
INTELLIGENT OPTICAL METHODS

IN

IMAGE ANALYSIS

FOR

HUMAN DETECTION

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BY

JEAN-MARC GRAUMANN

SCHOOL OF ENGINEERING AND DESIGN

BRUNEL UNIVERSITY

JUNE 2005

A CKNOWLEDGMENTS

Acknowledgments

I would like to use this opportunity to extend my thanks to the
various people who helped me along the way:

Dr. Chris Kirkham

Dr. Stan Swallow

Neil Brown (Weyrad Electronics Ltd.)

Paul Gammans

Adrian Long

My father, for proofreading

And last but not least, my wife, for putting up with me and helping
me to finish!

Jean-Marc Graumann, June 2005

I NTELLIGENT O PTICAL S ENSOR - 2

A BSTRACT

Abstract

This thesis introduces the concept of a person recognition system

for use on an integrated autonomous surveillance camera.

Developed to enable generic surveillance tasks without the need for

complex setup procedures nor operator assistance, this is achieved

through the novel use of a simple dynamic noise reduction and

object detection algorithm requiring no previous knowledge of the

installation environment and without any need to train the system

to its installation.

The combination of this initial processing stage with a novel hybrid

neural network structure composed of a SOM mapper and an MLP

classifier using a combination of common and individual input data

lines has enabled the development of a reliable detection process,

capable of dealing with both noisy environments and partial

occlusion of valid targets.

With a final correct classification rate of 94% on a single image

analysis, this provides a huge step forwards as compared to the

reported 97% failure rate of standard camera surveillance systems.

INTELLIGENT OPTICAL S ENSOR - 3

Table of Contents
1 - Introduction and hypothesis .. 25
2 - Literature Review 30

2.1 - Why do we need sensors 7 .. 31
2.2 - Types of Sensors 32

2.2.1 - PIR Sensors .. 32
2.2.2 - Vibration Sensors .. 35
2.2.3 - Cameras 37

2.3 - Modes of Failure .. 48
2.4 - Possible Solutions .. 51

2.4.1 - Final System Cost 52
2.4.2 - Ease of Installation and Operation 52
2.4.3 - Overall System Performance 53

2.5 - Sensor Summary 54
2.6 - Analysis Techniques 56

2.6.1 - Conventional Techniques 56
2.6.2 - Smart Techniques 57
2.6.3 - Types of Networks and Intelligent Processes 65
2.6.4 - Summary of analysis techniques 79

3 - Study Definitions ... 82
3.1 - Study Objective 82
3.2 - Definition of a Person ... 83

4 - Data Extraction 86
4.1 - Initial Extraction .. 87
4.2 - Methods of Analysis ... 91

4.2.1 - Searching for known Data 91
4.2.2 - Searching for unknown Data 93
4.2.3 - Extraction Mode Balance ... 94
4.2.4 - How Many Stages ? ... 96
4.2.5 - Target Area Recognition 100
4.2.6 - Analysis Sequence ... 102

5 - Proof of Concept .. 127
5.1 - Introduction 127
5.2 - Feasibility Framework ... 127
5.3 - Methods of Testing ... 129

5.3.1 - Constant Scene with Lighting Changes 131
5.3.2 - Constant Lighting, Changing Scene 145
5.3.3 - Conclusion 148

5.4 - Application .. 150
5.4.1 - VosDemo .. 151
5.4.2 - VosReader .. 158

5.5 - Artificial Data .. 168
5.5.1 - General Considerations ... 168
5.5.2 - Data Parameters 169

5.6 - Validity Testing .. 174

INTELLIGENT O PTICAL S ENSOR - 4

5.6.1 - Test Environment ... 174
5.6.2 - Test Data Set 175
5.6.3 - Image Evaluation Methods 176
5.6.4 - Image Data Extraction .. 182

5.7 - Vos Data Extractor- VDE ... 184
5.8 - Initial Network Creation and Evaluation 189

5.8.1 - Data Considerations ... 189
5.8.2 - Data Preparation .. 190
5.8.3 - Test Networks ... 196

6 - System Development 204
6.1 - Enhanced Data Complexity .. 204
6.2 - Multiple Targets and Noise .. 205

6.2.1 - Multiple Targets ... 207
6.2.2 - Noise Reduction ... 210

6.3 - Multiple Data Extractor ... 213
6.3.1 - Multiple Object Parameters 213
6.3.2 - Deriving the Dynamic Noise Correction Level 219
6.3.3 - "Intelligent" Noise Reduction 228
6.3.4 - Processing Times 230

6.4 - Image Feature Analysis .. 230
6.5 - Data Selection ... 234

6.5.1 - Network Architecture .. 234
6.5.2 - Data Pre-Classifier ... 236
6.5.3 - Hybrid Architecture .. 237

6.6 - Data Optimisation .. 242
6.6.1 - Data Mapping 242
6.6.2 - SOM Generation .. 243
6.6.3 - Classifier ... 256
6.6.4 - Classifier Training .. 259
6.6.5 - MLP Considerations .. 264
6.6.6 - MLP Training 267

6.7 - Conclusion .. 274
7 - Conclusion 276
8 - Further Studies 279

8.1 - Datum Image Setting ... 279
8.2 - The Object Classification Process 282

9 - Appendix A 285
9.1 - Noise Analysis 285
9.2 - Image Subtraction Results .. 286
9.3 - MLP Network Evaluations example 293

10 - Appendix B - Relevant British Standards 294
11 - Appendix C - Specialised Software Packages Used 295

11.1 - Neural Modelling .. 295
11.2 - Data Analysis ... 295
11.3 - Artificial Data Modelling .. 295
11.4 - Code Generation 295

I NTELLIGENT O PTICAL SENSOR - 5

11.5 - Main Self-written Packages .. 296
12 - Appendix D - Data Pre-processing techniques, a Summary .. 298

12.1 - Scaling / Normalising 298
12.2 - Angular Transforms .. 298
12.3 - Zero-Mean Unit Variance 299
12.4 - Binary Coding .. 299
12.5 - Vector Augmentation .. 300

12.5.1 - Method 11 300
12.5.2 - Method 2 301

13 - Appendix E - Image Stabilising Methods 302
14 - Appendix F - A Meeting with Dr. Paul Rosin, 19.11.98 304

14.1 - Line matching .. 304
14.1.1 - Fairly intensive processing 304
14.1.2 - Shape Properties ... 305

15 - Appendix G - Infra-Red Imaging 307
16 - Appendix H - Experiments in Artificial Data 310
17 - Appendix I - Contour Analysis Considerations 313
18 - Appendix J - Development Images 317

18.1 - 10x10 SOM Network Tests .. 317
18.1.1 - Center Data Set ... 317
18.1.2 - Cross Data Set .. 318
18.1.3 - Extremes Data Set ... 319
18.1.4 - Middle Data Set ... 320

18.2 - 20x20 SOM Network Tests .. 321
18.2.1 - Centres Data Set ... 321
18.2.2 - Cross Data Set .. 323
18.2.3 - Extremes Data Set ... 325
18.2.4 - Middles Data Set ... 327

18.3 - Network Mapping ... 329
18.3.1 - Centres Data Set ... 329
18.3.2 - Combined Data Set ... 330
18.3.3 - Extremes Data Set ... 331

19 - Appendix K - Final System Structure 332
19.1 - SOM Layer .. 332
19.2 - MLP Layer ... 347

20 - Appendix L - Software Source Code 351
20.1 - Som Trainer .. 351
20.2 - Results Filter ... 377
20.3 - Bitmap Wave Comparator ... 381
20.4 - Neural Demo ... 392
20.5 - Chloride Demo ... 403
20.6 - Bitmap Headers .. .425
20.7 - Cheat Office 427
20.8 - Vos Reader .. 440
20.9 - VosViewer ... 460
20 .10 _ Weyrad Demo .. 466

INTELLIGENT OPTICAL S ENSOR - 6

20.11 - Multiple Data Extractor .. 479

I NTELLIGENT O PTICAL SENSOR - 7

--_.- ------~---------

Index of Images
Fig.1: Perceptron Learning Function .. 68

Fig.2: Perceptron Network output 69

Fig.3:0utput Error Calculation ... 69

Fig.4:MLP Error Function .. 70

Fig.S: MLP Hidden to output layer weight update 71

Fig.6: MLP hidden Weight Update ... 72

Fig.7:MLP Weights delta with momentum ... 72

Fig.8:50M Euclidean Distance ... 76

Fig.9:50M Weight Adjustment .. 77

Fig.10:Camera field of view .. 89

Fig.11:Carpark Datum ... 98

Fig.12:Carpark with changes ... 98

Fig.13:Full scene change .. 98

Fig.14:Retained areas of change ... 99

Fig.1S :Carpark Difference analysis ... 99

Fig.16:Datum Image .. 101

Fig.17:Camera Image 101

Fig.18: Difference image, showing potential targets 101

Fig.19:Target Image, showing identified potential target areas 101

Fig.20:Point Noise .. 108

Fig.21: Datum Image .. 109

Fig.22 :Camera Image .. 109

Fig.23: Differenceof Camera Image(fig.21) to Datum Image(fig.22) 109

Fig.24:Target features partially cut off by other objects 115

Fig.2S :Target only partially in the image frame 115

Fig.26: Single Object .. 116

Fig.27:5eparated Objects ... 117

Fig.28: Boundary overlapping objects ... 118

Fig.29:0verlapping objects ... 118

Fig.30: Lamp on 131

Fig.31: Lamp off ... 131

I NTELLIGENT OPTICAL SENSOR - 8

Fig.32:Lamp Difference Image 132

Fig.33: Lamp Difference Object 132

Fig.34:Light Room 133

Fig.35: Medium lit Room 133

Fig.36:Dark Room 133

Fig .37:Light Room Histogram 135

Fig.38: Medium lit room histogram 135

Fig.39: Dark room histogram 135

Fig.40 : Luminance Range 138

Fig.41: Medium Histogram Stretched 139

F" " Ig.42: Dark Histogram Stretched 139

Fig.43:Corrected Room Light ... 140

Fig.44:Corrected Room Medium ... 140

Fig.45:Corrected Room Dark ... 140

Fig.46:Light Room Threshold ... 141

Fig.47: Medium Room Threshold .. 141

Fig.48: Difference of Fi.44 to Fig.43 .. 141

Fig.49: Difference of Fig.45 to Fig.43 141

Fig.50 :Grayscale Fig.44-Fig-.43 ... 142

Fig. 51: Grayscale Fig .45-Fig.43 142

". Fig .52 :Threshold Value Calculation .. 143

Fig.53:Threshold of img2-img1 .. 144

Fig.54:Threshold of img3-imgl. 144

Fig.55: Maximum Threshold ... 144

Fig.56:Datum Image .. 145

Fig.57:Camera Image 145

Fig.58:Datum Stretched 146

Fig.59:Camera Stretched 146

Fig.60:Differenceof Camera to Datum image 146

Fig.61:Thresholded Difference Image of Camera to Datum 147

Fig.62:VosDemo Operation Sequence 152

Fig .63:VosDemo 1 154

Fig.64:VosDemo 2 154

Fig.65 :Threshold Calculation 155

I NTELUGENT OPTICAL SENSOR - 9

F' . Ig .66: Grayscale Transformation ... 155

Fi g . 67 : Vo s Rea d e r .. 159

Fig.68:VosReader Operational Sequence .. 161

Fig .69: Filter Application .. 162

Fig. 70 :Adaptive Filtering ... 163

Fig.71:Image Buffer ... 164

Fig. 72: Filter Application .. 166

Fig.73:Bounding Box area of a human figure 178

Fig.74:Two human profiles .. 181

Fig. 75 :The main bounding box .. 185

Fig.76:Raw Noise 190

Fig. 77: Raw Target ... 190

Fig. 78: Percentage Normalised Noise .. 191

Fig. 79: Percentage Normalised Ta rget ... 191

Fig.80: Logarithmic Transform ... 193

Fig.81: Data Transformation Equation ... 194

Fig.82: Data Transforms .. 194

Fig.83: Network Architecture ... 197

Fig .84: Selected Segments .. 199

Fig. 85: Noise ... 201

Fig. 86: Ta rget .. 201

Fig .87: Person Detection ... 202

Fig .88: Objects Separated ... 208

Fig.89: Bounding Areas Overlapping 208

Fig. 90: Objects Overlapping ... 208

Fig. 91 : Pi x e ISh i ft Ra n g e ... 212

Fig.92:Base image, showing distinct noise distribution areas 214

Fig.93:Noise reduction level set to 0 .. 215

Fig.94:Noise level reduction set to8 215

Fig.95:Noise level reduction set to 15 ... 215

Fig.96:0 Noise Reduction .. 217

Fig.97:8 Noise Reduction .. 217

Fig.98: 15 Noise Reduction .. 218

Fig. 99: Noise Saturated Image ... 219

I NTELLIGENT OPTICAL SENSOR - 10

Fig.100:Saturated Objects Detected .. 219

Fig.101 :Artificial Data 221

Fig.102: Live-capture Data .. 221

Fig.103: No Valid Target .. 222

Fig.104:Valid Target ... 223

Fig.l05:Required Correction Level. 224

Fig.106: Potential Error Correction marked in yellow 226

Fig.107:Error Correction Function .. 226

Fig.108: Final Noise Adjustment ... 227

Fig .109: Bottleneck Network 229

Fig.110:Light Variation Analysis 231

Fig.111:Noise Resilience ... 232

Fig.112 :Change Identification .. 233

Fig.113:Complex Network Architecture ... 239

Fig.114:Complex Network Architecture 2 .. 240

Fig.115:Data Normalisation ... 245

Fig.116:Centres Segments .. 245
Fi . g.117.Extremes Segments 245

Fig.118:Middles Segments .. 246

Fig.119:Cross Segments ... 246

Fig.120:Average Segment Data Values ... 247

Fig.121 :Standard Deviation of Target to Non-target Data 248

Fig.122:Combine Segments .. 252

Fig.123: RMS Training Error against Testing Error 265

Fig.124:Final Network Architecture .. 269

Fig.125:0ptimised Network Resolution ... 271

Fig.126: Feedback Process 284

Fig.127:Sequence 01 ... 286

Fig.128:Sequence 02 287

Fig.129: Sequence 03 ... 287

Fig.130:Sequence 04 ... 287

Fig.131 :Sequence 05 ... 288

Fig.l32:Sequence 06 ... 288

Fig.133:Sequence 07 289

INTELLIGENT OPTICAL SENSOR - 11

Fig.134:Sequence 08 ... 289

Fig.135:Sequence 09 ... 289

Fig.136:Sequence 10 ... 290

Fig.137:Sequence 11 ... 290

Fig.138:Sequence 12 ... 290

Fig.139:Sequence 13 ... 291

Fig.140: Sequence 14 ... 291

Fig.141 :Sequence 15 ... 292

Fig.143 :Stabilised Video Sequence 303

Fig.144: Sunlight versus Incandescent Lamp 309

Fig.145:Dog Mesh .. 311

Fig.146: Highlighted outline of dog seen in a frontal pose 312

Fig.147:Human Shape Analysis ... 315

Fig.148:Ideal Human Shape .. 315

Fig.149:Note the legs of the target ... 315

Fig.150:Center - 100 Cycles .. 317

Fig.151:Center - 150 Cycles .. 317

Fig.152:Center - 200 Cycles .. 317

Fig.153 : Cross - 100 Cycles ... 318

Fig.154:Cross - 150 Cycles ... 318

Fig.155:Cross - 200 Cycles ... 318

Fig.156: 100 Cycles .. 319

Fig.157:150 Cycles .. 319

Fig.158: 200 Cycles .. 319

Fig.159: 100 Cycles .. 320

Fig.160: 150 Cycles .. 320

Fig.161:200 Cycles .. 320

Fig.162: 100 Cycles ... 321

Fig.163: 150 Cycles .. 322

Fig.164:200 Cycles .. 322

Fig.165: 100 Cycles .. 323

Fig.166: 150 Cycles 323

Fig.167: 200 Cycles .. 324

Fig.168: 100 Cycles .. 325

I NTELLIGENT OPTICAL SENSOR - 12

Fig .169: 150 Cycles 326

Fig .170: 200 Cycles .. 326

Fig.171: 100 Cycles .. 327

Fig.172:150 Cycles .. 327

Fig.173: 200 Cycles .. 328

Fig.174:300 Cycles .. 329

Fig.175 :400 Cycles .. 329

Fig .176: 300 Cycles .. 3 30

Fig .177: 400 Cycles .. 330

Fig.178: 200 Cycles .. 331

Fig.179:400 Cycles 331

INTELLIGENT OPTICAL S ENSOR - 13

REFERENCED PUBLICATIONS

Referenced Publications

[01] - B. Aird, A. Brown, "No Fire without Smoke, CCTV
Breakthrough in Fire Detection" - Journal of Applied Fire Science,
Vol. 11, No.2, 2002-2003, pp. 183-193.

[02] - Alarm Tech, "AlarmTech - How your Infrared sensors work",
http://www.alarmtech.org/security/pir.html

[03] - K. Arakawa, "Fuzzy Rule Based Image Processing with
Optimisation", International Journal of Imaging Systems and
Technology, Vol 8, 1997, pp. 222-247.

[04] - H. Bandemer, "Specifying Fuzzy Data from Grey-Tone
Images for Pattern Recognition", Pattern Recognition Letters, Vol.
17, No.6, May 1996, pp. 585-592.

[05] - V.Becanovic, M.Kermit, A.J. Eide, "Feature Extraction from
Photographic Images using a Hybrid Neural Network", Proc. SPIE
Vol. 3728, 1999, pp. 351-361.

[06] - J. Bigun, "Pattern Recognition in Images by Symmetries and
Coordinate Transformations", Computer Vision and Understanding,
Vol 68, No.3, Dec 1997, pp. 290-307.

[07] - A. Blum, "Neural Networks in C++ an object oriented
framework for building connectionist systems", John Wiley and
Sons, 1992.

[08] - T. Caelli, C. Dillon, E. Osman, G. Krieger, "IPRS Image
Processing and Pattern Recognition System", Spatial Vision, Vol 11,
NO.1, 1997, pp. 107-122.

[09] - M.F. Campos, R. A. Mini, ''Visual Tracking of Multiple Objects
USing Wavelet Transforms", Proceedings of SPIE, Vol 3723, 1999,
pp. 341-349.

[10] - A. Caplier, C. Dumontier, F. Luthon, P.Y. Coulon, "Algorithme
de Detection de Mouvement par Modelisation Markovienne, Mise en
Oeuvre sur DSP", Traitement du Signal, Vol 13, Issue 2, 1996,
PP.177-190.

I NTELLIGENT O PTICAL S ENSOR - 14

R EFERENCED PUBLICATIONS

[11] - CCTV Today, "Integrated Package System", - CCTV Today,
Vol 5, number 1, http://www.cctvmags.com/.

[12] - L. M. Chang, Y. A. Razig, D.M. Abraham, M.Chae, "Hybrid
Computerised Decision Support System for Infrastructure
Assessment", June 2000.

[13] - C.H. Chen, "Neural Networks in Pattern Recognition and their
Applications", University of Massachusetts, 1992, 168pp.

[14] - H.D. Cheng. M. Miyojim, "Novel System for Automatic
Pavement Distress Detection", Journal of Computing in Civil
Engineering, Vol. 12, No.3, July 1998, pp. 145-152.

[15] - Chloride, Chloride Product catalog, VM320 Integrated Camera
- www.chloridegroup.com.

[16] - K. J. Cios, I. Shin, "Image Recognition Neural Network:
IRNN", Neurocomputing, Vol 7, No.2, 1995, pp. 159-185.

[17] - Clecom, "Continuous Wavelet Transform",
http://www.clecom.co.uk/science/autosignal/help/Continuous_Wav
elet_ Transfor.htm.

,, [18] - R.T. Collins, A.L. Lipton, T. Kanade, "A System for Video
Surveillance and Monitoring", Report CMU-RI-TR-00-12, Robotics
Institue, Carnegie Mellon University, May 2000.

[19] - R.T. Collins, Y. Tsin, "Calibration of an Outdoor Active
Camera System", IEEE Computer Vision and Pattern Recognition,
June 1999, pp. 528-534.

[20] - J. Daugman, "Neural Image Processing Strategies Applied in
Real-Time Pattern Recognition", Real-Time Imaging, Vol. 3, No.3,
June 1997, pp. 157-171.

[21] - F.C.C. DeCastro, J.N. Amaral, P.R.G. Franco, "Invariant
Pattern Recognition of 2D Images usign Neural Networks and
Frequency Domain Representation", , IEEE International Conference
on Neural Networks - Conference Proceedins, Vol. 3, 1997, pp.
1644-1649.

[22] - E. R. Dougherty, "Digital Image Processing Methods",
Published by Dekker, New York, 1994.

I NTELLIGENT O PTICAL S ENSOR - 15

R EFERENCED PUBLICATIONS

[23] - N. Drakos, "Kohonen SOM 2D Neural Network",
http://www.ese-metz.fr/rvdedu/docs/kohPaper/node3.html.

[24] - ERA, "ERA Technology", http://www.era.co.uk.

[25] - ERA, "Neural Computing and Complementary Technologies",
http://www.era.co.uk/div80/bc45/comptec.htm.

[26] - ERA, "Study into Intelligent Alarm Systems",
http://www.era.co.uk/div80/bc85/alarms.htm.

[27] - R. Fageth, W. Allen, U. Jager, "Fuzzy Logic Classification in
Image Processing", Fuzzy Sets and Systems, Vol 82, Issue 3, Sept.
1996, pp. 265-278.

[28] - D.A Fay, A.M. Waxman, "Neurodynamics of Real-Time Image
Velocity Extraction", Neural Networks for Vision and Image, MIT
Press, 1992, pp. 220-246.

[29] - H. Fonga, "Pattern Recognition in Gray-Level Images by
Fourier Analysis", Pattern Recognition Letters, Vol. 17, No. 14, Dec
1996, pp. 1477-1489.

[30] - G. Franceschetti, A. Iodice, M. Tesauro, "From Image
Processing to Feature Processing", Signal Processing, Vol 60, No.1,

., 1997, pp. 51-63.

[31] - D.M. Gavrila, "The analysis of Human Motion and its
Application for Visual Surveillance", Proc. of the 2nd IEEE
International Workshop on Visual Surveillance, 1999, pp. 3-5.

[32] - D. M. Gavrila, "The Chamfer System",
http://www.gavrila.net/Computer _Vision/Chamfer _System/chamfer
_system.html.

[33] - D.M. Gavrila, "The Visual Analysis of Human Movement, A
Survey", Computer Vision and Image Understanding, vol. 73, No.1,
1999, pp. 82-98.

[34] - [22]- K. Gay, "Ergonomics-Making Products and Places fit
People", New York: Enslow Publishers, 1986.

[35] - E. Gelenbe, H. Bakircioglu, T. Kocak, "Image Processing with
the Random Neural Network", Proc. of the SPIE Conf. on Electronic
Imaging, vol. 3307, 1998, pp. 38-49.

I NTELLIGENT O PTICAL S ENSOR - 16

R EFERENCED P UBLICATIONS

[36] - J. Ghoshal, K.S Ray, "Neuro Fuzzy Approach to Pattern
Recognition", Neural Networks, Vo1.10, No.1 Jan 1997, pp. 161-
182.

[37] - A. Graps, "An Introduction to Wavelets", IEEE Computaional
SCience & Engineering, Volume 2, Issue 2, 1995, pp.50-61.

[38] - Greenseal , "Choose Green Report - Occupancy Sensors",
Green Seal, www.greenseal.org, Feb 1997.

[39] - T. Hengl, "Neural Network Fundamentals: A Neural
Computing Primer", PC AI, Volume 16, Issue 3, 2002, pp.32.

[40] - F. Hoffman, "An Introduction to Fourier Theory",
http://aurora.phys.utk.edu/rvforrest/papers/fourier/index. html.

[41] - Home Security Store, "DSC Bravo 3 Infrared",
http://www.homesecuritystore.com/detail_pages/bravo3.htm .

[42] - P. Johansen, "Adaptive Pattern Recognition", Johansen P.,
Journal of Mathematical Imaging and Vision, Vol. 7, Oct. 1997,
PP.325-339.

[43] - A.J. Katz, P.R. Thrift, "Generating Image Filters for Target
" Recognition by Genetic Learning", IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 16, No.9, Sept. 1994, pp.
906-910.

[44] - M. I Khalil, M. M. Bayoumi, "Invariant 2D Object Recognition
Using Wavelet Transform and Structured Neural Networks",
Proceedings of SPIE, Vol 3723, No. 37, 1999.

[45] - KJB Security, "Motion Sensor Camera",
http://www.kjbsecurity.com/products/Motion Sensor. asp.

[46] - V. Kober, V. Lashin, L. Moreno, J. Campos, L. Yaroslavsky,
MJ. Yzuel, "Color Component Transformations for Optical Pattern
Recognition", Journal of the Optical Society of America: Optics and
Image SCience and Vision, Vol 14, Number 10, Oct. 1997, pp.2656-
2669.

[47] - H. Konik, V. Lozano, B. Laget, "Color Pyramids for Image
PrOCessing", The Journal of Imaging Science and Technology, Vol
40, Number 6, 1996, pp. 535-542 .

I NTELLIGENT O PTICAL S ENSOR - 17

REFERENCED PUBLICATIONS

[48] - A. Kuehnle, W. Burghout, "Image Based Winter Road
Condition Recognition", Applications of Advanced Technologies in
Transportation, Sept. 1998, pp. 225-232.

[49] - A. D. Kulkarni, "Artificial Neural Networks for Image
Understanding", Van Nostrand Reinhold, 1994.

[50] - c.J. Kuo, C.H. Lin, C.H. Yeh, "Noise Reduction of VQ encoded
images through Anti-Grey Coding",IEEE Transactons on Image
Processing, Vo1.8, Jan. 1993, pp. 30-40.

[51] - D. Lake, "Getting the Picture", Advanced Imaging, Jan 2000.

[52] - C.S. Lee, Y.H. Kuo, P.T. Yau, "Weighted Fuzzy Mean Filters
for Image Processing", Fuzzy Sets and Systems, Vol 89, No.2,
1997, pp . 157-180.

[53] - G. Lin, B. Shi, "A Current-Mode Fuzzy Processor for Pattern
Recognition", Journal of Circuits and Systems, VolA, No.3, 1999.

[54] - D. Liu, Y. Yamashita, H. Ogawa, "Pattern Recognition in the
Presence of Noise", Pattern Recognition, Vo. 28, No.7, July 1995,
pp. 989-995.

[55] - D. Marr, "Representing Shapes for Recognition", W.H .
. Freeman & Co Publishers, 1982.

[56] - McMaster University, "Nonlinear Associative Memory
MOdels", http://www.psychology.mcmaster.ca/3W03/nlam.html.

[57] - Micro Actuators, sensors and systems group, MASS cameras
technical sheets, http://mass.micro.uiuc.edu/index.html.

[58] - L. Monostori, "From Pattern Recognition Techniques through
Artificial Neural Networks to Hybrid AI Solutions in Manufacturing",
Proceedings of the Japan/USA Symposium on Flexible Automation,
Vol. II, July 1996, pp. 1453-1460.

[59] - I.S. Moreno, V. Kober, V. Lashin, J. Campos, L.P.
Yaroslavsky, M.J. Yzuel, "Whitening Preprocessing of Color
Components for Pattern Recognition", Proceedings of SPIE, 1996,
Vol 2730.

I NTELLIGENT O PTICAL SENSOR - 18

REFERENCED PUBLICATIONS

[60] - e.Nakajima, M.Pontil, B.Heiele, T.Poggio, "Full Body Person
Recognition System", Pattern Recognition, Vol. 36, Jan. 2003,
PP·1997-2003.

[61] - Neurodynamics, "Witness Security, Affordable & Flexible
Image Surveillance" ,
http://www.neurodynamics.com/Vision/WitnessSecurity.htm.

[62] - J.K. Paik, J.e. Brailean, A.K. Katsaggelos, "An Edge Detection
Algorithm using Multi-State Adalines", Pattern Recognition, Vol 25,
Number 12, 1992, pp.1495-1504.

[63] - S. Pal, A. Ghosh, "Neuro Fuzzy Computing for Image
Processing and Pattern Recognition", International Journal of
Systems SCience, Vol. 27, No.12, 1996, pp.1179-1193.

[64] - S.e. Pei, e.N. Lin, "Image Normalisation for Pattern
Recognition", Image and Vision Computing, Vol 13, No. 10, Dec.
1995, pp. 711-723.

[65] - Photonics Spectra, "Surveillance Booms", Photonics Spectra,
June 2000 ,
http://www.photonics.com/spectra/business/XQ/ASP/businessid.48
8/QX/read. htm.

" [66] - Primary Image, "Primary Image Video Tracker",
http://www.primary-image.com.

[67] - Privacy International, "Security's New Image: New
Technologies in Image Processing are paving the Way for the Future
Development of Surveillance", Communicate, Issue 3, 1997,
http://www.privacy .org/pi/issues/cctv / .

[68] - D. de Ridder, "Adaptive Methods of Image Processing", PhD
Thesis, Delft University, 2001, pp.1-288.

[69] - J.F. Rivest, R. Fortin, "Detection of Dim Targets in Digital
Infrared Imagery by Morphological Image Processing", Optical
Engineering, Vol 35, No.7, July 1996, pp. 1886-1893.

[70] - I. Russel, e.M. Colebourn, P- Vitiello, "A Comparison of
Backpropagation and ART via Pattern Recognition", Journal of
Intelligent Systems, Vol. 7, Number 4, 1997.

I NTELLIGENT O PTICAL SENSOR - 19

REFERENCED PUBLICATIONS

[71] - J.e. Russel, ''The Image Processing Handbook", CRC Press,
1999.

[72] - W.S. Sarle, "Neural Nets FAQ",
ftp://ftp.sas.com/pub/neuraI/FAQ.html.

