data set ‖F ‖ ‖A‖ ‖B‖: ωn/ωa threshold TPR TNR prec. ωa
banana 2 490 489/510 3.517 100.0% 36.1% 100.0%
2 clusters 2 1000 1000/2000 2.611 99.5% 91.5% 99.7%
Iris 4 25 25/100 1.323 100.0% 94.0% 100.0%
wine 13 40 19/119 1.295 100.0% 98.3% 100.0%
vehicle 18 122 77/269 2.224 100.0% 50.9% 100.0%
twonorm 20 2000 1703/3697 1.480 99.9% 12.6% 99.6%
thyroid 21 100 66/7034 3.457 97.0% 25.2% 99.9%
sonar 60 50 47/111 1.284 91.5% 17.1% 82.6%

Table 6.5: Results for LOF with k=5. The classification results have improved com-
pared to LOF with k=1 for almost all data sets, but are still very weak for
5 of the 8 data sets.

For k=1, the number of detected anomalies is acceptable for two data sets, but is
very weak on the remaining data sets. With k=5, most of the classification results
have improved compared to LOF with k=1, but they are still very poor for 4 of the 8
data sets. The reason is the sensitivity to outliers in the training set with k=1. That
explains for example the difference between k=1 and k=5 for the “2 clusters” data
set.

In the final experiment, SVDD with the proposed autonomous parameter tuning ap-
proach was evaluated with the 8 data sets. The experiments were run with 10 param-
eter candidates, k-fold with k=10, and 10 iterations.

169

Chapter 6 One-class classifiers

data set ‖F ‖ ‖A‖ ‖B‖: ωn/ωa SVs eωn R TPR TNR prec. ωa
banana 2 490 489/510 23 0.037 0.939 95.1% 96.3% 95.3%
2 clusters 2 1000 1000/2000 36 0.033 0.939 92.7% 99.2% 96.5%
Iris 4 25 25/100 7 0.150 0.777 92.0% 96.0% 98.0%
wine 13 40 19/119 11 0.250 0.837 73.7% 100.0% 96.0%
vehicle 18 122 77/269 20 0.150 0.884 87.0% 82.9% 95.7%
twonorm 20 2000 1703/3697 92 0.050 0.960 94.4% 69.0% 96.4%
thyroid 21 100 66/7034 17 0.160 0.857 71.2% 96.6% 99.7%
sonar 60 50 47/111 12 0.220 0.748 51.1% 38.7% 65.2%

Table 6.6: Results on the 8 selected data sets with SVDD and the proposed au-
tonomous parameter tuning approach. The true negative rate is very good
for the majority of the data sets.

Table 6.6 shows the classification results on the described data sets, where SV is the
number of determined support vectors, eωn the error on the normal class, and R the
hypersphere’s radius.

As can be seen in Table 6.6, the true negative rate with SVDD is very good for the
majority of the data sets, it is above 70% for six of the data sets. As expected, the
“sonar” data set yields poor results because with a high number of features and a low
number of training instances it is not suitable for classification tasks in general, and
particularly poses problems to one-class classifiers. The precision is high, i.e. most of
the reported anomalies are abnormal. Additionally, as shown by the column “SVs” the
decision functions are expressed by a small fraction of the training instances, e.g. in
the case of the “2 clusters” data set, 964 of the 1000 training instances are discarded.

6.5 Experimental results on real data

In this section, the three classifiers are evaluated on own recordings from the test rig
with a DC motor and an attached wheel (see Section 3.3.2). Anomalies were manually
injected by altering the motor’s load simulating e.g. wear-out.

The recordings are time series data, but for these experiments the data points are
treated as independent. Ignoring knowledge about dependencies between consecutive

170

Chapter 6 One-class classifiers

data set k ‖F ‖ ‖A‖ ‖B‖: ωn/ωa threshold TPR TNR prec. ωa
DC motor 1 3 5244 17639/895 0.250 99.9% 22.8% 97.1%
(IADIS)
DC motor 5 3 5244 17639/895 0.250 99.9% 22.8% 97.1%
(IADIS)
DC motor 1 7 10327 23949/397 0.661 100% 33.2% 96.4%
(position)
DC motor 5 7 10327 23949/397 0.709 99.9% 33.2% 91.7%
(position)

Table 6.7: Results with k-NN on real data sets from the test rig.

data set k ‖F ‖ ‖A‖ ‖B‖: ωn/ωa threshold TPR TNR prec. ωa
DC motor 1 3 5244 17639/895 19.58 99.9% 0.2% 50.0%
(IADIS)
DC motor 5 3 5244 17639/895 3.158 99.9% 27.9% 96.9%
(IADIS)
DC motor 1 7 10327 23949/397 36.3 100% 0.02% 100%
(position)
DC motor 5 7 10327 23949/397 7.89 100% 0.76% 100%
(position)

Table 6.8: Results with LOF on real data sets from the test rig.

data points generally yields weaker results. This issue will be addressed in the next
chapter.

The results for k-NN are given in Table 6.7. The percentage of detected abnormal
data points is quite low for k=1 and k=5, as shown by the column “TNR”. As for the
previous experiments, the reason is that the way of determining the threshold from
the training data leads to an overestimation of the normal class.

The results for LOF are very poor, which is assumed to be caused by the proposed way
of determining the threshold. In particular, with k=1 the results are useless as shown
in Table 6.8. The reason is that with k=1 one outlier in the training set determines
the threshold.

171

Chapter 6 One-class classifiers

data set ‖F ‖ ‖A‖ ‖B‖: ωn/ωa SVs eωn R TPR TNR prec. ωa
DC motor 3 5244 17639/895 96 0.018 0.980 97.6% 75.2% 61.0%
(IADIS)
DC motor 7 10327 23949/397 74 0.008 0.973 97.1 % 70.5 % 28.9 %
(position)

Table 6.9: Results with SVDD on real data sets from the test rig.

As for the artificial and public domain data sets, SVDD with autonomous parameter
tuning outperforms the one-class adaptations of k-NN and LOF as can be seen in
Table 6.9 in the column holding the true negative rate.

6.6 Evaluation

Based on the experimental results, the three classifiers are compared. Figure 6.20
shows the percentage of correctly detected anomalies, i.e. the true negative rate, for
the tested data sets. The results reveal that in terms of the fraction of correctly
detected anomalies (TNR) SVDD outperforms k-NN and LOF on all data sets.

On the real data sets “DC IADIS” and “DC pos”, the results with SVDD were sig-
nificantly better as shown by the true negative rates in Table 6.9. As indicated by
the high percentage rates for TNR, the vast majority of anomalies were detected. In
addition the precision on the abnormal class is high, i.e. a high fraction of the re-
ported anomalies is indeed abnormal. The reason is that SVDD encloses the normal
data more tightly by describing the decision boundary using the outmost instances as
support vectors.

In Table 6.10 the three classifiers are evaluated based on the key requirements identified
in Section 5.3 and the classification accuracy. As shown, there is strong evidence, that
SVDD is the best classifier for the problem at hand.

Another strong argument for SVDD is that the classification process is very fast com-
pared to k-NN and LOF. Classification is done by solving one equation for the test
instance. On the other hand, classification with k-NN and LOF requires visiting each

172

Chapter 6 One-class classifiers

Figure 6.20: True negative rates for the classifiers k-NN, LOF and SVDD on artificial,
public domain and real data sets (100% would be optimal).

instance in the training data set. An additional benefit for using SVDD is the very
compact way of storing the knowledge base, as indicated by the low number of support
vectors.

requirement one-class k-NN one-class LOF SVDD
one-class classifier yes yes yes
robust against outliers partly partly yes
anomaly score deducible deducible deducible
time span yes yes yes
extensible with anomalies no no yes
free of expert-parameters no no yes
sufficient accuracy no no yes

Table 6.10: Evaluation of the three classifiers based on the key requirements from
Section 5.3 and the classification accuracy.

173

Chapter 6 One-class classifiers

6.7 Conclusion

The expectation is that with a more sophisticated way of determining the threshold,
the techniques k-NN and LOF could be enhanced to function as a one-class classifier
satisfactorily. However, the considered adaptations are not useful.

The discussed benefits make SVDD with the proposed parameter tuning approach
most suitable for use in an anomaly detection system. Consequently the decision is to
use SVDD for anomaly detection in this Thesis.

In terms of the classification accuracy, by only considering the number of reported
feature vectors the results are not fully expressive for the problem to identify abnormal
subsequences. For example, five consecutive data points falsely reported as abnormal
require the expert to conduct one investigation. Five falsely reported data points
scattered in the data set require the expert to investigate five locations in the data
set. This problem is addressed in the next chapter.

174

Chapter 7

Enhancing SVDD to multivariate
time series

Having identified SVDD as the most suitable classifier for anomaly detec-
tion in the previous chapter, SVDD is enhanced to work on multivariate
time series in this chapter. The outcome is a classifier that is directly
applicable to test drive data, without complex user parameterisation.

SVDD was identified as the best classifier for anomaly detection, when learning from
the normal class ωn only. However, the classifier works in feature space ignoring the
fact that recordings from test drives are time series data. In this chapter a novel
approach is proposed, that enhances SVDD to work with multivariate time series.
The approach shall be named SVDDsubseq.

Chapter 7 Enhancing SVDD to multivariate time series

7.1 Feature extraction

Classifiers like SVDD are trained with instances in feature space, i.e. feature vectors.
Recordings from test drives correspond to multivariate time series data. So from the
time series, features need to be extracted. In this work, transforming the multivariate
time series to feature vectors is done by transforming the values at each time point Ti
to one feature vector Fi. Thereby, an M ×N multivariate time series

YT =

 x1,t1 . . . x1,tN
...

xM,t1 . . . xM,tN

 (7.1)

is transformed to N feature vectors of length M

Fi = (x1,ti , x2,ti , . . . , xM,ti) ∀i (7.2)

7.2 Forming subsequences

The recordings from test drives are noisy. Measuring identical situations, it is likely to
observe similar but not identical values. Therefore the expectation is that classifying
individual data points yields a high number of false negatives due to the nature of the
data, which is confirmed by experiments. An approach is needed, that compensates
for small deviations of data points.

The idea is to not classify individual data points, but to incorporate the local neigh-
bourhood of the data points by working on subsequences. From the classified feature
vectors, subsequences Ytj ...t(j+W−1)

are formed using a fixed-width non-overlapping win-
dow of length W . The first time point of the j-th subsequence is given by j ∗W with
j = 0, 1, 2, . . . :

176

Chapter 7 Enhancing SVDD to multivariate time series

Ytj ...t(j+W−1)
=

 x1,tj . . . x1,tj+W−1

...
xM,tj . . . xM,tj+W−1

 (7.3)

Working with feature vectors, the order of the data is ignored. In other words, shuffling
the feature vectors (the columns in eq. (7.1)) prior to applying SVDD yields the same
results. In contrast, by combining neighbouring values to subsequences, the local order
of the data is taken into account.

7.3 Assigning distances to subsequences

In order for subsequences to be classifiable, a distance measure has to be defined.
Informally spoken, the distance measure should yield a big distance for a subsequence
if many data points lie outside the normal region or if few data points lie far outside
the normal region. As a first step, for every feature vector, the Euclidean distance to
the center a is calculated by

distxtj = ‖xtj − a‖ (7.4)

Based on this distance measure, a distance is assigned to each subsequence. The
distance of a subsequence is calculated by summing up the distances of the window’s
instances.

distsubseq =
1

W

W∑
j=1

distxtj (7.5)

The formation of subsequences after classification of the feature vectors with SVDD
is illustrated in Figure 7.1 for a contrived multivariate time series containing two
univariate time series.

177

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.1: A subsequence with window lengthW=5 shown in the original multivariate
time series and in feature space.

7.4 Training and test

This section describes the training and test mode of SVDDsubseq. As a first step,
SVDD is trained on A treating data points as independent feature vectors as de-
scribed in Section 7.1. Following that, for A the distances to the center are calcul-
cated, transformed to subsequences, and a threshold for the distance thresholdsubseq
is determined.

The procedure during training is as follows:

1. train SVDD with the feature vectors in A

2. calculate the distances distxtj of the feature vectors in A, if available an addi-
tional tuning set A2 can be used

3. form subsequences according to eq. (7.3)

4. calculcate distsubseq for all subsequences as given by eq. (7.5)

5. determine a threshold thresholdsubseq for distsubseq

178

Chapter 7 Enhancing SVDD to multivariate time series

Testing instances from a test set B works by applying the thresholdsubseq determined
during training:

1. calculate the distances distxtj of the feature vectors in test set B

2. form subsequences according to eq. (7.3)

3. calculcate distsubseq for all subsequences (see eq. (7.5))

4. classify subsequences as abnormal if distsubseq > thresholdsubseq

A major advantage of SVDDsubseq is that from the distance values in eq. (7.5), an
anomaly score for subsequences can be deduced. It is defined as

anomaly_scoresubseq =

distsubseq − thresholdsubseq : if subsequence is abnormal

0 : if subsequence is normal

(7.6)

7.5 Determining the threshold

In the previous section the threshold thresholdsubseq for classifying subsquences based
on their distance was introduced. This section discusses a way to determine that
threshold.

A first approach to determine the threshold could be to use the maximum distance
in A as the threshold. However, this is highly sensitive to outliers in A since the
threshold would be determined solely by the most distant subsequence.

Equivalently to the introduction of slack variables during training of SVDD, it is pro-
posed to not necessarily include all subsequences in the determination of the threshold,
and thereby be robust against outliers. The distances of all subsequences are calculated
and those that are considered outliers are not used to determine the threshold.

179

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.2: Histogram of distances in training set from recordings of test drives.

The undesired outliers in the training set could be identified based on the statistical
distribution of the distances by cutting off at the upper tail of the distribution. Exper-
iments have shown that the distribution does not correspond to a normal distribution
(see the example in Figure 7.2), so the type of the distribution and its parameters
would have to be determined and a threshold would have to be specified.

An approach to determine the threshold without assumptions about the distribution
of the distances is desired. It is proposed to use box plots known from statistics
(see e.g. (Raykov and Marcoulides, 2012)). For a box plot the first and the third
quartile (Q1 and Q3) of the data are calculated. The margin between Q1 and Q3 is
referred to as the inter-quartile range, which holds 50% of the data. Based on the
inter-quartile range, the so-called whiskers are calculated by Q3 + 1.5(Q3 − Q1) and
Q1 − 1.5(Q3 −Q1). The data outside the whiskers are regarded as outliers. This has
been successfully applied on real-world data in (Laurikkala et al., 2000) to identify
outliers in medical data.

In this work, outlier distances are the ones that are greater than the upper whisker.
Those distances are discarded according to

distoutlier > 1.5(Q3 −Q1) +Q3 (7.7)

and then the maximum of the remaining distances is used as the threshold for classi-
fication. Figure 7.3 shows the box plot for the distances shown in Figure 7.2, where

180

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.3: Box plot of distances in tuning set.

the distances above the upper horizontal line (whisker) are discarded resulting in a
threshold of 0.9214.

7.6 Determining the classification results

In the test set, consecutive fixed-length subsequences with the same label are grouped
together as variable-length subsequences, slabωa for abnormal subsequences and slabωn
for normal ones respectively.

If some or all fixed-length subsequences contained in slabωa are reported as abnormal,
the anomaly is detected, i.e. the system detected one true negative. The classification
results are determined as follows, where sclassωa is a fixed-length subsequence classified
as abnormal and sclassωn a subsequence classified as normal. An example is shown in
Figure 7.4.

• true negative (TN), i.e. an abnormal subsequence is detected:
if slabωa contains at least one sclassωa

• false positive (FP), i.e. an abnormal subsequence is not detected:
if slabωa does not contain a sclassωa

181

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.4: Determination of the classification results based on the formed
subsequences.