[73] - G. Sebastiani, S. Stramaglia, "A Bayesian Approach for the
Median Filter in Image Processing", Signal Processing, Vol. 62,
Number 3, 1997, pp. 303-309.

[74] - N.T. Siebel, "People Tracking for Visual Surveillance",
University of Reading, http://www .siebel­
research.de/people_tracking/.

[75] - R. Smits, L. Ten Bosch, "The Single Layer Perceptron as a
Model of Human Categorisation Behaviour",
http://www.phon.ucl.ac.uk/home/shI9/roeI2a/smits2a.htm.

[76] _ J. Smokelin, "Wavelet Feature Extraction for Image Pattern
Recognition", Proceedings of SPIE, Vol 2751, 1996, pp. 110-12l.

[77] - V. Srinivasan, P. Bhatia, S.H. Ong, "Edge Detection using a
Neural Network", Pattern Recognition Vol 27, No. 12, 1994, pp.
1653-1662.

" [78] - A.D. Stoyenko, P.A. Laplante, "Real-Time Imaging, Theory,
Techniques and Applications", IEEE Press, Piscataway, 1996.

[79] - T.Sziranyi, ''Video Understanding and Indexing for
Surveillance: Image Perception, Quality and Understanding", ERCIM
News, No. 55, Oct. 2003.

[80] - L. Tarassenko, "A Guide to Neural Computing Applications",
Arnold Press, 1998.

[81] - S.Tate, Y.Takefuji, ''Video Based Human Shape Detection by
Deformable Templates and Neural Networks", Sixth International
Conference on Knowledge-Based Intelligent Information
Engineering Systems and Allied Technologies, Sept. 2002, pp. 280-
285.

[82] - G. Tsai, A. Chiang, T. Yang, e. Lai, W. Wang, e. Liu, "Video
Tracking and Recognition System",
http://WWw.iii.org.tw/special/article/VideoTracking.htm , 2000.

INTELLIGENT O PTICAL SENSOR - 20

REFERENCED PUBLICATIONS

[83] - M. Van Buren, "Metrics for Architects, Designers and
Builders", Publisher: van Nostrand Reinhold, 1983.

[84] - P.Viola, M.Jones, D.Snow, "Detecting Pedestrians using
Patterns of Motion and Appearance", Ninth IEEE International
Conference on Computer Vision, Vol. 2, 2003, pp. 734-741.

[85] - VSAM, "Video Surveillance and Monitoring", 2000 Carnegie
Mellon University, Robotics Institute, http://www-
2.cs.cmu.edu/lVvsam/vsamhome.html.

[86] - B. Walczak, B. Van den Bogaert, D.L. Massart, "Application of
Wavelet Packet Transform in Pattern Recognition of Near-IR Data",
Analytical Chemistry, Vol 68, May 1996, pp.1742-1747.

[87] - O. Weissmann, Z. Pollack, "The Perceptron",
http://www.cs.bgu.ac.iI/lVomri/Perceptron/ .

[88] - L. Weygang, N.C. Dasilva, "Implementation of Parallel Self
Organising Map to the Classification of Image", Proceedings of SPIE
- The International Society for Optical Engineering, Vol 3722., 1999.

[89] - R. Winn Harding, "Neural Networks Target Security and
. Surveillance", Image Processing Europe, May/June 2000.

[90] - T. Wogelsong, T. Zarnowski, J. Zarnowski, "Inexpensive
Image Sensors Challenge CCD Supremacy", Photonics Spectra, May
2000, pp. 188-192.

[91] - V. Bockaert, "The 123 of digital imaging Interactive Learning
SUite", www.123dLcom.

[92] - L.Zhao, C.Thorpe, "Stereo and Neural Network-based
Pedestrian Detection", IEEE Transactions on Intelligent
Transportation Systems, Vol. 1, No.3, Sept. 2000, pp. 148-154.

[93] - E-Frontier - www.e-frontier.com.

[94] - Adobe - www.adobe.com.

[95] - Creative Labs - www.creative.com.

[96] - Autodesk - www.autodesk.com.

INTELLIGENT OPTICAL SENSOR - 21

REFERENCED PUBLICATIONS

[97] - G.A. Miller, "The Psychological Review", Vo1.63, 1956, pp.81-
97.

[98] - National Communications System Technology and Standards
Division - FED-STD-1037C, August 1996.

[99] - T. Kopert, "CCTV Surveillance System, Technology in
Transition", White Paper, Array Microsystems Inc., 1997.

INTELLIGENT OPTICAL SENSOR - 22

List of Abbreviations

Artificial Intelligence

Artificial Neural Network

ABBREVIATIONS

AI
ANN
CCD Charge Coupled Device, a particular form of sensor

used in most digital cameras

CMOS Charged Metal Oxide Semiconductor. A newer form of

light sensor, cheaper to produce than CCDs but more

susceptible to noise in moving images

LED Light Emitting Diode

MLP Multi Layer Perceptron. A popular form of neural

network

LVQ Learned Vector Quantisation

OCR Optical Character Recognition

PIR Passive Infra Red. PIR sensors are used to detect the

emission or reflectancy of Infra Red wavelengths

within a certain off off and object or person

PTZ Pan Tilt Zoom. This refers mostly to cameras whose

motion is remotely controlled.

RBF Radial Basis Function

SOM Self Organising Map

--
INTELLIGENT OPTICAL SENSOR - 23

U SED T ERMS

Used Terms

Cycle When training a network, one cycle is taken as a pass

of one data line through the network.

Epoch When training a neural network, one epoch is taken as

one pass of the entire data set through the network.

False When a classifier defines a valid object as being non-

Negative valid .

False When a classifier defines a non-valid object as being

Positive valid.

Noise Unwanted data in a data set which may lead to

corruption of wanted data by its presence.
Target An object which is being looked for.

I NTELLIGENT O PTICAL SENSOR - 24

I NTRODUCTION

1 - Introduction and hypothesis

First say to yourself what you would be; and then do what you have to

do. - Epictetus

Spatial detection and perimeter monitoring have progressed

tremendously over the past two decades. Vibration sensors have

been dramatically improved in their sensitivity and targeted

applications. The PIR (Passive Infra Red) sensor has also matured

and become a cheap yet reliable component of most motion

detection systems.

--
INTELLIGENT O PTICAL S ENSOR - 25

I NTRODUCTION

However, as security and surveillance systems have dropped in

price and become available to the individual home owner, the

shortcomings of these sensors have also been highlighted. Whilst

being rugged items needing little or no maintenance, they can be

highly sensitive as to their mounting location, and specialist

knowledge is still required to provide optimal performance .. False

alarms triggered by PIR's viewing moving objects behind windows

or radiator heat emissions have become commonplace. Conversely,

due to their construction in vertical sections, a PIR can be fooled by

staying within one of its detection bands whilst approaching the

system. Intruders have also developed methods to prevent

detection such as wearing heat absorbent materials, or simply

Wearing plastic bin bags over their heads.

'Now, with increasingly accurate manufacturing technology, digital

cameras are starting to take hold of the security market.

Surveillance cameras are being installed on every street corner

(quite literally in certain towns), and the public is becoming used to

this trend as being an inevitable, if not entirely acceptable part, of

modern urban life. These cameras are not however, being used to

their full capabilities, whether this is due to the limitations of the

systems they are replacing, or simply to their relative newness.

Most systems indeed still rely on a human operator, using the

camera purely as a remote eye without any further processing of

any kind. Certain features such as night visibility through limited

infrared illumination are present, but these were already standard

features of PIR sensors.

I NT ELLIGENT O PTICAL SENSOR - 26

I NTRODUCTION

The intention of this study is to develop a camera based

surveillance system which could be fully autonomous, i.e. no human

operator would be required without limiting the system capabilities.

The camera unit itself must be able to replace not only the eye but

also the brain of the human operator, and should be able to process

the information which it is gathering, raising an alert when a human

being enters the image frame. This would provide the platform for

an advanced surveillance system which could be used in a number

of Situations without having to rely on the less than adequate

human concentration spans which plague all current camera based

systems.

,Considering the implementation of modern surveillance systems,

their requirements are tending towards an ever increasing

resolution, linked to such functional specifications such as

installation tolerant operation, automatic evaluation of the observed

environment and a minimum error output.

These requirements raise a number of questions:

1. Is it possible to develop a system capable of processing the

output from an industry-standard camera in order to identify the

presence of a person or multiple persons within the image?

2. Can such a process be developed to allow for real-time or close to

real-time (i.e.: a few frames per second) analysis?

--
INTELLIGENT OPTICAL SENSOR - 27

I NTRODUCTION

3. Can such a system be developed in such a manner as to be

independent of the camera installation location and method?

4. Can such a system be independent of the final system operator?

These could be combined into the single question:

Can a machine autonomously recognise a person, rapidly,

reliably, regardless of the system environment and image

nOise, using the lowest resources possible whilst

maintaining the highest level of accuracy possible ?

The following chapters are dedicated to providing the framework for

a solution to this question, by employing a combination of analysis

methods.

This thesis shall deal with concept of introducing dynamic elements

into the image analysis process in order to allow for a close to real­

time evaluation of the images streamed from an standard industrial

camera.

It shall examine the merits of traditional image analysis processes

as compared to the use of "intelligent" neural network-based

solutions, in an effort to identify the best possible solution to the

qUestion posed.

This study shall be structured accordingly:

. Overview of environmental sensors, concentrating on the use of

I NTELLIGENT O PTICAL SENSOR - 28

I NTRODUCTIO N

cameras in detection.

· Summary of image analysis techniques including the use of

various neural architectures applied to image processing

problems.

Definition of the problem at hand, resulting in a mathematical

desription of the basic requirements.

• Initial proposal, based on simplistic methods and evaluating the

potential of the chosen approach.

· In depth development of the analysis framework, leading . up to a

final system proposal.

• Final comments on further developments.

This thesis shall expand on the target of developing an accurate

,detection of unidentified persons (i.e.: not taken from a previously

collected database) using a single camera with minimal resources

and running in close to real-time .

This shall be achieved through the use of a dynamic pre-processing

stage which shall be able to adapt itself to each incoming image

Without any need for previous knowledge of either the environment

nor the type of the implementation.

A further stage, based on a neural network or combination of neural

networks shall be employed to output a final decision probablility of

the image observed.

I NTELLIGENT O PTICAL S ENSOR - 29

L ITERATURE R EVIEW

2 - Literature Review

An undefined problem has an infinite number of solutions - Robert

Humphrey

A study conducted by the ERA has determined that for passive IR

sensors up to 90% of all the alarms are erroneous and half of these

are due to some kind of operator error, whilst the rest are due to

environmental factors such as 'stray' rays of sun or heaters in a

room switching on [38, 41, 45, 85].

Various methods have been suggested to decrease the number of
-.
false alarms but these have mostly been deemed prohibitively

expensive (These normally involve coupling the PIR with a

multitude of other sensors or arranging for a pure IR environment

Where spurious noise sources are blocked or filtered) [02, 41, 24].

The following is a presentation and discussion of current methods

and industrial trends.

INTELLIGENT O PTICAL S ENSOR - 30

L ITERATURE R EVIEW

2.1 - Why do we need sensors?

Sensors are used in so many different applications, it would be

impossible to classify them all. We are, however, primarily

interested in motion sensors and heat sensors, i.e., systems which

can detect the presence of a human being.

These types of sensors are used in many applications to provide

purely monitoring information, early warning signals and anti -theft

or anti-entry protection.

The use of artificial sensors allows the introduction of remote

Surveillance where the manpower required to monitor a site would

be too expensive or might in itself represent a security risk (bank

vaults, jewel display areas ...)[26]. There is now also the paradox of

incompatible surveillance systems. For example, if a certain area is

monitored by PIR's, a human operator could no longer patrol that

area without setting off the alarm, without first having access to

some bypass switch for the sensor concerned. This in itself then

represents a security risk, as any reasonably well equipped intruder

could then also bypass the system. This then negates the entire

point of a non-human monitoring setup, leading to an increasingly

complex layout of overlapping sensors, each protecting its

neighbours from being tampered with, which in turn leads to

SPiralling installation costs and also a reduction in the overall

I NTELLIGENT O PTICAL S ENSOR - 31

L ITERATURE R EVIEW

effectiveness of the system. Placement of individual sensors then

becomes increasingly critical to the correct operation of the entire

system and the sheer level of complexity makes errors and

malfunctions not only more likely but also more disastrous in their

symptoms [02, 24].

In general the currently available commercial intruder detection

systems rely on three main types of sensors each with its own

advantages and disadvantages given the current implementations.

2:2 - Types of Sensors

The three main sensor types are

PIR, sensors (Passive Infra-Red)

Vibration sensors

Cameras

2.2.1 - PIR Sensors

Up to present, most intruder detection has been carried out using a

single PIR sensor or an array of sensors, using defined sectors and

zones to achieve reliable detection of possible intruders and to

minimize false alarm occurrences.

-
I NTELLIGENT O PTICAL S ENSOR - 32

L ITERATURE REVIEW

A PIR sensor is most commonly a single infrared sensitive receiver

with a vertically segmented lens mounted to the front of the unit to

provide a number of vertically defined zones over the entire field of

view of the sensor, which is generally quite wide (approx. 120

degrees)[02, 41]. The overall sensitivity of the sensor is determined

by the number of these vertical segments, as the sensor depends

on identifying a change of state from one segment to another in

order to trigger a successful detection. PIR's are therefore

intrinsically motion detectors, but this motion must occur within the

low infrared range of the sensor used. This is both a strength and a

weakness for this type of sensor, as they can operate both during

the day and during the night without need for extra illumination,

but will be very sensitive to heat changes such as radiators

activating or gas heating vents [02, 45].

The limitations of such a system are apparent mostly in cold

conditions, where a car might not be detected, but a person will be .

As such systems are often used as courtesy lights in house

entrances, this can lead to much waving and jumping around, as a

person vainly tries to activate the sensor.

Due to the segmented lens design, these sensors can also be

completely oblivious to a person moving straight towards them

[59].As long as the movement is limited to a single one of the lens

segments no motion will be detected, which introduces the tricky

problem of sensor placement.

INTELLIGENT O PTICAL SENSOR - 33

LITERATURE REVIEW

Due to the low production cost of these sensors, they are often

offered as home assembly kits for a number of applications ranging

from house alarms to simple light activators . They do however

require a certain amount of knowledge on the placement

techniques, and many false alarms are triggered by sensors being

allowed to 'look' through windows and picking up legitimate

movement outside of the intended surveillance zone, sensors

pointing straight at heating elements which obviously create quite

marked infrared signatures when in operation, or sensors being

activated by house pets wandering around [38, 59].

Although modern PIR sensors are becoming more selective and

more adjustable, their intrinsic features make them useful only

When coupled with other types of sensors, or when used in

conjunction with a human operator to actually determine the cause

of activation, and distinguish between real and false alarm

Situations. They are also highly effective when used indoors in areas

normally void of any movement and where discrimination as to the

SOurce of motion is not required.

The trend in current practice has been to use PIR sensors as a

primary alarm. This would then activate a camera, whose image is

transmitted back to an operator for further analysis [93, 38, 15,

94] . The advantage of this type of setup is manifold: PIR sensors

are inexpensive, fairly rugged and require minimal maintenance.

I NTELLIGENT O PTICAL SENSOR - 34

L ITERATURE R EVIEW

Once a sensor is triggered, a PTZ (Pan Tilt Zoom) camera can be

activated by a controller to determine the exact nature of the

alarm. This helps to minimize costs and reduce operator boredom

as the concentration time required is limited to the PIR activation

period only.

Lately, PIR sensors are being assembled into the same housing as a

small camera [15, 11], whereby the PIR sensor, using its wider field

of view acts as a pre-alarm for the camera, switching on the

camera before anything actually enters the resultant image. This

type of assembly obviously suffers from all the typical PIR faults

and can be tricked in many ways. Intruders have been known to

wear heat absorbent clothing to fool PIR driven systems, or more

Simply, to wear black plastiC bags over their bodies, which minimise

body heat dissipation and can thus present too Iowan infrared

Signature for successful detection by the PIR sensor [41, 75, 85].

2.2.2 - Vibration Sensors

Vibration sensors are similar to PIR's in that most of them do not

incorporate any form of intelligent data processing. The units are

manufactured to be mounted in a number of locations, from

underground to mounted on fence tension wires or on doors and

Windows, and have normally a number of adjustable settings such

I NTELUGENT OPTICAL SENSOR - 35

LITERATURE REVIEW

as vibration intensity sensitivity and maybe a small time delay

circuit. Once a certain level of vibration above the user determined

threshold is encountered, the unit activates a switch which could

trigger an alarm or floodlighting.

Obviously, the difficulty with this type of approach is in actually

determining what could represent a 'valid' vibration (i.e., burglar

climbing over the fence) or what might simply be a spurious noise

effect (a cat climbing over the fence). Most systems are adjusted to

give a higher incidence of false alarms so as not to miss any

marginal cases. What the psychological effects of this policy on the

human operator are, who will slowly become less responsive as

more and more alerts are deemed non-valid, is not really the topic

'Of this study, but is worth taking into account when weighing up the

pros and cons of each approach [38].

Due to their very non-discriminatory nature (vibration sensors will

report motion, not the type or intensity of the motion and its

Possible cause), vibration sensors are rarely used on their own in

industrial applications, normally forming the first line of warning in

on overall surveillance system. They have however been used

recently in home security applications as primary sensors on doors

and principally on windows to report illicit entry. Any further

processing of the signals received from such a unit will be

dependent on a high level of adjustability to accommodate for

different mounting positions: an intruder coming in through a door

I NTELLIGENT O PTICAL S ENSOR - 36

L ITERATURE REVIEW

and one coming in through a window are likely to give rise to very

different vibration signals, although basically the same target in

each case has been detected.

The consumer intended systems described above are fairly small

and simple to install, minimising the initial costs as well as further

maintenance. The price for this versatility is however a fairly high

risk of false alarms and a very low alarm resolution when one does

OCcur. This in turn then becomes counter-productive, as emergency

services start putting limits on the acceptable number of alarms

from households, before limiting their response or imposing

financial penalties on the home concerned. Vibration sensors

perform excellently in the context they were created for, but cannot

be relied on to provide accurate information on the presence of

intruders in a property.

2.2.3 - Cameras

In recent years, a sharp increase in demand coupled with

improvements in manufacturing technology have led to a dramatic

drop in prices of conventional CCD (Charged Coupled Device)

cameras, and their implementations now range across an entire

spectrum from high quality medical inspection applications through

consumer camcorders, door entry systems and, of course,

I NTELLIGENT O PTICAL SENSOR - 37

L ITERATUR E R EVIEW

surveillance systems. CCD cameras are fairly small (average board

size including lens and processing electronics is about 50x40mm)

[15, 57], can take a number of different lenses from fish-eye to

telephoto (normally with the now industry standard C-mount) and

require little or no extra support hardware. Apart from a power

supply, most cameras can plug straight into a conventional video

recorder or any television set with a video input.

This trend started around the late 1980's. Prior to this date, due to

the very high initial cost of hardware, any camera surveillance

systems were mostly restricted to larger companies or government

projects, where constant surveillance is required. In these cases,

the cameras were operating as a simple backup for the security

personnel already employed.

By their very nature, cameras require higher levels of maintenance

than other, more conventional sensors: lenses need to be kept

clean, dry and free from obstructions. Due to the magnifying

property of most lenses, cameras are fairly sensitive to vibrations,

which dictate where and how they should be installed. An operator

forced to watch a constantly vibrating image will rapidly develop

eye strain and cease to monitor the camera in question. Latterly,

Vibration compensators have been developed, and although these

can assist tremendously in this aspect, they are currently, both in

their mechanical (generally gyroscopic) and electronic versions, too

expensive to be incorporated onto every camera in an entire

system. As opposed to PIR's or vibration sensors, a camera cannot,

I NTELUGENT O PTICAL S ENSOR - 38

LITERATURE REVIEW

on its own, actually raise an alarm when an intruder appears, but

can provide the human operator with very precise information as to

the nature of the situation and the potential level of threat present.

This does however still preserve the requirement for a human

operator [85].

Due to the falling price of hardware, it does become easier to

monitor a large site, as a single operator can manage a number of

cameras without the need for constant patrols, therefore the

system manager could benefit through lower personnel costs. A

smaller site will probably not have this advantage though, and this

has partially lead to a switch from active surveillance to passive

surveillance.

A further disadvantage linked to the use of cameras is that of sheer

information overload. Whilst PIRs or vibration sensors have a purely

digital mode of operation (either on or off)[41] a camera is more

. complex in the data which it feeds back. The operator must be

constantly watching the image to evaluate any potential threats.

The simple fact of having to closely observe an unchanging image

over long periods of time lead to boredom and a loss of

concentration. A number of studies have revealed the maximum

observation span of a single image to be about 20 minutes, after

which time the operator will not even notice a person walking

through the camera's field of view [26, 61].

This is obviously not an ideal solution, as the expensive camera

INTELLIGENT OPTICAL SENSOR - 39

L ITERATURE REVIEW

system becomes in effect counter productive. This can become

particularly acute on larger systems involving a number of cameras

and display units, especially when the cameras used are static. A

number of solutions have been devised to counter this human

weakness. The simplest is to introduce another operator. A slightly

more advanced method is the introduction of the multiplexer, which

will allow the displayed image to cycle through all the cameras on

site, with an adjustable dwell time on each. Whilst this might seem

attractive, it can present the risk of an operator missing vital

information, as not all camera images are visible simultaneously.

This can be countered through the use of a split screen display, for

generally up to 4 separate input sources, which can also be set to

rotate in a number of ways [99].

These methods certainly present ever changing information, but can

also have the undesired effect of actually breaking the operator's

Concentration span as the image switches from one camera to

another. This leaves the operator unable to correctly process the

information presented as the source of the new image might remain

unclear for a few seconds, which could easily be the entire dwell

time for that particular camera [45]. Although the actual

Psychological effects of these systems have not received much

attention, they are a factor which we cannot afford to omit when

Considering their suitability for each location, given the degree of

surveillance required in each case.

INTELU GENT OPTICAL SENSOR - 40

LITERATURE REVIEW

A slightly more suitable solution is the use of operator controlled

PTZ units (Pan Tilt Zoom). Whilst simultaneously reducing the

amount of cameras required for a given site, they also allow the

operator full control over the received image. Thus, the operator

maintains his or her situational awareness while also keeping a

higher and more effective level of concentration as the image

presented is not static. This obviously also allows for more detailed

examination of features through the camera's zoom feature. The

danger with such a system is however similar to static cameras with

a cycling display, that the operator might miss valuable information

whilst examining a different site location. A PTZ unit also has the

disadvantage of clearly indicating the actual direction of observation

"of the camera, a feature which has been reduced through the use of

dome housings or panoramic cameras [15, 57].

These are all purely camera based systems.

What is actually required in all of these situations is for the operator

to be notified only when an incident occurs, and to then have the

camera available as a purely observational tool. Such a system was

initially devised through a somewhat inelegant but effective

attachment intended to be mounted on the image display unit. This

array of light sensors would monitor the image and sound an alert

when the preset light threshold had been exceeded, indicating that

some type of movement had occurred in the observed image.

I NTELU GENT OPTICAL SENSOR - 41

LITERATURE R EVIEW

The most recent incarnations of this system consist of a

combination of PIR and camera within a single housing [15, 11, 57,

94]. The PIR, generally having a wider field of view than the camera

can be used to warn of movement, whereupon it will activate the

camera to enable the operator to determine more accurately the

cause of the alarm. Conventional PIR sensors are, however,

notoriously susceptible to false alarms, which can lead to the

operator growing bored of examining invalid alarms and ignoring

valid threats when they do occur - a definite case of cry-wolf. It has

been estimated that the proportion of false alarms for PIR sensors

is often over 900/0, of which half can be attributed to operator error

and environmental factors [67, 65, 24, 26]. Obviously, the larger

the system, the more acute the problem becomes.

The unreliability of these systems, linked to the need for cheap

Surveillance for small businesses and home owners has led to an

increase in passive surveillance. This is a corrective solution, as it

cannot help prevent a crime (except perhaps through the

Psychological deterrent of warning signs) but can help analyse a

crime once it has happened. Generally, this involves a camera

linked to a time lapse recorder. Such a system will typically operate

24 hours a day, fitting either a full day or half a day onto a single

regular 4 hour VHS cassette. Whilst this allows the system to be

financially available to most people, the unfortunate side effect is

that the resultant images are near to unusable from the amount of

time compression involved, and also through operator laziness in

I NTELLIGENT O PTICAL S ENSOR - 42

LITERATURE R EVIEW

not replacing worn tapes [95]. A slightly more advanced system is

to use the PIR driven camera and recorder to only capture actual

incidents, removing the need for time compression at night time

when premises are normally closed to public access. Recent

developments are linking such systems to digital recording methods

allowing for higher resolution images to be stored, in addition to

reduced wear on the actual recording medium.

In addition to the conventional CCO type cameras, recent

developments are also making CMOS (Charged Metal Oxide

Semiconductor) cameras available to the small business and home

market [65] . CMOS type cameras are nearly fully integrated into a

Single chip, allowing for yet further reductions in size and power

"consumption, whilst retaining image quality. Having a nearly fully

integrated construction, with the actual image sensor itself

delivering the digital image data (a CCO type relies on extra

circuitry to convert its analogue output), this really is at the point of

an entire camera on a single chip. It also means that the signal

which is obtained from such a camera is also a lot cleaner as the

post-processing phase has been minimized, reducing the risk of

Signal corruption.

Of more interest however, is the nature of the signal which is

obtained from a CMOS type camera. Whilst a CCO type will scan the

entire image area before transmitting the data as a single group,

CMOS cameras use a line scan principle. Each image line is scanned

and transmitted immediately, resulting in a faster data throughput.

I NTELLIGENT O PTICAL SENSOR - 43

LITERATURE REVIEW

This does however also have the undesirable effect of somewhat

blurring any motion, and thus presenting a distorted image which

can be somewhat misleading if any fine analysis is being carried out

on the images obtained from the sensor [90]. On a more positive

side, due to the more integrated nature of the entire camera, they

are less likely to be susceptible to the effect of blooming. A regular

CCD camera pointing straight at a relatively bright light source such

as a car headlight will output an image with a marked halo effect

around the light source, effectively resulting in what can be a quite

important loss of detail in the area concerned . The only

preventative measure for this is the auto-iris feature now present

on most cameras, which effectively simply lowers the light level in

the entire image. A CMOS camera can automatically reduce or

"enhance the response of individual sensor cells, resulting in a much

clearer and sharper image.

Both types of cameras do however, also rely on a number of

common features.

Black and white cameras (which generally output at least 256

shades of grey) offer a very useful low infrared response. Pure IR,

as used in thermal imaging sensors (which are financially beyond

the scope of this study), is located around 800 nanometres. This

type of response would be ideal, as any living object would be

drastically identified in any image [Appendix G]. The IR response of

these small cameras lies between 700nm and 750nm, where

720nm is approximately the range limit for the human eye . This

INTELLIGENT OPTICAL SENSOR - 44

LITERATURE REVIEW

response can be slightly enhanced through the use of IR

illumination, and many cameras are now shipped with limited IR in

the form of a few IR LED's mounted around the lens, providing the

camera with a blind range of a few meters. Whilst these have no

benefit whatsoever in a well lit area, they can be very useful at

night. Obviously, this limited IR capacity could be enhanced through

the use of regular IR spotlights, which are now commonly mounted

on the same post as the camera itself. Depending on their power,

these can increase the blind range of the camera to about 10m.

This IR response is however, limited to monochrome cameras. A

colour camera works on the principle of having a number of layers

of sensors, each sensitive to a certain light bandwidth in the ranges

'of blue, green and red. To obtain a satisfactory resultant image, a

red filter has to be used (similar to black and white photography

Where a red filter has a sharpening effect, by cutting out a large

amount of the IR haze) [Appendix G] and this obviously is also

most effective at filtering out any IR element in the received image.

We therefore have to decide between a good night response (lying

at minimum values of approx. 1.11ux) but slightly less definition

through the loss of the colour information, or an image very rich in

information but with a very poor night response.

The second common and limiting feature of all cameras is the

choice of lens used. These range from simple pinhole constructions

to full telephoto or fish-eye lenses. The only difference with

I NTELLIGENT OPTICAL SENSOR - 45

LITERATURE REVIEW

conventional photography being in the absence of zoom lenses, this

operation generally relying on the fact that the displayed image has

a lower resolution than the actual image sensor, allowing a virtual

zoom to be carried out by simply extracting the image information

only from a limited area of the total sensor. A pinhole lens,

admittedly the cheapest type of lens, is simply a glass covered hole

mounted over the sensor. This might be the smallest type of lens

available, lending itself to use in spy applications, but has also a

fairly limited useful range lying between 1m and 3m approx., with

image quality dropping off severely outside of this, and severe

distortions appearing at the image edges.

Regular optical lenses are also available, with f-stop values ranging

"between about f2 and f8. The f-stop value directly affects the

overall sharpness of an image, dictating how much light will enter

the lens in a given time period. High f-stops such as f22 or f30

guarantee an extremely deep sharp focus region, but also severely

limit the amount of light reaching the actual image sensor. A lower

f-stop value such as f3 will let in more light but will also cut down

the actual focus area to a few metres, with the actual focal point

lYing about 1/3 of the way into this range. These values however

also have to be considered in conjunction with the actual focal

length of the lens concerned. The focal length represents the

distance travelled by the light internally in the lens from the front

element to the rear element, or to the surface of the actual image

sensor. The more complex the internal lenses in a single lens

INTELLIGENT OPTICAL SENSOR - 46

L ITERATU RE REVIEW

become, the more light they will tend to absorb and dissipate,

thus, a telephoto lens with a focal length of 300mm will be

absorbing about 4 or S times the amount of light that a panoramic

lens with a focal length of 3Smm would. The net result is that

longer lenses generally tend to be " slower" lenses, i.e., they

require a longer time period to achieve the same exposure as a

shorter lens would, meaning that their minimum f-stop value is

effectively raised [91].

Whilst a conventional still camera will compensate for this by simply

taking a longer exposure, CCD and CMOS cameras generally do not

have this luxury, as the user will be requiring a frame rate from

anywhere between 10 and 30 frames per second. The only actual

"mechanism available to these is to adjust the sensitivity of the

actual sensor, which obviously has its own minimum boundary

which is governed by the material and the methods of manufacture.

Whilst telephoto lenses thus absorb more light, they also have the

tendency to distort shapes, most noticeable in parallel lines which

Will be viewed as strongly converging or bowed [51]. The closest

lens to matching the way we view objects through the human eye is

one with a focal length between 3Smm and SOmm, although for

practical purposes, a value nearer 100mm is normally preferred to

enhance the actual surveillance range. Wide area surveillance can

also be carried out with a wide angle lens or a fish-eye lens (from

lSmm to 24mm) which can have a field of view of nearly 180

degrees, albeit again at the expense of severe distortions for

I NTELLIGENT OPTICAL SENSOR - 47

LITERATURE REVIEW

anything at the edges of the image or too close to the actual lens.

2.3 - Modes of Failure

It is first necessary to define what is going to be understood as a

failure in these conditions. In this study, when a failure is referred

to, it is taken to be indicating either a false alarm (alarm status

given although no intruder is present) or a false negative (no alarm

status raised, although an intruder is present). We will never be

considering actual material or hardware failure in the conventional

sense of something being mechanically 'broken'.

'Usting all possible failure modes for the various types of sensors

would be a lengthy and quite useless exercise. What must be

realised is that each of the above described types of sensors has

been designed for a specific range of applications, in which they

perform very well. Thus, vibration sensors are primarily employed

to be mounted on fences or windows to indicate some type of illicit

entry.

As the demand for security and surveillance methods is growing and

expanding from the sphere of large companies to smaller

businesses and private individuals [65], these conventional sensors

are being pushed to their operational limits, and integrated into

INTELLIGENT OPTICAL SENSOR - 48

LITERATURE REVIEW

systems where the scope for incorrect adjustment and

misinterpretation of the return signals is quite large. Thus, a

wrongly adjusted window-mounted vibration sensor could easily be

set off by a bird flying into the window. In a private home system,

this might be the one and only type of sensor used, which could

easily lead to a general alarm being sounded (where in an industrial

context it would simply have lead to an extra patrol by the already

present system operator), leading to inconvenience for the

emergency services and a severe penalty to the concerned home

owner. PIR sensors are, for example, notoriously sensitive to their

mounting location. Most home alarm kits are nowadays based on

some type of PIR system, and whilst a professional company can be

called upon to carry out the installation process, many home

owners will carry out this process themselves out of financial

considerations [38, 15]. Many sensors are thus inconveniently

placed, resulting in quite a high number of false alarms. Camera

based systems are generally still relying on the presence of an

alarm operator, and are therefore maybe less prone to false alarms,

given their more passive nature as compared to other conventional

sensor types.

It is therefore quite clear that most system failures have two main

SOurces:

- System designers making use of inadequate sensor types to

achieve more results at a cheaper overall cost.

- System installers not being aware of the limitations and

operational parameters of the type of sensor they are

I NTEWGENT O PTICAL S ENSOR - 49

LITERATURE R EVIEW

dealing with, resulting in inadequate sensor placement and

use.

These two main errors result in two main types of failures, false

positives and false negatives, a false positive being an indicated

alarm state with no apparent reason, and a false negative being an

actual alarm state being ignored and missed. For PIR systems, the

first case amount to over 90% of all alarm states throughout the UK

[26], a staggering value! No figure is available as to the number of

false negatives, as this is a rather difficult value to assess

accurately.

In human operated systems, (either through patrolling or remote

Surveillance with the help of cameras) we see an inverted condition.

Here, false positives are quite rare, but false negatives can be quite

common, less so where an actual patrol system is in place. The

reason for these occurring now falls back onto the human element

and the type of surveillance system in place. Whilst the human

element is very useful at filtering out any false positives, false

negatives can occur through such simple factors as boredom and

limited concentration spans. As mentioned in the previous section,

studies have determined the maximum effective concentration time

in front of an unchanging image to be approximately 20 minutes

[95]. Not a great amount when we take into consideration the

entire shift period of six to eight hours.

-
I NTELLIGENT OPTICAL SENSOR - 50

LITERATURE R EVIEW

2.4 - Possible Solutions

The problem which is presented to the modern surveillance system

designer is based on a number of factors:

- Final system cost.

- Ease of installation and operation.

- Overall system performance.

2.4.1 - Final System Cost

This depends very much on the targeted market for the system in

question. This will be less critical for large industrial installations,

where more focus is put on system performance. It is however an

important factor where the end user is intended to be small

businesses or home owners.

2.4.2 - Ease of Installation and Operation

Again, very dependent on the target market. Professional systems

will be relying on trained personnel as far as the system installation

is concerned, less so in the day to day operational duties. Home

systems will be rarely installed by trained personnel, and will

practically never be operated by anyone other than the property

owner, who will have little or no training in the system. This lays

INTELLIGENT O PTICAL SENSOR - 51

L ITERATURE R EVIEW

out the prerequisite for a system with simple and straightforward

installation and running phases. Ease of operation can be quite

easily achieved through satisfactory ergonomical considerations at

the design stage of the product. Features such as visual displays

and organised menu systems can help even a novice to successfully

operate what might initially seem quite a complex setup. The point

where a system's actual performance can easily be compromised is

during actual installation. Actual sensor placement, cable routing,

control panel placement, all these are highly critical and can easily

negate any technological advances in sensors and system

integration if not carried out properly [38].

2.4.3 - Overall System Performance

System performance will be dictated by a number of criteria, such

as correct system installation (see 4.4.2) and correct choice and

combination of sensors for the given situation. For example, a PIR

based system would be quite inadequate in a glass walled house,

Where the PIR would constantly be detecting motion occurring

outside the actual intended surveillance area. Sensor combinations

can also be utilised to enhance the overall situational awareness

provided by a system. For example, a PIR sensor mounted at a

front door would be able to signal the arrival of something moving

Within its surveillance range. A camera on its own would also

-
I NTELUGENT O PTICAL S ENSOR - 52

liTERATURE REVIEW

provide the same information, but would require the user to be

constantly monitoring the resultant image to actually determine

when the person or object arrived. However, a PIR might be linked

up to only activate the camera when it detects movement, thus

providing not only temporal information, but also allowing the user

to examine the resultant image and determine exactly what was the

cause of the alarm.

This approach of multiple sensor combination has been adopted by

a number of manufacturers [93, 15, 57], and although it might not

directly reduce the number of false positive alarm situations, it can

help in this context: many home alarms are directly linked to the

emergency services, either through a dedicated line or via

conventional telephone connection, to allow a faster response time.

When a camera is linked into the system, we now have an extra

layer of information which can also be forwarded in conjunction with

the alarm signal. This has been implemented using either direct

digital image transfer or by relying on facsimile signals. This then

presents the emergency services with enough information to

determine whether they are dealing with a valid alarm situation or

not [94, 95]. This is certainly an improvement to actually having to

investigate every alarm state on site.

INTELLIGENT OP"T1CAL SENSOR - 53

L ITERATURE R EVIEW

2.5 - Sensor Summary

The security industry is currently using technologies which were

partially developed over 2 decades ago, with small improvements in

response quality. New sensors in the form of advanced cameras are

for the most part not being used to their full potential, and the

industry as a whole is still struggling with the enormous problem of

false alarm conditions. Whilst electronic sensors can be adjusted to

pick up most potential threats, they do not possess the intrinsic

discriminatory judgement which a human operator has.

To minimise costs and make systems available to as large a market

as possible, sacrifices are being made in the area of alarm

resolution. Systems are plagued by installation and operator

errors, and the only really reliable processes involve the expense

and potential security threat of constant operator presence, as a

complement and backup to the various electronic sensors.

I NTELU GENT O PTICAL S ENSOR - 54

LITERATURE R EVIEW

2.6 - Analysis Techniques

Any successful signal interpretation relies on having the correct

analysis methods and techniques available, otherwise the data

obtained might as well be ignored. A successful analysis also

depends on having achieved a correct understanding of the data

itself, and the elements of which it is comprised. Many analysis

tools have been developed, which are now regarded as somewhat

of a standard approach, given a certain type of data.

Before even starting with a certain type of analysis, we also have to

be confident as to which features we will be attempting to study.

The various techniques which are available to effectively dissect and

analyse a data stream could be broadly grouped into two

categories, which we will deSignate as Conventional and Smart.

2.6.1 - Conventional Techniques

Conventional analysis techniques involve statistical methods such as

PCA(Principle Component Analysis) and regression analysis. These

tend to be based on mathematical transformations which will

ultimately lead to attempting to match the data to as simple as

POssible a linear function. Non-linear functions, due to their

complexity and high level of magnitude, are not normally

I NTELLIGENT O PTICAL SENSOR - 55

LITERATURE REVIEW

considered, especially as these go beyond the scope of what is

readily understandable or what can be possibly visualised by the

human brain. Although adept at identifying trends and patterns, the

human brain will rarely cope when more than 5 or 6 interdependent

dimensions are involved [97]. Whilst solutions obtained using

conventional techniques might lead to a certain amount of success,

they do tend to break down as soon as the data presented to them

starts to deviate in any way or form from the development data set.

One of the main drawbacks of conventional analysis however could

be their sheer complexity. These tasks will generally be carried out

by trained statisticians, who will probably not have any concept of

the source of the data and what it really represents. This effectively

splits the analysis phase between the engineer or end user who will

be providing the data and the person who will be analysing it,

creating the possibility for comprehension or communication errors.

2.6.2 - Smart Techniques

The concept of Smart Computing started in the early 1940's with

the advent of the first digital computer systems and the first

attempts at modelling the abstraction layer (or cognitive abilities) of

the human brain. These were trying to develop generalised models

of the biological synapses and of the overall reasoning methodology

[72].

INTELLIGENT OPTICAL SENSOR - 56

LITERATURE REVIEW

McCulloch and Pitts (1943) developed the formal concept of MLP

Neurons, which form the basis of most networks today. These initial

networks were quite limited, and in 1949, D.O. Hebb developed the

first learning rule, which increases the adaptability of the network.

Following this quite successful start, many different attempts were

made in different directions and levels of attempted simulation. The

main breakthrough came with Frank Rosenblatt and his proposed

model of the Perceptron for use in classification problems (1958)

[87]. Widrow and Hoff developed the Adaline (Adaptive Linear

Element) model (1960) in an attempt to introduce a level of error

feedback into the system, this was then improved in their later

developed Madaline Complex (Multiple Adalines), which effectively

Overcame the weaknesses of the simple Perceptron.

Development continued until the publication of "Perceptrons" by

Minsky and Pappert, which raised awareness to the inability of the

Perceptron to resolve non-linear problems (i.e., the XOR problem).

This effectively stopped public development of neural models until

the early 1980's, although some notable models did still appear in

that time, notably Teuvo Kohonen's Self Organising Maps[23] and

Stephen Grossberg's competitive learning models and Adaptive

Resonance Theory, which was widely used and modified in later

systems.

-
INTELLIGENT OPTICAL SENSOR - 57

LITERATURE REVIEW

Neural computing then experienced a sharp revival, mainly due to

John Hopfield's contribution in the form of an auto-associative

system for pattern compression and reconstruction. In 1985, David

Rumelhardt and Geoffrey Hinton introduced the concept of the

Generalising Delta-Rule, which overcame the weaknesses of the

Perceptron pOinted out by Minsky and Pappert, and boosted

renewed interest and development[80].

A number of factors now contribute to the growing success of

neural computing. Firstly, the available processing power has

dramatically increased in the last decade, allowing more complex

models to be developed. Additionally, the basic ground rules for

neural computing have been laid out and are now recognised

worldwide. This allows for faster development as successful

methods are improved on. As neural systems prove their

commercial success, the amount of funding in the public domain

has also increased, leading to the development of even more

systems.

Artificial Intelligence has now become a commercial buzzword which

is used, correctly or not, for a multitude of applications.

Whilst theoretically not so distant from standard statistical analysis,

they rely mostly on providing non-linear solutions to a data field,

thus providing a closer match to real world conditions. This issue of

non-linearity is directly related to the problem data complexity:

When considering a classification involving more than two different

parameters, the mapping of the data to the possible classes is,

INTELUGENT OPTICAL SENSOR - 58

LITERATURE R EVIEW

most probably, going to follow a non-linear separation, as each

class might share given parameter ranges of other classes

(i.e. :When classifying animals, all birds have wings, but a

hummingbird has got a smaller wing range than a sparrow). The

level of non-linearity will change according to the problem at hand

and the correct data selection.

Neural Computing has now experienced a shift from an expected

fully intelligent solution for autonomous machines and systems to

practical tools and methods which can assist and complement

existing technologies. These are appearing in everyday life, mostly

as system assistants. One of the most widespread applications

probably being OCR software (Optical Character Recognition) [64,

13]. Other applications are Facial or Iris recognition systems, stock

exchange prediction aSSistants, machine condition monitoring or

even the intelligent microwave by Sharp.

MOdern network systems have a number of common features in

their operational characteristics, which effectively define them.

These are, amongst others:

• Robustness : Most networks function on a principle of common

responsibility. Each neuron is contributing only a tiny part to the

overall performance and output. If one neuron fails (through

incorrect data for example), the system should be able to

generalise the approximately expected value and still provide a

I NTELLIGENT O PTICAL SENSOR - 59

LITERATURE REVIEW

reasonable output. As more and more neurons fail, the system

performance will gradually worsen without a sudden drop in

output. This is referred to as graceful degradation[98].

Parallel Structuring: Each neuron in the network could,

theoretically, be a separate processor for computing processes.

Whilst this is practically impossible due to the sheer number of

interconnections required for such a system, it remains a basis

for rapid and efficient data processing.

• Ability to learn from experience of past data. Due to the training

methods, a network will adapt itself and "recognise" past data

combinations or trends, which could be difficult or impossible for

a human to visually recognise in a multidimensional data set.

• Generalisation: A networks capacity for generalisation depends

on the training phase of the network and the type of data which it

was presented with. As long as the training data is composed of

an unbiased dataset comprising examples from all known data

conditions which might be encountered in actual use, and as long

as the network training process is stopped to prevent over-fitting,

the network will should be able to classify similar data tendencies

by fitting them to the nearest known similar data pattern

encountered during training. Over-fitting is the direct opposite of

a networks generalisation potential, and occurs when the training

dataset is either too small or when the network is trained for too

I NTELLIGENT O PTICAL SENSOR - 60

LITERATURE R EVIEW

many cycles on a single dataset. In either of these cases, the

network will become over-optimised by attempting to match itself

perfectly to the training data used. The network will then fail to

classify previously unseen data.

· Relative computational efficiency once trained. Whilst requiring a

fair amount of computing power and time during the training or

learning phase, once established, data can be processed by a

network quite rapidly, making them ideal for time-critical

applications.

· Non-Linearity. Most networks are trained in a manner which

allows for non-linear data mapping, closely reflecting the actual

state of real data. This becomes increasingly critical as the

number of data dimensions increases.

• Ease of use. Given appropriate training and correct output

transformation, little or no knowledge of the actual field of

analysis is required from the potential user.

In general, a network requires a learning phase before data analysis

can actually occur. The term learning or training can be easily

misunderstood. Contrary to human learning, where specific

concepts and memories are stored, as well as general techniques, a

neural network depends on processing as large as possible a data

I NTELLIGENT O PTICAL S ENSOR - 6 1

LITERATURE REVIEW

set with a given number of dimensions to achieve some type of

classification. This learning process can be split into two main

categories:

• Supervised learning: In this case, the network is presented not

only with the original input data, but for every data line is also

given an expected result or output function. By adjusting internal

values, the network will attempt, for each line of data, to recreate

this given output value. Excellent in the case where the data

parameters are well defined. This process does require a

sufficient amount of data to prevent the network from simply

learning to replicate the data set with which it has been trained.

. Unsupervised learning: The network is simply presented with the

original data, and will attempt to recognise trends and groupings

within the data, and to present these as definable areas within

the data map. These areas will generally maintain the same

dimensionality as the original input data. Once training is

complete, these areas can then be manually labelled to

differentiate the various data subgroupings.

In both cases, the choice of the training data and also the number

of training cycles or epochs (number of times the entire data set

will be passed through the network) are critical values. Insufficient

data or over training will cause the network to effectively replicate

I NTELLIGENT OPTICAL SENSOR - 62

LITERATURE R EVIEW

the training data set, losing the ability to generalise when presented

with new data.

Typically of such a data driven system, networks are very good

examples of "Rubbish In - Rubbish Out". A certain knowledge of the

input data fields and their origins will contribute to more efficiently

developed systems. Correct analysis of a finalised network can also

help prevent quite embarrassing moments (US army tank

recognition - trained to find sunshine, BR rail crossing doesn't like

snow). Certain types of networks are also more resilient to non­

relevant data than others [51, 35, 20, 89].

On the following pages, a number of network architectures which

can be applied to pattern recognition and image processing shall be

discussed, including sample applications based on these

architectures and the advantages and disadvantages of each

approach.

2.6.3 - Types of Networks and Intelligent Processes

The term Intelligent Process can be used to define any system

capable of reaching a deciSion, given adequate data and a

reasonable training phase. The nearest analogy which can be found

is that of an expert in a given field. Early networks attempted to

I NTELU GENT OPTICAL SENSOR - 63

L ITERATURE REVIEW

mimic human intelligence by copying the logical thought processes

which assist in the decision making process.

This introduces the concept of network architectures. Although most

neural computing per se can be taken as adaptations of the work

resulting in the first perceptrons, this has resulted in a number of

varying architectures and internal processes which are more or less

suited to different types of applications. Of interest in this case are

those systems which could be used for image recognition or

analysis.

Due to the large number of such architectures, only those most

pertinent to this study shall be reviewed below. This will include

architectures already successfully in use, as well as potential

candidates for the task at hand.

This will not expand on systems used for face recognition or for

database comparison two very common detection approaches which

rely either on the location of a face, or on matching the currently

found object with a previously recorded object placed in a database

to which the detection system has access. These are much more

limited applications, working on very strictly defined parameters

with few degrees of change in their detection processes.

1. Knowledge-based systems, or expert systems:

Although not strictly a neural -based technique, this approach uses

a stored knowledge base to analyse any data with which it is

presented. The actual analysis is similar to a logical progression

through the data, using defined rules and filters which form the

I NTELLIGENT O PTICAL S ENSOR - 64

LITERATUR E REVIEW

knowledge base of the system. This is an overall attempt to mimic

the thought processes and patterns of a human expert facing a

given problem. The knowledge base can be expanded on, within the

parameters of its current subject without extensive reworking of the

entire network. Additionally, the actual decision making processes

are fully transparent, available to the end user, and not subject to

empirical decisions but purely logically and rule led reasoning.

An expert system's weakness lies in the actual knowledge base

itself. This must be provided with all possible conditions and rules to

facilitate actual decision making. This is often done by simply

referring to an actual human expert. The problem which presents

itself is in the actual encoding of the thus obtained rules. The

resulting system will also be highly domain specific, able to deal

with its specific data but not able to extrapolate the knowledge to

related fields, or generalise for missing data inputs or noisy data.

The knowledge stored in the system will often be treated in a purely

binary manner, providing a form of yes/no response but without

making any allowance for any response with a more analogue

dimension. This makes expert systems ideal where a pure access to

knowledge is required, but does make them less appropriate for

problem solving applications. Such systems have been successfully

employed on surveillance networks which require a polling from a

number of cameras. The drawback remains in the actual generation

of the rules to be used - these must be sufficiently detailed to

accurately describe the problem, whilst simultaneously remaining

fleXible enough to deal with any unexpected artefacts. This makes

I NTELLIGENT O PTICAL S ENSOR - 65

L ITERATURE REVIEW

this type of architecture ideal for a strictly controlled environment,

where all parameters are known.

2. Perceptrons:

Following the discovery of the limitations of the simple perceptron,

efforts were made to develop an architecture which would be

capable of solving multi-dimensional, non-linear problems.

The Perceptron itself, developed in the 1960's by Frank Rosenblatt,

was an attempt to model the structure of the human brain, where

simple stimulations to a given number of nodes result in an output

dependant on the internal state of each node.

The perceptron model is based on a learning process which adapts

the system parameters according to the difference between the

expected and the actual system output. This is repeated until the

lowest possible energy state is reached, at which point the network

may be presented with new data, and can be expected to output

correct results. This state is reached when no further approximation

of the network weights to match the expected output value(s) for

given input data is possible.

Due to the actual architecture, the basic perceptron was rapidly

found to be limited to solving fairly linear problems ("Perceptrons",

Minsky and Pappert, 1969), which led many people to discard

neural approaches entirely.

Due to the process of learning by reducing the output error against

INTELLIGENT OPTICAL SENSOR - 66

LITERATURE REVIEW

the expected error, the Perceptron is classified as a supervised

learning architecture.

The actual learning function can be summarised as shown in fi9.1.

Where L1 Wi is the change to weight Wi'

11 is the learning rate,

x;) is the network input for a given pattern p

and t P is the target value for an input data pattern p

Fig. 1 : Perceptron Learning Function

If the calculated output is correct (i.e.: t=y), no weight adjustment

is made. If the output is incorrect (t~), the weights Wold are

. adjusted such that the output taking the new weights values into

consideration is closer to the expected output t.

The actual network output is calculated as shown in fi9.2.

n

y= fh(L w;xi+Wo)
i=l

Where y is the neuron output,
Xi is a particular input pattern,
applied to weight Wi of n weights,
W 0 is a bias weight

and f h is a limiting function.

Fig.2:Perceptron Network output

Where the limiting function fn serves to force the oputput to either

INTELUGENT O PTICAL SENSOR - 67

L ITERATURE REVIEW

+ 1 or -1 and the bias is an additional network input which is initially

set to some random value. This simply serves to add a measure of

flexibility to the entire system.

Where the change of weight can also be expressed as in fig. 3.

8 E
,1 w·=-I7-

I 8 w
i

Where E is the network output error

Fig.3:0utput Error Calculation

The algorithm shown in fig.2 will eventually converge to the correct

(expected!) classification if the problem is linearly separable and the

., initial learning rate is not too large. It must be noted that the

solution achieved is not unique, and will depend on parameters

such as the selected learning rate value and gradient, the initial

network weight values and the order in which the training data is

presented to the network.

3. Multilayer Perceptrons:

The concept of creating layers of perceptrons which would be

treated serially for training was rapidly presented, but the difficulty

resided in generating a training algorithm which would be capable

of distributing the network error throughout the entire structure.

In 1986, Rummelhart, Hinton and Williams presented the

backpropagation training algorithm, which effectively solved this

--~--~--~
INTELLIGENT OPTICAL S ENSOR - 68

L ITERATURE REVIEW

problem.

The network error i now calculated using a sum of squares error

function as shown in fig.4.

Where p is a given data pattern presented to the network,
E is the calculated error,

yP is the network output

and t P is the expected output

Fig.4:MLP Error Function

A minimisation of this error will lead to a set of network weights

such that the delta of the expected to the actual output for the

entire training data set is as low as possible.

In order to allow this optimisation to be carried out, with regard to

every weight in the network, it is necessary to introduce a non-

linear factor to the calculations, the most popular of which is the

sigmoid function. This effectively behaves as a linear adjustment for

small inputs but saturates larger values, whether these be positive

or negative.

For the hidden layer to output layer weights, the weight delta is

calculated as before (fig.S).

I NTELLIGENT OPTICAL SENSOR - 69

LITERATURE REVIEW

Where W jk refers to the hidden to output layer weights

Fig.5:MLP Hidden to output layer weight update

For the hidden layer(s), the error is propagated somewhat

differently, as an expected output is now not directly available. This

value will instead be extrapolated from the error values of the

previous node(s) (In the backpropagation process) and the weight

value(s) to the given node(s)

The weight update is expressed as in fig. 6.

8E
Where 8 .=-= ~ 8 k WkY .(1-Y·) } 8a

j
7 } } }

Where W ij is the weight between two neurons i and j,

17 is the learning rate
and E is the output error

Fig.6:MLP hidden Weight Update

The difference to the hidden to output layer weights delta is that

the 8j for the hidden units depends on the 8k of all the output units

to which it is connected through its Wjk weights.

The convergence (how rapidly the network will settle to a global

INTELLIGENT OPTICAL SENSOR - 70

LITERATURE REVIEW

minima) of a network can be improved by introducing a momentum

term (lX). The weights change can then be reconsidered as in fig. 7.

For output Weights:
,1 W j k = W j k (T + 1) - W jk (T) = - ry 0 k Y j + lX (W jk (T) - W jk (T - 1))

For hidden weights:
,1 W ij=wij(T+ l)-wij(T)=-ry OJ Y;+lX(wij(T)-wij(T-l))

Where lX is a momentum value between 0 A 1
G T is the iteration number.

Fig.7:MLP Weights delta with momentum

The main advantages of multilayer perceptrons lie in the rapid

training process, and the massive memorising capacity, where the

. number of "memorised" cases is much larger then the number of

internal neurons. From this, the system obtains its excellent

generalisation capabilities: the ability to classify data is has not

previously encountered based on its similarity to data classes

encountered in the training phase.

Its main disadvantage is a direct result of its training process,

requiring it to be presented with a full range of data covering all

Possible input conditions in roughly equal amounts. Any distortion in

the data will also be reflected in the performance of the final

network, where data classes encountered in large numbers during

training will be more readily recognised at the expense of those

classes less well represented in the training data set. This mandates

a careful selection of the training data set, in order to cover all

INTELLIGENT OPTICAL SENSOR - 71

LITERATURE REVIEW

known data classes which will be encountered in use.

MLPs also tend to have long training phases (can be a few hundred

thousand iterations) which are a direct consequence of the network

structure itself. Variable parameters such as the learning rate

(which can be dynamic during training, i.e. Can gradually reduce to

a near zero value) and the momentum (which can and normally is

dynamic during training) will also influence the speed and accuracy

of the training phase: large initial learning rate and momentum

values will lead to a very rapid but badly optimised convergence of

the network. An ideal selection for the initial values of both of these

parameters is largely an empirical decision, based on the results

obtained from previous training sequences.

It must be pOinted out that the solution achieved (in the form of a

final network) is not a single solution to a given problem, as the

network configuration will mostly offer a number of global minima

(a point where the weight values are optimised to give the lowest

possible error rate throughout the network for a given data set).

Non optimal training can be the result of two other criteria: local

minima, and overtraining.

Local minima occur throughout the network topology, and are

pOints where no further improvement in the network error rate can

be achieved by the application of the network learning rule,

although a general error rate reduction would be possible had the

weights been adapted in a different pattern. The momentum

parameter helps to reduce the likelyhood of become "trapped" in

such a local minimum, by occasionally adjusting the weights in the

I NTELLIGENT O P"TICAL SENSOR - 72

LITERATURE REVIEW

opposite direction to the normal error reduction and thus allowing

different weight optimisation paths to be found.

Overtraining [70] occurs when a given network is trained for too

long on a given data set. The network weights will then be adjusted

in such a way that they match the training data set as closely as

possible (due to the normal error reduction process). In itself, this

is what we want to achieve, but too large an optimisation in training

will also lead to a reduction in the networks potential for

generalisation: data not previously encountered in the training set

cannot be correctly classified, as the data class boundaries will have

been too tightly defined. This will occur when the network is trained

for too many epochs, or when the training data set is too small.

Overtraining is however relatively easy to avoid, initially through

sufficiently large training data set selection, and during the training

process by a close observation of the network error value for the

training set, as compared to the errror value for a validation data

set.

A validation data set is a data set similar to the training data which

should ideally represent a full data spread. After a set number of

training epochs, the network performance (Le. Output error) can

then be evaluated using this validation set. It is important that the

network weights are not modified during validation, otherwise this

data set will simply become an extension of the training data.

Once the validation error starts to increase, it can be assumed that

no futher network optimisation is possible without leading to

overtraining, although the phenomenon of local minima must be

I NTELLIGENT O PTICAL S ENSOR - 73

L ITERATURE R EVIEW

taken into account as these can lead to temporary but small

reductions in the validation performance.

One last drawback of the MLP architecture is that these types of

networks can also have difficulties when analysing data containing

radically different dimensions to be classified, often requiring a

small network to be used as a condition filter before the actual

decision making process.

4. Self-Organising Maps:

Originally introduced in 1982 by Tuevo Kohonen, a self organising

map using a network structure which is allowed to adapt during the

t raining phase in such a way as to represent the various energy

levels (effectively classes) of the input data. This is an entirely free

mathematical approach, as no expected outputs are presented as

with the perceptron model.

The actual training process is dependant on a neighbourhood size,

which determines exactly how rapidly the network will adjust its

internal connections.

The first step involves finding the euclidean distance from each

neuron in the network to the input data pattern, where the

euclidean distance is defined as in fig.S.

INTELLIGENT O PTICAL S ENSOR - 74

11

Where D is the Euclidean Distance
W io are the connection weights and

Xi is the input pattern

Fig. 8: 50M Euclidean Distance

LITERATURE REVIEW

The neuron with the smallest distance is considered to be the

winner. The winning neuron and its surrounding neurons are then

adjusted, to bring them closer to the input data, using the method

shown in fig. 9.

Wio= WiO +17(Xi- WiO)

Where 17 is the network learning rate

Fig.9:50M Weight Adjustment

The learning rate thus regulates the network convergence speed.

The larger the value, the faster the network will reach its stable

condition, although the risk then exists that a more valid

optimisation path be effectively skipped over. Generally, the

learning rate is dynamic, and decreases according to the number of

training cycles carried out.

This is in parallel to the topological neighbourhood, initially large to

allow for large changes in the network structure, this should

gradually decrease to zero so that at the end of the training

sequence, only the winning neuron is being modified.