• false negative (FN), i.e. a subsequence is falsely reported as anomaly:
for each group of consecutive subsequences sclassωa contained in a slabωn

• true positive (TP):
for each group of consecutive subsequences sclassωn contained in a slabωn

It will be shown, that the approach is capable to detect anomalies in individual sub-
sequences in a univariate time series and in sets of coinstantaneous subsequences in a
multivariate time series, i.e. for a subset of the anomalies defined in Section 3.3. For
simplicity the distinction between subsequences and sets of subsequences will not be
made in the experiments. A window in a time series will be referred to as “subsequence”
regardless of whether it is univariate or multivariate.

7.7 Experimental results on artificial data sets

Having introduced SVDDsubseq, in this section the approach is evaluated using
artificial time series data. First, the data sets are described then experiments with
different data sets and anomalies are conducted. Finally the results are summarised
and conclusions are drawn.

182

Chapter 7 Enhancing SVDD to multivariate time series

7.7.1 Description of the data set

In order to be able to control the data sets for the initial experiments with SVDDsub-
seq, time series data was artificially generated. For this purpose, autoregressive mov-
ing average (ARMA) models (Shumway and Stoffer, 2006) from the field of time series
analysis are used.

An ARMA model is a combination of an autoregressive (AR) and a moving average
(MA) model. These three models are briefly reviewed in this section. More information
can for example be found in (Shumway and Stoffer, 2006; Kirchgässner and Wolters,
2007).

An autoregressive model yields the current value xt of a univariate time series w.r.t.
its past p values. An AR model is formulated as follows, where αi are coefficients, wt
denotes white noise, and p is the order.

xt = α1xt−1 + ...+ αpxt−p + wt (7.8)

With a moving average model, the current value of a univariate time series is modelled
as the weighted average of a white noise process wt. A MA model is given by the
following equation, where βi denotes the coefficients.

xt = β0wt−1 + β1wt + β2wt−2 (7.9)

ARMA models combine the properties of AR and MA models and are given by

xt = α1xt−1 + ...+ αpxt−p + wt + β0wt−1 + ...+ βqwt−q, (7.10)

An example of a time series generated with an ARMA model with α1 = 0.7 and
β1 = 0.3 is shown in Figure 7.5.

183

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.5: Plot of a time series generated by an ARMA model with α1 = 0.7 and
β1 = 0.3.

The described ARMA models are used for the generation of artificial data sets by
generating signals and to add noise to the relations between signals. For all experiments
the size of the training set is 5000 feature vectors, the test sets contain 2000 feature
vectors. Each test set contains 10 anomalies of different lengths, ranging from 5 to
30 data points. For each experiment three test sets were tested and the results were
averaged. A window size W of 10 data points was pre-defined.

7.7.2 Results

In this section, the classification accuracy of SVDDsubseq is evaluated for different
kinds of data sets and anomalies. Data sets with a growing number of signals are
tested, where the anomalies are present (1) in one signal, (2) in the relation between
related signals, and (3) in the relation between two signals with further signals being
unrelated. By enclosing the data points in feature space, SVDD implicitly learns the
point-wise relations between the signals. As a consequence, the expectation is that
the approach works best for closely related signals, while the results are expected to
be weaker if unrelated signals are contained in the test set.

184

Chapter 7 Enhancing SVDD to multivariate time series

7.7.2.1 Anomalies in one of the signals

The first experiment investigates the detection of anomalies that are present in just
one of the signals. This type of anomaly was introduced in Section 3.3 as “subsequence
anomaly in univariate time series” (type 1). Data sets with related signals were gen-
erated utilising the described ARMA models. The training set consists of 5000 data
points and the test set of 2000 data points with 10 injected anomalies. The first signal
“sig1” is created by an ARMA model. For the further signals, signal n corresponds
to signal n-1 superimposed by noise generated by an ARMA model. The anomalies
were injected into the second signal. The process of how the data sets were created is
shown in Figure 7.6.

Figure 7.6: Process to create the data set. Signal “sig n” corresponds to “sig n-1”
superimposed by noise generated by an ARMA model. The red arrow
marks the location where the anomalies are injected.

Figure 7.7 shows one of the multivariate time series with 4 related signals, where
the second signal “sig2” contains 10 subsequences that slightly exceed the normal
value range learnt from the training set. As can be seen in Figure 7.7, the longer
subsequences could be visually detected by an expert investigating the data at this
resolution. The smaller subsequences are not obvious though. All anomalies were
detected by SVDDsubseq, and 4 false negatives were reported.

The results for 2 . . . 20 signals are given in Table 7.1, where ‖F ‖ is the number of
features, i.e. signals, and FN the number of subsequences that were falsely reported as
abnormal. The column “avg W” holds the average subsequence length of the detected
false negatives and “data points” is the percentage of the falsely reported data points.
TN is the number of correctly detected abnormal subsequences (true negatives) and
TNR the percentage of detected anomalies. Finally, “precision” is the percentage of
true negatives in the result set as introduced in Section 5.2.

185

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.7: A four-dimensional multivariate time series generated using ARMA mod-
els. The second signal “sig2” contains 10 anomalies indicated by a value of
1 for “class”.

data set ‖F ‖ FN avg W (FN) data points (FN) TN TNR precision
arma2d 2 4 10 2.0% 10 100% 71.4%
arma4d 4 4 10 2.0% 10 100% 71.4%
arma6d 6 5 10 2.5% 10 100% 66.7%
arma8d 8 4 10 2.0% 10 100% 71.4%
arma10d 10 7 10 3.5% 10 100% 58.9%
arma20d 20 13 11 7.2% 10 100% 43.4%

Table 7.1: Results for 2 . . . 20 related signals, where the second signal contains 10
univariate subsequence anomalies.

186

Chapter 7 Enhancing SVDD to multivariate time series

7.7.2.2 Anomalies in multiple relationships

In the next experiment, anomalies of the type “contextual anomaly in multivariate time
series” (type 3, see Section 3.3) are to be detected for data sets with related signals,
where the relation is not time-delayed. The first signal “sig1” is created by an ARMA
model and further signals correspond to signal n-1 superimposed by ARMA-generated
noise. In the test set, 10 anomalies were injected by damping the relationship between
two consecutive signals, i.e. the first and the second, the third and the fourth and so
forth. The creation of the data set is depicted in Figure 7.8.

Figure 7.8: Creation of the data sets with related signals and anomalies injected into
the relations.

As can be seen from Figure 7.9, it is not possible to visually detect the anomalies.
The classifier SVDDsubseq detected 9 of 10 anomalies and 6 false negatives were
reported. The full results are given in Table 7.2.

data set ‖F ‖ FN avg W (FN) data points (FN) TN TNR precision
arma2d 2 5 10 2.5% 7 70% 58.3%
arma4d 4 12 10 6.0% 9 90% 42.9%
arma6d 6 9 11 5.0% 8 80% 47.1%
arma8d 8 7 12 4.2% 9 90% 56.3%
arma10d 10 8 10 4.0% 10 100% 52.9%
arma20d 20 17 11 1.0% 9 90% 34.6%

Table 7.2: Results for 2 . . . 20 related signals, where 10 anomalies were injected into the
relations between the first and the second signal, the third and the fourth
and so forth.

187

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.9: Multivariate time series with 4 related signals. 10 anomalies were injected
into the relations between “sig1” and “sig2”, and between “sig3” and “sig4”.

7.7.2.3 Anomalies in one relationship

In the previous example, the anomalies were present in the relationship between several
signals. In this experiment just one of the relationships is violated. In the test set,
10 anomalies were injected into the relation between the first and the second signal
(“sig1” and “sig2”). The creation of the data set is shown in Figure 7.10. One of the
test sets is depicted in Figure 7.11 and the full results are given in Table 7.3. Again,
from Figure 7.11 the detection of the anomalies appears to be impossible. Using the
proposed classifier, 6 out of 10 anomalies were detected, and 12 subsequences were
falsely reported as anomaly.

188

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.10: Creation of a data set with related signals and injected anomalies.

Figure 7.11: Multivariate time series consisting of 4 related signals, where the anoma-
lies were injected into the relation between “sig1” and “sig2”.

data set ‖F ‖ FN avg W (FN) data points (FN) TN TNR precision
arma2d 2 5 10 2.5% 7 70% 58.3%
arma4d 4 8 11 4.4% 5 50% 38.5%
arma6d 6 8 11 4.4% 5 50% 50.0%
arma8d 8 6 11 3.3% 3 30% 33.3%
arma10d 10 8 10 4.0% 3 30% 27.3%
arma20d 20 16 11 8.8% 3 30% 15.8%

Table 7.3: Results for 2 . . . 20 related signals, where 10 anomalies were injected into
the relation between the first and the second signal.

189

Chapter 7 Enhancing SVDD to multivariate time series

7.7.2.4 Data sets with unrelated signals

Essentially, the approach learns relationships between signals. In the next experiment
the effect of the presence of unrelated signals in the data set is investigated. Data sets
with correlations between the first two signals were generated as shown in Figure 7.12.
All other signals are random, unrelated signals. 10 anomalies were injected into the
relation between the first and the second signal. An example of a test set is given in
Figure 7.13, the full results are shown in Table 7.4.

Figure 7.12: Process of creation of a data set with unrelated signals.

data set ‖F ‖ FN avg W (FN) data points (FN) TN TNR precision
arma2d 2 5 10 2.5% 7 70% 58.3%
arma4d 4 5 10 2.5% 5 50% 58.3%
arma6d 6 17 10 8.5% 2 20% 7.7%
arma8d 8 5 11 2.8% 0 0% 0.0%
arma10d 10 5 10 2.5% 0 0% 25.0%
arma20d 20 13 11 7.2% 2 20% 19.1%

Table 7.4: Results for a growing number of unrelated signals, where the anomalies were
injected into the relation between the first and the second signal.

190

Chapter 7 Enhancing SVDD to multivariate time series

Figure 7.13: Data set with 10 injected anomalies. The anomalies were injected into
the relation between “sig1” and “sig2”, the signals “sig3” and “sig4” are
random, unrelated signals. 6 of the 10 anomalies were detected, 4 were
falsely reported as abnormal.

7.7.3 Discussion on results on artificial data

The percentages of correctly detected anomalies (TNR) for the different anomalies and
different data sets are shown in Figure 7.14 for one run. The underlying trends are
obvious, repeating the experiments with different training and test sets would smooth
the curves. It can be seen that all anomalies present in just one signal (type 1) were
detected throughout the entire range of features.

The detection rate for the data sets with anomalies in the relationships between two
consecutive signals is approximately constant. This is easily understood: by adding
more signals, additional signals with anomalies are added. Consequently as the number
of signals grows, the number of distinctive features grows as well, allowing the classifier
to compensate for the higher number of dimensions.

191

Chapter 7 Enhancing SVDD to multivariate time series

For the data sets where the anomalies are present in the relation of the first two
signals, the TNR decreases to a value of 30% as more signals are added. The reasons
are (1) that the additional signals do not add information about the anomaly but
the weight of the first two signals decreases as new signals are added, and (2) that
an increased number of features requires an increased size of the training set. For
the experiments the size of the training set was kept fixed to show the effects of the
training set becoming less representative.

A massive decrease of the TNR for a growing number of signals can be observed for the
data sets with unrelated signals. This is expected, since it is inherent to all classifiers.
Features that do not distinguish the classes should be removed from the training set.

Figure 7.14: Results for different ARMA data sets and anomalies w.r.t. the number
of signals.

In general, the number of false negatives increases as the number of signals increases.
Since the size of the training set is kept fixed, the training set becomes less represen-
tative in more dimensions. For the data set with unrelated signals no increase of the
false negatives could be observed in the experiments. The reason is that the random,
unrelated signals cover the entire feature space within the signal’s min/max values.

192

Chapter 7 Enhancing SVDD to multivariate time series

From the results a number of conclusions can be drawn:

1. Anomalies, where one of the signals exceeds a value range can be detected.

2. SVDDsubseq performs well on data sets with related signals. In recordings from
test drives, groups of signals can be identified, where the signals are correlated.
For these kind of data sets, SVDDsubseq will offer the most benefit.

3. In terms of unrelated signals, the approach performs weaker. However, all clas-
sifiers are sensitive to irrelevant features. Hence, unrelated signals should be
removed prior to training.

7.8 Experimental results on real data

In this section experiments on recordings from the DC motor test rig, that was intro-
duced in Section 3.3.2, are shown and discussed.

7.8.1 Description of the data sets

From the DC motor test rig seven signals can be measured: DC current, actual/set
position, actual/set rotation speed, coil temperature, and controller output. By al-
tering the motor’s load for a short period of time, anomalies were manually injected.
The recordings were separated into a training set with normal data and a test set
with normal and abnormal subsequences. A window length W of 10 data points was
pre-specified.

7.8.2 Results

The first experiment was conducted with the 3-dimensional “DC motor IADIS” data
set. The motor controller was programmed to follow a pre-defined velocity profile.

193

Chapter 7 Enhancing SVDD to multivariate time series

After inspection using the visual data mining techniques introduced in Chapter 4 the
signals DC current, controller output and the motor’s acceleration, which was added
by deriving the velocity signal, were used. The task is to find abnormal deviations of
the motor load. The test set is shown in Figure 7.15, where it can be seen that the
injected faults are not obvious. The results are given in the first row in Table 7.5.

Figure 7.15: Data set “DC motor IADIS” recorded from the DC motor test rig. 12
faults were injected by altering the motor’s load.

Two further data sets, with 5 and 7 signals, were recorded while the DC motor was
following different profiles of the motor position. The results are shown in the second
and third row of Table 7.5.

data set ‖F ‖ FN avg W (FN) data points (FN) TN TNR precision
DC motor IADIS 3 1 10 0.06% 12 100% 92.3%
DC motor pos1 5 6 10 0.32% 9 100% 60.0%
DC motor pos2 7 22 12 0.54% 20 100% 47.6%

Table 7.5: Results on recordings from the DC motor test rig.

194

Chapter 7 Enhancing SVDD to multivariate time series

7.8.3 Discussion on results on real data

The results for all data sets from the DC motor were very good. All anomalies were
detected and the number of false negatives is acceptably low. The reason is that the
motor follows pre-defined profiles, which allows obtaining a representative training
set.

In test drives, drivers are involved and the data sets will not be as controlled. For that
reason weaker results are expected when applying the approach to recordings from
test drives.

7.9 Conclusion

The nature of the time series data from vehicles will cause a high number of normal
feature vectors to lie outside the decision boundary, i.e. being falsely classified as ab-
normal. Reducing the false negative rate could be achieved by influencing the decision
boundary to grow bigger than necessary using a cost function. However, this in turn
would increase the false positive rate. To overcome this problem, it was proposed to
use the knowledge about the local neighbourhood in the data set using the formed
subsequences.

The novel approach SVDDsubseq was proposed, enhancing SVDD to work with
multivariate time series. The outcome is a classifier that is directly applicable to test
drive data, without the need for expert knowledge to configure or tune the classifier.
The approach was shown to yield good results for multivariate time series, where the
individual time series are related. This makes the approach applicable to test drive
data, since in a vehicle groups of signals are related.

Furthermore it was shown that SVDDsubseq is capable to detect two of the three
anomaly types introduced in Section 3.3: “subsequence anomaly in univariate time
series” (type 1) and “contextual anomaly in multivariate time series” (type 3) when
the dependencies are not time-delayed.

195

Chapter 8

The anomaly detection system

In this chapter, an anomaly detection system is introduced. The detection
system uses SVDDsubseq, which was introduced in the previous chapter,
accompanied by the enhanced visual data mining techniques introduced in
Chapter 4.

As discussed in Chapter 1, the complexity of vehicle electronics will further increase
resulting in an increase of the data volume and the complexity of recordings from test
drives. This demands advancements in the techniques used for the analysis of the
recordings. Only by utilising advanced data analysis techniques, one can make sure
that the high effort put in the recording of test drives will continue to pay off in the
future. Based on the theoretical background and the experimental results from the
previous chapters, an anomaly detection system is proposed in this chapter.