INTELLIGENT OPTICAL SENSOR - 75

LITERATURE R EVIEW

A trained Self Organising Map thus effectively represents a point

mapping of the input data, convoluted to the number of dimensions

defined not by the number of inputs, but by the network

architecture itself.

As such an architecture does not provide any clearly defined output

groups, it is then often necessary to label the resulting network.

This can be carried out visually, by observing the winning neurons

in different cases and marking the winning node to the class of the

input given.

Due to their structure, Self Organising Maps are suited to solving

problems such as classification and data mapping.

Their particularity is that they can be used to map an n-dimensional

data space into a two dimensional vectorial representation

commonly known as the feature space. This high level of data

compression and vectorialisation provide excellent noise immunity.

Their ability to cope with multidimensional data means that they are

often used as a front end to a backpropagation or RBF type

network. Weygang and Dasilva [88J forwarded procedures to

overcome the mapping classification aspect by using multiple

parallel approaches, which, whilst providing a more accurate

description of the data classes involved, also lead to much higher

processing requirements, depending on the complexity of the data

at hand.

I NTELLIGENT OPTICAL SENSOR - 76

LITERATURE R EVIEW

5. Hybrid Networks:

Although not an architecture per se, combining a number of

"classical" network architectures together in specific manners, so as

to utilise the salient features of each individual network type is

gradually gaining acceptance. Certain aspects of utilising such an

approach are discussed by Monostori [58], although this is not

focused on image analysis applications.

The actual term "hybrid network", is mostly used to describe any

combination of classical data preparation coupled to a neural

network stage of any architecture, tasked with the final sorting of

the produced data sets.

Throughout this study, the process of data preparation prior to

presentation to a network is considered to be a basic requirement

of successful analysis: unprepared data fed directly into a neural

network of any format is going to result in haphazard output

patterns, especially when the original data ranges are widely

varying. Some type of data preparation is to be considered an

absolute requirement to any successful output.

Considering past and current work in the field of image analysis, the

closest approach to hybrid networks are massively parallel

architectures of similar networks, effectively used either as a polling

set, where each network gives a probability as to the final output

(Zhao and Thorpe [92]), or where each network is contributing a

sub part by searching for a single particular feature, as used by

Chang, Razig, Abraham and Chae [12].

I NTELLIGENT O PTICAL SENSOR - 77

LITERATURE R EVIEW

2.6.4 - Summary of analysis techniques

Whilst a large number of analysis techniques are available, it must

be stressed that the ultimate success of any data analysis is going

to be dependent on the understanding of the data by the analyser

and the integrity of the data to be analysed.

A poor understanding of the data dimensions will probably lead to

important data aspects being omitted, and an incomplete data set

for analysis will simply not offer certain dimensionalities of the data

which might be encountered in later use.

Whether a manual or autonomous data analysis method is selected,

the integrity of the data throughout the process is paramount: any

transformations on the original data can lead to data loss for later

processes, and such operations must therefore be carefully

considered and selected before being applied.

One further important point in any data analysis lies in the the scale

of the data. Whether using a traditional technique or a smart

technique, data sets mostly require some form of scaling in order to

allow the examination of inter-relationships in the data stream -

this affects not only the mathematical scale of the data but also the

order in which a particular data stream is observed.

Smart techniques in data analysis do seem to offer more flexibility,

especially when considering non-linearities, which can then be

mapped into hyperspace and evaluated using various visualisation

methods, but do require more in depth data preparation than a

INTELLIGENT OPTICAL SENSOR - 78

LITERATURE REVIEW

more manual approach. The actual process chosen must be

selected to balance the type of data, the integrity of the data(will

interpolation be required in the analysis phase), the availability of

set results for the data (a pre-requisite for any type of perceptron

structure!) and the type of analysis: must this be on online process,

must the analysis methods be flexible at a later date or not.

The advantages of hybrid approaches allow various processes to be

implemented at the most suitable stage of the analysis and on all or

only part of the data. These structures seem to be best suited to

real life data, which will be inherently noisy and inconsistent.

I NTELLIGENT OPTICAL SENSOR - 79

S TUDY DEFINITIONS

3 - Study Definitions

Recognising the need is the primary condition for design - Charles Eames

In order to carry out a thorough study of the case presented, a

certain number of variables must first be defined, in order to refine

the field of study.

3.1 - Study Objective

The aim of this study is to enable a simple fixed lens security

camera as used in common ((TV applications, to detect and react

to the presence of a person within the surveillance area which the

camera has been assigned to.

This detection process must not be impaired by environmental

factors nor by the presence of other mobile or immobile objects

within the camera's field of view.

Environmental factors include such variables as overall lighting

conditions, surface reflectancies, temperature variations, as well as

camera setting changes, although the latter are not to occur whilst

the system is in operation.

The detection and reaction processes are to function in realtime,

allowing the system to operate either as a stand-alone unit or using

INTELLIGENT OPTICAL S ENSOR - 80

S TUDY D EFINITIONS

operator backup. In either case, false alarm conditions are to be

minimised.

When functioning with operator backup, irrelevant data is to be

filtered out, whilst retaining sufficient information for operator

decision making processes.

The overall system must be simple to install and operate, requiring

little or no knowledge in the field of intruder surveillance.

3.2 - Definition of a Person

Probably the most important item to define is the actual target,

what the system is trying to identify, in th is case, a person.

To allow data parameters to be defined, it is necessary to quantify

the term person into mathematical parameters.

These parameters will also largely depend on the type of

camera/lens combination which is to be used.

According to Anthropomorphic data, and considering the population

groups from the 5th to the 95th percentile (Which covers 90% of

the population spread)[34, 83] , the following values can be taken:

I NTELLIGENT O PTICAL S ENSOR - 81

STUDY DEFINITIONS

Measure Adult Male Adult Female

Height 161-185 cm 150-170 cm

Elbow/Elbow breadth 35-50 cm 31-49 cm

Mean Shoulder Width 45 cm 40 cm

This represents, however, only data for adult humans, and this

system will also have to be taking into count threats posed by

children.

It can be assumed that a child under two years need not be

considered as capable of posing a threat, which sets a height limit

of approximately 100cm, when the person is standing.

Target proportions can be derived from the adult proportions as

defined above.

This results in a minimum target size of 100x24 cm, which would

represent an average child standing. It cannot however be assumed

that the target will always be in an upright stance, behaviours such

as crouching or crawling must also be taken into account. This

would effectively halve the height of the target, resulting in an

object around 50x24 cm.

These given target dimensions are independent of the type of

camera/lens combination to be used in actual system development

and operation. It must also be noted that these values represent

preliminary guidelines, which may well be adapted to cope with

system changes or detection problems which might be encountered

INTELLIGENT OPTICAL SENSOR - 82

STU DY DEFINITIDNS

in further stages. These values thus represent an ideal minimal

object size for detection and analysis within the parameters of the

system to be developed.

Depending on the image sensor and lens combination selected, and

considering the minimum and maximum required detection

distances, the values given above shall be translated into camera

dependent dimensions for defining the minimum sized object which

should be considered for target processing. This has an impact on

the amount of processing each image will undergo, as objects

smaller than the minimum defined can be immediately discarded,

thus speeding up the entire process.

I NTELLIGENT OPTICAL SENSOR - 83

D ATA E XTRACTION

4 - Data Extraction

We need above all to know about changes; no one wants or needs to be

reminded 16 hours a day that his shoes are on - David Hubel

In all analysis systems, a correct and reliable source of raw data is

of utmost importance to the correct functioning of the system.

It is therefore important to develop rigorous data extraction

techniques, if any type of reliable system is to be developed.

Data extraction considers not only which type of data is to be

.. extracted, but also which preparation steps are required, and which

actual extraction methods will be employed in order to retain

uncorrupted values.

The inconsiderate application of masks and filters over an image

may well enhance certain aspects, may can also lead to irreversible

loss of what may be important information.

In order to establish a reliable process, it is important to initially

define what type of information is to be extracted and in which form

this information should be presented at the outcome of the

extraction process.

In the system which is being considered, the final details of the

INTELLIGENT OPTICAL SENSOR - 84

D ATA E XTRACTION

image information required have not yet been finalised. These can

actually only take on a final aspect once an initial testing phase has

been completed.

In order not to unnecessarily limit this initial testing and

experimentation phase, it would be advisable to provide as large a

spread of data as possible. Whether the entire data range will then

be utilised is not of any concern, but this approach will provide as

wide a starting base as possible, allowing for a structured approach

to the data analysis, which in turn will enable the original data set

to be narrowed down to hold only those required elements.

4.1 - Initial Extraction

For the purpose of initial experimentation, a camera has been

provided in the form of a Creative Labs WebBlaster Webcam[95].

This is a small CCD based device with a fixed focal length and a

relatively cheap plastic lens.

The reason for this chOice lies in the setup rapidity, relative cost

and rapid access to initial data which it will provide, as no external

Video capture hardware or software is required.

The specifications of this camera are as follow:

(These have been derived from the manufacturer as well as

practical tests)

I NTELLIGENT OPTICAL S ENSOR - 85

D ATA E XTRACTION

Maximum Effective Range:

Lens:

10m, for visual object recognition in the size

limitations which are being considered for this study.

Horizontal angle: 52 degrees.

Minimum lighting: Could not be obtained.

A feature of this camera which has been noted in low light

conditions is severe image corruption resulting in a marked elliptical

shadow blooming around the borders of the image. This defect is

presumed to be due to the cheap nature of the lens used in the

camera, and effectively means that very low light testing will either

.. have to be abandoned or will have to take into account the varying

nature of this phenomenon.

As the type of camera for which this system is to be developed has

normally higher quality components, the elimination of this effect

will not be incorporated into the actual analysis algorithms.

The webcam can output images to the harddrive in a number of

format/colour/size combinations.

In order to minimise the loss of data during this initial

transformation stage, it has been decided to save these images in a

bitmap format which provides for easy later processing in 24 bit

colour (16 Million colours) and saved to a 320x240 pixels size. This

INTELLIGENT O PTICAL S ENSOR - 86

D AT A E XTRACTION

provides an acceptable compromise between image dimensions and

level of detail, and also approaches the standard output for

surveillance equipment, thus providing a close match to the

equipment to be using the finalised system.

Using the target definitions provided earlier, it is now possible to

calculate the minimum image size object to be detected, given the

above camera specifications.

Given the Field of view of 52 degrees and a maximum range of

10m, the maximum horizontal spread can be extrapolated as shown

in fig.10.

Distance x

10m

Fig. 1 0: Camera field of view

Distance x = 20tan 26

(the range is composed of two identical right angled triangles with

an initial angle of 26°)

Distance x = 9.75m

Taking, as specified, a 1m wide object and using a final image of

320x240 pixels, the equivalent image size for his object will be:

INTELLIGENT OPTICAL SENSOR - 87

D ATA E XTRACTION

Equivalent size = 1 x 320 / 9.75

= 33 pixels

Therefore, a 1x1m object placed 10 m away from the camera lens

will be represented in the resulting image as a 33x33 pixel sized

square. Obviously, as the object approaches the camera lens, the

relative screen size will be increasing.

Using these values once again for the minimum target size of

100x24cm, this would result in on screen dimensions of 33x8

pixels. This value thus represents the minimum image object size to

be considered as a potential threat and thus to be correctly

analysed.

It is worthwhile noting at this point that the lens currently used

. results in images which are proportionally correct as compared to

human vision parameters. Lenses with wider angles will tend to

stretch the edges of an image, whilst narrower angles will result in

slight compression.

INTELLIGENT OPTICAL SENSOR - 88

D ATA E XTRACTION

4.2 - Methods of Analysis

There are a number of analysis methods available when considering

the extraction of image data. Generally, these can be split into two

main categories:

. Searching for known data .

. Searching for unknown data.

Each method has its advantages and disadvantages, which will be

explained in depth.

4.2.1 - Searching for known Data

Searching for known data implicitly implies that all situations of

interest are known to the user and system developer prior to the

product development. The data itself need not be restricted to a

single type but can take the shape of patterns, image trends, light

levels, known positions of certain items, etc [67]. The type of data

is dictated by the intended application. This is corroborated by the

highly targeted nature of such processes, mostly aimed at

recognising a single object type [42].

Due to the nature of such a search, the entire system can be fairly

small and the detection process might be fairly rapid, as only clearly

defined parameters are used in the data search. This aspect of rapid

recognition comes to light in the work of Francesschetti, Iodice and

INTELLIGENT OPTICAL SENSOR - 89

D ATA E XTRACTION

Tesauro [30].

The drawback of such a system is however its inflexibility, in a

number of contexts:

Initially, all possible image situations must be known, which implies

a very limited or specialised implementation field. An ideal

application for such a process is, for example, object sorting on a

factory feed belt. In such a condition, the camera is never moved,

lighting remains constant, the area of use is predefined and

restricted with no external noise influences and the objects

appearing in the image have also known profiles and dimensions

[55]. The task of such a system is normally fairly limited, normally

object orientation detection or fault detection by profile matching,

as highlighted by Kuehnle and Burghout [48] . Anything not

matching the predefined object parameters is automatically

discarded and does not undergo any further analysis.

The main drawback of such an approach is directly due to its high

specialisation. The process has been adapted to very strict

implementation rules and generally cannot be adapted to a different

environment without modifying important process parameters[14].

This results in a very reliable but inflexible system.

I NTELUGENT O PTICAL S ENSOR - 90

D ATA E XTRACTION

4.2.2 - Searching for unknown Data

Whilst more complex, this is a much more flexible approach to

image analysis.

Instead of attempting to carry out pattern matching or detect other

fixed features within the image, this approach relies on comparing

the actual image with a previously obtained datum image. Changes

within the two sets can then be determined and analysed in any

suitable manner, depending on the type of data and the desired

output.

Whilst this provides much more scope for development, it also

depends on the obtention of a reliable datum image, from which all

further analysis will be derived. If this initial image is in any way

corrupted, any later processing will reflect this corruption and most

likely result in nonsense output.

Such an approach generally offers more system flexibility, as far as

the system environment is concerned. Depending on the data

extraction and analysis algorithms used, modifications such as light

level changes and even emplacement changes can be catered for,

without having to review the analysis processes.

The sheer flexibility of such an approach also calls for a much more

rigorous data extraction and analysis phase, as changing contexts

I NTELLIGENT O PTICAL S ENSOR - 91

D ATA E XTRACTION

need to be taken into account without corrupting or affecting the

output data obtained [89]. It is also very easy to misinterpret

fluctuating values due to environmental factors as targeted data.

Data must not only be correctly extracted but also correctly

interpreted, which in turn will lengthen the process development

phase.

Due to the flexible nature of the targeted data, or rather, the

varying way in which this data will be presented within the image,

the entire image analysis/data extraction phase will tend to be more

complex, and thus also more time intensive, than when using the

known data extraction approach[16].

4.2.3 - Extraction Mode Balance

In the situation which is being considered for this study, it would be

impossible to predict the total number of variables which might at

any stage come into play and would then have to be analysed or at

least filtered by the system. Indeed, a condition of the hypothesis is

that no prior knowledge of the surveillance environment be needed

prior to running the detection process.

Possible environmental effects can additionally be split into two

groups:

INTELLIGENT O PTICAL SENSOR - 92

D ATA E XTRACTION

1. Effects on the overall image.

2. Effects on the target data within the image.

Of course, the two groups are closely linked, as, for example,

shadows within the image will most probably cause shadows on or

around the target as well, but for processing purposes, the two can

be considered separately.

Effects on the overall image will be affecting the target acquisition

and extraction phase, whilst effects on the target will be affecting

the target analysis stage.

Separating these two processes has a number of advantages.

Initially, overall processing is speedier: If the target detection stage

is negative (i.e., no detected target), the target analysis phase can

be discarded, thus reducing redundant processing.

Secondly, this results in a modular structure where each module

has a dedicated task. This is quite an elegant solution, as the

processes from each module can be called up as and when they are

required.

The modular approach also facilitates the actual system

development stage, as each task can be developed separately.

Modifying or adjusting a given process is both easier and quicker,

and the various modules can easily be fine tuned to one another's

input/output requirements.

INTELUGENT O PTICAL SENSOR - 93

D ATA E XTRACTION

The processing methods for each stage must thus be considered as

totally separate sequences operating under different conditions.

4.2.4 - How Many Stages?

Before the actual number of stages required for the

processing/preprocessing functions can be accurately defined, it is

important to understand the operational conditions of the entire

system.

Intended as a security system, it is likely to be used all year round

in both night-time and daytime conditions. As yet, the system has

not been restricted to purely indoor or outdoor use, which has

implications on the lighting conditions which will have to be taken

into consideration.

Indeed, whilst indoor conditions can be described as fairly stable,

with little or no change to overall environmental parameters such as

lighting levels or spacial occupation (distribution of objects around

the area to be surveyed), an outdoor environment is much more

dynamic, with changes occurring on all levels.

1. Overall Light Changes:

These will occur as a result of the natural day/night cycle. It

cannot be assumed that the system will only be in used at night

time or only in bright sunlight. Light changes will also occur as a

I NTELLIGENT O PTICAL SENSOR - 94

D ATA E XTRACTION

result of weather influences, clouds, mist and rain will all affect

overall light levels.

2. Point Light Changes:

These are light changes due to direct or indirect shadows.

Thus, as the sun crosses the sky, the shadows cast by objects will

seem to be rotating around their source. Shadows will also vary in

size and intensity.

,3. Camera Movement:

Camera movement will occur as the result of improperly mounted

.. cameras, or due to wind vibration. In an extreme case, this can also

occur through human or other interference with the camera itself,

i.e., an attempt to destroy or rotate the camera mounting. As

camera vibration, even on a small scale, is nearly impossible to

prevent, some form of image stabiliser would be highly

recommendable.

4. Object Movement:

As opposed to target movement, other objects might also move

within the surveyed scene. This might be the result of wind (Moving

clouds, trees, floating plastic bags or papers) or through some other

mechanical influence (ventilation systems opening, cars passing

by ...) as shown in fig.ll and fig.12.

I NTELLIGENT OPTICAL S ENSOR - 95

D ATA E XTRACTION

Fig. 11 : Carpark Datum Fig. 12: Carpark with changes

These figures actually illustrate a complex situation with both an

additive and a subtractive change: Fig.12 features the blue car

appearing in the scene as well as a red car having vacated its

parking spot behind the former.

Examining the image difference analysis more closely also shows

motion changes in the trees in the background (highlighted in

yellow, fig.13.)

IClHlohon Analyse/ - . II"IiI EI
File Seltingo ~ A "I' Save H~

o :\Other\PhD\Scene Changea\$hot12.b/r4l

~ IltllIl ... t .,lIell S .. ur -$- I _.J
Fig. 13:Full scene change

Whereas the retained areas of change for further analysis are

I NTELUGENT O PTICAL S ENSOR - 96

shown in fig.14 (highlighted in magenta).

File Settings CaIcuIetions Save Help

D. \Othe!\f'Ii)\Scene Chonges\shot12.brr4>

«r InUIII,II' .,lIcll hUll «r

. ' '.

ID:\Othe!\f'Ii)\Scene CIwlge$\s

~
ynanic Network Tlveshold . 7

Procem,g line was 0.047
secondc

r ffid~ s::.J
Fig. 14.'Retained areas of change

D ATA E XTRACTION

The resultant object recognition, correctly identifying both changes,

is shown in fig.15.

~ Mohon Analyser IllIiI

JD:\Othel\f'li)\Scene ~\s

Dynamic Network Tlvethold : 7
2 Object(s) idnjjed in image
Processng tine was 0.047
seconds

~=~~~~~~~~~~==:::=J r IT.!!!i.[p.!~ Start
D:\Othe,\f'Ii)\Scene Chonge.\shot12.b"" Set Tine,

«r IIUIII ... , ."Icil hUll «r .J
Fig. 15 .' Carpark Difference analysis

INTElUGENT OPTICAL SENSOR - 97

DATA EXTRACTION

4.2.5 - Target Area Recognition

This is but an incomplete list of factors which have to be considered

for a system with such a wide application range. Most of the thus

resulting noise should ideally be filtered out prior or simultaneously

to target detection, thus reducing the number of objects to be

examined during the target recognition stage of the detection

process. A number of systems using neural approaches have been

developed with the sole purpose of noise reduction, prior to analysis

[50, 05], although these tend to be complex systems which often

require a certain knowledge of the operating environment.

The entire aim of the preprocessing stage thus can be summed up

as a process of reducing the image data to such an extent that only

possible targets and their associated uncorrupted data remain, to

be fed into the next processing level of the detection system. This

initial phase could be designated as noise filtration.

Depending on this first stage, and indeed running parallel to it is a

process of potential target area extraction.

Once this is complete, the data which remains holds possible areas

of interest for target recognition or identification. The various target

areas do however first have to be recognised within this overall

presentation.

Although this might initially seem to be a doubling of the target

INTELUGENT OPTICAL SENSOR - 98

D ATA E XTRACTION

extraction process, the difference is illustrated with the images

below (Fig.16, Fig.17, Fig.1S, Fig.19):

j I

... .{ ,~J I'

Fig.1B:Difference image, showing
potential targets

Fig. l7:Camera Image

Fig. 19:Target Image, showing identified
potential target areas

NB: The above image sequence has been obtained by the use of

custom filters within Adobe Photoshop, purely as an illustrative

measure showing possible analysis processes.

As can be quite clearly seen, the potential target detection and

potential target area detection produce two quite different results,

the output resolution being refined during each stage of the

INTELLIGENT O PTICAL S ENSOR - 99

DATA EXTRACTION

detection process.

The steps described above result purely in an accurate definition of

the potential target position within the given camera image, which

completes the first main stage of the detection process: Evaluation

of the presence of potential targets.

Depending on whether the output from the first main stage is

positive (i.e., a potential target has been identified), the second

main phase can be initialised: Potential Target data extraction and

preparation.

Given that the target areas have been identified correctly, the

image data must now be extracted from the image itself and

prepared for further analysis. Ideally, this stage will incur as little

data distortion or loss as possible, so as to present the data to the

Target classification stage in as pure a form as possible. This will

help to ensure a high level of positive (correct) target classification.

4.2.6 - Analysis Sequence

It is initially impossible to specify the amount and type of data

which the classifier will be requiring. This will not only depend on

the architecture of the classifying stage itself, but also on the

desired output from this stage of the overall system. The actual

type of data required, will however not have much effect on the

INTELUGENT OPTICAL SENSOR - 100

DATA EXTRACTION

overall process distribution as such, but will only affect which types

of filters and algorithms are employed for the actual potential target

data extraction phase. The overall system sequence can already at

this early stage be roughly defined. Minor changes to this

arrangement are bound to occur as the system development

progresses, but this will assist in laying out an experimental

development order.

An initial summary of possible processing modules, as defined

above, results in the following breakdown:

1 - Image comparator.

2 - Image Noise Filter.

3 - Image Potential Target Detection.

4 - Potential Target Separation.

S - Potential Target Data Extraction.

6 - Potential Target Data Preparation.

7 - Potential Target Analysis.

8 - Target Recognition and Classification.

9 - System Output Decision.

INTELUGENT OPTICAL SENSOR - 101

DATA EXTRACTION

1 Image Comparator

Due to the intended dynamic nature of the system, its ability to be

used in varying contexts without the need for a system rewrite, this

stage is a necessity to the correct functioning of the target detector.

As we are bound to one of the primary definitions of the problem

(point 3: Can such a system be developed in such a manner as to

be independent of the camera installation location and method?), it

. is difficult to employ a method of scene mapping or prediction, such

as that described by Collins and Tsin [19], as this calls for multiple

differing views of the environment in order to generate an accurate

mapping of the surroundings.

As the environment cannot be predicted, and would be too complex

to be mathematically defined by the operator every time a change

occurred, a process which would anyway compromise the aspect of

autonomous operation as laid down in the basic requirements, it is

faster and more reliable to rely on the system itself to define its

normal operating conditions.

The obtention of a datum image would in such a case be highly

appropriate. The role of the datum image is to store the state of the

surveyed area in a non-alarm situation. To deal with changing

environments, this datum image would ideally be obtained

immediately when the surveillance system is activated. As the

INTELUGENT OPTICAL SENSOR - 102

DATA EXTRACTION

system then operates, each new incoming image will be compared

to this datum to determine whether any changes occurred within

the surveyed area.

Although an elegant solution, such an approach does also have its

potential problem areas:

I. Accidental Environmental Changes:

These could be the result of doors or windows being opened without

, realising that a surveillance system was in operation. For example,

the person enabling the system might have entered the room and

left the door open whilst arming the system, but then closed the

door as they went out, resulting in a constant discrepancy between

the datum image and the incoming camera images, even though no

valid target was present. Such setup errors are a major source of

malfunctions in basic surveillance systems using any types of

sensors [95,26].

II.Lighting Changes:

Especially relevant if the system is operational overnight, where a

brightly illuminated datum image might have to be compared to

camera images in low light conditions. Although essentially

identical, the comparison algorithm could easily be fooled by the

INTELUGENT OPTICAL SENSOR - 103

DATA EXTRACTION

absence of shadows in the camera image, resulting in negative

potential targets.

These problems can however be overcome by the introduction of a

historical component. This might enable the automatic update of the

datum images as overall conditions change without ensuing positive

alarm states.

The role of the image comparator is critical in providing the ensuing

processes with the correct balance of information. Overestimated

tolerances will result in a surplus of redundant information being

passed on for analysis, whilst underestimated tolerances would

result in actual targets being overseen.

In order to provide an ideal flow of information, this process should

have a certain level of dynamic response towards the system's

envi ron ment.

2 Image Noise Filter

This stage follows on the image comparator. Due to the very nature

of the image comparison process, the resulting data will not only be

representing potential target areas but also various types of image

noise, whether these be due to camera vibration, local light changes

INTELUGENT OPTICAL SENSOR - 104

DATA EXTRACTION

or background variations.

In order not to overload the target identification process with

unnecessary data, resulting in longer and unnecessary process

times and the need for more system resources, it would be

advisable to employ this stage as a means of filtering out as much

obvious noise as possible from the image.

By the term "obvious noise", is meant data which cannot in any way

be representing a potential target within the detection parameters

which have been set for this system. The most direct example of

such data would be areas of noise which are smaller than the

minimum specified identifiable target.

Whilst such areas may well be representing real targets which are

beyond the actual search or surveillance range, as long as they do

not enter into the strictly defined search parameters they are of no

interest to the system in general. As soon as such a target enters

the actual defined range, the system will change its classification

from that of unwanted noise to that of a potential target, and the

target identification process will be carried out as intended.

INTELUGENT OPTICAL SENSOR - 105

D ATA E XTRACTION

Fig.20:Point Noise

The example shown in Fig.20 clearly illustrates a condition of point

noise, i.e., noise which is restricted to a certain area of the image.

The second type of noise which must be considered is distributed

noise, a typical result of camera vibration, where the noise is purely

a result of image origin shift in any direction. A similar effect can be

obtained from tree branch movement, as illustrated below in

Fig.21, Fig.22 and Fig.23:

Fig.21 :Datum Image Fig.22 :Camera Image

I NTELU GENT O PTICAL S ENSOR - 106

DATA EXTRACTION

Fig. 23:Differenceof Camera Image(fig.21) to Datum Image(fig.22)

It can be observed that the effects of the noise patterns are fairly

similar, varying only in their spacial distribution.

Whereas in the first case (point noise), noise elimination is possibly

carried out by masking or ignoring the affected area until the

displayed noise gains sufficient significance to be considered a

potential target, the second condition (distributed noise) cannot be

treated in the same way, as we could not afford to even

momentarily mask the entire image without even considering the

. source of the noise in the first place.

As mentioned earlier, this type of noise is most commonly due to

wind-induced camera vibration or background vibration/motion.

This generally represents a fairly regular type of displacement,

either in the nature of the motion or in the area affected by the

motion. Although such motion is difficult, even impossible, to

predict in any accurate way without detailed knowledge of the

operating environment, there is a proven method of compensating

such nOise, as can be seen in high-end camcorders. The solution,

commonly known as "jitter-correction", is occasionally based on

INTELUGENT OPTICAL SENSOR - 107

DATA EXTRACTION

mechanical stabilising devices based on gyroscopic platforms

[Appendix E], but is mainly carried out by full electronic

counterparts which function on the principle of image frame

comparison:

Consecutive images are analysed for generic motion patterns. Large

motion levels, such as those caused by a person walking across the

image, are immediately discarded or ignored, whilst minimal image­

wide motion is compensated for by shifting the entire image in the

appropriate direction.

Such a process could be refined by applying the filter not only to

the entire image, but to individual pixels within the images, thus

resulting in a point by point level of jitter-correction. This can be

further fine tuned by specifying a correction range, implying that

. pixel-wide motion below a given threshold could be automatically

compensated for.

The following images illustrate a few cases displaying various forms

of distributed noise and the effect such occurrences have on a

motion detection process.

INTELUGENT OPTICAL SENSOR - 108

DATA EXTRACTION

3 Image Potential Target Detection

Following the process outlined previously, this phase represents a

crucial stage for the successful operation of the entire system.

This phase for detecting potential targets within the presented

image will ideally be relying on obtaining highly optimised data with

as Iowa loss of resolution from the original image as possible, in

other words, the original image must be optimised but in no way

corrupted to be losing potentially important data to this stage of the

detection process.

Such data requirements stress the need for entirely optimised data

preparation, as any modification to the original data may well lead

to a drop in performance of the potential target identification stage .

. The actual mode of detection is as yet open. A number of different

techniques exist which may be considered for this purpose, but all

rely on some way or other on some form of template matching,

whether this be in a purely mathematical or purely graphical

(nearly empirical) manner.

Template Matching:

A stylised template of a perceived threat is created and modelled in

a mathematical manner, in such a way that it may be applied as a

INTELUGENT OPTICAL SENSOR - 109

DATA EXTRACTION

comparative filter to the incoming image. This template may have a

number of deformation axes which allow for a certain degree of

flexibility whilst retaining the general attributes of the template. If a

match occurs, this is then first analysed for the degree of

deformation necessary to obtain the overlay with the template, and

can then be given a relative degree of importance for further

processing, see target identification.