As a prelude to the chapter with experiments, the components of the entire anomaly
detection system are described in this chapter. The general steps of a machine learning
classification system, that were introduced in Chapter 5, are refined for the proposed
anomaly detection system. The steps are shown in Figure 8.1 distinguishing between
automatic and user-driven steps.

Chapter 8 The anomaly detection system

Figure 8.1: Steps of the anomaly detection system, from data acquisition to classifica-
tion of subsequences and their analysis.

8.1 System overview

Simply stated, the presented anomalies show deviations from behaviour that is viewed
as normal. In order to detect anomalies, knowledge about normal behaviour is learnt
from a training set of recordings. The following operation modes are proposed for the
detection system:

1. training mode

a) integration of expert knowledge

b) learning normal behaviour from a training set

2. test mode (anomaly detection)

198

Chapter 8 The anomaly detection system

a) applying the knowledge base to unseen data

b) presentation of anomalies

3. feedback mode

a) manual classification of the results by means of the introduced visual data
mining techniques

b) enhancement of the knowledge base

Figure 8.2 shows the system’s training mode, where expert knowledge like the selection
of relevant signals is integrated. This can either take place by a domain-expert or in
an automatic manner based on input files from the vehicle’s development process.
Following that, the detection system is trained on a training set of recordings that
contain normal data only. The proposed classifier SVDDsubseq is used and the
extracted knowledge is stored in a knowledge base.

In test mode, depicted in Figure 8.3, the system detects anomalies. The knowledge base
is applied to unseen recordings in order to automatically present the found anomalies
together with the points in time they occurred. An anomaly score allows prioritis-
ing the results. This way the system points the user to the relevant parts in the
recordings.

The third step is referred to as feedback mode. The user analyses the presented
anomalies using the visual data mining techniques introduced in Chapter 4. The
reported anomalies are manually classified as correct, i.e. fault found, or incorrect.
The training set can be enhanced by new recordings or the knowledge base could be
enhanced by the expert’s classification of the reported anomalies.

199

Chapter 8 The anomaly detection system

Figure 8.2: Anomaly detection system in training mode. The system is trained on a
set of recordings.

Figure 8.3: Anomaly detection system in test and feedback mode. The knowledge base
is applied to unseen recordings and anomalies are reported.

8.2 The implementation

The anomaly detection system was predominantly implemented in the C# program-
ming language. It was implemented as a modular framework that consists of the
application, modules, plug-ins, and extension points. The underlying idea is, to have
system experts configuring the workflows in the experimental stage. In an industrial
project, this could be employees of the tool supplier. During system operation, the
pre-configured workflows are run and the results are analysed by data analysts.

200

Chapter 8 The anomaly detection system

A variety of data import readers were implemented in order to be able to read different
file formats. Furthermore pre-processing algorithms were implemented that allow to
filter signal profiles, or to reduce the number of data points. In addition, various
classifiers, visualisation techniques, and reporting facilities were implemented. These
individual functions are represented as plug-ins that can be combined to a runnable
workflow. This allows for flexible data analysis, which is especially beneficial during
the experimental stage. Additionally, the application can interface with the R statistics
tool box (R Development Core Team, 2010) and Matlab (MATLAB, 2011), and thereby
exchange data with these tools. If new functionality is required, it can be implemented
by writing a new plug-in or functions from the R statistics tool box or Matlab can be
used.

For the integration of the SVDD functionality, SVM.NET (Johnson, 2009) was used,
which is an open-source port of the libSVM (Chang and Lin, 2011) to the C# pro-
gramming language. libSVM does not contain SVDD, so the SVDD enhancement from
(Wang et al., 2010) was migrated to C#, adapted to cover only SVDD with the RBF
kernel, and added to the SVM.NET library.

Figure 8.4 shows a configured workflow in the middle pane, where each plug-in is
represented by a rectangle, e.g. “SwitchLearningState”. An excerpt of the available
plug-ins is listed on the left hand side and the plug-in configuration is shown on the
right hand side.

In this example workflow, the first plug-in determines whether a training, a test, or
a performance run should be conducted. Subsequently for data acquisition a variety
of import filters can be selected. The next step is the normalisation of the input
data followed by the classifiers SVDD and SVDDsubseq. The last plug-in stores a
report.

Workflows can be run on the local computer or transferred to a more powerful server.
In the latter case the results are obtained by means of reports. In order to allow for
the analysis in batch mode, for example overnight, workflows can be queued on the
server system.

201

Chapter 8 The anomaly detection system

Figure 8.4: The middle pane shows a configured workflow in the anomaly detection
system. Available plug-ins are listed on the left hand side and their con-
figuration is shown on the right hand side.

The visualisation techniques introduced in Chapter 4 are integrated as plug-ins. Figure
8.5(a) shows the use of parallel coordinates, which can be used for the analysis of
potential training data, e.g. to select the relevant signals, or for the analysis of the
reported results.

In Figure 8.5(b), the classification results for a recording from a vehicle in idle mode
are shown in a scatter plot matrix. Especially in the experimental stage it is viewed
as crucial, to not just analyse the classification results of autonomous classification,
but to visualise the results in order to understand potential shortcomings of the clas-
sification.

202

Chapter 8 The anomaly detection system

(a) Manual analysis of a test drive using the parallel coordinates plug-in.

(b) The scatter plot matrix plug-in used for the analysis of the classification
results for a recording from a vehicle in idle mode.

Figure 8.5: Visual data mining techniques for the analysis of training data or reported
anomalies.

203

Chapter 8 The anomaly detection system

8.3 Conclusion

In addition to a theoretical framework this Thesis presents a full implementation of
the proposed anomaly detection system. This way, the concept can be proved by
validating the full process for anomaly detection in test drive data. It also allows
evaluating the system’s usability and to gain experience with the processing time the
algorithms take for different data sets.

204

Chapter 9

Experimental results on
recordings from vehicles

This chapter shows experimental results on recordings from vehicles. It
introduces a way to find a good size for the training set in the absence of
abnormal test data and investigates the effect of different driving condi-
tions, different drivers, and different vehicles. The results can be used as
a guideline when setting up an anomaly detection system for own vehicle
data.

After having shown in Section 7.8 that SVDDsubseq works in a controlled environ-
ment, in this chapter the approach is validated on real data sets from vehicles. Over
200 test drives were conducted in different traffic situations ranging from urban traffic
to motorways over a time span of one year to capture recordings from different weather
conditions. The data acquisition phase started with one vehicle and one driver and was
later extended to multiple drivers and four vehicles to become more representative.

Different cars of the type “Renault Twingo” were used as test vehicles due to the
availability of the vehicles and the easy accessibility of components in the engine bay.

Chapter 9 Experimental results on recordings from vehicles

Figure 9.1: Test vehicle “Renault Twingo” from 2002 with 1149 ccm and 43 kW.

The results are not constrained to this type of vehicle, though. Figure 9.1 shows the
test vehicle that is used in the first experiments.

The data during the test drives was recorded using the on-board diagnostics interface
according to ISO 15031 (OBD-II or EOBD), that is available in all petrol-driven cars
manufactured in 2001 or later, and in 2004 or later for Diesel cars respectively. OBD
allows for the approximate reading of 10-15 emission-related signals like the vehicle’s
speed or the engine rpm in a standardised way. The signals are periodically requested
using so-called parameter ids (PIDs). For more information see for example (Denton,
2006). The signals were recorded with a sample rate of one second using 10.4 kBit/s
K-Line or 500 kBit/s CAN access (see Section 1.2).

Recordings from test drives from automotive manufacturers are highly confidential
and could therefore not be used. Recordings were available to the author but not for
publishing purposes. So the author could assure that the data recorded from own test
vehicles is comparable, it has a lower sample rate though. The advantage of recording
own test drives is that the author had full control over the type of the test drives, the
drivers, and fault injection.

The length of the subsequences for SVDDsubseq was set to W=5, i.e. to 5 seconds,
for all experiments.

206

Chapter 9 Experimental results on recordings from vehicles

9.1 Injected faults

In order to test the anomaly detection system, faults were injected into the test ve-
hicles to obtain recordings with errors. The aim was to inject faults that manifest
themselves as different types of anomalies from Section 3.3. The following four faults
were injected:

1. Fault #1 (unavailable engine temperature): A loose contact in the wiring
of the temperature sensor was simulated by interrupting the connecting wire.
This leads to a temperature value of −40 ◦C. As shown in Figure 9.2 this is out
of the value range present for this signal in the training set.

The fault manifests itself as an anomaly of type 1 (“subsequence anomaly in
univariate time series”). Due to the very good results for this anomaly type on
the artificial data sets in Section 7.7.2.1, this fault is expected to be reliably
detected.

Figure 9.2: A recording of an overland drive with injected faults of type #1 and #2,
where a fault is indicated by a value of 1 for “class”.

2. Fault #2 (erroneous engine temperature): An error in the sensor mea-
suring the engine coolant temperature was simulated. The sensor is a negative
temperature coefficient (NTC) thermistor in the test vehicles, i.e. low resistance
corresponds to high temperature. In the case of the used vehicle e.g. 7.5 kΩ cor-
responds to +4 ◦C and 240 Ω to +90 ◦C (Etzold, 2011). Using a potentiometer
either in a series or a parallel circuit, sensor offsets were simulated.

207

Chapter 9 Experimental results on recordings from vehicles

Injecting a negative sensor offset yields values that are within the valid value
range as shown in Figure 9.2. The fault would only be detectable if the relation-
ship to further signals is violated, which is not the case.

Adding a positive offset leads to temperature values of approximately +110 ◦C.
Since such high temperature values are not present in the training set, the fault
corresponds to a type 1 anomaly (“subsequence anomaly in univariate time se-
ries”).

3. Fault #3 (injection): Misfiring by an erroneous or coked injector nozzle or a
loose contact in wiring was simulated by switching off an injector nozzle for a
short period of time, suppressing injection for one cylinder.

As a countermeasure to the injected fault, the engine control system adapts the
injection pulse width, which is observable by a change in the signal “short term
fuel trim” (STFT).

As shown in Figure 9.3, for 4 of the 9 occurrences, the fault manifests itself as
a “subsequence anomaly in univariate time series” (type 1), since the values of
STFT are greater than the values in the training set.

The remaining occurrences correspond to a “contextual anomaly in multivariate
time series” (type 3) and are only detectable by considering dependent signals.

4. Fault #4 (ignition): An erroneous spark plug lead or spark plug was simulated
by interrupting one spark plug lead for a short period of time while the vehicle
was standing still, simulating a loose connection or a worn spark plug.

As for fault #3, the signal STFT is adapted by the engine control system. As
shown in Figure 9.4 the signal increases but not to values that are out of the
normal range.

The fault should be detectable by considering the relationship to further sig-
nals. Such high values of the “STFT” signal while the vehicle speed and the
engine revolutions are at low values were not observed under normal operation

208

Chapter 9 Experimental results on recordings from vehicles

Figure 9.3: Faults of type #3, injected during an overland drive.

mode, which makes this fault an anomaly of type 3, a “contextual anomaly in
multivariate time series”.

Referring to the locations of potential faults identified in Section 2.4, the injected
faults correspond to faults in the cable harness, actuators, or sensors. The mapping of
the injected faults to the categorisation of anomalies from Section 3.3 is summarised
in Table 9.1.

209

Chapter 9 Experimental results on recordings from vehicles

Figure 9.4: An overland drive with injected faults of type #4.

anomaly type anomaly full name fault
type 1 subsequence anomaly in fault #1

univariate time series fault #2 (partly)
fault #3 (partly)

type 2 contextual anomaly in not injected because not
univariate time series detectable with the approach

type 3 contextual anomaly in fault #3 (partly)
multivariate time series fault #4

Table 9.1: Anomaly types from Section 3.3 and injected faults.

210

Chapter 9 Experimental results on recordings from vehicles

9.2 Experiments with vehicle in idle mode

The first experiments were conducted on recordings from a vehicle in idle mode in
order to investigate the approach without the expected variability of the data in the
case of test drives. The signals in Table 9.2 were used for the experiments in idle
mode. A “Renault Twingo” manufactured in 2002 was used as the test vehicle.

9.2.1 Experiments on error-free recordings from idle mode

In the absence of abnormal data it is recommended to start by testing with normal data
and determining the number of false negatives, i.e. the falsely detected anomalies.

Figure 9.5: Number of false negatives FN w.r.t. the ratio between the size of the
training set and a fixed size of the test set (2403 seconds), where the size
of the training set is additionally shown by the upper x-axis.

Signal short name Signal full OBD name unit OBD PID
STFT Short Term Fuel Trim (Bank 1) % 06 hex
rpm Engine RPM rpm 0C hex
ign timing adv Ignition Timing Advance (Cylinder 1) ◦ 0E hex

Table 9.2: Signals used for the experiments in idle mode

211

Chapter 9 Experimental results on recordings from vehicles

To investigate the impact of the size of the training set, the size was varied with a fixed
test set size of 2403 seconds. The number of false negatives FN w.r.t. the ratio between
the size of the training set and the size of the test set ‖A‖‖B‖ is shown in Figure 9.5. While
for very small training sets the number of false negatives acts non-deterministically
between very low and very high values, for larger training sets, the training set becomes
more representative and the number of false negatives stabilises at low values. This
type of experiment can be used as an indicator of how representative the training set
is.

From Figure 9.5 the minimal size of a good training set can be deduced. It is the point
where the number of false negatives starts to stabilise at low values: the training set
size of 1714 seconds. The size is entirely data-dependent, and it is recommended to
conduct this experiment as a first step for available data.

Figure 9.6: False negatives for fixed size of training set (7056 seconds) and varied size
of test set with normal instances. FN roughly follows a linear trend.

While this first experiment was conducted with a fixed test set size, as a next step,
the number of false negatives for larger sizes of the test set is investigated. Obviously
the more data is tested, the more false negatives are likely to be reported. With the
maximal available training set (7056 seconds), the size of the test set is varied. As
indicated by Figure 9.6 the number of false negatives roughly follows a linear trend.

Since the absolute number FN depends on the size of the test set, the measure FN/h is
introduced which gives the number of false negatives per hour. A crucial observation

212

Chapter 9 Experimental results on recordings from vehicles

for the applicability of the approach can be made from Figure 9.7. As the test set
grows, FN/h becomes approximately constant.

Figure 9.7: Ratio between false negatives and size of test set for a fixed size of the train-
ing set (7056 seconds) and a varied size of test set with normal instances.

9.2.1.1 Discussion

A number of important conclusions are drawn from the above experiments. The
number of false negatives per hour becomes approximately constant for a big enough
test set. This means that, for a given training set, an estimate of the expected number
of false negatives can be deduced.

If during operation of the anomaly detection system, FN/h on unseen data significantly
deviates from the figure determined during training, the training set has become non-
representative. In that case the training set should be enhanced and the training
period re-run.

213

Chapter 9 Experimental results on recordings from vehicles

9.2.2 Experiments with recordings from idle mode containing

errors

After the initial experiments, the maximal available training set of 7056 seconds from
Figure 9.5 was selected for further experiments on recordings with faults.

Faults were injected into the vehicle and several recordings in idle mode were used as
a test set. 33 faults were injected in total: different spark plug leads were temporarily
disconnected 23 times (fault #4 from Section 9.1), 5 positive and 5 negative offsets
were injected into the engine coolant temperature sensor (fault #2). The test set
contains 6 recordings summing up to 4342 seconds.

As in Section 9.2.1, the classification accuracy w.r.t. the size of the test set is measured.
As an example, one of the recordings with faults injected by temporarily disconnecting
the spark plug lead for 10 times is shown in Figure 9.8. The resulting errors are
obvious in the “STFT” signal. All of the 10 errors were detected, two false negatives
were reported.

Figure 9.8: Recordings of vehicle in idle mode, with 10 injected faults. The faults are
indicated by values of 1 for the label “class”.

214

Chapter 9 Experimental results on recordings from vehicles

data set ‖F ‖ ‖A‖ ‖B‖ SVs FN FN/h TN TNR precision
idle mode 3 1714s 3958s 54 7 6.3 31 93.9% 81.6%
idle mode 3 7056s 3958s 54 7 6.3 31 93.9% 81.6%

Table 9.3: Results with two training sets of different lengths on recordings in idle
mode with 33 injected faults, where FN/h is the number of false negatives
per hour.

The number of true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN) w.r.t. the size of the test set are shown in Figure 9.9 and the
percentages TPR, FPR, FNR, and TNR are depicted in Figure 9.10.

Figure 9.9: Classification results on a test set with 33 injected faults. TP, FP, FN, and
TN for a training set size of 7056 seconds and a varied size of the test set
with normal and abnormal data.

Table 9.3 shows the results for the size of the training set that was identified in the
previous experiment to be the minimal training set and the full available training set.
As can be seen, both training sets yield the same results, 93.9% of the faults were
detected. The results are very good, which was expected, as the faults could easily be
visually identified in the plot as shown in Figure 9.8.

215

Chapter 9 Experimental results on recordings from vehicles

Figure 9.10: Classification results on a test set with 33 injected faults. TPR, FPR,
FNR, TNR w.r.t. the size of the test set.

9.3 Experiments with error-free recordings from test

drives

Further experiments were conducted with recordings from real test drives. Based on
these recordings, the effect of different driving conditions, different drivers and different
vehicles are investigated in this section.

During test drives, the 8 signals shown in Table 9.4 were recorded. The signal “load”
is the engine’s load, “coolant temp” holds the temperature of the engine coolant, and
“STFT” (short term fuel trim) holds the injection pulse width, which keeps the air-
fuel ratio optimal, i.e. the lambda value close to 1. The signal “MAP” is the manifold
absolute pressure which is used to calculate the air mass flow rate, which in turn
determines the fuel to be injected for optimal combustion. Furthermore, “rpm” is the
engine revolution, “speed” is the vehicle’s speed and “ign timing adv” (ignition timing
advance) measures the angle of the piston position where the ignition takes place.
Finally the value of “throttle” is the position of the throttle valve, which is directly
proportional to the accelerator pedal position.

216

Chapter 9 Experimental results on recordings from vehicles

Signal short name Signal full OBD name unit OBD PID
load Calculated Load Value % 04 hex
coolant temp Engine Coolant Temperature ◦C 05 hex
STFT Short Term Fuel Trim (Bank 1) % 06 hex
MAP Intake Manifold Absolute Pressure kPA 0B hex
rpm Engine RPM rpm 0C hex
speed Vehicle Speed km/h 0D hex
ign timing adv Ignition Timing Advance (Cylinder 1) ◦ 0E hex
throttle Absolute Throttle Position % 11 hex

Table 9.4: Signals used for the experiments on recordings from test drives.

9.3.1 The effect of different driving conditions

The variability of test drive data is enormous due to, for instance, different road
conditions, traffic conditions, or drivers. As a first step, the test drives are categorised
into three groups based on the driving conditions. The main characteristics of the
different driving conditions are shown in Figure 9.11.

1. motorway : These data sets contain test drives recorded on motorways. Their
main characteristic is that the speed is predominantly within the range of 80 and
110 km/h.

2. overland : The overland data sets consist of recordings from test drives on B-
roads, containing urban traffic.

3. urban traffic: These data sets were recorded while driving in a town or city. Low
speed values occur frequently from stop-and-go traffic. The higher speed values
are almost uniformly distributed up to a speed of 50 km/h.

217

Chapter 9 Experimental results on recordings from vehicles

(a) Distribution of speed values in motorway
training set.

(b) Speed values in overland training set.

(c) Speed values in urban training set.

Figure 9.11: Distribution of the speed values in the used training sets from different
driving conditions.

9.3.1.1 Motorway

In order to show the variability of the signals, an excerpt of a recording of an error-free
test drive on a motorway with the 8 observed signals is shown in Figure 9.12.

The same set of experiments that was conducted on error-free recordings from idle
mode in Section 9.2.1 is conducted on recordings from test drives on motorways. As
a first experiment, the size of the training set is grown for a fixed error-free test set
of 5408 s. The false negative rate is measured to determine how representative the
training set is. In the second experiment, the maximal available training set with
20843 s is selected and the size of the test set is grown.

The number of false negatives FN w.r.t. the ratio between the training set size and
the the test set size ‖A‖‖B‖ is shown in Figure 9.13. As in Section 9.2.1, this plot can be
used to find the minimal training set.

Growing the test set for the maximal available training set, the number of false nega-
tives increases as shown in Figure 9.14. As can be seen, there is an approximately linear

218

Chapter 9 Experimental results on recordings from vehicles

Figure 9.12: 6 minutes excerpt of a recording from a test drive on a motorway showing
the 8 signals recorded during test drives.

trend. The number of false negatives per hour FN/h stays approximately constant for
any size of the test set as shown in Figure 9.15.

219

Chapter 9 Experimental results on recordings from vehicles

Figure 9.13: Recordings from motorway: The number of false negatives w.r.t. the ratio
between the size of the training set and a fixed size of an error-free test
set, where the size of the training set is shown by the second x-axis.

Figure 9.14: Recordings from motorway: False negatives for the selected optimal train-
ing set and a varied size of test set with normal instances.

220

Chapter 9 Experimental results on recordings from vehicles

Figure 9.15: Recordings from motorway: The number of false negatives per hour FN/h
is approximately constant for all sizes of the error-free test set.

9.3.1.2 Overland

The same experiments were conducted for recordings from overland drives. For a fixed
test set size of 7010 seconds, the training set was varied and the FN plotted as shown
in Figure 9.16. It can be seen that the number of false negatives stabilises at a low
value for large training sets. For the maximal size of the training set, only one false
negative is reported, which makes further plots, contemplating the number of FNs
with a growing test set size, unnecessary. The value range would be between 0 and 1
false negatives.

221

Chapter 9 Experimental results on recordings from vehicles

Figure 9.16: Recordings from overland drives: The number of false negatives w.r.t. the
ratio between the size of the training set and a fixed size, error-free test
set.

9.3.1.3 Urban traffic

For a fixed test set size and a growing training set, the number of false negatives w.r.t.
‖A‖
‖B‖ for test drives recorded in urban traffic is shown in Figure 9.17. For large training
sets, FN takes on low values for the 5703 seconds long test set.

222

Chapter 9 Experimental results on recordings from vehicles

Figure 9.17: Urban traffic: False negatives for varied size of training set and fixed size
of test set with normal data only.

9.3.1.4 Results on different driving conditions

The results on error-free test sets for the three driving conditions are shown in Table
9.5. The error rate, i.e. the number of false negatives, is very low for recordings from
overland drives, which is an indication that the available training set is representa-
tive.

In real test drives, one recording may contain sections with all driving conditions. Seg-
menting and assigning the segments in the recordings to one of the driving conditions
prior to anomaly detection would be a costly, error-prone process. Hence, a detection
system should be able to classify arbitrary recordings.

training,test ‖A‖ ‖B‖ SVs FN FN/h avg W data points
motorway,motorway 20843s 5408s 177 9 6.0 8 1.4%
overland,overland 24604s 7010s 219 1 0.5 10 0.1%
urban,urban 21336s 5703s 189 3 1.9 26 3.6%

Table 9.5: Results for training and testing on the same driving condition with error-
free test sets. The column “FN/h” holds the number of false negatives per
hour.

223

Chapter 9 Experimental results on recordings from vehicles

Having looked at the driving conditions individually, the next step is to investigate
what happens if a training set does not represent all driving conditions properly. The
effect of training on one driving condition and testing on data from a different one is
shown in Figure 9.18, where the percentages of falsely classified data points are given.
For example the first column shows the result for training and testing on recordings
from motorway traffic. It is expected that the best results occur for training and
testing with the same driving conditions, i.e. the first column in the first group of
columns, the second column in the second group and so forth.

Figure 9.18: Percentage of data points falsely reported as abnormal for training and
test set from the same and from different driving conditions.

Having seen that the results are sensitive to the driving conditions, the question arises,
if the training set becomes more representative by combining training sets from differ-
ent driving conditions. This is investigated in the next experiment.

As shown in Table 9.6, the results for the motorway and the urban test sets have
notably improved compared to the results with individual training sets given in Ta-
ble 9.5. Even though the result for the overland data set is slightly weaker, having
increased from 1 to 2 false negatives, it is considered to be unchanged at such a low
number of false negative. In conclusion to this, the observation is that the training set
has indeed become more representative by combining the individual training sets.

224

Chapter 9 Experimental results on recordings from vehicles

training,test ‖A‖ ‖B‖ SVs FN FN/h avg W data points
all,motorway 63631s 5408s 302 0 0.0 0 0.0%
all,overland 63631s 7010s 302 2 1.0 10 0.3%
all,urban 63631s 5703s 302 3 1.9 11 0.6%

Table 9.6: Results with one combined training set on error-free test sets.

As a consequence, a new recording can be tested on this combined training set, without
having to determine whether it is motorway, overland, or urban traffic.

9.3.2 The effect of different drivers

In the previous experiments the results on different driving conditions were compared.
The recordings used as the training and test sets were obtained from test drives from
the same driver. In practice, when testing a vehicle fleet the scenario is not one driver
testing one vehicle, but rather multiple drivers testing multiple vehicles.

So it is necessary to study the effect of different drivers. In order to negate the effects
caused by different driving conditions, the experiments are conducted on recordings
from urban traffic with test vehicle “tw1”. The drivers are given in Table 9.7, where
all previous experiments were conducted on data from driver “dr1”.

The results for different drivers are shown in Table 9.8. Training and testing with the
same driver, as given in the first row, yields by far the best results with 4.4 FN/h.
Training on recordings from one driver and testing on recordings from a different driver
yields weaker results.

id age gender
dr1 38 male
dr2 30 male
dr3 25 male

Table 9.7: Drivers that conducted the test drives used in the experiments.

225

Chapter 9 Experimental results on recordings from vehicles

training,test ‖A‖ ‖B‖ SVs FN FN/h avg W data points
dr1,dr1 21336s 5703s 189 3 1.9 26 3.6%
dr1,dr2 21336s 6486s 189 14 7.8 7 1.6%
dr1,dr3 21336s 5701s 189 45 28.4 10 8.2%
dr2,dr1 11662s 5703s 128 18 11.4 28 8.9%
dr2,dr3 11662s 5701s 128 46 29.0 7 6.4%

Table 9.8: Results on error-free test sets with training and testing on recordings from
different drivers.

As shown by the results, the effect of the driver can be significant, which is clearly
recognisable from the results when testing with “dr3”. The results are significantly
weaker compared to testing with “dr1” and “dr2”. The reason is, that the driving
behaviour of “dr3” differs from “dr1” and “dr2”. As a consequence the training set does
not represent “dr3” properly.

To investigate the reasons, the visual data mining techniques from Chapter 4 can be
used. From the 8 recorded signals, the engine rpm is shown w.r.t. the vehicle speed
in the scatter plot in Figure 9.19. The five lines with different gradients represent the
vehicle’s five gears. It can be seen that some of the false negatives were caused by
“dr3” driving the gears up to a higher engine rpm compared to the drivers included in
the training set (marked by the three black frames).

There are two ways to cope with the effect of different drivers. One way is to train
and test with recordings from the same driver. This is feasible in the research and
development stage of a vehicle, when engineers drive the vehicles themselves. When
testing a vehicle fleet, the test drives are conducted by multiple drivers. In that case
the training set should contain test drives from various drivers with different driving
behaviour to be representative.

The question is, whether the system can be used on recordings from a driver not
included in the training set. The expectation is that by integrating multiple drivers
with different driving behaviours in the training set, a training set can be created
that is representative for most drivers. First, recordings from drivers included in the
training set are tested, in further experiments the driver is not included in the training
set. The results are shown in Table 9.9.

226

Chapter 9 Experimental results on recordings from vehicles

Figure 9.19: The engine rpm w.r.t. the vehicle speed with a test set from “dr3” and a
training set from “dr1” in normalised feature space (false negatives: red
circles).

training,test ‖A‖ ‖B‖ SVs FN FN/h avg W data points
dr1+dr2,dr1 34820s 5703s 254 4 2.5 21 1.5%
dr1+dr3,dr1 28859s 5703s 210 1 0.6 5 0.1%
dr1+dr2,dr3 34820s 5701s 254 6 3.8 8 0.87%
dr1+dr3,dr2 28859s 6486s 210 2 1.1 5 0.2%

Table 9.9: Results on error-free test sets with training sets from different drivers.

Training on recordings from “dr1” and “dr2” and testing on data from “dr3” is shown in
the third row of Table 9.9. It can be seen that the results have significantly improved
from 28.4 FN/h given in the third row in Table 9.8 to 3.8 FN/h given in the third row
in Table 9.9. In conclusion to this, it is possible to use the detection system with test
data from a driver not previously included in the training set.

The drivers involved in these experiments were non-professional drivers that were told
to drive in their normal way. Professional test drivers can be told to mimic different
driving behaviour, so a representative training set can be obtained from a limited
number of test drivers.

227

Chapter 9 Experimental results on recordings from vehicles

Id Brand Date of Engine Engine Weight OBD
manufacture displacement power physical layer

tw1 Renault Twingo 2002 1149 ccm 43 kW 895 kg K-Line
tw2 Renault Twingo 2002 1149 ccm 43 kW 895 kg K-Line
tw3 Renault Twingo 2011 1149 ccm 55 kW 1019 kg CAN
tw4 Renault Twingo 2012 1149 ccm 55 kW 994 kg CAN

Table 9.10: Vehicles used for the experiments.

9.3.3 The effect of different vehicles

At this point different driving conditions and different drivers were considered for
recordings from test vehicle “tw1”. In practice, various vehicles are driven for testing
purposes. So, analogous to studying the impact of the driver, an experiment investi-
gating the influence of the vehicle is indispensable. The experiment is conducted on
recordings from urban traffic with driver “dr1” and various vehicles.

The used test vehicles are shown in Table 9.10. The vehicles “tw1” and “tw2” have
identical engines and are of the same model series, manufactured in the same year.
There are slight differences, e.g. “tw1” has power assisted steering while “tw2” has not.
The two vehicles “tw3” and “tw4” are vehicles from the successor model series with a
different engine and chassis.

The results are shown in Table 9.11. Regardless, if training and testing is done on
the same vehicle, as shown in the first and fourth row, or on different vehicles of the
same model series, as in the second and third row, the error rates of the results should
show no significant difference. The results shown in the first four rows of Table 9.11
indicate that the effect of testing with different vehicles from the same model series
is not significant. Training with “tw2” and testing with “tw1” yields weaker results
compared to the other three rows. The reason is, that the training set of “tw2” is not
large enough to be representative.

For training with vehicles from one model series and testing with vehicles from the
successor model series the results are significantly different as indicated by the last
four rows in Table 9.11.

228

Chapter 9 Experimental results on recordings from vehicles

training,test ‖A‖ ‖B‖ SVs FN FN/h avg W data points
tw1,tw1 21336s 5703s 193 7 4.4 12 1.49%
tw1,tw2 21336s 6020s 193 5 3.0 6 0.50%
tw2,tw1 12496s 5703s 169 34 21.5 26 15.5%
tw2,tw2 12496s 6020s 169 5 3.0 5 0.41%
tw1,tw3 21336s 1738s 193 15 31.1 7 6.6%
tw1,tw4 21336s 2525s 193 56 79.8 10 23.9%
tw2,tw3 12496s 1738s 169 44 91.1 9 23.2%
tw2,tw4 12496s 2525s 169 61 87.0 19 47.5%

Table 9.11: Results on error-free test sets with different vehicles.