The main problem linked with such an approach is the requirement

for well defined and separated potential targets. If the image has a

high noise level, or if a potential target is partially hidden or

overlapping with another target, this can cause the template

matching function to fail, as the deformations required to retain

actual matching are then too large to fall within the limited

deformation constraints of the given template. To allow for such

situations by increasing the template's degree of deformation will

only lead to a higher number of negative targets being identified by

the template matching process, thus reducing the system efficiency.

This difficulty introduces the need for a stage of quite rough

potential target evaluation, which might be able to distinguish such

noisy target images. This has been implemented in a number of

studies by using much more generalised templates which only when

combined can be evaluated to be presenting a target match or not,

as shown in the work of Viola, Jones and Snow [84] amongst others

[42, 30, 43, 64, 54]. The problem which this raises is a direct result

INTELLIGENT OPTICAL SENSOR - 110

DATA EXTRACTION

of the multitude of filters employed: when is the filter combination

defined as valid or invalid ? This again returns to the basic

assumption that not all but most object features are already defined

and recorded in a template format.

Another quite straightforward way of countering detection failure

through target corruption is to introduce a historical feature into the

detection process. Once a target has been positively identified, the

system will then track this object, biasing the detection process by

reverting to historical data on the object. Thus, the longer a target

is present within the image, the more certain the system becomes

of its validity and the less likely the system is of loosing the object if

the latter becomes corrupted in any way during a few surveillance

cycles. [89, 78, 31, 09]

Introducing a historical feature however also calls for increased

system storage, as data on the target must be stored and updated,

frame by frame, until the examined target definitely exits the

Surveillance area, a feature which must be treated carefully,

depending on the parameters which are to be stored, especially in

the system at hand, intended to be integrated into a portable

autonomous and yet still discrete unit.

This approach has been used extensively in systems relying on

multiple camera arrays to overcome environment clutter and thus

INTELUGENT OPTICAL SENSOR - 111

D ATA E XTRACTION

enhance tracking efficiency (Collins, Lipton and Kanade[18]

Collins and Tsin[19]). These do however rely heavily on accurate

calibration of all cameras involved and a fixed installation location,

which does not fall within the specifications of this study.

Such a feature also calls for a certain degree of motion tracking

and prediction, which is not entirely necessary in the system

being considered. This might however become a necessary addition

to the processing system if difficulties do arise in target detection

and identification.

See figures 19 and 20 for examples of borderline cases, where the

(valid) target is in some way corrupted out of normal template

deformation parameters.

Fig. 24: Target features partially cut off
by other objects

Fig. 25: Target only partially in the
image frame

All these methods are describing some type of target separation

I NTELUGENT O PTICAL S ENSOR - 112

DATA EXTRACTION

4 Potential Target Separation

What this process describes is the act of separating the identified

potential target from not only the image background, but also from

other intrusive effects such as shadows or objects in front of the

identified target.

It is also the act of identifying not only the fact that the image has

changed, but also of identifying exactly which and exactly how

many separately identifiable regions of the image have undergone

this change.

In actual processing, this step cannot be separated from that of

potential target identification, as one relies on the other, and indeed

the processes are not carried out in a purely linear manner, but are

called in as and when necessary depending on the image observed.

The theory of the process however can be explained in a separate

step.

Target area identification for simple cases (one target in image) is

fairly straightforward. The boundaries of the image change will also

be defining the boundaries of the potential target, meaning that the

affected image area can be rapidly extracted and analysed. This is

shown in Fig.26.

INTELUGENT OPTICAL SENSOR - 113

DATA EXTRACTION

o • Single Object

Fig.26:Sing/e Object

We cannot however, rely on always encountering such a simple

ideal case. Whether due to noise interference or any other inputs, a

more complex situation should be expected.

01 • Objocts Soparatoo

Fig. 27: Separated Objects

Two separate potential targets, as seen in Fig.27, present a step in

this direction. Here the total area of change within the image is

much larger and some slightly more advanced processing is

required to separate the two target components and extract their

data for analysis. This approach can be used for increasing the

number of potential targets in a single image.

INTELLIGENT OPTICAL SENSOR - 114

D ATA E XTRACTIO N

A more complex situation will occur when potential targets encroach

on one another's image space, without achieving apparent 2

dimensional contact. If we simply use the target extent boundaries

for image data extraction and analysis, each target will contain a

certain amount of information on its neighbour target, thus leading

to corrupted data for further analysis.

This can be rectified by refining the identification process in such a

way that a potential target can be checked for entity continuity.

Thus only a group of pixels which are joined together on the image

plane will be considered as forming a single object. In this case, a

certain leeway can be incorporated, giving a possible gap range of a

few pixels in order to allow for possible lighting effects within the

image. This is illustrated in Fig.2B:

02 · ObJec:fa Bounding area. o'Yerlapplng

Fig.28:Boundary overlapping objects

The most complex situation however, will occur when potential

targets are either partially or entirely overlapping in their image

areas. Here, as far as the image change area is concerned, the

multiple overlapping potential targets will simply appear as a single

fluctuating shape, which might or might not meet the parameters

I NTELUGENT O PTICAL S ENSOR - 115

D ATA E XTRACTION

for a valid target identification. This is illustrated in Fig.29.

03 · Object5 oYerlapping

Fig . 29: Overlapping objects

Such a situation is difficult to interpret without having recourse

either to historical data, or to a second image from a different

angle.

As the system considered is intended solely for a single camera

setup, the second option is not available, and the only solution

would be to consider incorporating some form of historical data, and

thus a given object tracking element as explained earlier.

5 Potential Target Data Extraction

Up to this point, we have been concerned with aspects of overall

image analysis . Once the actual potential target areas have been

tightly identified and defined, the system can move onto the stage

of analysing each potential target for possible positive target match.

This requires a certain number of parameters to be extracted from

I NTELUGENT O PTICAL S ENSOR - 116

DATA EXTRACTION

the identified potential target regions.

Such information might take the form of vectorial measurements

leading to an overall shape contour definition, or might contain such

elements as object Centroid, object height, width, placement within

the overall image, object area, variation measurements etc.

During the development stage, it would be highly advisable to

ensure that as many different parameters as possible are extracted

from the image for further analysis. Whilst this might lead to more

intensive data processing algorithms, it is the only way to ensure

that important parameters are not omitted. As further

investigations are carried out, these important parameters will

become known, and less useful measurements can then be omitted

entirely from the data extraction process. Care must be taken to

ensure that the parameters extracted are also universal to every

image in a surveillance sequence. Obviously, if no potential target is

present, this is not a problem, but we cannot rely on empirical

values such as "distance of target 1 from target 2", as there is no

way of guaranteeing that two potential targets will always be

present in the image, thus leading to a lack of data for the following

analysis stage.

Care must also be taken not to provide data which might be locally

affected. This will include features of physical location (terrain

layout, angle of inclination, lighting source variations) and weather

phenomena.

INTEWGENT OPTICAL SENSOR - 117

DATA EXTRACTION

6 Potential Target Data Preparation

Once the data has been extracted from the image, it will have to

be prepared before being presented to the detection algorithms.

This is a necessary step, mainly to ensure that the various data

streams are using standardised ranges. Whilst data from varying

sources can be simultaneously analysed, this process becomes

easier if the said data is restricted to common minima and maxima.

For use with a neural network, it is customary to use a data range

of either -1/+1 or 0/+1. Such ranges not only provide a certain

clarity in the data set, but are also optimal for much of the range

checking within certain networks. It is also well suited to being

processed by algorithms utilising angular relationships (many neural

networks are based on sigmoid functions at some stage of their

processing, thus providing a matching 0/+1 output range

corresponding to the input).

The actual data transformation processes required to achieve this

standardised range must be determined as best matching or

representing the available data. Such processes might contain linear

or logarithmical scaling, empirical stepping, sigmoid based

functions, square root based transforms and many more. [68, 22,

30]

Selecting the process which will provide the most accurate

representation of the data required is important, as many functions,

INTELLIGENT OPTICAL SENSOR - 118

DATA EXTRACTION

such as logarithmic transforms can seriously distort the original

data, enhancing certain ranges and reducing others. It is therefore

important to maintain an accurate knowledge of the original data,

the data which is required to be fed into the analysis network and

the associated data transform required to achieve this without

corrupting possibly important ranges of the original data stream.

Once the selected data streams have been optimised, using

appropriate transform processes, the actual detection/classification

network can be applied on these to achieve at least an initial stage

of target classification.

One of the main difficulties in the entire data preparation phase, is

that of unintentional data distortion or corruption.

Depending on the application, certain data windows of a given

input's data range might need to be enhanced, whether to

accentuate the given range, or due to sensor responses leading to

the need for input amplification. Whilst carrying out this range

amplification process, outlying data which may initially have not

been considered as crucial can be severely distorted, which in turn

may lead to unexpected network behaviour.

It is thus important, before carrying out a data transformation, to

evaluate the entire data range and assess the importance of the

entire data range using statistical or heuristic methods, whichever

suit the application under development. One of the main statistical

INTELUGENT OPTICAL SENSOR - 119

DATA EXTRACTION

analysis methods available is PCA, Principal Component Analysis,

which can give a useful insight into the structure of the data stream

and its variations.

Whilst considering each data stream for its individual characteristics

is important, it must not be forgotten that, within a functioning

network, each input stream (where a stream consists of a data set

for a single object) is considered as a function of its accompanying

inputs. Thus, the network is attempting to define a relationship

between the as yet totally separate inputs, which will then allow a

spatial separation to be defined. This is an intrinsic quality of a

network, as it is composed of a defined number of highly interlinked

nodes defined by linking functions which are data variable, i.e.,

whose values are defined by the incoming data streams, at least

during the dynamic learning phase of the network.

Obtaining a good understanding of possible data relationships prior

to any network development work is therefore crucial to the

development of an optimised system. If redundant or repetitive

data can be filtered out of the network input streams, this will

ultimately lead to a more robust system, as the network will be able

to establish simpler internal nodal correlations which will be

optimised to representing the wanted output patterns, and not

wasting processing resources in carrying out internal data noise

filtering.

INTELLIGENT OPTICAL SENSOR - 120

DATA EXTRACTION

The more optimised a network is in this aspect (dealing with pure

data instead of declassifying noisy or unnecessary data), the higher

the expected network's performance can be. We must also take into

account the networks potential for data generalisation and

operational noise filtering. If the network has been able to train with

optimised data, less of the internal resources will have been

"wasted" in data cleaning, and the network should thus be able to

use these resources for operational noise filtering.

7 Target Recognition and Classification

The phase of target recognition, whilst less crucial than the actual

data preparation, is much more spectacular in its results, as this is

the stage where a single network, or a conglomeration of networks,

will be utilised to analyse the prepared data and output a target

directed decision based on this data.

The simplest method would be to feed the previously prepared data

straight into a classification network which would then output one of

two possible results: " Target" or" No Target".

Due to the probable high complexity of the data to be analysed, as

well as the sometimes fairly ambiguous separation lines between

INTELUGENT OPTICAL SENSOR - 121

DATA EXTRACTION

valid and invalid targets, we might well have to refine this structure

somewhat.

Consider for example the case where a person crawling on all fours

is detected by the camera:

The system might be indicating a borderline condition between a

person and a dog. Here, a simple ON/OFF decision type might not

be able to provide sufficient definition to enable a satisfactory

output.

In such a condition, it might be preferable to first utilise a general

sorter which then feeds its results into a final classifier. Such an

approach would provide a much increased response certainty, or

simply a better system reliability, as each network type will be used

in its optimal area.

The actual linking method and internal network types depend very

much on the type of data to be analysed, as well as the type of

response expected from the system.

8 System Output Decision

In this study, we are expecting the system to output a decisive YES

or NO when a data stream to be analysed is provided.

When an uncertain condition occurs, it is debatable in a security

INTELLIGENT OPTICAL SENSOR - 122

DATA EXTRACTION

application whether a bias should then be applied to the output.

Using such a bias can easily lead to a large increase in false alarms,

which in turns reduces the effectiveness of the entire system as

operator trust decreases. It might be more appropriate to give a

"Probable" warning, maybe accompanied by a percentage

probability. Such an approach would then leave the ultimate

decision to the system operator's own discretion.

In the case of a fully autonomous system, it can be left up to the

system installer to induce a positive or negative bias up to a

predetermined maximum. Thus the system can be fine tuned to its

given operation location.

The actual type of expected output is going to have an effect on the

final classification method to be used.

INTELUGENT OPTICAL SENSOR - 123

FEASIBIUTY STUDY

5 - Proof of Concept

A computer cannot turn bad data into good data - John R. Pierce

5.1 - Introduction

This chapter serves not to develop processes or theories, but rather

to prove the viability of a certain level of processing, thus ensuring

that the entire hypothesis regarding the extraction and validation of

image data has further perspective. It also serves to evaluate

various existing processing techniques against the type of data

likely to be encountered, were the system considered to be

developed further.

5.2 - Feasibility Framework

The main aim of this study is to create a system which will be able

to correctly determine whether a shape in an image is a human or

not. For the purpose of feasibility evaluation, it should therefore be

sufficient to develop a framework system capable of proving certain

features:

1. Emulation of camera image input.

2. Ability to apply image filters in such a manner as to preserve

intended analysis contours whilst eliminating image aberrations

INTELUGENT OPTICAL SENSOR - 124

FEASIBIUTY STUDY

due to changing light conditions between image frames.

3. Ability to filter images in order to eliminate image differences due

to minor effects such as camera vibration and image background

motion.

4. Ability to distinguish one or multiple target areas within a

processed image.

5. Ability to extract relevant data from the aforementioned target

area(s).

6. Correct analysis of resulting data.

This represents a rough breakdown of the entire detection process,

and not all of these steps need to be emulated to obtain a

confirmation of the studys feasibility. The main concerns are initially

covered within the first 3 stages, as these represent the actual data

gathering stage. If this initial task is not possible, it would be

useless to develop any of the later analysis stages.

For the purposes of this initial feasibility study, it is not necessary to

obtain real data, a rough evaluation or simulation of possible

conditions is sufficient, as the aim is not to evaluate the success

ratio, but purely the probability of success.

Considering the system parameters, there are two main aspects

which have to be considered:

INTELLIGENT OPTICAL SENSOR - 125

Changing light levels in an image.

Moving objects within an image.

FEASIBILITY STUDY

These parameters can be combined in a number of ways, and for

the purpose of these initial tests, the following combinations will be

used:

1 - Constant light levels, changing scene

2 - Changing light levels, constant scene

If these prove to be solvable cases, it can be assumed that more

complex combinations of the conditions should also be solvable

using adapted algorithms.

5.3 - Methods of Testing

The initial system proposal calls for the object detection process to

be functioning by using an image comparison: When the system is

initially enabled, a datum image will be taken. This might or might

not be updated during the surveillance period, depending on final

system architecture and whether the need for this arises or not.

When the system is in surveillance mode, each incoming image (the

exact image refresh rate has yet to be determined) will then be

compared to the initial datum image.

INTELLIGENT OPTICAL SENSOR - 126

FEASIBIUTY STUDY

To simulate this operating condition, we have then to generate an

initial datum image as well as a series of surveillance images. The

advantage of this process is the amount of control which is available

over the images. Parameters may be modified in a supervised

manner to observe the system reactions to these changes.

The initial testing process will be limited to observing how well the

image comparison process can function, without going into the

actual target identification and analysis. It is therefore not of

extreme importance if these initial testing images are quite noisy,

as long as they fulfil the test parameters:

1 - Constant scene, changing light levels

2 - Changing scene, constant light levels.

The ideal result from this initial test would be the development of a

comparison algorithm which could, with little adaptation, cope

equally well with both conditions outlined above, that is, a process

which could cancel out overall image light changes whilst being able

to identify point changes within the image.

Considering condition 1:

INTELLIGENT OPTICAL SENSOR - 127

FEASIBILITY STUDY

5.3.1 - Constant Scene with Lighting Changes

The aim of this test is to develop a comparison process which will

ideally report a "no change" condition between the datum image

and the camera image, thereby cancelling out all changes purely

due to fluctuating light levels.

It is important to consider one point: The light levels in question

must be overall light levels. It must be noted that a fluctuating spot

light within an image actually represents a change in scene and not

a change in light levels.

Whereas the human eye is able to distinguish between these two

seemingly obvious condition, this effect may be best explained by

using an image threshold example.

The following two images (Fig.30 and Fig.31)have exactly the same

scenic elements, apart from the fact that in the left hand image, the

small desk lamp is switched on:

Fig.3O:Lamp on Fig. 31 :Lamp off

To enhance this comparison, both images have been grayscaled and

then thresholded to the same value.

INTELLIGENT OPTICAL SENSOR - 128

F EASIBILITY S TUDY

Carrying out a direct difference comparison of the two images yields

the result seen in Fig. 32:

Fig.32 :Lamp Difference Image

Which would then be interpreted mathematically as the object

shown in Fig. 33.

Fig.33:Lamp Difference Object

As can be seen, once the reference image of the lamp (which has

not been altered between the two images, apart from an overall

lighting change on the entire object) has been removed, it is even

visually difficult to define the change in the image as being purely a

local lighting effect. From a purely objective point of view, the

resultant image change which has been ide8tified can be classified

as being due to a scene change and not a lighting change.

Obviously this type of condition will have to be considered at some

stage during the development of the detection algorithms.

I NTELLIGENT O P"TlCAL S ENSOR - 129

FEASIBILITY STUDY

For the purpose of the lighting change test, a short sequence of

images was taken using the WebBlaster Webcam[95] . These are

images of a desk under varying room lighting conditions, as seen in

Fig.34, Fig.35 and Fig.36.

Fig. 34 :Light Room Fig.3S: Medium lit Room

Fig. 36:Dark Room

It is important to note that the actual scene in this image sequence

has not been altered, only the overall light level is varying.

Fig.36 however highlights one of the main problems which occur in

low- light conditions: image graininess, effectively a drop in image

resolution, resulting in an apparently noisier image. This effect and

its severity is very much dependant upon the camera/lens

combination used. In this case, this low-light aberration is quite

I NTELLIGENT O PTICAL S ENSOR - 130

FEASIBILID STUDY

severe and can be tracked back to the low quality plastic lens used

on the Webcam. If IR illumination was provided for such low-light

conditions, these effects would also be greatly reduced. [69]

Considering the sequence of three images, the aim of this process is

to try and obtain a zero or near to zero result from a subtraction

between two images. By zero must be understood a blank output,

thus showing no detectable change between the images compared.

Theoretically, it should be sufficient to simply compare the images

using a direct comparison, however, this will not be able to

compensate for the overall light change, and objects which are

simply less illuminated will be marked as representing a change in

scene. In practice, the unit might well be in use over long periods of

time, where overall light-level changes would be commonplace.

When considering image light level, or, as represented in a captured

image, image colour levels, as general light conditions are reduced,

the actual colour range in the image itself is also reduced, i.e., the

entire colour distribution gets shifted into darker tones.

Accompanying this, the mean light value also dramatically reduces,

as can be seen in the following histograms (Fig.37, Fig.38, Fig. 39).

These represent the unmodified colour level distributions for the

previous three images.

INTELUGENT OPTICAL SENSOR - 131

... 255

x: ll..llTlinance level
Median: 93 'I: Number of pixels

Fig. 37: Light Room Histogram

Std De\!: 28.55

Median: 67

... 255

x: Ll..IITIinance Level
'I: Number of pixels

Fig.38:Medium lit room histogram

Median: 13

x: Luminance Level
'I: Number of pixels

Fig.39:Dark room histogram

FEASIBILm STUDY

The median light level value drops from 93 in the first well

illuminated image (Fig.37) to 13 in the last darker image (Fig.39),

from a possible maximum of 255.

If we are in any way to compare these images, the overall light

INTELUGENT OPTICAL SENSOR - 132

FEASIBILITY STUDY

level change must in some way be compensated for. A fairly rapid

way of achieving this would be to equalise the mean lighting values

between the different images.

Considering the first two images Fig.34 and Fig. 35. If the first

image (Fig. 34) represents the camera's datum image, and the

second image (Fig. 35) represents the currently captured

surveillance snapshot, this equalisation can be carried out in a

number of manners:

1. Equalise both images to a given fixed value.

2. Equalise to datum: the snapshot image will be modified.

3. Equalise to Snapshot: The datum image will be modified.

4. Equalise to brightest/darkest: Depending on current light

conditions, the lightest (or darkest) image will be modified to

match the other.

S. Equalise both images to a mean value determined by both the

datum and the snapshot image values.

There are a number of pOints which must be considered when

selecting the appropriate process:

When the overall light level of an image is reduced, there follows

with it a proportionate loss in image detail. Depending on the actual

level of correction, this could severely impede the object detection

INTELUGENT OPTICAL SENSOR - 133

FEASIBILITY STUDY

process.

The use of a fixed threshold can limit the system effectiveness in

extreme level changes, such as are bound to occur over a longer

surveillance period. The act of artificially attempting to standardise

the current light levels can lead to image corruption with

subsequent loss of data for further processing.

What is required for maximum flexibility is an adaptation level

which will be dependant on each image to be processed.

Comparing fig.38 and fig.41, representing the same image, fig.38

shows the light level distribution severely biased towards the lower

levels (left hand side of graph), with the top third luminance levels

effectively missing or only poorly represented. This is an inefficient

use of the available luminance bandwidth, leading to a potential loss

or restriction of data in certain regions of the image (contrast

between different objects is too low to enable efficient detection).

Enhancing the right hand side of the histogram, as is the case in

this example, has the net effect of lightening the image but

simultaneously preserving previously dark areas and actually

enhancing the contrast between image components, hence the term

luminance stretch, as each component is handled separately.

As shown in fig.41, the histogram contour is largely unmodified, but

in comparison to fig.38 makes much better use of the available

range.

INTELLIGENT OPTICAL SENSOR - 134

FEASIBILITY STUDY

As is clearly shown in fig.43, this is however not a magical method

which can somehow fill in missing image detail. Although the full

luminance range is now used, the actual data density (i.e. image

detail) within the image remains constant, and is actually reduced

within a given luminance range (due to the scaling effect). This can

also be a source of potential image aberrations, as small errors are

also enhanced, and become more significant in a sparser data

population then they might previously have been. This is however

not critical as an overall detail enhancement has been carried out, it

is simply the contrast of data feature to data error which has been

increased.

Considering the new useful luminance range, the detail density is

actually calculated as shown in Fig.40:

where

R
D =D----1!...

f PR
f

D f :density over the full range

D P :density over the partial range

R f .' full range
R p.' partial range

Fig.40:Luminance Range

Fig.42 shows the same image, but with the luminance levels now

normalised, i.e. stretched to occupy the full available range. The

actual transform is fairly simple, and involves identifying the near

zero luminance level range within the histograms (i.e. finding which

brightness levels within the image are missing), then scaling the

INTELUGENT OPTICAL SENSOR - 135

FEASIBIUTY STUDY

remaining values by a dependent factor. Enhancing the right hand

side of the histogram.

The following histograms represent the same three images, albeit

now processed in such a way that absent light levels have been

chopped off, and the entire image then re-stretched to cover the

entire available range, effectively a level stretch.

Median: 131

x: Ll.Jmjnance Level
'I: Number. of pixels

Fig.41:Medium Histogram Stretched

Median: 66

x= 255

x: LtJmjnance level
'I: Number of pixels

Fig.42:Dark Histogram Stretched

The most interesting result can be observed between figures 37 and

38. Apart from a few spikes in the lower ranges, the resulting

distribution trends over the histograms are very similar, thus

INTELUGENT OPTICAL SENSOR - 136

F EASIBILITY STUDY

showing that the overall images must also be very similar. Figure

28 displays the obvious signs of a highly corrected image, with very

little density over the entire histogram.

The actual images in their corrected form are shown in Figures 43,

44 and 45:

Fig.43:Corrected Room Light Fig.44 :Corrected Room Medium

Fig.45:Corrected Room Dark

Comparing this sequence to the original sequence, the resulting

images are now much easier to compare both visually and

mathematically. Image 3 (fig.45) is still quite dark, due to the

extreme example which was used, a situation unlikely to ever occur

if the final system is operating with IR illumination in any form.

One effect which can be noted from the above images is the quite

strong haloing effect (in this case a darker circular border to the

I NTELLIGENT O PTICAL SENSOR - 137

FEASIBILITY STUDY

image), specifically in image 2 (fig.44). This dark image edging is

largely due to the poor quality lens used for these sequences which

has a relatively high light loss, and would be dramatically reduced

were a decent lens used.

These resulting images can now be thresholded to their local

median values, resulting in the following sequence (Fig.46 and

Fig.47):

. ~.
' ... "' .. ',

. .
" ..

.... • I.. • I .. : L

.. : ': t'

. - ~'''~'' :;r
~' .~.: '?,. -' ~" ... I: t.J.

I ',. "0: •• - .. • :.i:: '.:.. ":.: :.:) <. ,...::.::.:,; . '.
..... ':.: .~+-:':~-=-.~.,;r..&~

Fig.47:Medium Room Threshold

These may now easily be compared or subtracted from each other

to identify the resulting image changes:

I . I
• II 'I J

.i I ~~ JI. ,. -..
, -. ...' 1

. ..!~{.:. ~.~ -
L. -- - • ~-=----......

__ .,J

. ,-.". J .. ~" "
Fig.48:Difference of Fi.44 to Fig.43 Fig.49:Difference of Fig.45 to Fig,43

Fig.48 shows a simple subtraction of fig.44 to fig.43.

Fig.49 shows a simple subtraction of fig.45 to fig.43

INTELLIGENT OPTICAL SENSOR - 138

"

FEASIBILITY STUDY

These reveal the differences in the images once the luminance level

corrections have been carried out. As can be noted, the lens

aberration causes quite a striking effect in the final comparison

images.

Although the results could be used, they are not very refined, with

lots of extraneous noise still present.

Another solution, which leads to less interference in the final

difference images, is to compare the grayscale images instead of

the thresholded images. Doing this would result in more information

being compared, thus supposedly giving a more accurate resultant

image.

Carrying out such a process provides the results shown in Fig.50

and Fig. 51 :

l. -.

.. J~ .. -- . , . 1 ,!
Fig. so: Grayscale Fig.44-Fig-.43 Fig. 51 : Grayscale Fig.4S-Fig.43

These images provide more information by giving the actual

difference value between the compared images, instead of simply a

state of change.

A more accurate result can now be obtained by thresholding the

entire image. The threshold value is once again dynamic, depending

INTELLIGENT OPTICAL SENSOR - 139

FEASIBILITY STUDY

this time on the values of both initial images.

Where in figs.48 & 49 the thresholds for the images were taken

prior to the subtraction process, thus providing results based on

images with different reference levels, performing a grayscale

subtraction results in a more accurate and balanced outcome, as

the threshold value is now calculated on the final subtraction image

and not on the two subtraction components, allowing the

subtraction process itself to be taken into account and subtraction

errors to be partially compensated. This calculation is shown in

Fig.S2:

T=.;,...i=....:,.O __ _

where
V I : image 1 value

V 2: image 2 value

V 3 : resultant value

T: threshold

n

n : number of points considered

Fig. 52: Threshold Value Calculation

Thus, for the (2-1) (fig.S3)comparison, the original medians where

131 and 141, giving a mean of both means of 136. Applying this to

the comparison image results in the following, the same for

Comparison (3-1(fig.S4)):

INTELUGENT OPTICAL SENSOR - 140

FEASIBILITY STUDY

....
-..
I.: .. ' ..

.' 'I

\~
~. ----~

Fig. 53: Threshold of img2-imgl Fig. 54: Threshold of img3-imgl

This approach displays a much improved response, at least in the

field of overall light change compensation, which was the aim of this

initial experiment. It might be advisable to shift the final

thresholding function to represent the maximum available value, in

this case 141, so as to not risk losing too much detail in the final

resultant image.

The resultant from this operation may be seen in Fig.55 below:

..... ,-

I .
Fig.55:Maximum Threshold

Given the small difference between the two images, using even the

maximum threshold value does dot affect the result very much.

INTELLIGENT OPTICAL SENSOR - 141

FEASIBI LITY STUDY

5.3.2 - Constant Lighting, Changing Scene

For the purpose of this test, the following two images Fig.56 and

Fig. 57 were used:

Fig. 56:Datum Image Fig. 57: Camera Image

By providing a situation with mainly back lighting, the problem of

object cast shadows has been largely eliminated in the above

sequence. Whilst this is an ideal condition which we assume to

encounter very much in actual live situations, it is ideal to carry out

this change of scene test, as some of the possibly disturbing

parameters have been cancelled.

As for the first test condition, exactly the same calculation process

will be applied to the above images. If the results are satisfactory,

this will represent an ideal condition: a single preparation algorithm

able to deal simultaneously with general light level changes whilst

correctly highlighting scene changes.

The first stage, image levels correction using clipping and

stretching, outputs the following two images (Fig.58 and Fig. 59) :

INTELLIGENT OPTICAL SENSOR - 142

FEASIBILITY STUDY

Fig.58 :Datum Stretched Fig.59:Camera Stretched

As can be seen, the images have not changed very much, simply a

general lightening effect.

The second stage, grayscale image subtraction, gives the result

shown in Fig.60:

--,.

Fig. 60: Differenceof Camera to Datum image

This shows nicely how the profile of the person has been correctly

identified, as well as a few object edges, which is probably

attributable to both shadow effects and camera wobble. Generally

these other image artefacts are light enough to be easily filtered out

at some stage. Note the vertical light stripe running through the

person's profile, due to the already shadowed area in the datum

image from the space between door and doorpost.

I NTELLIGENT O PTICAL SENSOR - 143

FEASIBILITY STUDY

The final step, image thresholding to the current maximum value,

results in the output shown in Fig. 61 :

Fig. 61: Thresholded Difference Image of Camera to Datum

As predicted, the surrounding noise has been cleanly eliminated. It

is however interesting to note that the person's legs have also been

eliminated.

Whilst this indicates that the comparison algorithm will need to be

fine tuned, it must be noted that exactly the same process as for

the light level correction has been applied, with quite satisfactory

results when the outputs of the process are visually evaluated

against expected outcomes [Appendix A].

INTELUGENT OPTICAL SENSOR - 144

FEASIBILm STUDY

5.3.3 - Conclusion

Through simple experimentation using Adobe Photoshop, an image

comparison process has been developed which, whilst still requiring

refining in a number of stages, provides a satisfactory level of

performance.

These results show that the same algorithm can be used to deal

with both equalising general lighting changes and detecting local

image changes, whilst retaining a maximum amount of information

for later processing.

The basic steps of the developed algorithm are detailed here:

1. Image level correction. Unused levels, or levels only present

below a certain value (this value must still be defined somehow,

whether as a static value or as a dynamic image dependant

value) are cancelled out, and the entire image histogram is then

stretched to cover the entire available range (0-255 for

grayscale), resulting in a general light level correction.

2. The histogram median values of light level for each image are

recorded for further reference. The maximum median alue is

stored.

3. The two images (camera datum and camera snapshot) are then

subtracted one from another to obtain a grayscale difference

image.

INTELUGENT OPTICAL SENSOR - 145

"

FEASIBILITY STUDY

4. The resulting grayscale difference image is then thresholded to

the previously recorded maximum histogram value, resulting in a

monotone difference image which can then be used for further

processing stages.

It must be noted that the entire process considers each image

separately, thus providing a system with a very dynamic response

to varying environmental conditions and which retains maximum

image information throughout.

The fact that only grayscale images are being used is due to the

fact that many surveillance systems currently on the market rely on

grayscale (Black and White) cameras for reasons of cost, but also

due to the fact that a camera with any degree of IR sensitivity, thus

ideal for low light level use, will provide colour images with a strong

red component. As explained in the product study, colour cameras

come equipped with a red filter to provide more natural images,

which would however cancel out any IR sensitivity.

Using grayscale images also allows for a considerable reduction in

image size, thus requiring both less storage and less processing

power to correctly process. These advantages result in more rapid

processing, which must remain a major consideration in an online

detection system.

INTELLIGENT OPTICAL SENSOR - 146

FEASIBILITY STUDY

5.4 - Application

Now that a rough outline of a possible functioning preprocessing

procedure has been proposed and found to be performing to a

suitable degree, the entire process must now be refined and fine

tuned to the application at hand.

It is important to always consider the fact that this system is

intended for real time application with a limited hardware resource,

so any algorithms should be kept as simple as possible, whilst still

retaining a correct volume of data for correct image analysis.

Additionally, as the system is intended to be embedded onto

standard hardware, any coding must take into account the fact that

many of the advanced graphics handling routines currently available

within the PC enVironment, whether due to programming API's or

hardware advances in graphics handling will most probably not be

available in the final system.

INTELUGENT OPTICAL SENSOR - 147

"

FEASIBILITY STUDY

5.4.1 - VosDemo

Before any further experimentation can be carried out in the area of

initial image comparisons and processing, the processing stages

which have previously been roughly defined using Adobe

Photoshop must be converted into custom code, which will provide

more flexibility with regards to fine tuning the system and applying

it to better customised analysis processes.

The result of this initial coding is VosDemo, a program which is

designed to interface with the Creative Labs WebBlaster.

This allows the user to first select a datum or reference image, then

either manually select an incoming camera image, or set the

incoming image update onto a preset timing sequence, thus

allowing "hands-free" operation.

When the camera image has been selected, both images are

processed and compared, to obtain a resulting difference image,

which is then overlaid over the currently selected camera image.

The full sequence is as shown in Fig.62:

INTELLIGENT OPTICAL SENSOR - 148

FEASIBIUTY STUDY

Image Source
Selection

I

Update Camera Image
in Temp Storage

Grab as Image stored as
Datum Image Datum.tmp

I I

Set Timing Image Pixels grabbed
Interval

I

Set Manual or Simultaneous Image
Automatic Mode inversion and local

I
thresholds calculation

Start I

Thresholded Image
stored In seml-

I permanent array A
Timer Run out

I

Specified Image File Image stored as
opened Camera.tmp

I

Timer Reset Image Pixels grabbed

I Simultaneous Image
inversion and local

thresholds calculation

Thresholded Image
stored In

temporary array B

I

Arrays A and B
compared (subtracted)

I

Difference saved in
temporary array

In Automatic Mode C

I

Datum.tmp, Array C overlaid in
Camera.tmp and Array yellow over the Camera
C saved in new folder Image
as bitmaps and a text

file.

Fig.62:VosDemo Operation Sequence

INTELUGENT OPTICAL SENSOR - 149

FEASIBILITY STUDY

As can be seen on the flow diagram, no image correction processes

are currently included into the VosDemo sequences. The only

process which is as yet adaptive to the image is the dynamic

threshold calculation, which is in any case necessary for the correct

colour to grayscale transformation.

Whilst Vosdemo can import full colour images, these are

immediately converted to Grayscale, the reason being an enormous

savings in required storage space as well as subsequent processing

time.

As this initial image comparison process is only using the

thresholded Datum and Camera images, with neither of these

stages being affected by the other image, this is simply a matter of

reducing the actual processing code.

Should it be determined that the colour or grayscale images

themselves need to be dynamically adapted to one another, this

approach will obviously have to be modified to allow for a full

grayscale or colour image storage area within the detection system.

The output of this version of VosDemo is a simple text formatted

file which stores the values of the set pixels resulting from the

image comparison process. This can then be easily analysed or

processed at a later date.

Fig.63 and Fig.64 are a couple of screenshots showing VosDemo in

INTELUGENT OPTICAL SENSOR - 150

FEASIBILITY STUDY

action:

Fig.63:VosDemo 1

The selected datum image is displayed to the left, and the incoming camera

image to the right

Fig. 64: VosDemo 2

Here can be seen the resulting difference image overlaid on the Camera image

Considering the individual stages of the transformation algorithm:

When the initial image pixels are grabbed, these are stored as RGB

values in a set of 3 dedicated 320x240 arrays, one for each colour

INTELLIGENT OPTICAL SENSOR - 151

FEASIBIUTY STUDY

band. These three arrays are then used to calculated the grayscale

threshold of the image. Simultaneously, the pixel parameters are

inverted to obtain an inverted image matrix as shown in Fig.65:

where T=Threshold

T ==L=-{.;,.-2_55_-.;,.-{_aR_+_b_G_+_c_B.;,.-} }_d
320*240

and where the parameters a, band c are defined in RGB to grayscale conversion

Fig. 65: Threshold Calculation

According to this threshold value, the calculated pixel will be set to

black or to white, and stored in a temporary array.

The multiplication factors a, band c are generic values for

transformation from colour reference to a grayscale mode,

calculated to represent the normal human perception of colour

distribution in light. They are, respectively for Red, Green and Blue:

0.3 - 0.58 - 0.12 (See Fig.66)[47]

G=0.3r+0.58g+0.12b

where
G: grayscale value
r : red component value
g : green component value
b: blue component value

Fig.66:Grayscale Transformation

This calculation is carried out once for each new image. When a

datum image is grabbed, this info will simply be passed over to a

INTELUGENT OPTICAL SENSOR - 152

FEASIBILITY STUDY

new array.

When an image comparison calculation is carried out, we are simply

doing a straightforward subtraction of temporary arrays A and B, so

as to speed up the code execution cycle. There are a number of

factors slowing down the detection process, which would otherwise

not be present on a dedicated system:

Firstly, the image is being grabbed pixel per pixel by the camera

interface software, and this is being translated into a jpeg format.

Once this is completed, Vosdemo then grabs this composited image

and decomposes the image once more into its original pixel

structure. Obviously the larger the image, the longer this process

will take. Once these pixels are grabbed and the total image

threshold calculated (executed in a single cycle, one cycle being

320x240, i.e. 76800 groups of calculations), the threshold then has

to be applied (second cycle) and stored (third cycle). The actual

image comparison is also carried out in a single cycle, and saving

the difference image will be a cut down cycle, as only those pixels

showing an actual difference are saved. This represents a total of

384 000 groups of calculations per active comparison.

If the entire system were task dedicated (i.e. hard-coded), the

initial transformation into a valid image format, and the subsequent

re-transformation into separate pixel structure would be obsolete.

We would not be needing each input to be displayed, and thus only

INTELUGENT OPTICAL SENSOR - 153

FEASIBIUTY STUDY

the difference image would be calculated and stored temporarily to

be fed into the detecting network.

One factor which is going to affect both systems is the size of the

image and the type of camera used. If we opt to carry out detection

using a monochrome camera or one with IR capability, we will be

losing the entire set of colour information, which represents twice

the entire image size, i.e. 2x320x240 or 153,600 chunks of data,

where each chunk could vary from being a single bit, to 8 bits of

data (considering images varying from purely monochrome data to

256 colour distribution).

Considering the advantage which can be obtained through using IR

capability cameras as far as detection is concerned, we can also

appreciate the substantial amount of data compression or reduction

which can be brought about by their use.

If the thresholding function, whose output is a monochrome array

defined purely by the image dimensions and not the camera colour

definition, is hard-wired (i.e., implemented through an electronic

circuit rather than through computing emulations), then we are

considering a situation where the software will be dealing with

anything from one third to one twenty-fourth of the amount of data

as compared to what it is currently having to cope with. The

software will then purely be dealing with the image comparison

INTEWGENT OPTICAL SENSOR - 154

"

FEASIBILITY STUDY

cycles.

5.4.2 - VosReader

VosDemo is designed to carry out only the initial image comparison,

but none of the subsequent processing steps.

This very structured approach is intentional in order to facilitate the

performance analysis of the various stages in the entire system.

VosReader is a stand-alone application which uses the data created

by VosDemo. VosReader displays the datum and the camera images

in two small side windows for purposes of clarity. The main central

window is used to display the saved change image, in full size.

The user is then able to manipulate this main file through the use of

pre-coded or custom designed filters (which can be stored). The

final output can be saved when the user is satisfied about the type

of filtering achieved. Currently, the user is limited to filters with an

aspect of 3x3 or SxS, although the range could be increased to

include 9x9 pixel filtering.

As can be seen, VosReader is concerned solely with the image post­

processing aspect - This is the stage at which we can determine

exactly what type of data is going to be fed into a network for

INTEWGENT OPTICAL SENSOR - 155

'.

FEASIBIUTY STUDY

further analysis.

That this analysis is not occurring in real-time here is not a problem

- We are at the stage of defining various types and sequences of

filtering. VosReader is simply presenting a highly visual

experimentation platform, allowing filter effects to be displayed

immediately, or corrected if not adequate.

In the initial stages of recognition network development, we will not

be running in real-time. The actual network training stage will be

requiring large quantities of variable data to be available, and once

an adequate filtering algorithm has been decided upon, it would be

quite a simple matter to write a separate program capable of

dealing with a few hundred or thousand files in a batch manner,

without any visual clues, so as to speed up processing time and

avoid any unnecessary programming clutter.

Fig. 67 shows VosReader in action:

Fig. 67: VosReader

INTELLIGENT OPTICAL SENSOR - 156

FEASIBILITY STUDY

Let us now observe the operations sequence of VosReader (Fig. 68).

INTELLIGENT OPTICAL SENSOR - 157

FEASIBIUTY STUDY

User selects Change. vos file
to be opened. Change. vas
copied to a temp. storage

array
I

Program tries to open If not available, appropriate
Datum.bmp and camera.bmp message output on screen

relating to Change.vos

If available, Images displayed I
Display Change.vas In main

in small preview Windows

window In full size

I
Select Filter to be applied to User selects fllter creation

Image from available t-- tool
filter list

I I
Vosreader checks for tilter

J. ~
User prompted to enter up to

validity. (checks for VR3 or a maximum of a 5x5 matrix
VRS file header) niter

, I

User selects Apply User prompted for name.
Filter checked for validity and

saved In filters folder.

I

Popup window dosed. Main

- program "Iter list updated.

"

Filter applied to image,
change immediately displayed

and stored In temp arrav.

I
User selects Save. User selects Restore. Temp

Temp array Is written to a array is deleted and original
text "Ie listing both the Image (-1 transtonn) IS
original Image and the restored on screen.

transformed Image,
mentioning which filter was
used. All data Is saved In II

sub-folder and named
Incrementallv·

Fig. 68: VosReader Operational Sequence

. Due to the fact that VosReader can immediately display the results

INTELUGENT OPTICAL SENSOR - 158

F EASIBILITY S TUDY

of user-made filters, it becomes quite a powerful tool for this initial

development stage.

The actual filtering process in itself causes a number of issues,

which are considered here:

When Change.vos (the output of VosDemo) is opened, the contents

of the file are copied to a temporary storage array. This array will

be used for all further transforms, leaving the original file

uncorrupted.

When applying a filter to an image, we face the problem of edge

filtering. There are a number of ways to go about this task:

Apply the full filter on the entire image, accepting slight filter

degradation at the image edges due to only partial filter activation,

as illustrated in Fig. 69:

5x5 filter

Affected
Pixel

Non-filter ed
area of 'mage

Fi Itered Area

Fig. 69: Filter ApplicatIOn

This shows a SxS filter being applied to the image, but leaving a 2

INTELU GENT OPTICAL S ENSOR - 159

F EASIBILITY STUDY

pixel wide border around the entire image which will not be affected

by the selected filter.

Whilst this might not be readily noticeable to the human eye, such

an approach could lead to quite serious data loss or data corruption,

and is therefore not suitable to the application at hand.

A more appropriate approach would be to use an adaptive filter

which is modified when applied to the edges of the image.

Fig.70 shows how the filter itself is split and adapted to be applied

to the various image edge segments.

FIlter segment ~I=rn
for lower right til

AIt" ... m •• t_~
for center right t=t=8

Filter segment ~
for upper right ~ t:t±j

Filter segment
ror lower edge

t m

m
+ Filter segment

for upper edge

I=rn"'- Filter segment rn for lower left

_----- Original
Filter

a=E_ flit., nt 8:E ." Im·oe left

Pixel belno
'------ coosldered

~.....- Filter segment Ijjj for upper lett

Fig. 70:Adaptive Filtering

INTELLIGENT OPTICAL SENSOR - 160

FEASIBIUTY STUDY

The illustration above is not strictly accurate, as the filter segments

shown would only be applicable for actual image edge pixels. The

second row of image pixels would require yet a further level of filter

segments where the considered pixel would be inset into the filter

segment by a single pixel filter column.

As can be observed, the above method, whilst very accurate as far

as filter application is concerned, involves some rather convoluted

and extensive filter adaptations, which become ridiculous when

larger filter sizes are considered.

A third method, the one which was eventually adopted for

VosReader, is also available.

The approach is to first consider the size of the filter being used,

and to then add an appropriately sized buffer of blank pixels to the

image. The actual filter is not changed in any way, as the added

image buffer pixels enable the full original image area to be

correctly filtered.

Fig.71 illustrates such a buffer condition for a SxS filter size.

Fig. 71:Image Buffer

INTELUGENT OPTICAL SENSOR - 161

FEASIBILITY S TUDY

I

1- - f- Actual Image
pixels;

.. 1-1- Buffer
pixels

"_ ..

In the case of a 3x3 filter, the image buffer size need only be one

pixel wide. These buffer adaptations can easily be carried out at

runtime, although the option chosen in VosReader was to set a

maximum filter size of SxS, with a fixed image buffer width of 2

pixels. Any smaller filters are automatically resized using null

values.

The input to VosReader is a .vos type file, which is purely a text

listing of all activated pixels within a given difference image.

VosReader transforms this listing into an image matrix with values

from -1 to +1. The initial default matrix is set to -1 (all deactivated)

and any set pixels within the image map receive a value of + 1. This

representation allows for the buffer zone to added on using null

values. As explained later, the value 0 allows all filter calculations to

be cleanly cancelled out, thus not biasing the final filter output for

the actual considered image.

All filters in VosReader may have real values, varying between -1

INTELLIGENT OPTICAL SENSOR - 162

'.

FEASIBILITY STUDY

and +1 inclusive, and are stored in a temporary filter array, F

[1 .. 25].

When a filter is applied to the image, the calculation shown in

Fig.72 is carried out:

4 5

Sum = L L (F[n]I[a][n-5a])
a=On=1

Fig. 72: Filter Application

where the image is stored in an array I[height][width].

As the filter is always applied as a multiplication with the image

pixel values, the previously set null value buffer zone has effectively

no outcome on the actual image filtering process.

The resultant value of Sum is then considered.

If Sum> 0, the pixel considered by the calculation (I[2][n-3]) will

be set to +1 (activated), otherwise it will be set to -1

(deactivated) .

To prevent distortions in the filter application, the actual filtered

image output is kept separate from the original data. The filter itself

is only applied to the original image data, thus preventing

cumulative filter effects during a single filter application. Once the

filtering process is complete, the original data is completely

replaced by the filtered output for use with further filter

INTELLIGENT OPTICAL SENSOR - 163

FEASIBIUTY STUDY

applications.

Once a filter has been applied, the user has the option of saving the

new resultant image, in which case it will be written, along with the

original image data, into a tab delimited text file (allowing for easy

editing in a spreadsheet application), listing the name of the original

file as well as any filters applied.

VosReader features an undo function to restore one filter step, in

case the results are not as expected.

Filters will however work in a cumulative fashion, allowing the user

to apply the same filter to an image a number of times in

succession to obtain enhanced effects.

INTELUGENT OPTICAL SENSOR - 164

FEASIBIUTY STUDY

5.5 - Artificial Data

5.5.1 - General Considerations

At this pOint, there now exists the possibility to process images in a

fairly rapid and flexible way using a combination of both VosDemo

and VosReader.

These enable us to distinguish and isolate the differences arising

within two separate images, once the said images have been

processed for features such as background noise reduction.

We know from experimentation, that the visible image difference

can be correctly extracted. It remains to be determined whether the

next step can also be successfully carried out: analysing and

classifying the resulting image difference.

A number of questions arise when considering the implementation

of a neural network as a classifier in this context:

Can a network correctly define and determine a person, given

only variable 2 dimensional data?

• Will a network be able to consider and compensate for scaling

effects and distance factors and be able to distinguish these from

pure size differences?

• How can the most appropriate data for the network be

determined?

INTEWGENT OPTICAL SENSOR - 165

"

FEASIBIUTY STUDY

In order to answer these questions, it is initially necessary to

examine which data can, regardless of the final application, be

extracted from the resulting difference image at all. It is however

important to note that this extracted data must be data which is

common to all difference images to be examined.

Due to the way a network functions, we must ensure a certain

consistency in the data types. A network cannot be expected to

know that the first line of data for one image represents the height

of an object, but in the second image this same data line

represents, for example, the object surface area. This would simply

lead to absolutely unreliable and nonsensical network outputs as

the system would attempt to compare totally mismatched lines of

data to each other.

5.5.2 - Data Parameters

The data which is to be used as network inputs must satiSfy the

following conditions:

• The quantity of data must be constant.

Each image must provide the network with the same amount of

data, thus providing a constant and previously defined set of

inputs. This ensures that data interdependent relationships

remain uncorrupted.

INTELUGENT OPTICAL SENSOR - 166

FEASIBIUlY STUDY

• The type of data must be constant for each input.

For each input, the type of data must remain constant, as the

data will most probably be undergoing a preliminary preparation

stage. This will be a specialised process for each line of data, thus

precluding the option of swapping or mixing data input lines.

• The data range must be definable for each input.

As it is unlikely that the data extracted from the image will

immediately be available in a usable range for a network

(-1/+1), each input line will, during its preprocessing phase, have

to be scaled down by a certain amount. In order for this to be

constantly successful, the maxima and minima of the considered

line of data must be previously known for all possible situations.

A dynamic process might be used, where data is balanced

relatively within a single set, but this would be a much more

complex and sensitive approach, as each incoming data line

would have to feed both its minimum and maximum values in

order for correct analysis to take place. The danger in such an

approach is that the otherwise existing link between different

data sets is now lost, which could easily lead to data corruption,

as the actual internal structure of the analysing network would

have to be individually adapted to each new data line.

Although the parameters of this experiment have been broadly laid

. out, given the known camera specifications, the first sequence of

INTELUGENT OPTICAL SENSOR - 167

"

FEASIBILITY STUDY

testing (proving the concept through the use of a classifying neural

network) should not be run using pure live data, i.e., images taken

directly from a live capture sequence.

The reason for this lies purely in the sheer complexity of such data.

An uncontrolled environment provides too many unknown image

parameters which might ultimately unknowingly affect the outcome

of any testing.

For this primary network testing phase, it will be necessary to

generate a set of strictly controlled images where all variables are

known. The complexity of this set can then be gradually increased

as the system is developed to eventually represent and/or include

actual live data.

A broad set of controllable features can then be defined and

manipulated according to the level of complexity which can be

accepted by the network at anyone time.

These features are:

• Type and Colour of Background.

Controls the background lightness and reflectancy.

• Number of objects present.

Where an object defines anything not directly linked to the scene

background.

• Type of objects present.

The type of an object is primarily divided into two main classes:

INTELLIGENT OPTICAL SENSOR - 168

FEASIBILITY STUDY

Animate and Inanimate. A rougher classification may also be

achieved with the definition: Target or Non-Target.

• Colour of objects.

The colour of an object as related to the scene background. This

will directly affect the ability of the system to accurately locate

the said object.

• Object Positions.

Positions relative to the camera. This is effectively the point of

view of the object. This is to be considered mainly for the vertical

offset between object and camera, which will lead to more or less

severe proportional distortions.

• Pose(s) of person(s) present.

Especially important during the initial development stage, this is a

controllable factor when considering comparisons between for

example a crouching or crawling human and an animal such as a

large dog.

• Illumination.

Both overall and point illumination which will affect the scene

through direct or indirect shadowing.

• Presence and quantity of noise.

Purely for artificial data. A controlled quantity of randomly

distributed noise can be applied to the image in order to simulate

effects such as camera vibration or interference.

• Type of NOise.

This will determine the distribution type of the noise (even or

INTELUGENT OPTICAL SENSOR - 169

FEASIBIUTY STUDY

random) as well as other items such as colour variations which

are more likely to cause image distortion.

The initial experiment which is to be carried out is to evaluate the

response of a simple network when presented with simple target

and non-target images. The aim is not to determine the noise­

resistance of the network by introducing many variable parameters,

but rather to simply observe the feasibility of using such an

approach.

As a source of data, we could use images from live captures under

strictly controlled conditions, but this is likely to introduce a number

of uncontrolled variations in positions, lighting and image noise,

even were the data to be initially manually "cleaned". A much

preferable source of data would be from fully artificially generated

images: a scene can be set up digitally with a fixed number of

parameters which may then be exactly controlled according to the

test requirements.

Metacreations Poser[93] was used in this task, as it allows

anatomically accurate human modelling whereby the age and sex of

the person being modelled can be accurately controlled. Such

parameters are important as the profiles of males and females in

various age ranges present quite marked differences.

Although it is not necessary at this early stage to model all possible

combinations, it is important to evaluate the flexibility of even a

simple test network in the way it can adapt to such shape variations

INTELLIGENT OPTICAL SENSOR - 170

"

FEASIBIUTY STUDY

whilst presenting a constant alarm output.

The models produced by Poser[93] were then introduced into a

controlled scene create in 3D Studio[96], which allowed for an

exact background and lighting setup.

5.6 - Validity Testing

This initial test or series of tests has the aim of confirming the initial

observations made on the processes of image comparison and data

extraction using the simple algorithms developed with the initial

help of Adobe Photoshop filters.

In order to do this, a tightly defined environment must first be

defined, thus allowing ensuing test results to be objectively

evaluated.

5.6.1 - Test Environment

This initial test relies on observing purely the actual shape or profile

of a human as opposed to an assortment of other objects.

The images are presented as inverted shadows, where the

background is completely black and the object to be considered is

entirely white. This format was selected as it is part of the default

. settings for the human modelling software Poser.

INTELUGENT OPTICAL SENSOR - 171

FEASIBILITY STUDY

All external light sources were cancelled out, resulting in a perfectly

flat or 2D image with no information on the object distance to

camera nor on the scene light source, as shadows are simply not

being modelled in order to reduce possible image aberrations to a

minimal level.

As the prime task was not to evaluate the accuracy of the

separation process, only a model of an adult male was used for this

test phase. This human figure was presented in an variety of

standing poses, seen from two distinct camera angles representing

realistic camera mounting heights (between 2.5 and 3.5 m

depending on the actual target aspect).

Negative targets were provided by various modelled objects such as

lampposts, chairs, letters of the alphabet as well as simple

geometrical shapes in a number of combinations. Care was taken to

present negative targets in a variety of positions and with varying

area densities within the object limits.

5.6.2 - Test Data Set

The final data set for this initial test was comprised of slightly over

2000 images stored in non-compressed monotone bitmap format

and using a standard size of 320x240 pixels at 72dpi. This reflects

one of the available formats from the Webcam being used for live

data capture. This also represents an industry-standard format ,

representing a CCD element of 230Kpixels.

INTELUGENT OPTICAL SENSOR - 172

"

FEASIBILITY STUDY

The storage format of this initial data set will also allow for easy

modifications to the original images in order to generate

subsequent more complex image sets without running the entire

scene generation process again.

With the current data set, the need for an initial image comparison

process is avoided, as the object to be observed is already

presented in its "pure" form, and we can progress directly to the

various phases of target detection, separation and target data

extraction and analysis.

5.6.3 - Image Evaluation Methods

We have now a valid set of controlled sample data, but as yet no

way of analysing the data within these images. A number of

approaches can be considered, which may be split into two main

groupings:

1. Image pixel analysis.

2. Data feature analysis.

1.lmage Pixel Analysis

Whilst the overall concept of image pixel analysis is very simple,

INTELLIGENT OPTICAL SENSOR - 173

FEASIBIUTY STUDY

requiring little or no data preparation prior to network presentation,

it does also have its own intrinsic problems and limitations.

Image pixel analysis roughly involves analysing every single pixel of

each image via a dedicated network.

The first and major undesirable feature of such an approach lies in

the sheer volume of information to be processed. Considering the

image format adopted for this experiment, a 320x240 pixel image

results in a total of 76800 individual pixels.

Every single one of these would then require its own input node

within an analysis network. This is not only ridiculous in that much

non-valid data will be processed, but would also be placing highly

exaggerated hardware requirements on the final system. Were such

a network to use only a single hidden layer of 10 neurons with a

single output flagged to high or low, this would result in a minimum

of 76800 *10 + 10 = 768010 multiplication processes per image,

assuming ideal conditions.

QUite apart from the pure dimensions of such a network, other

problems would also arise within the aspect of data presentation.

Unless the target were to cover most of the total image area, the

effect of overall scaling would contribute to reducing the final effect

of the object on the overall image.

INTELUGENT OPTICAL SENSOR - 174

F EASIBILITY S TUDY

Fig. 73: Bounding Box area ofa human figure

Fig. 73 shows the bounding box around an average human figure.

It has been determined through experimentation (analysis of a few

thousand images), that the area actually occupied within this

bounding box by the human shape normally varies between 40 and

50%. Thus, even in the unlikely event of a targeted object covering

the entire image, the number of affected pixels (for a human figure)

would lie roughly at 500/0.

This also means that 50% of the data to be evaluated would be

unnecessary clutter, reducing the effectiveness of the affected

pixels.

Along similar lines, were an image to contain a high level of

distributed nOise, this could effectively drown-out the influence of a

potential target, especially if the latter was to be relatively small as

INTELLIGENT OPTICAL SENSOR - 175

FEASIBIUTY STUDY

compared to the overall image area.

2.Data Feature Analysis

Data Feature Analysis is a slightly more complex but also more

thorough approach to evaluating the image data, and basically

involves deconstructing the image to be analysed into a set of

predefined data variables which can then be processed using

appropriate mathematical transforms.

The main difficulty with such an approach lies in the correct choice

of data to be extracted and appropriate data processing algorithms.

Referring back to a discussion with Dr. P. Rosin [Appendix Fj, the

simplest types of data (those extracted directly from the image

relationships without any attempts at mapping or interpretation)

are often the most reliable, regarding their consistency over a set of

images with varying parameters.

In this situation, the types of targets which are processed are

constant neither in their aspect to the camera nor in their overall

shape properties. This makes it difficult to use a recognition system

based on algorithms dependant on vectorial matching, as each

object will have to be described using a varying quantity of vectors

to perform a satisfactory object description, unless a highly

deformable vector template is used. This approach has been

discussed earlier, and although it is adopted in many systems, its

disadvantages are deemed too high, requiring increased analysis of

INTEWGENT OPTICAL SENSOR - 176

FEASIBIUTY S TUDY

the resultant output, whilst the aim of this study is to restrict the

processing stages to an acceptable minimum.

Examples of such a vectorial approach can be seen in Fig.74, which

both present an adult male facing the camera. It can be observed

that the slight change in position causes a dramatic increase in the

number of vectors required to accurately describe the already much

simplified profile given. If we then consider that such poses as

crawling or crouching must also be taken into consideration, it

becomes obvious why an analysis based on a fully vectorial

description of the image becomes unsuitable. Vectorial

measurements might still become useful for conditions such as

describing the overall direction of an object within the image, but

these will then be used in conjunction with other standard

measurements.

15 Vect>ors

INTELLIGENT OPTICAL S ENSOR - 177

FEASIBIUTY STUDY

Fig. 74: Two human profiles showing possible vectorial descriptions. Note that the
vectors shown here are for illustration purposes only and have been greatly

exaggerated to facilitate viewing

The use of defined templates, such as those used by Tate and

Takefuji [81], is a further derivation of the vector based approach.

This does have the advantage of offering a fixed number of pOints

off each image from which the final vectors can be derived, but also

has the disadvantage of having to select a grid with a resolution

fine enough to allow an accurate description of the object being

studied, and the necessity to provide matching templates to

evaluate the actual parameters obtained from these objects. This

does seem to be a fairly lengthy approach, finally relying on a fixed

and artificially created parameter set (the actual templates) which

will be the actual point of failure if a given data set has not been

sufficiently described.