9.3.4 Discussion

Recordings from test drives are much more variable than recordings from the vehicle in
idle mode. After having individually investigated the effect of different driving condi-
tions, different drivers, and different vehicles, the results are summarised as follows:

• the driving conditions have a major impact on the number of false negatives as
shown in Table 9.5

• the driver has a significant effect as shown in Table 9.8

• if using several vehicles from the same models series, no significant difference is
expected as can be seen in Table 9.11

The following conclusions are drawn from the experiments: An ideal training set

1. has to be large enough to contain common driving conditions, and different
traffic situations

2. should contain recordings from different test drivers

3. may contain recordings from various vehicles of the same model series, if avail-
able

229

Chapter 9 Experimental results on recordings from vehicles

9.4 Experiments with test drives containing errors

The previous experiments with recordings from error-free test drives studied how to
determine if a training set is representative in the absence of abnormal data and how
to estimate the expected false negative rate. Furthermore the effects of the driving
condition, the driver, and the vehicle on the representativeness of the training set were
investigated.

This section tests the anomaly detection system with the scenario encountered in
practice: training on error-free data and testing on unknown data that potentially
contains anomalies. The detection system’s accuracy on test drives with injected
faults is measured.

9.4.1 Results on recordings from different driving conditions

This section investigates the results for test drives from different driving conditions.
Training and test sets were recorded with vehicle “tw1” and driver “dr1”.

Five test drives recorded on a motorway with a total of 21 injected faults were available.
During the first of the drives, the spark plug lead was temporarily removed 4 times
(fault #4 from Section 9.1). In the second, third and fourth recording, a cylinder’s
injector nozzle was temporarily switched off several times (fault #3). In the fifth test
drive, the sensor measuring the engine coolant temperature was manipulated 6 times
(fault #1 and #2).

The test set with overland drives contains five test drives with 42 injected faults. In
the first two test drives, the spark plug lead was temporarily removed (fault #4) 10
times in each case. In the third and fourth test drive, one cylinder’s injector nozzle
was temporarily switched off to cause misfiring, 9 and 7 times respectively (fault #3).
In the fifth recording, the temperature sensor was manipulated 6 times (fault #1 and
#2).

230

Chapter 9 Experimental results on recordings from vehicles

From urban traffic eight test drives were used, containing 13 faults in total. The
injector nozzle was temporarily switched off 10 times (fault #3) and the engine coolant
temperature sensor was temporarily manipulated 3 times (fault #1 and #2).

As a first step, the system was trained and tested with recordings from one driving
condition, i.e. motorway, overland, or urban traffic. The results are given in the first
three rows in Table 9.12.

Roughly between half and three quarters of the faults were detected. The highest
detection rates are achieved on data from urban traffic. This is due to the fact that
faults #3 and #4 become more obvious when varying the engine’s load, which is more
likely to occur during a drive in urban traffic. This explains the lower detection rate for
motorway traffic, due to mostly steady traffic on motorways. It is noticeable that FN/h
is higher than in the experiments on error-free data in Table 9.5. This is an indication,
that the training set for overland and urban data is not fully representative.

For the subsequent experiments the system was trained on the recordings from all driv-
ing conditions, the same training set used in Table 9.6 in Section 9.3.1. The last four
rows in Table 9.12 show the results for these experiments. With the combined train-
ing set, FN/h has significantly decreased compared to the experiments with individual
training sets shown in the first three rows.

training,test ‖A‖ ‖B‖ FN FN/h TN TNR precision
motorway,motorway 20843s 4845s 9 6.7 9 42.9% 50.0%
overland,overland 24604s 12076s 16 4.8 31 73.8% 66.0%
urban,urban 21336s 7224s 21 10.5 10 76.9% 32.3%
all,motorway 63631s 4845s 0 0.0 10 47.6% 100%
all,overland 63631s 12076s 10 3.0 27 64.3% 73.0%
all,urban 63631s 7224s 4 2.0 9 69.2% 69.2%
all,all 63631s 24145s 14 2.1 45 59.2% 76.3%

Table 9.12: Results for motorway, overland, and urban test drives.

The results for the three recordings given as examples for the four types of faults in
Section 9.1 are shown in more detail. These three recordings are contained in the test
set of the experiment given in the fifth row in Table 9.12, with a training set consisting
of recordings from all driving conditions.

231

Chapter 9 Experimental results on recordings from vehicles

Figure 9.20: Example of classification results for faults injected during an overland
drive of 35 minutes by manipulating the temperature sensor. The results
are marked with frames (TN: green, FP: yellow).

Figure 9.20 shows the classification results for injection of fault #1 and #2, where
the temperature sensor was manipulated. The first injected fault was not detected
since the negative temperature offset leads to values within the valid range. Since the
relationship to further signal is not violated, this fault is not detectable. All further
faults lead to temperature values out of the range present in the training set and were
reliably detected.

Furthermore, the test drive shown in Section 9.1 containing fault #3 was tested. The
injector nozzles of the first or second cylinder were temporarily switched off 9 times
(fault #3), causing misfiring. Seven of the nine faults were correctly detected. The
results are shown in Figure 9.21, where the detected anomalies (true negatives) are
highlighted with green frames. Six subsequences were falsely reported as anomalies

232

Chapter 9 Experimental results on recordings from vehicles

Figure 9.21: Classification results for a 35 minutes long recording of an overland drive
where a the injector nozzle was manipulated 9 times. The results are
marked with frames (TN: green, FP: yellow, FN: red).

(false negatives), indicated by red frames and two faults were not detected (false
positives), shown by yellow frames.

Using the anomaly detection system in practice, it works on unknown, unlabelled data
sets. Consequently, the system does not report true and false negatives. What the
expert rather sees for this recording, are 13 subsequences reported as anomalies. The
expert will investigate the reported subsequences and 7 of the 13 will point the expert
to a fault in the vehicle.

In Figure 9.22 the results on a one hour test drive are shown, where the spark plug lead
was temporarily disconnected while the vehicle was standing still (fault #4). From
the 10 injected faults, 8 were detected. None of the signals is out of the valid value

233

Chapter 9 Experimental results on recordings from vehicles

range, the faults were detected solely due to violations of learnt relationships between
signals. No anomalies were falsely reported.

Figure 9.22: Classification results for an overland drive of one hour where 10 faults were
injected by temporarily interrupting the spark plug lead. The results are
marked with frames (TN: green, FP: yellow).

Summarising, from the anomalies introduced in Section 3.3, it was shown that type 1
and type 3 can be detected. With the training set containing recordings from motor-
way, overland, and urban drives, for the accumulated test set (last row in Table 9.12)
approximately 60% of the injected faults were detected, while the percentage of faults
in the result set of reported anomalies was 76%. This shows the effectiveness of the
approach, since an expert will be able to detect the faults in the result set without
having to investigate many falsely reported anomalies.

234

Chapter 9 Experimental results on recordings from vehicles

9.4.2 Results on recordings from different drivers and vehicles

While in the previous section, training and test set were taken from the same vehicle
and the same driver, the experiments in this section cover the scenario that is en-
countered when testing vehicle fleets. Recordings from different vehicles and different
drivers in urban traffic are used as the training and test sets.

Three different test sets are used. The first test set (“tw1, dr1”) contains 8 test drives
from vehicle “tw1” and driver “dr1”, where the injector nozzle was temporarily switched
off 10 times (fault #3) and the engine coolant temperature sensor was manipulated
3 times (fault #1 and #2). The second test set (“tw2, dr1”) contains 8 recordings
from driver “dr1” and vehicle “tw2” with 6 fault injections into the engine coolant
temperature (fault #1 and #2) and 4 into an injector nozzle (fault #3). The third
one (“tw2, dr2”) consists of 7 test drives from driver “dr2”, with 3 manipulations of
the engine coolant temperature sensor (fault #1 and #2) and 4 manipulations of an
injector nozzle (fault #3).

The first row in Table 9.13 shows the result for training and testing with the same
driver, the second row for testing with data from a different driver. While the detection
rate is very good with 76.9% of the faults being detected, the false negative rate is high
when training with driver “dr1” and testing with “dr2”. This issue has been discussed
in Section 9.3.2, the results can be improved by training on recordings from various
drivers.

The result for testing with recordings from a different vehicle is given in the third row.
The achieved detection rate of 50% is considered as good and the low false negative
rate of 2.4 FN/h keeps the analysis effort low.

The fourth row in Table 9.13 shows the result when testing with a driver and vehicle,
that are both not included in the training set. By using a training set from two different
drivers (“tw1, dr1+dr3”), the number of false negatives can be reduced from 13 to 3,
while the true negative rate remains unchanged. This result is given in the last row
showing a percentage of detected anomalies of 57.1%. In combination with the low
false negative rate of 1.5 FN/h this shows that the proposed approach is applicable to

235

Chapter 9 Experimental results on recordings from vehicles

the testing of vehicle fleets, where recordings from a specific vehicle or driver are not
necessarily included in the training set.

training test ‖A‖ ‖B‖ FN FN/h TN TNR precision
tw1, dr1 tw1, dr1 21336s 7224s 21 10.5 10 76.9% 32.3%
tw1, dr2 tw1, dr1 11662s 7224s 38 18.9 10 76.9% 20.8%
tw1, dr1 tw2, dr1 21336s 7616s 5 2.4 5 50.0% 50.0%
tw1, dr1 tw2, dr2 21336s 7109s 13 6.6 4 57.1% 23.5%
tw1, dr1+dr3 tw2, dr2 34820s 7109s 3 1.5 4 57.1% 57.1%

Table 9.13: Results with training and test sets from different vehicles and drivers.

In Figure 9.23, one test drive with “tw2” in urban traffic from the experiment in
the last row of Table 9.13 is presented in more detail. Fault #3 was injected four
times. Three out of four anomalies were detected, marked in Figure 9.23 with green
frames, the undetected anomaly is marked with a yellow frame. No false negatives
were reported.

The system reports 3 abnormal subsequences. After analysis of the reported anomalies
by the expert, all 3 anomalies turn out to be faults in the vehicle, one fault remains
undetected.

Summarising, the results show the effectiveness of the approach. Roughly between
50% and 75% of the injected faults were detected, while the time for the analysis is
kept reasonably low due to a moderate number of false negatives.

236

Chapter 9 Experimental results on recordings from vehicles

Figure 9.23: Classification results for a recording of 15 minutes from a driver and
vehicle that are both not contained in the training set. The results are
marked with frames (TN: green, FP: yellow).

9.5 Evaluation

In this section, the approach is further evaluated based on the experimental results.
The scalability in terms of the size of the training set and the effect of the inherent
parameter W , determining the lengths of the subsequences, are discussed. Following
that, the effectiveness of the approach is quantified with respect to the aims given in
Section 1.4.

237

Chapter 9 Experimental results on recordings from vehicles

9.5.1 Scalability of the approach

The classification of recordings is fast and is linear in the size of the test set as testing
is done sequentially. The wall clock time required for training including parameter
optimisation for the training set of Section 9.2 is shown in Figure 9.24. In general,
the complexity for training of support vector machines is in the range of O(n2) and
O(n3) as stated in (Bordes et al., 2005). The observed complexity is approximately
quadratic in the number of training instances.

Figure 9.24: Required time for training w.r.t. the size of the training set.

As an example the time for training and test were measured on a current standard PC
for the data set from Table 9.6 in Section 9.3.1.4, which contains 8 signals and 63631
seconds (17.5 hours) of recordings. The training period takes approximately 20 hours.
Testing recordings of 20000 seconds (5.5 hours) takes only 2 seconds.

9.5.2 Effect of the length of the subsequences

The parameterW determines the length of the subsequences formed by SVDDsubseq.
It specifies to which extent the local neighbourhood of data points is taken into account.
By its implicit filtering functionality it also prevents individual data points from being
falsely reported as abnormal.

238

Chapter 9 Experimental results on recordings from vehicles

In the absence of abnormal test data, it is recommended to set the window length to
a value that yields satisfactory false negative rates. If knowledge about the expected
minimal length of a fault exists, the chance of detecting faults can be increased by
setting the window length to values not greater than half the length of the fault. This
way at least one subsequence holds data points that are all abnormal.

Figure 9.25: Classification results for different lengths of the subsequences.

However, as shown in Figure 9.25 the parameter W has no dramatic effect on the
classification accuracy. For very small window sizes of 1 to 3 data points the number
of false negatives is high, since the filtering effect of the window is not present. For
larger window sizes FN and TN decrease gradually, showing that the range of a good
window size is wide.

9.5.3 Quantification of the effectiveness of the approach

In order to quantify the effectiveness of the approach, eq. (1.1) from Section 1.4 is
applied on the results with training and test set containing recordings from all driving
conditions given in the last row in Table 9.12 in Section 9.4.1.

The number of detected faults on a set of recordings Dall was given in Section 1.4 as

239

Chapter 9 Experimental results on recordings from vehicles

Ndetected faults = p(fault|d) ∗ Tbudget
Tdiagnosis

(9.1)

where p(fault|d) is the probability of a fault in one data set d, Tbudget is the available
time budget, and Tdiagnosis is the time required for the diagnosis of one data set d.

Two aims were formulated in Section 1.4:

1. decrease the time Tdiagnosis required for the analysis of one data set d

2. increase the probability p(fault|d) of a fault in one data set d

The degree of improvement of Tdiagnosis by the introduction of the visual data mining
techniques in Chapter 4 is hard to measure since it depends on the expert’s knowledge
and the quality of the currently used tools. In this evaluation it is assumed that the
diagnosis is speeded up by a factor of 2, i.e. Tdiagnosiscurrent

Tdiagnosisnew
= 2, where “current” refers

to the currently used techniques and “new” refers to the approach proposed in this
Thesis.

The increase of the probability p(fault|d) is taken from the results in Table 9.12. The
test set Dall is 24145 seconds long with 76 faults present. With a length of 30 seconds
for each data set d, the expert has to investigate 805 portions of data in Dall. The
result set Dpotential errors given in the experiment in Section 9.4.1 consists of 59 data
portions d and 45 faults are present.

The question is posed, how much time would the expert have to invest with current
techniques to detect the same number of faults detected in the experiments with the
new approach, or in other words which speedup factor is achieved. The speedup factor
is calculated by setting Ndetected faultscurrent

!
= Ndetected faultsnew :

240

Chapter 9 Experimental results on recordings from vehicles

Ndetected faultscurrent
!

= Ndetected faultsnew (9.2)

p(fault|dall) ∗
Tbudgetcurrent
Tdiagnosiscurrent

= p(fault|dpotential errors) ∗
Tbudgetnew
Tdiagnosisnew

which is reformulated as

Tbudgetcurrent
Tbudgetnew

=
Tdiagnosiscurrent
Tdiagnosisnew

∗ p(fault|dpotential errors)
p(fault|dall)

(9.3)

speedup =
1

0.5
∗

45
59
76
805

= 16

As can be seen from eq. (9.3), a significant improvement is achieved with the new
approach. A speedup factor of 16 is achieved with the current approach on the given
training and test set. This number is likely to be orders of magnitude higher in
practice, since due to the injection of faults, the number of faults in the used test
set is higher than expected in practice. Obviously the improvement in the number of
detected faults by keeping the time budget fixed can be calculated likewise.

9.6 Conclusion

This chapter showed experimental results on recordings from vehicles. Starting with
recordings from idle mode, the problem was gradually made more complex by adding
different driving conditions, different drivers, and different vehicles.

A way was introduced to find a representative training set in the absence of abnormal
test data by growing the size of the training set and monitoring the false negative
rate.

241

Chapter 9 Experimental results on recordings from vehicles

Furthermore, the effect of different constitutions of the training set was investigated.
The best results are achieved when training and test set are from the same driver and
same vehicle.

The results are weaker when using training and test data from different drivers. It
was shown, that the approach can be used to test recordings from drivers that are not
included in the training set, by training on recordings from different drivers. Further-
more it was shown that using different vehicles of the same model series does not have
a significant impact on the results. Conclusively, the results show that the approach
can improve fault detection in recordings from test drives.