It is proposed to use a combination of these approaches by

employing a subset of the deformable represented by variable

measurements within a dynamic, object derived grid.

It is hoped that this will provide a set of parameters which are

tailored to each object, given that the basis for the measurements

will remain relatively identical for each analysed object, but also

scaled independently for each. This eliminates eventually redundant

INTElliGENT OPTICAL SENSOR - 178

"

FEASIBIUTY STUDY

data created by many measurement pOints on a large object,

ensuring that the same number of measurement parameters are

used, regardless of the observed object dimensions.

An added advantage to considering standard dimensional data is

also the relative ease of obtaining such data, which will speed up

the entire data extraction phase, an advantage for a system

working online.

5.6.4 - Image Data Extraction

In order to extract the intended data, it was necessary to develop a

number of custom software packages, which will be explained in the

following section. The software development process has been

intentionally split up into a number of modules which make the

entire process much easier to modify, even if the final result is quite

far from operating in real-time. These processes are however

designed in such a way that they can ultimately be joined up into a

single faster and more concise application which will then be able to

fulfil the primary requirements of this study.

Let us now consider a rough overview of the entire data extraction

process for this initial experimentation series:

• Obtention of bitmap image file, single target object per image.

INTELLIGENT OPTICAL SENSOR - 179

FEASIBILITY STUDY

• Transformation of image to proprietary .VOS format, effectively

describing the image in a monotone fashion editable in

spreadsheet applications and other custom software.

. vas file then fed through VosDataExtractor to obtain a maximum

number of lines of data from the image's target object. This

results in the creation of a .VDF file, which is an annotated text

file containing all the extracted data in a standardised but as yet

unmodified format.

VDF files can then be compiled by a custom batch processing

utility to be collated into a usable table of data for further

analysis.

The first two steps in this process have already been described in

detail, and the operation of VosDataExtractor will now be explained.

The process is as follows:

5.7 - Vas Data Extractar- VDE

For a given image (using the afore mentioned test conditions

specifying images containing a single target and no background

noise), the target must first be located. This is done by simply

finding the first set pixel within the image by scanning from the top

left corner and progressing from left to right and top to bottom.

Each pixel thus found is defined as a new object. Objects which are

. touching or within a certain distance of each other are then grouped

INTELUGENT OPTICAL SENSOR - 180

"

FEASIBIUTY STUDY

into a single object.

Once this has been achieved, the furthest extremities of the target

object are defined (by scanning each line of the object and

determining the minimum and maximum extension values) and

placed within a bounding box. All further processing is now carried

out only on the set pixels within this newly defined object­

dependent boundary.

Within the obtained bounding rectangle, we can then extract a

number of measurements on the actual object or the box, such as

total box area, area of box set by target, box height and width and

object Centroid position. From the Centroid, 6 radial measurements

are taken at 60 degrees to one another, specifying the maximum

length to the edge of the target. Additionally to this, the bounding

box itself is split into an array of 6x4 smaller segments and from

each of these segments is extracted an extra set of measurements

specifying the segment area and percentage area set by the target.

In this manner, a total of 41 independent lines of data are obtained

from each image, the last value being a manually controlled

boolean value specifying whether the currently considered target is

human or not. This final value is necessary as a reference for later

network development work, in order to provide a basic set of

training data with known output values.

INTELUGENT OPTICAL SENSOR - 181

FEASIBILITY S TUDY

Fig.75 illustrates VDE in operation, with certain of the extracted

data va lues overlaid on the actual image target:

Fig. 75: The main bounding box

split into its 6x4 grid and the 6 vectors emerging from

the Centroid can be clearly seen.

The actual sequence of operations is as follows:

1 - VOS format file opened and stored in a 320x240 array, ranging

variables are initialised .

2- Entire image is scanned until a set pixel is encountered. Current

coordinates stored in a temp value. Once the entire image has been

scanned, the overall object bounding box limits have been defined

and stored. Simultaneously, the percentage area of the bounding

box occupied by set pixels is evaluated. (this current version is

I NTELLIGENT O PTICAL S ENSOR - 182

"

FEASIBILITY STUDY

limited to a single object per image without any form of background

noise).

3 - The centroid of the object is now determined in both the X and Y

directions. This value can help to determine the orientation of the

object within the frame. It is also useful in determining the relative

importance of surrounding sections.(see next pOint)[100].

4 - 6 lines are extended from the centroid, arranged radially at 60

degrees to one another, and their last point of contact to the target

object is measured. These measurements give a fairly good idea of

the overall mass distribution of the object within the bounding box.

A similar approach, depending on an object centroid and ensuing

radial measurements has been outlined by Tamas Sziranyi [79]

within the context of motion tracking. These values are used to

provide object specific information which can easily be used to

distinguish one object from another within a noisy environment.

5 - The entire bounding box is split up into a 4x6 grid of equally

sized elements, and for each element a measurement of percentage

area set calculation is carried out. This provides a more detailed

view of the contents of the total object box. The actual grid size

provides a good detail resolution without providing too many

different measurements which have to be individually evaluated.

This grid, dependent on the actual object dimensions, ensures a

INTELLIGENT OPTICAL SENSOR - 183

-,

FEASIBILITY STUDY

consistent level of measures detail for all objects irrespective of

their dimensions, and guarantees the consistency of the extracted

data over a full image set, regardless of the position or size of the

object to be analysed.

6 - For each image, a final value is manually set, defining whether

the target currently considered is to be finally classified as human

or not. This value is required during the training stage of a simple

network as a final check value, but will not be used as part of the

network inputs.

Below is a complete listing of the data taken from each image and

the ranges considered for each line of data:

Data Range

Bounding Box X min 0-319

Bounding Box Ymin 0-239

Box Width 1-320

Box Height 1-240

Box Area 1-76800

Centroid Xpos 0-319

Centroid Ypos 0-219

Weighting 1-3

Seg ment Area 1-3200

Segment 1-1 0-100%

Segment 4-6 0-100%

Radial 0 degree 0-320

INTELLIGENT OPTICAL SENSOR - 184

"

Data Value

Radial 60 degree

Radial 120 degree

Radial 180 degree

Radial 240 degree

Radial 300 degree

Data Range

0-271

0-271

0-320

0-271

0-271

F EASIBILITY STUDY

It must be noted that these are the pure capture values, which will

most probably require some form of preprocessing prior to being

used to develop or run a classification network.

The centroid Xpos and centroid Ypos value cover the maximum

available data range, as it is entirely possible to detect an object

which will be aligned to the edge of the captured image. Although

this is unlikely to be representing a target, the data range still

needs to be considered as part of the object processing sequences.

5.8 - Initial Network Creation and Evaluation

5.8.1 - Data Considerations

Given the previously laid out conditions for a set of artificial images,

and the above described data set, we are now at the stage where

an initial network might be developed in order to prove the ability

to classify human and non-human forms within this scope.

The data which we now have available through VDE is however

I NTELLIGENT O PTICAL SENSOR - 185

FEASIBILITY STUDY

unsorted and presented in a raw form, where certain parameters

are doubly described and where other parameters might not be

using all too obvious scaling and range values.

If a simple network were to be developed using the raw data, it is

highly likely that some form of distortion would occur within the

network's internal data representations, as certain values with high

maxima would be drowning out other more sensitive (and maybe

more important) data lines. Simply because 40 odd lines of data

have been extracted from each image, does not necessarily signify

that all these data lines are going to be crucial to the development

of a successful network.

We need to first attempt to map the relationships between the

various data lines, determining not only which lines might safely be

left out, but also in which manner the remaining data inputs will

need to be scaled and transformed in order to present an ideal and

balanced set of data to the network. The more we can optimise this

initial input data, the more powerful or reliable the resulting

network can become, as it will have more internal resources

available to actually describing and classifying the data instead of

just preparing the raw data to be in a usable form.

S.8.2 - Data Preparation

Illustrated in Fig.76 and Fig. 77 are two plots of raw data extracted

INTELLIGENT OPTICAL SENSOR - 186

"

FEASIBIUTY STUDY

from two different images, the first containing "noise" (i.e., an

invalid target), the second containing a valid target (i.e., a human

shape). The horizontal axis represents the entire data set as

described in the previous chapter, the vertical axis illustrates the

current value of each data input.

At this stage, there are very few differences to be seen visually in

the data which might be differentiating a valid and an invalid target,

Both graphs seems to follow a similar pattern, albeit with widely

varying maxima in certain ranges.

Raw NOise Raw Target
GOOD 20000
5600 '800D
5000
4500

,.OOD
= 4000

'4000

'ii 3500 I 1200D
> 3000 1000D M

i • 2500 8000 :Ii
2000

8000
1500
1000 4000

500 2000

0"""- h 0
-~~~m=_~~'~N~~~~;==~= -~O~·~=~~~N~M~~~~.~.

Sam pi .. Samples

Fig. 76:Raw NOIse Flg.77:Raw Target

To be able to effectively compare the trends of these two different

data classes, it is necessary to first establish some common

reference value. This can be achieved through a number of scaling

techniques. These will be considered in more depth, but in order to

gain a quick overview of possible results, the two data sets shown

above will now be entirely scaled by converting all measurements

into percentages of their possible representation range. Doing this

results in a fairly neutral presentation of the data, where each input

INTELUGENT OPTICAL SENSOR - 187

FEASIBIUTY STUDY

line has a chance of exerting a fair share (in this case, 1 part in 40

as the 4pt data member is an artificial parameter which was added

manually giving the expected network classification, and is used

only for validating a training or trained network) of influence on the

resulting network.

Normalised Noise Normalised Target
100 100

to to ~
to to A
70 70 1\ ~ ~ eo J
80 \
110 J 110

10l 40 I 40 \ 1\ ::IE
:10 I IJ 30 A \
2G

/1 J
....,

r~ A / V 1\ 2G I \I \ f\ 10
./ J J V V 10

\J ~ 0 \ 0 J '\.
~~-~.:'~=~'=~'~'~~'~~'~'=~'= ~~-~.:'~'=~'~~'~'~~'~~'~'~~~

SwnpIH SII'IIple8

FIg. 78: Percentage Normalised Noise Fig. 79: Percentage NormalIsed Target

As seen in Fig.78 and Fig. 79, even such a simple data transform

results in a greatly enhanced overview of the actual data variations,

and the differences between the two data sets can be much better

considered.

Whilst this particular approach might not be the best suited to the

data currently being considered, it does very well illustrate the

general effect of data normalisation, which tends to enhance

smaller data values whilst reducing the range of larger more

dominant features in the raw data set. Naturally, each input line

must be carefully evaluated to determine whether an enhancement

or reduction is actually necessary.

INTELUGENT OPTICAL SENSOR - 188

"

FEASIBIUTY STUDY

For the purpose of this example, only two images are being

considered. In order to obtain a realistic impression of the general

data trends, it will be necessary to consider, if possible, the entire

data set (some 2000 samples currently), splitting the valid and

invalid target components to allow for independent analysis

processes. Obviously, whichever transforms are eventually decided

on, they will have to be taken in a general form which may be

applied to either valid or invalid target, as this particular

classification is only known during the testing phase. The actual

goal of this preprocessing phase is to actually enhance any features

signalling a possible valid target , whilst simultaneously reducing

the presence of non-valid data.

It is also important to remember at this stage, that the ideal

network inputs lie between -1 and + 1, or 0 and + 1, depending on

the approach taken. This allows for an easy combination of both

digital and analogue type inputs using a standardised range with

balanced scaling.

For this simple test, it is not necessary to develop any extremely

sensitive adaptations, as these will most likely have to be quite

heavily modified for the more realistic data sets. It would however

be useful to develop a single transform which could be applied to all

lines of data.

A generic transform which can be applied in order to enhance small

INTELUGENT OPTICAL SENSOR - 189

"

FEASIBILITY STUDY

values whilst hardly modifying larger ones is the logarithmic

transform, as illustrated in Fig. SO:

2

-----1,8 ---1,6

1.4 ~ .,

/v=lalx)
1,2

/ 1

0,8 I ~

0,6 I ."

I 0.4 "
0,2 ,
a ~nn

1 9 17 25 33 41 49 57 65 73 81 89 97

Flg.80:Logarithmic Transform

This shows a plot of a logarithmic transform on a constant series

between 1 and 100. A similar effect can be achieved using a square

root transform, although the final result is a much milder data

adaptation. Obviously, a pure logarithmic transform cannot be used

on the raw data on hand, as the range includes a values.

Having tested a number of approaches using the built-in data

preparation tools of Neural Works Pro II, as well as conventional

data analysis in MS Excel, a final fairly simple process was arrived

at.

The actual equation is shown in Fig.Sl.

INTELLIGENT OPTICAL SENSOR - 190

where:

x - raw data input

19 (~ 100 X + 1)
Max

y= Igll

Fig. 81 : Data Transformation Equation

Max - maximum range value for current input

y -resultant processed data

the graph in Fig.B2 illustrates the effect of this transform.

FEASIBILITY STUDY

The raw data is illustrated between the values of 0 and 12, whilst

the other two plots show the full 0-100 range.

._-., 1" ••

10 +-~~----------~--------~--~--~ <1-... .,.

,.." ... -....... ..
8 +-~----------~~~------~----~ ~~- ' Square Root ll'ansform
6 +-~----~~· .. -.. ----------------------~

4 ~~~--------------------------~

2 ~--~~~~r-=~--------------~

O ~-,---r--~~r-~~~--~~---r--T

8 15 22 29 36 43 50 57 64 71 78 85 92 99
Input V.'ue

Fig.82:Data Transforms

As can be seen the final output is now limited to the 0-1 range

The final transform is actually a combination of 3 different

operations: [Appendix 0]

INTELLIGENT OPTICAL SENSOR - 191

FEASIBIUTY STUDY

1. Range normalisation. This transforms the raw data into a

percentage value based on each input's current range.

2. Square root transform. This simply cleans up the data by

providing a limited degree of smoothing. The +1 feature is to

always guarantee a positive value as an outcome to the following

logarithmic transform.

3. Log transform. Dramatically enhances low values as compared to

larger dominant data lines. The associated Ig(ll) divide is simply

a maximum range divisor which scales the data to lie between

the desired 0-1 values.

5.8.3 - Test Networks

Using the transform described above to generate the input sets for

a simple MLP type network (note that this is still in the range of a

feasibility study and we are not requiring a 1000/0 correct resolution

to the problem, but rather an indication as to what is possible and

whether the data currently extracted from each image object is

sufficient to meet our requirements), a number of test networks

were generated, which gave highly satisfactory results.

For the purpose of these tests, the full available data range was

utilised.

The best results were obtained on a 39-2-3-3-1 network, giving an

INTELLIGENT OPTICAL SENSOR - 192

'.

FEASIBILITY S TUDY

RMS error of 0.0852 and a classification rate of 0.9847, although

similar results (in the 0.98 range) were also achieved using less

complex arrangements such as 39-5-3-1, thus with only two hidden

layers. These being MLP's, the notation "39-5-3-1" describes a

network using 39 input nodes, a first hidden layer of 5 nodes, a

second hidden layer of 3 nodes and a final output of 1 node,

providing a 0-1 output.

The training, testing and validation data sets were obtained by

splitting the available generated data (over 2000 images) into 3

groups collated from randomly mixed data in such a way as to

ensure an even distribution of all data ranges within each set. This

was done in order to ensure an ideal representative training set.

Fig.S3 illustrates the logical arrangement of the successful 39-2-3-

3-1 network:

Fig. 83,' Network Architecture

NETWORK
OUTPUT

I NTELLIGENT OPTICAL SENSOR - 193

FEASIBILITY STUDY

For clarity, not all input nodes have been included. At this stage in

the process, the actual values of the weights within the network are

not extremely important.

The result which has been provided shows that a 98% correct

classification rate can be achieved on relatively unprocessed

artificial data and using a relatively simple network architecture,

which is sufficient to justify further development on the entire

system.

This configuration still represents a very unoptimised network

layout, as there has been as yet no attempt to map possible input

node commonalities. During the initial (and rapid) data overviews,

no real relationships appeared within the dataset, apart from the

tendency of the \\% area set" of valid targets to lie between 20%

and 400/0, whilst noise generally had a higher area density.

Neural Works Predict provides a handy tool for gaining a general

overview of a data set and thus of optimising this dataset for the

development of a specific type of network model. In this initial test,

Neural Works Predict was presented with the full, unaltered, data

range, thus allowing the software full freedom of choice in the way

it would adapt and segregate the data. This was run with the

intention of developing a simple MLP network model. Although the

INTELLIGENT OPTICAL SENSOR - 194

FEASIBIUTY STUDY

initial test did seem very promising, achieving an initial classification

rate of 980/0, with most errors lying in over-classification (false

positives), it did also raise some concern as to the data members

selected by Predict to represent the full data set. Given the total

data set of 40 members, Predict chose to omit all but five, retaining

the following members:

1 - Box Height

2 - % of Total Area Set

3 - Segment Area

4 - Segment 2-6

5 - Segment 3-6

Obviously, certain members such as Box Width, Area etc. can be

interpolated using the selected members, but the last two elements

are very strongly dependent on the angle at which the object is

being viewed, as well as the stage of movement which the object is

currently carrying out. Data members such as centroid or radial

measures would have seemed to contain more relevant information.

Given a particular object's bounding box, the two relevant segments

causing concern are highlighted in Fig.84:

Fig. 84:Selected Segments

INTELLIGENT OPTICAL SENSOR - 195

FEASIBILITY S TUDY

On the entirely artificial image shown above, the relevant segments

are highlighted in red. Although this is only a sample illustration, it

is easy to see that not every single object held within the bounding

box must necessarily be occupying either of these segments. The

fact that Predict has selected these for this particular network might

well be a reflection of the type of data available in the full training

data set, which might be characterised by humans occupying these

two segments, and noise generally not occupying them.

For the time being, it is sufficient to be aware of the fact that this

selection might not be totally unbiased and is not necessarily

representative of a larger data set.

Let us now observe the actual mathematical transforms which

Predict selected to carry out on each selected input:

I NTELLIGENT O PTICAL S ENSOR - 196

Parameter

Line 1 (Box Height)

Line 2 (0/0 Area Set)

Line 3 (Segment Area)

Line 4 (Seg 2-6)

Line 5 (Seg 3-6)

FEASIBILITY STUDY

Transformation ' _---"-_...:.:..... __ --1

Square Transform

Square Transform

Tanh Transform

Natural Logarithm (Base 10)

Natural Logarithm (Base 10)

In Fig.8S and Fig.86 are shown two examples of data prepared

using these transforms

Noise

1

0.8 /\ -

~06
,/ \ .. '

gO,4 \
)02 \ ,",

I 0
\

1 2 \1 -.! ·0,2

·0.4

·0 .6
Input Data Lines

Fig. 85: Noise

'.i'

.,; , .. '

5

"" "-

0.8

0.6

~ 0.4

~ 0.2

1 0

~-o.2
.H'.0.4

-0.6

·0.6

·1

Target

., ~ "

';. ./ Y .. -.;:;

/ \ .: ;"
I \ I ':ti"'"

' l \
:' 1 I , ~ \ . ~

/ \ /
I ' I \ /
• n \" 7

,. V ,
Input Data Lines

Fig. 86: Target

It is interesting to note that, at least for these two examples,

Predict has established a transformati'on algorithm which nearly

mirrors the trends of the noise data to that of the target data along

the vertical axis.

As can be seen, the data transforms selected by Predict are overall

relatively simple. This does not imply that the problem being

considered is in itself simple, but rather that the raw data as

obtained from the image is fairly well aligned to the type of

optimisation required by a simple MLP at this stage of the process.

As the final system is intended to be running in real-time, the

INTELLIGENT OPTICAL SENSOR - 197

FEASIBILITY STUDY

simplicity of the final data transforms cannot be disregarded.

Considering the results achieved using both Neural Works Predict

and more conventional manual analysis methods, we can say that

the principle of the entire process has been shown to work, at least

for this initial set of data. More time could be spent refining the

actual data transformation algorithms and network architectures to

try and achieve 1000/0 problem resolution, but this would largely be

a waste of time, as the data set now needs to be expanded in such

a way that the realism of the data will be increased, and a system

trained to operate perfectly on the current ideal data set is unlikely

to perform very well when such variable factors as image noise are

introduced.

Purely as a visual demonstrator, the best performing network from

those developed using Predict has been coded into a simple

software package.

This program allows any simple vas format file (one satisfying the

initial test conditions of a single object with no surrounding noise)

to be rapidly evaluated and classified. This displays the unfiltered

network output as a classification percentage.

Fig.S7 shows this demonstrator in use.

Fig.87:Person Detection

INTEWGENT OPTICAL SENSOR - 198

F EASIBILITY S TUDY

. ;1

I vtOs NeIRal Oemonalralor "~£11

It can be quite clearly seen how the object detection process has

located the person and placed a bounding box around this possible

target. The network result can be seen via the graduated

classification bar as well as via the pure percentage output, in this

case 99% .

It is interesting to note that the currently used network has

difficulties in classifying valid targets when the object's total area

within the entire image falls below a certain value

(approx.«Image Height/4)). This behaviour could well be a result

of the way in which the training, testing and validation data sets

were generated from the total data set, possibly with less smaller

targets within the validation set, as this was the set used by Predict

to train the network. This validation set was selected to be only

10% of the total available data, with Predict left free to select which

I NTELLIGENT O PTICAL S ENSOR - 199

'.

FEASIBILITY STUDY

lines it would actually use in the validation process.

A number of tests remain to be carried out, especially in the

evaluation of the behaviour of differing network architectures, but

the results obtained so far prove that the concept in itself is

feasible, thus justifying further research in this study.

INTELLIGENT OPTICAL SENSOR - 200

SYSTEM DEVELOPMENT

6 - System Development

If you torture data sufficiently, it will confess to almost anything - Fred

Menger

6.1 - Enhanced Data Complexity

Considering the results obtained from the tests based on the

artificially generated data, these do confirm the validity of this

study.

The data used for these initial tests was however, very strictly

controlled and highly simplified, when compared to real live data,

which a final system would have to be working with.

The next development phase for this study is therefore going to be

a gradual and controlled increase in the complexity of the data

used, whether this be generated artificially or captured from a live

source. Each added level of complexity may then be correctly

analysed, and incremental improvements to the various data

processing algorithms may be introduced to cope with the added

system requirements.

INTELUGENT OPTICAL SENSOR - 201

SYSTEM DEVELOPMENT

6.2 - Multiple Targets and Noise

The original set of artificial data used in the system feasibility study

featured a single object per image.

In a real life situation, such a situation would be quite rare, as light

sources, shadow effects and even spurious background movements

could all contribute to presenting the effect of multiple moving

"objects" within a single frame, even if only one person were

actually present. Additionally, we cannot ignore the situation where

more than one person might be in the actual surveillance area, thus

creating a multiple target situation.

This is raised in point 1 of the main hypothesis: Is it possible to

develop a system capable of processing the output from an

industry-standard camera in order to identify the presence of a

person or multiple persons within the image ?

As mentioned above, spurious background movements, depending

on the surveillance location, might also be present in the image.

Such movements might be the results of wind blowing through tree

branches, broken light reflections on various surfaces, or any type

of background movement, small enough not to be classified as a

potential target but still large enough to be identified in the

Surveillance image. These effects are classified as noise, as they do

not assist in any way in the actual task of target identification but

INTELUGENT OPTICAL SENSOR - 202

SYSTEM DEVELOPMENT

rather distort the overall image by possibly masking parts of valid

targets or by modifying areas of the image and forcing a then

wasteful - to the overall system performance - analysis of the

given area.

The difference between the two phenomena, potential target and

nOise, lies purely in the size and distribution of the effect, but the

result in either case is the same: The creation of an area of

movement within the image which will have to be correctly

identified and subsequently analysed.

Whilst noise can be discarded without further conSiderations, a

potential target will need to be correctly processed. The actual

difference lies purely in the definition of the object's relative size in

the image, and thus, in this situation using a single uncalibrated

camera, in the definition of the overall system's effective

surveillance range.

The inclusion of these two items into the general data set involves

certain modifications to the overall detection process, as will now be

discussed.

INTELUGENT OPTICAL SENSOR - 203

SYSTEM DEVELOPMENT

6.2.1 - Multiple Targets

The inclusion of multiple targets into the data set actually

introduces two separate conditions into the detection process.

These conditions arise purely from the relative positions of the

objects within the image.

When multiple objects are in an image, they can be placed as

follows (considering two objects):

1. Objects separated from each other, clearly distinguishable as two

objects.

2. Objects not overlapping, but sharing common areas on their

bounding boxes.

3. Objects overlapping, thus not easily distinguishable from a single

object.

4.

These conditions are illustratedin Fig.88, Fig.89 and Fig.90.

INTELUGENT OPTICAL SENSOR - 204

SYSTEM DEVELOPMENT

01 ·ObJ cts Separated 02· Objecfs Bounding areas overlapplrlg

Fig. 88: Objects Separated Fig. 89:Bounding Areas Overlapping

03· Objects overlapping

Fig. 90: Objects Overlapping

Conditions 1 (fig. 88) and 3(fig.90) do not present any particular

problems to the current detection process, other than having to be

adapted to accept more than a single target. Condition 2(fig.89)

however, needs extra consideration.

Given the current method for identifying an object in the image, an

object is defined by finding the first set pixel in each direction, and

by these, defining the outer extremities of the object's bounding

box.

This system will however always define only a single bounding box

(and thus a single object), no matter how many objects are actually

present in the image. In order to detect multiple objects, the

INTELLIGENT OPTICAL SENSOR - 205

SYSTEM DEVELOPMENT

recognition process must be modified to take into account gaps

around objects.

As image scanning is carried out line by line, this requires the

process to record each object's position and extents throughout the

process, declaring the object as "closed", i.e. completely identified,

once a consistent gap has been found surrounding the entire object

from its surroundings.

Initially, this might seem to be a fairly simple process, which it

would be if the minimum object separation distance could be

precisely defined. Such a definition is however difficult to set, as the

following factors can affect the actual object separation:

Distributed Image noise, Noise suppression algorithm, Image

shadow artefacts, object's position within the image.

These various factors can also lead to a single object being

effectively separated into a number of sub-objects, which must

however still be treated as a single potential target.

In order to provide an accurate way of identifying separate objects

within the image, a dynamic system should be considered. As the

actual object identification is a sequential operation to the image

nOise reduction, a value might be obtained from the actual average

image noise level (which can be easily extrapolated from these

calculations) , which can then be used to derive a minimum specific

object separation distance. The advantage of using such an

INTELUGENT OPTICAL SENSOR - 206

SYSTEM DEVELOPMENT

approach resides in the fact that each image is now considered for

its own specific conditions.

As explained above, the actual process of identifying and separating

multiple objects is very much reliant on the method used to carry

out the noise-reduction process on the overall image. Whilst still

separated processes, these must be tuned to one another in order

to be presenting valid and unbiased or uncorrupted data to the next

processing level.

6.2.2 - Noise Reduction

There are two types of noise which can occur within an image:

distributed noise and local noise.

In the current application, local noise is essentially treated as a

potentially valid target and is thus processed and eliminated.

Distributed noise, as mentioned earlier, is a natural occurrence

depending on the active surveillance environment, and can be

observed in two main forms: distributed movement within an

image, such as background tree branch movement, and distributed

movement of the entire image, such as that caused by actual

camera vibration.

Local noise, while requiring a full detection cycle to be considered

INTELUGENT OPTICAL SENSOR - 207

SYSTEM DEVELOPMENT

and cancelled, does not generally affect the validity of an image. A

high level of distributed noise however, can result in severely

corrupted image data, making potential targets difficult to

accurately locate and analyse. Due to the type of approach

currently being considered, it is necessary, as far as possible, to

eliminate image distributed noise whilst retaining the relevant

image data.

1. Overall Image Movement

Caused by camera vibration, for example.

Overall image movement is relatively simple to compensate. Using

a frame by frame image analysis process, pixel-wise movement

within an image can be located and the entire image can then be

shifted in the appropriate direction and by the appropriate amount

to result in a zero difference image comparison outcome.

2. Movement within the Image

As caused by wind-induced branch movement.

This is slightly more complex to eliminate, as the movement

generally cannot be reduced to a single definable vector. In this

case, each detected area of movement (pixel-wide) must be

INTELLIGENT OPTICAL SENSOR - 208

S YSTEM D EVELOPMENT

separately analysed in order to determine the magnitude and

direction of the now local movement.

This effectively results in a pixel by pixel analysis of the entire

image difference area.

Each difference pixel is shifted by a distance of one pixel in one of 8

directions until either a zero difference is obtained of the pixel-shift

directions are exhausted. In the second case, the result then

remains as an identified difference at the original position.

Fig.9l illustrates the pixel-shift directions:

Fig. 91 :Pixel Shift Range

As can be observed, the process for identifying and eliminating

movement within the image is essentially a superset of the process

utilised to process image-wide movement.

It does however result in a slightly lower resolution output image,

as areas within the image that have registered movement can be

effectively over processed - hence the necessity to limit this

processing to purely areas of image change, and to constrain the

pixel's mobility in the compensation range in such a way as to

enable correct motion correction whilst preventing the elimination of

valid image changes due to potential target motion.

I NTELLIGENT O PTICAL S ENSOR - 209

SYSTEM DEVELOPMENT

The pixel compensation range must therefore be matched to the

current image noise level (which is determined via the immediate

image comparison process), in order to provide an accurate noise

compensation process. This necessity to dynamically adapt to each

individual image was previously mentioned in the process for

separating potential targets which have overlapping boundary

areas.

6.3 - Multiple Data Extractor

6.3.1 - Multiple Object Parameters

In order to test the processes suggested, the code for the original

Data Extractor was modified to include the various stages of noise

control and multiple object capability.

The exact relationship between the average image distributed

nOise level and the accordingly adjusted minimum object spacing

values has not yet been established and is thus still adjusted

manually, as a balance value must be obtained which, whilst

eliminating a maximum of distributed noise will also introduce the

least possible object corruption into the image.