As all classification systems that solely learn from training sets, the proposed classifier
SVDDsubseq suffers from both types of classification errors: undetected anomalies
(false positives) and falsely reported anomalies (false negatives). For that reason,
the reported anomalies need to be investigated by an expert to cope with the false
negatives. The visual data mining techniques introduced in Chapter 4 have proven
very effective. The anomaly detection system proposed in this Thesis is therefore a
semi-autonomous approach according to the categorisation given in Section 3.5.

It is in the nature of machine learning systems, that the quality of the results depends
on the quality of the training set. If it is not possible to obtain a representative training
set, the number of false negatives will be high. In that case the anomaly detection
system is still useful in several ways:

1. Frequent or permanent faults can be detected by just monitoring the number
of reported anomalies. If the number differs significantly from the expected FN
rate, the test set is likely to contain anomalies.

2. A high number of false negatives is an indication that the training set is not
representative. The false negatives can be used to identify why the training set
is not representative and enhance the training set with missing data.

3. With the anomaly score specified in Section 7.4, the result set can be ranked and
the subsequences with the highest anomaly scores can be investigated.

242

Chapter 9 Experimental results on recordings from vehicles

4. Even if the number of false negatives remains at a high level, the chance of de-
tecting a fault in the result set is much higher than randomly selecting recordings
to be investigated as described in Chapter 1.

While the experiments in this chapter were conducted on data related to the engine-
management system, the methods discussed can be applied to data from different
vehicle subsystems like braking systems, car infotainment, or driver assistant systems.
In some cases, neither the driver nor the vehicle might have an impact on the classifi-
cation accuracy, but rather different extra equipment of the vehicle, or different levels
of equipment like base or premium versions of a component. Experiments, analogous
to the ones shown in this chapter, can be conducted to investigate the impact on the
results.

As a final conclusion, the reader should not focus on the exact results in the exper-
iments, since they are data-specific. The key point is that the results show that the
methodology works. Consequently, the methodologies introduced in this Thesis can
be used as a guideline when setting up an anomaly detection system for own vehicle
data.

243

Chapter 10

Conclusion

This chapter summarises the Thesis, identifies the main contributions, and
discusses benefits and limitations of the proposed approach.

This Thesis addressed the problem of having to cope with huge data volumes resulting
from vehicle tests. The aim was to report anomalies in recordings from test drives,
where the key point was to be able to detect unmodelled faults. The detected anomalies
can point the expert to faults in the underlying vehicle, which can for example be
erroneous sensors or actuators, faults in the software, hardware or parameterisation of
electronic control units or faults in the bus systems.

The aim was achieved by proposing a semi-autonomous detection system. The pro-
posed classifier SVDDsubseq learns from a training set of error-free recordings, and
then autonomously reports deviations in the test set as anomalies. By means of visual
data mining techniques, the expert can then analyse the reported anomalies in order
to find those that are caused by faults.

Chapter 10 Conclusion

10.1 Main contributions

This Thesis made the following main contributions:

• Current shortcomings when recording and analysing test drives were identified.
(Section 1.1.2)

• Visual data mining techniques were adapted to make the manual analysis of test
drives more efficient (Chapter 4).

• The one-class classifier support vector data description (SVDD) was made appli-
cable to practical problems by proposing a parameter tuning approach (Section
6.3.6).

• SVDDsubseq was proposed, enhancing SVDD to work on multivariate time
series data. In combination with the parameter tuning approach, SVDDsubseq
can be applied to test drive data without the need for parameter tuning.

• An anomaly detection system for test drive data was proposed (Chapter 8) and
the idea was shown to work on real recordings from vehicles (Section 9).

10.2 Applicability of the approach

The most essential question to answer is, whether the presented anomaly detection
system is useful in practice, where a great number of test drives is recorded on a
day-to-day basis.

The presented results on test drive data show the applicability of the approach. In the
experiments, different kinds of injected faults were successfully detected.

Inherent in the idea to solely rely on a one-class training set of historical data and
confirmed by the results, the system will yield misclassifications. On the one hand an

246

Chapter 10 Conclusion

expert is required to distinguish between real faults and falsely reported anomalies, on
the other hand some faults may remain undetected.

The conclusion is that even if misclassifications occur, which is inevitable for classifica-
tion systems based on learning from sample data, the detection system is a significant
improvement. Based on the reported anomalies the expert can conduct the analysis
in a goal-oriented manner in contrast to random inspection. In addition, the anomaly
score attached to each reported subsequence, allows the results to be ranked.

However, if the vast majority of reported anomalies are incorrect, the process becomes
error-prone, because it is tedious for the expert and he/she might overlook those
results that are in fact abnormal. To avoid this, the anomaly detection system should
be continuously optimised during its operation mode. Selected classification results
confirmed by the expert should be integrated into the knowledge base. SVDD, while
essentially being a one-class classifier, can be trained with additional instances from
the abnormal class (Tax, 2001).

When more representative data sets are available, the detection system should be
trained on an enhanced training set. If the results have improved, the enhanced
training set can be integrated. For that reason a history of classification results should
be kept.

The effectiveness of the approach was quantified for one experiment, yielding a speedup
factor of 16 with respect to the currently used techniques. The speedup factor is
expected to be orders of magnitude higher in practice since it increases the less faults
are present in the data.

10.3 Classification accuracy

The question arises, which classification accuracy can be considered as valuable. For
measuring the accuracy, two essential measures were used in this Thesis: (1) the
true negative rate, which is the percentage of anomalies that were detected, and (2)

247

Chapter 10 Conclusion

the precision on the abnormal class, which measures the percentage of the reported
anomalies that are indeed abnormal.

Obviously a classifier could be created that detects the vast majority of anomalies by
drawing a very tight boundary resulting in a high true negative rate. As a result, a
large portion of normal instances would be classified as abnormal as well, consequently
the precision is very low.

A trade-off between these two measures has to be found. It is basically the trade-off
between the cost of overseeing an anomaly and the cost of investigating a reported
anomaly that turns out to be false. If these two cost factors can be quantified, the
classifier can be adapted for a given training set to yield the optimal results in terms
of costs.

10.4 Scalability

The number of incorporated signals is theoretically not constrained. However, the
more signals the data set contains, the more variations are possible. Consequently, a
very large data set is required in order to have a representative training set.

A sensible limit on the number of signals cannot be given, since it depends on how
closely the signals are related. For that reason, a way of determining whether a given
training set is representative by determining the false negative rate for different training
sets of growing size was proposed in Section 9.

Regarding the length of the recordings used for training, it is a matter of how fast the
training result required. It was shown that the complexity of the training period is
quadratic in the size of the training set.

The times required for training and test were measured on a current standard PC. The
training period for the data set used in Table 9.6 in Section 9.3.1.4, which contains 8
signals and 63631 seconds (17.5 hours) of recordings, takes approximately 20 hours,
so the result is available on the next working day. Testing on the other hand is very

248

Chapter 10 Conclusion

fast. For the given training set, testing recordings of 20000 seconds (5.5 hours) takes
only 2 seconds. The training time can be reduced by more powerful hardware. Since
testing is very fast and done sequentially, the size of the test set is irrelevant.

10.5 Limitations

The approach works on a group of related signals. It essentially learns the value
ranges of individual signals and the dependencies between signals. If the relations
between signals are time delayed, the detection system will work for relatively small
time delays, since the change is then captured by one subsequence. Bigger time delays
can be removed by shifting the time series, if the delays are approximately constant.
If time delays are not constant, they cannot be learnt by the system. A solution could
be to use more refined ways of pre-processing, e.g. to transform the time series into
rules (Hoeppner, 2002) or to apply a grammar to describe relations between intervals
(Moerchen, 2006).

A further limitation is, that the detection system will not reliably detect unexpected
correlations between signals, i.e. signals that should be unrelated but are erroneously
related, e.g. by cross-talk. If the erroneous relation leads to an anomaly in the relation
of further signals, it can be detected, otherwise not. Alternatively, those type of faults
could be detected by means of similarity measures (Mitsa, 2010).

10.6 Benefits of the approach

The proposed approach offers benefits in many steps of a vehicle’s life cycle ranging
from the development phase to the after sales service period. During test drives
conducted before start of production the vehicle’s behaviour on the road is evaluated.
Analysing the resulting recordings becomes more efficient using the proposed approach.
The analysis will be more thorough with a smaller chance of overseeing abnormal
behaviour.

249

Chapter 10 Conclusion

After start of production, sporadic test drives are being conducted with selected ve-
hicles to ensure the vehicles’ quality. At that point in time, many recordings with
that type of vehicle exist from earlier phases. Therefore the system shall be able to
offer good results for this step of the vehicle’s life cycle. Even after a vehicle has
gone through all of the manufacturer’s steps, such a system offers benefits: during the
analysis of field data.

250

Chapter 11

Outlook

This chapter discusses possible enhancements of the approach as well as
identifying and proposing further research directions.

This work proposed an anomaly detection system without setting pre-configured con-
straints for the data and without modelling effort. The results show the applicability
of the approach. In order to improve the overall fault detection rate, for known and
unknown faults, more domain-specific knowledge could be integrated:

1. If the detection system reports an anomaly that is classified by the expert as
being irrelevant or incorrect, this information could be added to the knowledge-
base. By means of similarity measures, the reporting of similar occurrences can
be suppressed. Equivalently the information which anomalies pointed to faults
could be stored for further, similar anomalies.

2. If there are constraints for the data, that are reliably known not to be violated
in normal operation mode, these constraints could be integrated as well. This
follows the common approach of limiting the search space by pushing constraints

Chapter 11 Outlook

deep into a data mining process (Han and Kamber, 2006). An example could be
valid value ranges for signals.

3. Well-known fault patterns could be pre-configured, for the system to reliably
detect known faults.

The reported anomalies point the experts to potential errors which in turn may point
to faults. Further research could be to identify the cause of the fault. This requires pre-
configured knowledge, like information about faults and fault symptoms. While this
Thesis presented an approach that does not require modelling, such an enhancement
would require massive modelling effort and will most likely be constrained to known
faults. An alternative with less modelling effort could be to configure knowledge about
the in-vehicle network topology, so the detection system is able to isolate the fault
location.

In addition to the offline-detection of anomalies, the proposed classifier SVDDsub-
seq has the potential to be used for online-diagnosis in ECUs for example to store
a diagnostic trouble code in case of an error. The diagnostic capabilities of ECUs
are limited by computing and memory constraints. With a support vector machine,
classification is very fast and the knowledge base can be compact, if the number of
support vectors is kept low. However, for that purpose, higher classification accuracies
than achieved for the test drives in this Thesis are required. This is feasible if the
classifier is trained for one specific diagnostic task, rather than the detection of any
type of faults. Optimally SVDDsubseq could be run in parallel to an alternative,
conventional diagnostic algorithm.

Apart from fault detection in test drives, a variety of further tasks in the vehicle
development process can benefit from this approach:

• The approach could be used to compare the behaviour of different software re-
leases. So for example abnormal deviations of the timing behaviour between
software releases can be uncovered.

• The evaluation of an algorithm’s behaviour with respect to varied parameterisa-
tion is another field to benefit from this approach.

252

Chapter 11 Outlook

• During the development of vehicle functions, the algorithms running on ECUs are
evaluated and optimised permanently. The tests are typically run on a software
in the loop (SiL) or hardware in the loop (HiL) environment. The approach
can support the responsible specialist during the analysis of the test results by
pointing her/him to anomalies.

In a variety of application domains, the amount of data recorded for later analysis
is growing due to cheap and compact hardware and storage devices. Consequently
the research field of anomaly detection will continue to gain importance. The ap-
proach presented in this Thesis is transferable to other application domains where the
data has similar properties. It could be applied to data from other technical systems,
for example fault detection in recordings from machinery in the automation indus-
try. Managing computer networks, performance monitoring or intrusion detection are
potential applications. In marketing research it could be used to identify changes in
consumer behaviour. Further applications could be the monitoring of medical data or
the management of power-grids.

253

List of Figures

1.1 Electric and electronic components and in-vehicle network in a premium
class car (taken with permission from (Schmidgall, 2011)) 2

1.2 Current process of test drive analysis. 6
1.3 Process of test drive analysis with the approach proposed in this Thesis

automating the selection of subsets of data and the detection of potential
faults. 7

1.4 A simplified example of an in-vehicle network with CAN, LIN, MOST
and FlexRay bus systems . 8

1.5 An excerpt of the increasing number of functions and ECUs taken from
(Dannenberg and Burgard, 2007). 12

1.6 Estimated number of detected faults with the current and the new ap-
proach (p(fault|d): probability of a fault in one data set d, Tbudget:
available time budget, Tdiagnosis: time required for the diagnosis of one
data set d). 15

2.1 Test drives are conducted throughout various vehicle phases ranging
from research phase to after start of production 24

2.2 Fault locations in an in-vehicle network 32
2.3 Categorisation of fault locations in an in-vehicle network 33

3.1 Time series data extracted from two minutes of in-vehicle network com-
munication recorded during a test drive showing the steer angle, engine
rpm, and vehicle speed. 39

3.2 An anomaly is a potential error. An error is caused by a fault and may
cause a failure. 42

3.3 Categorisation of anomalies in multivariate time series. 44
3.4 DC motor test rig. 45
3.5 Position and DC current of a DC motor in normal operation mode. . . 46
3.6 Example of a subsequence anomaly in univariate time series (type 1).

The values of subsequence s1 exceed the valid value range. 47
3.7 Example of a contextual anomaly in a univariate time series (type 2) in

the DC current of the motor. The set S = {s2, s3} is abnormal. 48

List of Figures

3.8 Contextual anomaly in the dependency within the multivariate time
series. 49

4.1 Scatter plot matrix relating the signals engine rpm, vehicle speed, and
throttle position from a test drive. All data points where the vehicle
speed was greater than 90 km/h are highlighted. 63

4.2 Mapping of multivariate time series with 3 signals and 5 time stamps
T1 . . .T5 to parallel coordinates. 64

4.3 Parallel coordinates with transparent items showing which value ranges
were dominant during one test drive. 65

4.4 Parallel coordinates with Boolean brushing operations applied to high-
light subsequences where the vehicle’s velocity is in the range of 40 . . . 50
km/h and the vehicle is in the 3rd gear. 66

4.5 Graphically formulating a query for a specific driving manoeuvre where
a right curve is followed by a left curve. 67

4.6 Euclidean distance between a search pattern (black, dashed line) and
an input time series (green, solid line). 68

4.7 Distance between a search pattern and an input time series calculated
with the dynamic time warping distance measure. 68

4.8 Interaction between the used visual data mining techniques. 69
4.9 Recordings from an in-vehicle network from a test drive. 71
4.10 Parallel coordinates highlighting all changes of the gear, where the ve-

hicle was going through a curve. 72
4.11 Timing analysis of in-vehicle network traffic recorded from a HiL test

stand. The time stamps, data length, and can identifier of messages
violating the cycle time can be identified. 74

4.12 Parallel coordinates with a colour gradient showing the structure of
the data. An abnormal deviation of the anti-proportional dependency
between the steering wheel angle and the yaw signal can be detected. . 76

4.13 Isolating abnormal driving situations by querying using Boolean oper-
ators. 76

4.14 Search results for right curves followed by left curves. 77
4.15 Dependency between speed of left and right wheel is violated for a short

period of time (marked red). 78
4.16 Enhanced parallel coordinates showing one hour and three detectors . . 79
4.17 Evaluation of detector network by querying for abnormal values on two

detectors. 82
4.18 Identification of problem sections on a motorway. 83
4.19 Queries for traffic jams. 84

256

List of Figures

5.1 General steps in a machine learning system ranging from the acquisition
of data to the application of a machine learning algorithm. 89

5.2 Probability density function p(f |ωn) for one class and one feature. . . . 94
5.3 Probability density functions of two classes ωn and ωa with no apparent

class overlap . 95
5.4 Overlapping probability density functions of two classes ωn and ωa . . . 96
5.5 Massively overlapping probability density functions of two classes ωn

and ωa . 96
5.6 Probability density functions of two non-equiprobable classes ωn and ωa 97
5.7 From a given probability density function (blue) a data set is gener-

ated. From the generated data set a histogram is calculated, and the
probability density function is estimated (red). 100

5.8 Estimation of the probability density function from a generated data set.101
5.9 Linear classifier separating the normal class ωn from the abnormal class

ωa . 103
5.10 Linear decision function determined by a hard-margin support vector

machine. g1(F) and g2(F) are illustrated with dashed lines. 105
5.11 Soft-margin support vector machine allowing some instances in the

training data set to be misclassified . 106
5.12 Example of linear classifiers: Fisher classifier (green), nearest mean clas-

sifier (blue), decision stump (magenta), and linear support vector ma-
chine (cyan) applied to separate the normal and abnormal class obeying
Gaussian distributions (created with (PRTools, 2012)). 107

5.13 The XOR problem shows two classes in two-dimensional feature space
that are not linearly separable. 108

5.14 Example of a non-linear decision function separating classes ωn an ωa. . 109
5.15 k-nearest neighbour classifier with k = 3: classifying an unseen instance

by finding the 3 nearest neighbours. The test instance will be classified
as ωa, by a 2:1 vote. 111

5.16 Exemplary topology of an artificial neural network with three layers,
capable of classifying 3-dimensional feature vectors as either normal or
abnormal . 112

5.17 Contrived XOR data set with two classes (black points and blue stars),
that are linearly inseparable. 114

5.18 Two-dimensional XOR data set with two classes, that become linearly
separable after mapping to three-dimensional feature space. 114

5.19 The mapping eq. (5.14) is quadratic in the number of dimensions in the
transformed feature space. 115

5.20 Example of non-linear classifiers: quadratic classifier (green), Parzen
(blue), k-NN (magenta), created with (PRTools, 2012). 117

257

List of Figures

5.21 Example of non-linear classifiers: neural network (green), decision tree
(blue), and non-linear support vector machine (cyan), created with
(PRTools, 2012). 117

5.22 Fully representative and non-representative training set. 119
5.23 Feature space containing only normal instances 120
5.24 Decision function between ωn and ωa, with unknown ωa. The yellow area

corresponds to the false positives, the red areas to the false negatives. . 122

6.1 Adaptation of k-NN to function as a one-class classifier by determining
a threshold from the training set using the maximum nearest neighbours
distance (blue circle). The region of the abnormal class is depicted in
grey. 130

6.2 Data set with two clusters with unequal densities. 131
6.3 A hypersphere in a 2-dimensional feature space with radius R and center

a, described by the three support vectors SV1 · · ·SV3. 134
6.4 The introduction of the slack variables ξi allows for some instances of

the training data set to be outside the decision boundary. (a) without
slack variables (b) with slack variables. 137

6.5 Example of how a data set can be enclosed by a sphere by mapping it
from two- to three-dimensional feature space. 143

6.6 RBF kernel for different values of σ. 147
6.7 Non-linear decision function using the RBF kernel for three feature vec-

tors and the center a (green) described as the linear combination of the
feature vectors. 148

6.8 The influence of the parameter σ on the decision boundary. The black
squares are the feature vectors and the circle is the determined center. . 149

6.9 Functioning of grid search to optimise the SVDD parameter C and σ
with τ = 5 and linear partitioning of the ranges. (a) first iteration (b)
second iteration . 153

6.10 Results of parameter tuning by minimising the error rate visualised in
input feature space, where the selected support vectors do not tightly
enclose the training set. 153

6.11 The second and third term are proportional for all tested data sets over
the entire range of the parameters C and σ. 156

6.12 Optimal mapping in a constructed transformed feature space. The in-
stances are arranged in a spherical way. 157

6.13 Two constructed examples of non-optimal mappings resulting in spheres
with R > 1. 158

6.14 Parameter tuning of SVDD on artificial two-dimensional data sets vi-
sualised in input feature space. 159

258

List of Figures

6.15 Tuning of SVDD parameters using grid search on the “banana”, “2 clus-
ter”, “Iris”, and “thyroid” data set. 160

6.16 Error rate eωn , radius R, and optimisation parameter λ. 162
6.17 Correlation between σ and the radius. C influences the radius, the

number of support vectors and eωn . 163
6.18 Two artificial data sets used for the experiments: the “banana”, and the

“2 clusters” data set (blue: normal class, green: abnormal class). 165
6.19 Number of features w.r.t. the size of the training set for the 8 data sets. 167
6.20 True negative rates for the classifiers k-NN, LOF and SVDD on artificial,

public domain and real data sets (100% would be optimal). 173

7.1 A subsequence with window length W=5 shown in the original multi-
variate time series and in feature space. 178

7.2 Histogram of distances in training set from recordings of test drives. . . 180
7.3 Box plot of distances in tuning set. 181
7.4 Determination of the classification results based on the formed subse-

quences. 182
7.5 Plot of a time series generated by an ARMA model with α1 = 0.7 and

β1 = 0.3. 184
7.6 Process to create the data set. Signal “sig n” corresponds to “sig n-1”

superimposed by noise generated by an ARMA model. The red arrow
marks the location where the anomalies are injected. 185

7.7 A four-dimensional multivariate time series generated using ARMA
models. The second signal “sig2” contains 10 anomalies indicated by
a value of 1 for “class”. 186

7.8 Creation of the data sets with related signals and anomalies injected
into the relations. 187

7.9 Multivariate time series with 4 related signals. 10 anomalies were in-
jected into the relations between “sig1” and “sig2”, and between “sig3”
and “sig4”. 188

7.10 Creation of a data set with related signals and injected anomalies. . . . 189
7.11 Multivariate time series consisting of 4 related signals, where the anoma-

lies were injected into the relation between “sig1” and “sig2”. 189
7.12 Process of creation of a data set with unrelated signals. 190
7.13 Data set with 10 injected anomalies. The anomalies were injected into

the relation between “sig1” and “sig2”, the signals “sig3” and “sig4” are
random, unrelated signals. 6 of the 10 anomalies were detected, 4 were
falsely reported as abnormal. 191

7.14 Results for different ARMA data sets and anomalies w.r.t. the number
of signals. 192

259

List of Figures

7.15 Data set “DC motor IADIS” recorded from the DC motor test rig. 12
faults were injected by altering the motor’s load. 194

8.1 Steps of the anomaly detection system, from data acquisition to classi-
fication of subsequences and their analysis. 198

8.2 Anomaly detection system in training mode. The system is trained on
a set of recordings. 200

8.3 Anomaly detection system in test and feedback mode. The knowledge
base is applied to unseen recordings and anomalies are reported. 200

8.4 The middle pane shows a configured workflow in the anomaly detection
system. Available plug-ins are listed on the left hand side and their
configuration is shown on the right hand side. 202

8.5 Visual data mining techniques for the analysis of training data or re-
ported anomalies. 203

9.1 Test vehicle “Renault Twingo” from 2002 with 1149 ccm and 43 kW. . . 206
9.2 A recording of an overland drive with injected faults of type #1 and

#2, where a fault is indicated by a value of 1 for “class”. 207
9.3 Faults of type #3, injected during an overland drive. 209
9.4 An overland drive with injected faults of type #4. 210
9.5 Number of false negatives FN w.r.t. the ratio between the size of the

training set and a fixed size of the test set (2403 seconds), where the
size of the training set is additionally shown by the upper x-axis. 211

9.6 False negatives for fixed size of training set (7056 seconds) and varied
size of test set with normal instances. FN roughly follows a linear trend. 212

9.7 Ratio between false negatives and size of test set for a fixed size of the
training set (7056 seconds) and a varied size of test set with normal
instances. 213

9.8 Recordings of vehicle in idle mode, with 10 injected faults. The faults
are indicated by values of 1 for the label “class”. 214

9.9 Classification results on a test set with 33 injected faults. TP, FP, FN,
and TN for a training set size of 7056 seconds and a varied size of the
test set with normal and abnormal data. 215

9.10 Classification results on a test set with 33 injected faults. TPR, FPR,
FNR, TNR w.r.t. the size of the test set. 216

9.11 Distribution of the speed values in the used training sets from different
driving conditions. 218

9.12 6 minutes excerpt of a recording from a test drive on a motorway show-
ing the 8 signals recorded during test drives. 219

260

List of Figures

9.13 Recordings from motorway: The number of false negatives w.r.t. the
ratio between the size of the training set and a fixed size of an error-free
test set, where the size of the training set is shown by the second x-axis. 220

9.14 Recordings from motorway: False negatives for the selected optimal
training set and a varied size of test set with normal instances. 220

9.15 Recordings from motorway: The number of false negatives per hour
FN/h is approximately constant for all sizes of the error-free test set. . 221

9.16 Recordings from overland drives: The number of false negatives w.r.t.
the ratio between the size of the training set and a fixed size, error-free
test set. 222

9.17 Urban traffic: False negatives for varied size of training set and fixed
size of test set with normal data only. 223

9.18 Percentage of data points falsely reported as abnormal for training and
test set from the same and from different driving conditions. 224

9.19 The engine rpm w.r.t. the vehicle speed with a test set from “dr3” and
a training set from “dr1” in normalised feature space (false negatives:
red circles). 227

9.20 Example of classification results for faults injected during an overland
drive of 35 minutes by manipulating the temperature sensor. The results
are marked with frames (TN: green, FP: yellow). 232

9.21 Classification results for a 35 minutes long recording of an overland
drive where a the injector nozzle was manipulated 9 times. The results
are marked with frames (TN: green, FP: yellow, FN: red). 233

9.22 Classification results for an overland drive of one hour where 10 faults
were injected by temporarily interrupting the spark plug lead. The
results are marked with frames (TN: green, FP: yellow). 234

9.23 Classification results for a recording of 15 minutes from a driver and
vehicle that are both not contained in the training set. The results are
marked with frames (TN: green, FP: yellow). 237

9.24 Required time for training w.r.t. the size of the training set. 238
9.25 Classification results for different lengths of the subsequences. 239

261

List of Tables

5.1 Confusion matrix showing classification results with: TN = true nega-
tives, i.e. an anomaly classified as abnormal, FP = false positives, FN
= false negatives and TP = true positives. 91

6.1 Properties of data sets used for parameter tuning. 159
6.2 Results for one-class 1-NN on 8 artificial or public domain data sets

ranging from 2 up to 60 features. The fraction of detected anomalies
was above 70% for just three of the data sets as shown in the column
“TNR”. 168

6.3 Results on the 8 selected data sets for one-class 5-NN. The results do
not significantly differ from 1-NN. 168

6.4 Results for LOF with k=1. The number of detected anomalies is ac-
ceptable for two data sets, but very weak on the remaining ones. 169

6.5 Results for LOF with k=5. The classification results have improved
compared to LOF with k=1 for almost all data sets, but are still very
weak for 5 of the 8 data sets. 169

6.6 Results on the 8 selected data sets with SVDD and the proposed au-
tonomous parameter tuning approach. The true negative rate is very
good for the majority of the data sets. 170

6.7 Results with k-NN on real data sets from the test rig. 171
6.8 Results with LOF on real data sets from the test rig. 171
6.9 Results with SVDD on real data sets from the test rig. 172
6.10 Evaluation of the three classifiers based on the key requirements from

Section 5.3 and the classification accuracy. 173

7.1 Results for 2 . . . 20 related signals, where the second signal contains 10
univariate subsequence anomalies. 186

7.2 Results for 2 . . . 20 related signals, where 10 anomalies were injected
into the relations between the first and the second signal, the third and
the fourth and so forth. 187

7.3 Results for 2 . . . 20 related signals, where 10 anomalies were injected
into the relation between the first and the second signal. 189

List of Tables

7.4 Results for a growing number of unrelated signals, where the anomalies
were injected into the relation between the first and the second signal. . 190

7.5 Results on recordings from the DC motor test rig. 194

9.1 Anomaly types from Section 3.3 and injected faults. 210
9.2 Signals used for the experiments in idle mode 211
9.3 Results with two training sets of different lengths on recordings in idle

mode with 33 injected faults, where FN/h is the number of false nega-
tives per hour. 215

9.4 Signals used for the experiments on recordings from test drives. 217
9.5 Results for training and testing on the same driving condition with

error-free test sets. The column “FN/h” holds the number of false neg-
atives per hour. 223

9.6 Results with one combined training set on error-free test sets. 225
9.7 Drivers that conducted the test drives used in the experiments. 225
9.8 Results on error-free test sets with training and testing on recordings

from different drivers. 226
9.9 Results on error-free test sets with training sets from different drivers. . 227
9.10 Vehicles used for the experiments. 228
9.11 Results on error-free test sets with different vehicles. 229
9.12 Results for motorway, overland, and urban test drives. 231
9.13 Results with training and test sets from different vehicles and drivers. . 236

264

Bibliography

Abe, S. (2010). Support Vector Machines for Pattern Classification (Advances in
Pattern Recognition). Springer-Verlag London Ltd., 2 edition.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843.

Antunes, C. M. and Oliveira, A. L. (2001). Temporal data mining: an overview. In
KDD 2001 Workshop on Temporal Data Mining, pages 1 – 13.

Athanasas, K. and Dear, I. (2004). Validation of complex vehicle systems of prototype
vehicles. IEEE Transactions on Vehicular Technology, 54.

Auto Service Praxis (2013). Website: Data base for product recalls (accessed 5th
August 2013).

Ben-Hur, A. and Weston, J. (2010). A User’s Guide to Support Vector Machines,
volume 609 of Methods in Molecular Biology. Humana Press.

Berger, C. and Rumpe, B. (2012). Autonomous Driving-5 Years after the Urban Chal-
lenge: The Anticipatory Vehicle as a Cyber-Physical System. In GI-Jahrestagung,
volume 208 of LNI, pages 789–798. GI.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University
Press, reprinted edition 2006 edition.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005). Fast kernel classifiers with
online and active learning. Machine Learning Research, 6:1579–1619.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). LOF: Identifying
Density-Based Local Outliers. In SIGMOD Conference, pages 93–104.

Bibliography

Byttner, S., Rögnvaldsson, T., and Svensson, M. (2011). Consensus self-organized
models for fault detection (COSMO). Engineering Applications of Artificial Intelli-
gence, 24(5):833 – 839.

Chandola, V. (2009). Anomaly Detection for Symbolic Sequences and Time Series
Data. PhD thesis, Computer Science Department, University of Minnesota.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey.
ACM Computing Surveys.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Cong, F., Hautakangas, H., Nieminen, J., Mazhelis, O., Perttunen, M., Riekki, J.,
and Ristaniemi, T. (2013). Applying wavelet packet decomposition and one-class
support vector machine on vehicle acceleration traces for road anomaly detection
(accepted for publication). In Advances in Neural Networks ISNN 2013.

Dannenberg, J. and Burgard, J. (2007). Car innovation 2015 - a comprehensive study
on innovation in the automotive industry. Technical report, Oliver Wyman Auto-
motive.

de Ridder, D., Tax, D., and Duin, R. P. W. (1998). An experimental comparison of
one-class classification methods. In Ter Haar Romeny, B., Epema, D., Tonino, J.,
and Wolters, A., editors, Proc. 4th Annual Conference of the Advanced School for
Computing and Imaging (ASCI 98), pages 213–218. ASCI, ASCI.

de Sa, J. P. M. (2001). Pattern recognition: concepts, methods, and applications.
Springer-Verlag.

Deng, K., Moore, A., and Nechyba, M. (1997). Learning to Recognize Time Series:
Combining ARMA models with Memory-based Learning. In IEEE Int. Symp. on
Computational Intelligence in Robotics and Automation, volume 1, pages 246 – 250.

Denton, T. (2006). Advanced Automotive Fault Diagnosis. Elsevier Ltd., 2 edition.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification (2nd Edition).
Wiley-Interscience.

266

Bibliography

Endres, E., Muller, C., Shadrin, A., and Tverdyshev, S. (2010). Towards the formal
verification of a distributed real-time automotive system. In Proceedings Second
NASA Formal Methods Symposium NFM 2010, pages 212–217.

Etzold, R. (2011). So wird’s gemacht. Pflegen - warten - reparieren: Renault Twingo
von 6/93 bis 12/06. Delius Klasing, 8 edition.

Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers.
Technical report, HP Laboratories.

Fayyad, U., Piatetsky-shapiro, G., and Smyth, P. (1996). From data mining to knowl-
edge discovery in databases. AI Magazine, 17:37–54.

Ferreira, M. C. and Levkowitz, H. (2003). From visual data exploration to visual data
mining: a survey. IEEE Transactions on Visualization and Computer Graphics,
9(3):378–394.

Few, S. (2006). Multivariate analysis using parallel coordinates. Perceptual Edge.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(7):179–188.

Friedrich, A., Lindau, J., Heinrich, J., Ebner, A., Haug, R., Schmidt, M., Ertelt, C.,
Dassler, J., Bäumel, A., and Scheible, K. (2009). Testing and Tuning. ATZ extra.
The New E-Class by Mercedes-Benz.

Fuerst, S. (2010). System and Software Architectures with AUTOSAR Basic and Ap-
plication Software. In Steinbeis Symposium Electronics in Automotive Engineering.

Furnas, G. W. and Buja, A. (1994). Prosection views: Dimensional inference through
sections and projections. Journal of Computational and Graphical Statistics, 3:323–
385.

Grezemba, A. (2011). MOST. The automotive multimedia network. 2nd Edition.
Franzis.

Grimm, D. K., Sadekar, V., and Popp, P. (2007). A General Motors Perspective on the
Deployment of Vehicle to Vehicle Communications based Active Safety and Driver
Assistance Applications. In 13th International Conference on Electronic Systems
for Vehicles.

267

Bibliography

Hackenberg, U. (2008). Innovative Vehicle Architectures for Future Demands. In 32rd
FISITA World Automotive Congress. FISITA.

Han, J. and Kamber, M. (2006). Data Mining - Concepts and Techniques. Morgan
Kaufmann Publishers, 2 edition.

Hauskrecht, M., Valko, M., Batal, I., Clermont, G., Visweswaram, S., and Cooper, G.
(2010). Conditional outlier detection for clinical alerting. Annual American Medical
Informatics Association Symposium.

Hodge, V. J. and Austin, J. (2004). A survey of outlier detection methodologies.
Artificial Intelligence Review, 22:2004.

Hoeppner, F. (2002). Learning dependencies in multivariate time series. In Workshop
on Knowledge Discovery in (Spatio-) Temporal Data, pages 25–31.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A practical guide to support vector
classification. Technical report, Department of Computer Science, National Taiwan
University.

Hwang, I., Kim, S., Kim, Y., and Seah, C. E. (2010). A Survey of Fault Detection,
Isolation, and Reconfiguration Methods. IEEE Transactions on Control Systems
Technology, 18(3):636–653.

Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer,
1(2):69–91.

Isermann, R. (2006). Fault-Diagnosis Systems – An Introduction from Fault Detection
to Fault Tolerance. Springer, 1 edition.

ISO 26262-1 (2011). ISO 26262: Road vehicles – Functional safety – Part 1: Vocabu-
lary. Final Draft.

Jautze, M., Bogner, A., Eggendinger, J., Fröhlich, M., Rehdorf, J., Rekewitz, G., and
Stumm, A. (2008). An innovative variable damper system for further improvement
of ride-comfort and handling. In 32rd FISITA World Automotive Congress. FISITA.

Jeutter, R. (2008). Test and Validation of Distributed Automotive Systems – Com-
munication Robustness Validation. In Elektronik-Systeme im Automobil.

268

Bibliography

Johnson, M. A. (2009). SVM.NET 1.6.3.

Jones, C. A. (2005). Lecture notes: Math2640 introduction to optimisation 4. Tech-
nical report, University of Leeds, School of Mathematics.

Jones, W. D. (2001). Keeping cars from crashing. Spectrum, IEEE, 38(9):40–45.

KEEL (2012). Website: KEEL (Knowledge Extraction based on Evolutionary Learn-
ing).

Keim, D. A. (1997). Visual techniques for exploring databases.

Keim, D. A. (2001). Visual exploration of large data sets. Communications of the
ACM, 44:38–44.

Keim, D. A. (2002). Information visualization and data mining. IEEE Transaction on
Visualization and Computer Graphics, 7.

Keogh, E. and Lin, J. (2005). Hot SAX: Efficiently finding the most unusual time
series subsequence. In 5th IEEE International Conference on Data Mining (ICDM
2005), pages 226–233.

Keogh, E., Lin, J., Lee, S.-H., and Verle, H. V. (2006). HOT SAX: finding the most
unusual time series subsequence: algorithms and applications. Knowledge and In-
formation Systems, 11(1):1–27.

Kirchgässner, G. and Wolters, J. (2007). Introduction to Modern Time Series Analysis.
Springer Verlag.

Koch, M. and Theissler, A. (2007). Mit Tedradis dem Fehler auf der Spur. Effizente
Analyse von Fehlern im Fahrzeug zwischen Entwicklung und Serienanlauf. hanser
automotive, 9:28–30.

Krämer, M., Röhringer, A., Kirchner, W., Vogel, T., and Rochlitzer, J. (2009).
Programme Management and Project Control. ATZ extra. The New E-Class by
Mercedes-Benz.

Krauß, S. (2010). Comprehensive ECU Tests with Fault Simulation. Technical report,
Vector Informatik GmbH.

269

Bibliography

Lamberg, K. (2006). Model-based testing of automotive electronics. Design, Automa-
tion and Test in Europe Conference and Exhibition, 1:28.

Laurikkala, J., Juhola, M., and Kentala, E. (2000). Informal identification of outliers
in medical data. In 14th European Conference on Artificial Intelligence ECAI-2000.
Berlin.

Laxman, S. and Sastry, P. (2006). A survey of temporal data mining. Sadhana, 31.

Liebemann, E. K., Meder, K., Schuh, J., and Nenninger, G. (2004). Safety and Perfor-
mance Enhancement: The Bosch Electronic Stability Control(ESP). SAE Technical
Paper Series.

Mack, B. and Waske, B. (2011). Optimizing support vector data description by auto-
matically generating outliers. In EARSeL 7th SIG-Imaging Spectroscopy Workshop,
Edinburgh.

Marscholik, C. and Subke, P. (2008). Road vehicles – Diagnostic communication.
Hüthig GmbH und Co. KG.

MATLAB (2011). version 7.13 (R2011b). The MathWorks Inc., Natick, Massachusetts.

Mayer, E. (2010a). Serial Bus Systems in the Automobile. Part 2. Reliable data
exchange in the automobile with CAN. Technical report, Vector Informatik GmbH.

Mayer, E. (2010b). Serial Bus Systems in the Automobile. Part 3. Simple and cost-
effective data exchange in the automobile with LIN. Technical report, Vector Infor-
matik GmbH.

Mayer, E. (2010c). Serial Bus Systems in the Automobile. Part 4. FlexRay for data
exchange in safety-critical applications. Technical report, Vector Informatik GmbH.

Mayer, E. (2010d). Serial Bus Systems in the Automobile. Part 5. MOST for trans-
mission of multimedia data. Technical report, Vector Informatik GmbH.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education (ISE Editions).

Mitsa, T. (2010). Temporal Data Mining. Chapman & Hall/CRC.

270

Bibliography

Moerchen, F. (2006). Time Series Knowledge Mining. PhD thesis, Philipps-Universität
Marburg.

Moseler, O. and Isermann, R. (2000). Application of model-based fault detection to a
brushless dc motor. IEEE Transactions on industrial electronics, 47:1015–1020.

Moya, M. M. and Hush, D. R. (1996). Network constraints and multi-objective opti-
mization for one-class classification. Neural Networks, 9(3):463–474.

Mueter, M. and Asaj, N. (2011). Entropy-based anomaly detection for in-vehicle
networks. In Intelligent Vehicles Symposium, pages 1110–1115. IEEE.

Myers, G. J. (2004). The Art of Software Testing, Second Edition. Wiley.

Olszewski, R. T. (2001). Generalized Feature Extraction for Structural Pattern Recog-
nition in Time Series Data. PhD thesis, School of Computer Science, Carnegie
Mellon University.

Pavlichenko, O. (2011). Adaptation of measured data analysis algorithms for an ex-
isting machine learning framework.

Pons, F. S., Fernandez, D. S., Tort, M. S., Garcia, P. G., and Rodriguez, A. B. R.
(2010). Data fusion strategies for next generation ADAS: Towards full collision
avoidance. In 33rd FISITA World Automotive Congress. FISITA.

PRTools (2012). Website: PRTools: The Matlab Toolbox for Pattern Recognition.

R Development Core Team (2010). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0.

Raykov, T. and Marcoulides, G. (2012). Basic Statistics: An Introduction with R.
Rowman & Littlefield Publishers.

Sander, O., Klimm, A., Becker, J., Becker, J., Kimmeskamp, T., Formann, J., Echtle,
K., Weinberger, K., and Bulach, S. (2009). Ensuring reliability and interoperabil-
ity for intra vehicular communication by formal verification. In 14th International
Conference on Electronic Systems for Vehicles.

271

Bibliography

Schäuffele, J. and Zurawka, T. (2005). Automotive Software Engineering: Principles,
Processes, Methods, and Tools. SAE International, 4. edition.

Schlingmann, N. (2008). Diagnostics in the field by CLAAS. In 5th CTI Forum on
Automotive Diagnostic Systems.

Schlinkheider, J. (2010). Elektromobilität – Ruetteln an Grundmanifesten. In Steinbeis
Symposium Electronics in Automotive Engineering.

Schmidgall, R. (2011). Diagnostic communication. Opportunities and challenges. In
8th CTI Forum on Automotive Diagnostic Systems.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola, A. J., and Williamson, R. C.
(2001). Estimating the support of a high-dimensional distribution. Neural Compu-
tation, 13:1443–1471.

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for informa-
tion visualizations. In In Proceedings of Visual Languages. IEEE Computer Science
Press., pages 336–343.

Shumway, R. H. and Stoffer, D. S. (2006). Time Series Analysis and Its Applications:
With R Examples. Springer Texts in Statistics. Springer Science+Business Media,
2 edition.

Sommerville, I. (2001). Software Engineering (6th Edition). Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA.

Song, X., Wu, M., Jermaine, C., and Ranka, S. (2007). Conditional anomaly detection.
IEEE Transactions on Knowledge and Data Engineering, 19(5):631–645.

Stein, B., Niggemann, O., and Balzer, H. (2006). Diagnosis in Automotive Appli-
cations: A Case Study with the Model Compilation Approach. In Third Monet
Workshop on Model-Based Systems at the ECAI, pages 34–40.

Suwatthikul, J. (2008). A Framework and Methods for On-board Network Level Fault
Diagnostics in Automobiles. PhD thesis, School of Engineering, University of War-
wick.

Suwatthikul, J., McMurran, R., and Jones, R. (2011). In-vehicle network level fault
diagnostics using fuzzy inference systems. Applied Soft Computing, 11(4):3709 –

272

Bibliography

3719.

Svensson, M., Byttner, S., and Rognvaldsson, T. (2008). Self-organizing maps for
automatic fault detection in a vehicle cooling system. In Intelligent Systems, 2008.
IS ’08. 4th International IEEE Conference, volume 3.

Tax, D. and Duin, R. (2001a). Outliers and data descriptions. In In Proceedings of
the Seventh Annual Conference of the Advanced School for Computing and Imaging
(ASCI).

Tax, D. and Duin, R. (2004). Support vector data description. Machine Learning,
54(1):45–66.

Tax, D. M. (2001). One-class classification. Concept-learning in the absence of counter-
examples. PhD thesis, Delft University of Technology.

Tax, D. M. and Duin, R. P. (1999). Data domain description using support vectors.
In Proceedings of the European Symposium on Artificial Neural Networks, pages
251–256.

Tax, D. M. and Duin, R. P. (2001b). Uniform object generation for optimizing one-
class classifiers. Journal of Machine Learning Research, 2:155–173.

Theissler, A. and Dear, I. (2012). Detecting anomalies in recordings from test drives
based on a training set of normal instances. In Proceedings of the IADIS Inter-
national Conference Intelligent Systems and Agents 2012 and European Conference
Data Mining 2012. IADIS Press, Lisbon., pages 124–132.

Theissler, A. and Dear, I. (2013a). An anomaly detection approach to detect unex-
pected faults in recordings from test drives. In Proceedings of the WASET Inter-
national Conference on Vehicular Electronics and Safety 2013, Stockholm., pages
1144–1151.

Theissler, A. and Dear, I. (2013b). Autonomously determining the parameters for
SVDD with RBF kernel from a one-class training set. In Proceedings of the WASET
International Conference on Machine Intelligence 2013, Stockholm., pages 1135–
1143.

Theissler, A., Palmer, J., Rehborn, H., and Dear, I. (2011). Interactive Anomaly
Detection in time series resulting from local traffic measurements. In Proceedings

273

Bibliography

of the IADIS European Conference Data Mining 2011. IADIS Press, Lisbon., pages
147–152.

Theissler, A., Ulmer, D., and Dear, I. (2010). Interactive knowledge discovery in
recordings from vehicle tests. In 33rd FISITA World Automotive Congress. FISITA.

Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition, Fourth Edition.
Academic Press, 4th edition.

Thomas, J. J. and Cook, K. A. (2005). Illuminating the Path: The Research and
Development Agenda for Visual Analytics. National Visualization and Analytics
Ctr.

Venkatasubramanian, V., Rengaswamy, R., and Kavuri, S. (2003a). A review of process
fault detection and diagnosis. Part II: Qualitative methods and search strategies.
Computers and Chemical Engineering, 27(3):293–311.

Venkatasubramanian, V., Rengaswamy, R., and Kavuri, S. (2003b). A review of pro-
cess fault detection and diagnosis. Part III: Process History Based Methods. Com-
puters and Chemical Engineering, 27(3):293–311.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., and Kavuri, S. N. (2003c). A
review of process fault detection and diagnosis: Part I: Quantitative model-based
methods. Computers and Chemical Engineering, 27(3):293–311.

von Glasner, C. and Micke, S. (2010). Driver Assistance Functions. Status 2010. In
33rd FISITA World Automotive Congress. FISITA.

Wang, L., Froehlich, H., Rieck, K., Tsai, C.-T., and Lin, T.-J. (2010). LIBSVM for
SVDD and finding the smallest sphere containing all data.

Wattenberg, M. (2001). Sketching a graph to query a time-series database. In CHI ’01:
CHI ’01 extended abstracts on Human factors in computing systems, pages 381–382,
New York, NY, USA. ACM.

Wegman, E. J. (2003). Visual data mining. Center for Computational Statistics,
George Mason University.

Weinmann, M., Elshabrawy, K., and Bäcker, B. (2009). Development of a flexible
E/E-System architecture for conventional and electrified powertrains. In 14th In-

274

Bibliography

ternational Conference on Electronic Systems for Vehicles.

Wernicke, M. (2010). AUTOSAR on its way to production. Technical report, Vector
Informatik GmbH.

Wolff, T. (2009). Audi’s E-Architecture: Challenges in the new A8. In 14th Interna-
tional Conference on Electronic Systems for Vehicles.

Wolfsried, S. (2009). Environmental Friendly, Safe and Comfortable Cars by Modular
E/E Systems. In 14th International Conference on Electronic Systems for Vehicles.

Zhuang, L. and Dai, H. (2006). Parameter optimization of kernel-based one-class
classifier on imbalance learning. Journal of Computers, 1(7):32–40.

275