Fig.92 show the new code in action:

INTELUGENT OPTICAL SENSOR - 210

S YSTEM D EVELOPMENT

~)

----'
Fig. 92: Base image, showing distinct noise distribution areas.

In this image, the slider controlling the noise-reduction level can be

clearly seen below all the other control buttons.{value currently set

to 0).

At this stage, the image has simply been opened but not yet

processed, which explains the number of objects located as being

zero.

In Fig.93, Fig.94 and Fig.95 is shown the effect of increasing the

minimum object spacing on the actual noise reduction process. The

larger squares show areas of the image which will be retained once

the noise removal is completed.

INTELUGENT O PTICAL SENSOR - 211

S YSTEM D EVELOPMENT

$ h 'gol I

Fig. 93: Noise reduction level set to 0

~E

f~ .' ...I
"Il<.;;

j~
Roord.,., I

lu':1

E.t

~ Obtoclo

r
"

Fig. 94: Noise level reduction set toB

Fig. 95: Noise level reduction set to 15

I NTELLIGENT O PTICAL S ENSOR - 212

SYSTEM DEVELOPMENT

The effect of modifying the noise correction level can be clearly

seen in the image series above. The original underlying image is

shown in blue, whilst the retained pixels of the image have been

highlighted as bright magenta blocks.

It can be observed how the noise reduction component actually

affects the image integrity.

In the first case (Fig. 93), no correction is being applied, and too

much noise is being included in the final image. This leads to viSible

object deformation where possible targets are effectively blended

into the noise background.

In the second case (Fig. 94), a middle correction value is applied.

This effectively eliminates a lot of the minor noise occurrences,

whilst still retaining the potential target as a relatively unmodified

object. Larger noise occurrences are somewhat minimised but still

appear as distinct potential objects in the filtered image. From a

visual assessment, the optimal filtering value has not yet been

reached, and the actual noise filtering factor could still be increased

without introducing damaging corruptions into the image.

In the third image (Fig. 95), the maximum correction value is

applied. We can see how most noise occurrences have been

eliminated from the final image, but a cursory glance also reveals

the high degree of image corruption which is evident by the much

reduced area of the potential target which has been marked as

INTELLIGENT OPTICAL SENSOR - 213

SYSTEM DEVELOPMENT

worthy of further analysis.

This is an obvious case of overcorrection which could easily result in

potential targets being either totally ignored, or corrupted to such a

degree that they are no longer recognisable as such.

The same series is now shown with the object detection and

separation code in place. Each identified object is shown within its

bounding box (Fig.96, Fig.97, Fig. 98):

~e11"9·' I
Fig. 96:0 Noise Reduction

,~l.fitJ Dab lntractor ~.~.

-, -, !7.: C

Fig. 97:B Noise Reduction

INTELLIGENT OPTICAL SENSOR - 214

Elot I
P Otr.cJ'

....) 5

Fig. 98: 15 Noise Reduction

S YSTEM D EVELOPMENT

The actual processing values are exactly the same as in the noise-

reduction series, thus illustrating the relationship between the level

of nose correction and the accuracy of the individual object

recognition.

As can be seen, the actual object detection accuracy increases

throughout the series, even though the actual object erosion can be

clearly seen. This is actually to be expected, as when the noise

correction level is increased, more outlying pixels are cancelled out,

thus leaving much better defined and separated objects within the

image, objects which can then be rapidly detected and separated.

The first image however, (Fig.96) clearly illustrates the condition of

objects with overlapping boundary areas, or in one case of one

object located entirely within the boundary of another object but

still correctly identified as an independent object, which would then

be further analysed on its own merit.

I NTELUGENT O PTICAL S ENSOR - 215

S YSTEM D EVELOPMENT

Fig.99 and Fig. 1 00 illustrate a rather extreme case with a fully

saturated image due to a combination of poor lighting and cheap

camera lens, wh ich shows the effectiveness of the object detection

process:

--.r "
r .. c at
:i~,'"

Fig. 99: Noise Saturated Image

5. rll.,.. I

Fig. 1 00: Saturated Objects Detected

6.3.2 - Deriving the Dynamic Noise Correction Level

INTELLIGENT O PTICAL S ENSOR - 216

SYSTEM DEVELOPMENT

The setting to adjust the noise level in each image will have to be

based on a dynamic function in order to provide optimal image

results.

The actual noise correction process is based on a subsampling

technique. Using this, clumps of 4x4 pixels of the original image are

considered. If the total number of set pixels within this area is

larger than the value set on the noise-correction slider, the area is

marked as valid and its pixels are considered to be set and

representing potential objects, otherwise, the entire area is judged

to be noise and all set pixels are cleared.

As the entire process is dependant on the effective average image

saturation, it is necessary to establish the link between the said

saturation and the required correction level in order to provide a

clean but also usable image.

Measurements have been taken on a number of datasets, both

artificial and from live image capture sessions. Although these

always only present a single target within the image, they also have

either artificially generated or naturally present noise, depending on

the data set.

Fig. 1 01 and Fig. 1 02 show the noise density over two separate data

sets:

INTELUGENT OPTICAL SENSOR - 217

100

90
00

10
?;
'~oo .,
050 .,
-540
Z30
~

20

10

o

__ '"-f.... _____ .---- - ----..

500 1000 1500 2000
Data Sam les

Fig.l0l:Artificial Data

100

90+---------------------~
oo~.--~~~--&---~------~

~ 10 r-:--~~~~---'-__7.-L_7.--------j

~ 00 +--;--r-... ~.-=---_;.+J-----. ----:i
~ 50 ~------..:....---_:_--.-. - - -1

~ 4O+------,.--!----~----"---___i
o
Z 3O~-::....... rr-".____'--"~----"'O____&;._:_____j

#- :!l-A--~-*---.,t,---"d'C,____:jp..!_4lf___1lY;J_.r___!

200 400 6lD BOO 1000 1200 1 400 16lD

Data Samples

Fig. 1 02: Live-capture Data

S YSTEM D EVELOPMENT

As can be clearly seen, the average noise density in both cases

remains lower than expected.

The average value for the artificial data set (Fig.l0l) is at 8.3%

with a minimum at 5% and a maximum value of 14% .

As would be expected, the dataset from the live capture sequence

(Fig. 1 02) is much less regular, but still follows a similar trend. The

average noise density is here at 15.2% with a minimum of 0% and

a maximum of 840/0, the median value, probably a more telling

INTELLIGENT O PTICAL S ENSOR - 218

SYSTEM DEVELOPMENT

measurement in this case where noise spikes distort the overall

trend, lies at g%.

This difference in the overall distribution is due to the much less

controlled capture conditions for the live data. Although the

environment was fairly strictly regulated as to how many objects

could be presented within the image, the use of natural light and

the effects of cast shadows are bound to create a less precise data

set, which does not however mean that it is a less accurate data

set. The final system which is to be developed must be able to cope

with such noise spikes within the overall data set in order to

function correctly.

Many of the extreme values are due to a combination of factors

which do often result in unusually highly saturated images, which

are however still usable given a correct noise-level correction

adjustment.

In the case of the artificial data set, the number of images analysed

was over 1700, and over 1300 for the live-capture sequence.

As could be expected, there is not much difference between the

distribution patterns for images with or without valid targets. This is

illustrated in Fig.l03 and Fig.l04:

Fig.l03:No Valid Target

INTELUGENT OPTICAL SENSOR - 219

100

00

00

70

~60
.l!!50
Q>

6: 40
~~

20
10

o

100

00

00

70

~60
.l!!50
Q>

6: 40
~~

20
10

o

o

o

100

t - ',",-

200 300
Input Samples

... -

•
400

--
200 400 600

Input Samples

Fig. 1 04: Valid Target

500

BOO

(In both cases, taken from the artificial data set)

S YSTEM DEVELOPMENT

Such a density variation cannot be expected, due to the image

capturing process, as objects will change their image space

occupation as they vary their distance to the surveillance camera ..

This is not the same factor as the object's set area within its own

bounding box, which does reflect the nature of the objects currently

being examined.

A short evaluation of the noise correction level necessary for

various noise density conditions was carried out. As this process has

to be carried out manually in order to determine the best pOint

INTELLIGENT OPTICAL SENSOR - 220

SYSTEM DEVELOPMENT

offering a balance between noise reduction and object corruption,

the overall data set size was fairly limited, but has been selected

from a fairly wide source of live capture sequences presenting the

camera with a variety of conditions [Appendix A - 9.1].

The result can be seen in Fig.l0S:

1 00

OJ
CI
J!!
" ~
.t'
,,10
0

13
~
8

16

14

12 .,
" ;;;

10>

" 0

tl
8 ~

8
-0

6 f!
" '" ..
OJ

4 :E

11 21 31 41 51 61 71 81 91 101

1- ·
Image Noise
Saturation

Fig.l05:Required Correction Level

%set curve(blue) uses the left hand vertical axis 0-100

Error Correction curve(yel/ow) uses the right hand vertical axis 0-15

The dark blue line (Cleaner diagonal curve) shows the percentage

of image pixels set for each image (i.e., the average noise

distribution). This is shown on a logarithmic scale from a to 100.

The yellow line shows the corresponding minimum noise correction

level required to provide a usably defined object using the current

INTELUGENT OPTICAL SENSOR - 221

SYSTEM DEVELOPMENT

detection process.

Although irregularities are present in this second setting, the trend

is to roughly follow the distributed noise level.

Obviously, this presents a calculated value which follows

experimentation to obtain the best noise correction value. Such an

approach would not be feasible in the final autonomous system, and

must therefore be optimised via a dedicated function.

The noise correction level is generally following a linear mapping of

the distributed noise level, with local variations due to particular

image conditions. In the condition being considered, a slight

overcorrection is more acceptable than not enough correction, as at

most, an object's classification level might be slightly reduced,

instead of not being identified at all due to saturated noise effects.

The graph below shows a linear correction level, as well as a

logarithmical ratio. The logarithmic value generally provides too

high a correction level, thus reducing the amount of image

information available. The ideal solution would follow a middle value

between these two paths, not over correcting images with low noise

levels, whilst providing an adequate level of filtering for highly

saturated images. A suggested curve is illustrated in Fig.l06:

INTELUGENT OPTICAL SENSOR - 222

SYSTEM DEVELOPMENT

16 100

12

QJ .. 01

::> !!
~

c ..
c B 10 ~
0 ~

~
c
0

0 ~ U
0
U

11 21 31 A1 51 61 71 81 91
Image Noise Saturation

Fig.106:Potential Error Correction marked in yellow

Where the Ideal Correction Level curve(yellow) uses the left hand axis (0-15)

and the Logarithmic Correction Level is based on the right hand vertical axis

(1-100)

The function actually applied in this case is shown in Fig. 1 07:

Y =0.15 X +((100- X))sin (0.01 IT)
15

Where Y is the noise correction level (0 to 15)
and X is the Distributed Noise Level (as a percentage)

Fig. 1 07: Error Correction Function

As can be seen on the plot (Fig. 106), this function serves to

enhance the correction response in the lower level range, whilst not

becoming quite as extreme as a pure logarithmical function (shown

in dark blue), in order to preserve the final object integrity. Initially,

the noise distribution level is simply scaled down to between 0 and

15 (the total correction range available).This results in a very linear

INTELUGENT OPTICAL SENSOR - 223

S YSTEM D EVELOPMENT

adaptation , which is , in this case, not satisfactory, as many images

require slightly enhanced correction levels, especially in the low

noise density ranges. The sigmoid part of the calculation serves to

place a sigmoid curve over the linear response, which is then offset

towards the origin and enhanced to provide the final desired effect.

A second test run using the above dynamic error correction on 100

randomly picked live-capture images has served to confirm the

accuracy and reliability of the process.

The final adjustment curve is shown in Fig.l0B. This reflects the fact

that the noise correction value is an accurate integer, thus the

correction value is modified in steps of 1:

16

12

OJ

" ~
c: r u

------~----~_n 100

11 21 31 41 51 61 71 81 91
Ima e Noise Saturat ion

Fig. 1 08,' Final Noise Adjustment

OJ
CI

J!!
c:
OJ
~

10cf
c:
0

13
~
8

Applying this function to the overall image results in a dynamically

adaptive object detection process for each image, providing an ideal

level of noise filtering depending on the image being considered.

INTELLIGENT OPTICAL S ENSOR - 224

SYSTEM DEVELOPMENT

6.3.3 - "Intelligent" Noise Reduction

As the system being developed is eventually based on the use of a

form of neural network, the question can be raised, as to why the

nOise reduction process is not treated in the same way.

Indeed, work has been carried out using bottleneck architectures

for noise reduction in images [49, 35, 16]:

A bottleneck architecture is based mostly on an MLP type of

network, where the system offers the same number of inputs as

outputs. This allows the input pattern to be properly reconstituted

at the output stage. However, the middle hidden layer of the

network presents a much smaller interface, thus creating the

bottleneck, hence the name of the network.

This bottleneck feature is effectively used to compress the incoming

data stream, and thus remove impurities (in this case noise). The

output layer is then capable, in a properly trained system, of

outputting a cleaned and smoothed version of the image. The

network architecture is illustrated in Fig.l09:

INTELLIGENT OPTICAL SENSOR - 225

SYSTEM DEVELOPMENT

Fig. 1 09: Bottleneck Network

The size of the actual input layer is not really dependant on the

image size, as the total image will be presented in portions to the

network, but must simply be sufficient for the type of noise levels to

be encountered.

The advantage of such a system is its great simplicity, and

reliability once trained. It does however present a fairly rigid

structure, which will be incapable of taking into consideration

overall image noise levels and varying image noise levels - the data

will always be considered within the network's local area, but not as

a factor of a larger image-wide noise distribution ratio.

The system proposed and evaluated using Multiple Data Extractor,

whilst considering smaller image sections, does take the overall

varying parameters into consideration and accordingly adjusts the

actual level of correction to be carried out. This thus preserves the

data purity in detailed areas of the image when the overall noise

level is fairly low, and only applies a maximum corrective level in

cases of total or near total image noise saturation.

6.3.4 - Processing Times

INTELUGENT OPTICAL SENSOR - 226

SYSTEM DEVELOPMENT

The process described above for identifying objects within the

image, whilst functioning reliably, is not necessarily the best

process for the application being considered. The problems

associated with it are:

• Necessity to process the entire image area

This can be fairly time consuming.

Object detection depends on suitable noise filtering, thus

presenting one extraneous abstraction layer into the entire

process.

This has led to the development of a further approach which is less

destructive when considering the resulting image data:

6.4 - Image Feature Analysis

In order to evaluate the efficiency of the object detection and noise

reduction algorithms" the following process was developed:

Instead of analysing each image pixel by pixel and measuring an

average image saturation level which in turn leads to a noise

correction value, the actual area to be considered can be limited by

carrying out a linear analysis of the image light variations, as shown

in Fig.ll0:

INTELLIGENT OPTICAL SENSOR - 227

S YSTEM D EVELOPMENT

Fig. 110:Light Variation Analysis

This shows the two images being compared. To the left, the datum

image, to the right, the incoming camera image. The actual light

curves for each image are shown below (overlaid on the left hand

image). The eventual image differences (illustrated by the green

line at the bottom of the black window) can be very rapidly located

using a simple line analysis of the final difference curve as well as a

certain level of momentum, used to gap small areas of no change

which might otherwise interrupt a continuous object. It must be

noted that the curves displayed here are in their raw format,

without any form of optimising, which could otherwise be used to

enhance the areas of difference.

As with the initial processes used to compare the datum and

incoming images, there does remain the risk of missing areas of

I NTELLIGENT O PTICAL S ENSOR - 228

S YSTEM D EVELOPMENT

movement due to similar colour tones in the changed areas,

although this process does appear to be quite resistant to this type

of noise, as can be seen in Fig.l ll:

Fig.lll: Noise Resilience

To test the process capabilities, the images were rotated 90

degrees clockwise before being analysed, in order to remove the

fairly large influence of the dark trousers against the otherwise light

image, and thus focus the difference detection process on the area

where the white shirt is against the white wall. As can be seen,

even though the actual difference curve exhibits only minor (visible)

changes, the full area of change was correctly identified as shown in

Fig.112:

Fig.112 :Change Identification

I NTELLIGENT O PTICAL S ENSOR - 229

S YSTEM DEVELOPMENT

This analysis approach is valid for images with well defined areas of

change and shows the efficiency of the object separation process,

even when the differences are hardly visible to the human eye.

Actually identifying the object limits will require the standard edge

detection as described in the previous sections. For images with few

areas of change, this process can be used to rapidly identify and

isolate these parts of the image for further processing. If the image

is however saturated with change areas, the entire image will have

to be analysed anyway as is currently the case.

6.5 - Data Selection

I NTELLIGENT O PTICAL S ENSOR - 230

SYSTEM DEVELOPMENT

The actual image analysis processes allowing data to be extracted

have been well covered, and the system currently developed has

been shown to cope well with a variety of real world factors such as

image noise (point and distributed) and multiple objects in a single

image.

6.5.1 - Network Architecture

Throughout the system testing and development phase, use has

been made of a fairly simple MLP network, developed on the various

sets of artificial images and their resulting data. In a real world

situation, this is not the ideal network configuration to use

considering the system working conditions.

Due to the structure and training process of an MLP network, it is

important to generate a very complete training data set, containing

examples of all possible input types and classes, linked to clearly

defined output patterns.

In the system at hand, although the number of inputs and the

range of each is well known (the input data is from a rigid data

extraction procedure guaranteeing a certain consistency), the actual

data source is more difficult to control: There is no prerequisite

other than a given threshold dimension for the type of object from

which data will be extracted and analysed.

INTELUGENT OPTICAL SENSOR - 231

SYSTEM DEVELOPMENT

The network is thus presented with the data via at least one layer

of abstraction (the data extraction and preparation stages), thereby

increasing the data complexity by a variable factor depending on a

number of dynamic settings used in the processing sequences

within this abstraction layer (notably the dynamic noise correction

level).

Due to these factors, it is necessary to introduce a fairly loose form

of classifier prior to the final decision making step.

The role of such a classifier would, in this case, be a form of data

segregation or grouping, depending on the relationships within the

object data set. Its role is thus less that of determining the validity

of a potential target, but more that of labelling the current dataset

according to fairly rough parameters, and thus allowing a following

process to actually classify the object considered with more ease, as

the initially seemingly random input pattern would have been not

only transformed into a more standardised format but will also have

received a further set of parameters (the exact number is set by

the exact form of this classifier) affirming the probability of the

object belonging to a given input class.

6.5.2 - Data Pre-Classifier

INTELUGENT OPTICAL SENSOR - 232

SYSTEM DEVELOPMENT

The actual format of this pre-classifier is yet to be determined, but

it must be considered that the data classes to date are highly

dynamic. The aim of such a pre-classifier is not to issue a strict

boolean type output, but to support the current data set with a

certain probability measure as to the data origin.

It is obvious that the full range of potential input sequences is

nearly impossible to collect during this development stage. It is

however possible to collect and present the development sequences

with a fairly wide range of these potential inputs, which should

enable the establishment of a dynamic process capable of a certain

level of data interpretation and extrapolation.

A SOM (Self Organising Map) type of network offers exactly these

advantages. As explained earlier, a SOM is quintessentially a data

mapping device. The system is created with a number of default

values. As the entire available data set is presented to this network,

the various nodes and weights are adjusted in such a way as to

create a multidimensional map (the number of dimensions depend

on the relationships within the data as well as on the actual

architecture of the SOM itself) of the data presented. Values which

have not been seen during this quite open training process can

easily be analysed to observe their clustering behaviour, and the

actual multidimensional position of this data within the network can

then be analysed as a probability of belonging to a specific class of

INTELLIGENT OPTICAL SENSOR - 233

SYSTEM DEVELOPMENT

the input dataset.

Whilst this might appear to provide a one step solution to the

problem at hand, the actual output from such a network still

requires a certain level of interpretation.

As the training process is totally unsupervised (limits to certain

dimensional values can be set, but no errors as such occur as the

training network is not provided with expected response patterns),

the actual data ordering can be following quite a complex curve,

depending on the dimensionality of the data to be analysed. This is

however predictable to a certain extent, given that the data

dimensionality is previously known.

6.5.3 - Hybrid Architecture

Using such a front end for rough data separation, the general data

patterns can be observed, and the valid areas within the thus

created multidimensional space can be categorised.

When an element is then analysed during run-time, the position of

this element inside this previously established multidimensional

space is taken into consideration to allow a form of classifying,

which is however still dependant on a number of interrelated

features, i.e. the actual network weights defining the enclosing

space. The complexity of these relationships is thus directly linked

not only to the network's physical grid size, but also on the

dimensionality of the actual input data.

INTELUGENT OPTICAL SENSOR - 234

SYSTEM DEVELOPMENT

Due to the network structure. These dimensions are however

known to reside within certain predefined boundaries, which were

used to establish the network training patterns. Due to the training

process (and dependant on the volume and distribution of the data

actually used for the network training process), the boundaries to

the various input classes can be more or less precisely labelled,

which then enables the extraction of precisely defined and

controlled data parameters as a resultant of this original sorting

step.

The data thus extracted is actually very well suited to be directly

fed into an MLP type network for a final classification stage. (It must

be noted that an MLP is not a necessary final stage, this could very

well be replaced by a form of fuzzy classifier, which does however

carry the risk of being less adaptive to such a dynamic data set, and

also requiring a very complete rule set to be defined, based on

historical data inputs which might not be fully representative of the

system inputs under real life runtime conditions.)

INTELUGENT OPTICAL SENSOR - 235

MlPLayer

I SOMlJIyer I

I Input lJIyer I

o
00

cqmpg Nttwprtc ArchIllgbJ,.

SYSTEM DEVELOPMENT

Fig. 113:Complex Network Architecture

Such a hybrid system offers the advantage of not resulting in any

form of data loss between the various stages, as all outputs from

the first layer (Processed input values as well as extrapolated data

relationships) are passed directly on to the second layer. The data

analysis and condensing (reducing the multidimensional values to a

Single probability output statement) occur within the system, and

more complex data input arrangements are also possible, therefore

the secondary layer could be provided with the original raw (or only

optimised) data as well as receiving the first layers inputs.

INTEWGENT OPTICAL SENSOR - 236

I MLP Layer I

I SOMLIIyw I

I Input I.ayar I

o
00

Cgmplg Nttwgrk Arcblttgty ..

SYSTEM DEVELOPMENT

Fig. 114:Complex Network Architecture 2

Using a similar architecture, it is of course entirely possible to

provide the second classifier with entirely different data sets, albeit

originating from the same object to be analysed. This is a valid

solution when the data preparation required for the different

network architectures needs to consider different data relationships

for optimal network performance.

In the system currently considered, there is a fairly large pool of

data from which ideal inputs can be selected. This does however

then present the problem of actual data selection in order to

maximise the data relevance to problem solving and minimise

INTELLIGENT OPTICAL SENSOR - 237

SYSTEM DEVELOPMENT

object corruption through an insufficiently descriptive data set.

In the data studies previously carried out on the simulated data

sets, certain features appeared to achieve importance levels which

were contrary to the data consistency: Rapidly and easily changing

data values were selected for final consideration, which led to

unnecessary bloating of the final system, as additional network

inputs were made available to compensate for the relatively poor

quality of these specific data lines.

Using the complex system architecture described above, less

important data values can still be considered in the initial network

sorting layer, whilst more critical values could be fed directly into

the second classifier stage, maybe using a special weighting

component to accentuate the relevance of the individual network

inputs.

More specifically, the data set which is currently extracted from

each potential target has a large section of mapping components,

the segment area components. These 24 entries serve to describe

the actual spatial distribution of the object within its own

boundaries, thus giving a rough evaluation of the real object shape.

This subset of the image data is highly sensitive to object aspect
~

changes, whilst still carrying information as to the object class. Due

to this highly dynamic component, this subset has so far been

partially avoided, even though the principal component analysis of

INTELLIGENT OPTICAL SENSOR - 238

SYSTEM DEVELOPMENT

the entire range of artificial data sets revealed certain of these

elements as being of not inconsiderable importance to the overall

object description. The system described here presents an ideal way

of including this data subset into the final analysis without

distracting the final classifier network from more consistent but

maybe less dominant data values. To achieve this, the segment

area subset can be fed directly into the initial sorting network (this

subset is ideally suited to a SOM architecture due to its dimensional

components).

6.6 - Data Optimisation

6.6.1 - Data Mapping

The data used to date has been fairly generic, optimised for use

mainly with MLP type networks.

When considering the initial classifier stage of the system (the SOM

layer), the data to be fed into it is already in a relatively well

prepared form, as the values are all percentage representations of

the area occupied within each zone. A weighting component is not

needed, as all the zones have an equal importance, depending on

the position of the target within the bounding box, and the value

variance is, in all cases, between 0 and 100 (or between 0 and 1 for

INTELLIGENT OPTICAL SENSOR - 239

SYSTEM DEVELOPMENT

an ideally scaled data set).

When examining a number of cases, a general distribution map can

be recognised within the segment area pattern, where the central

values tend to be highly set, regardless of the condition, simply due

to the average object mass distribution.

It is then questionable as to whether all these values are actually

necessary to carry out a correct object analysis (leading to a very

large and slow network system).

A rapid analysis of the segments data through rapid network

generation did to confirm this assumption to a given degree.

In order to test this assumption, a number of small SOM networks

were generated.

6.6.2 - SOM Generation

The SOM architecture has been selected for its ability to map

undefined data into rough data sets following a mathematical

process which effectively results in a spatial/mathematical mapping

of the data representation areas within the network as defined by

the network nodes, based on data feature similarities.

INTELUGENT OPTICAL SENSOR - 240

SYSTEM DEVELOPMENT

The SOM architecture is ideal for this type of study, as it allows a

fairly rapid visualisation of the actual data pattern distribution and

representation, without having to actually modify the data in any

way (other than a simple log-based optimisation for the SOM

structure), and thus risk corrupting the integrated data signals.

The data mapping feature of a SOM network is, however, very

sensitive to varying input vector sizes, making some form of data

normalisation, necessary, especially in the case of input data

vectors with widely varying values.

Due to the training process of a SOM, such an architecture is less

suited to generalisation, considering the relationship between the

number of data inputs and the width and height of the mapping grid

itself - this means that a SOM network can rapidly reach a

saturation point where the presented data will no longer be mapped

correctly, as map features have been allocated to different input

sequences[80] .

Considering the Segment data available, the range for all the values

is between 0 and 100, which can be reduced to a pure percentual

representation. The problem with such a normalisation remains

however in the comparatively large influence of higher value inputs,

which can lead to a distortion of the actual mapping representation.

To counter this effect, the data is treated uniformly through a

logarithmical optimiser. This serves the purpose of enhancing the

INTELUGENT OPTICAL SENSOR - 241

SYSTEM DEVELOPMENT

lower data range relative to the larger values, but also of enhancing

the difference to very small values. The actual process used is given

in fig.115.

(lg(X))
Y= (lg/(lOO))

WhereY is the prepared data
and X is the original data

Fig.l15:Data Normalisation

For the purpose of this test, the segment arrangements shown in

Fig.116, Fig.117, Fig.118 and Fig.119 were used:

Centres Extreme-s

Fig.l16:Centres Segments Fig.117: Extremes Segments

INTELLIGENT OPTICAL SENSOR - 242

Mid

G M

H N

o
J P

K 0

L R

Cross

S YSTEM D EVELOPMENT

Fig. llB:Midd/es Segments Fig. 119:Cross Segments

The actual patterns represent the main areas of interest on the

segments.

Centres(Fig.116) shows the expected head position, as well as

feet positions for a standing human and hand

positions

Extremes(Fig.117) This takes a representative area from the

central body portion, as well as possible

extreme positions for the hands and feet.

Middles (Fig.118) Only takes into account the middle body

position. Extremities are ignored

Cross (Fig.119) Represents the main areas for hands and feet

in given conditions

In all the patterns, the number of data classes was intentionally

limited to 8, for two reasons:

I NTELLIGENT O PTICAL S ENSOR - 243

SYSTEM DEVELOPMENT

Firstly, this provides quite a good range of possible input patterns,

whilst giving a good coverage percentage of the total possible

selection (33 0/0 of the total data is used).

Secondly, the number of inputs is kept fairly low so as not to

saturate the SOM and thus prevent a proper mapping of the

dataset.

This combination allows the actual SOM structure to be kept

relatively small, which is advantageous to both processing speed

and hardware requirements.

In Fig.120 are shown the variations present within the segment

data sets, when comparing target to non-target data.

Average Segment Area Values

1.--------------------------,
0.9.f---------------j
0.8.f--------------j
0,7 +----------,..;:--------1
0,6 .f------I.....-----I+--t--lr-----j

05~~~~if;Jliiillllli~ii~ 0,4 +-------+-t1
0,3
0,2
0,1

o
3 5 7 9 11 13 15 17 19 21 23

Fig. 120:Average Segment Data Values

This already shows differences in the data trends for both

conditions. To accurately judge this, it is more useful to refer to the

INTELLIGENT OPTICAL SENSOR - 244

S YSTEM D EVELOPMENT

standard deviation measures, as shown in Fig. 121 :

Fig. 121 : Standard Deviation of Target to Non-target Data

The graph above (Fig. 121) can be seen to confirm the assumption

that the most extreme values (the four corners of the bounding box

grid) offer the least variation between noise and target. These

pOints are marked by the two large dips in the graph above.

A sequence of networks was trained for each condition, using 1400

lines of mixed data, and presenting this dataset 100, 150 and 200

times for the network training phase.

Given the fairly small size of the network and the comprehensive

size of the training dataset, limiting the training cycles to fairly low

values prevents the networks from overtraining and thus simply

learning the training dataset. For testing purposes, a separate

testing dataset of 610 lines of mixed data was reserved.

INTELLIGENT OPTICAL S ENSOR - 245

SYSTEM DEVELOPMENT

The results of these networks [Appendix) - 10xl0 SOM Network

Tests] show that the various models did indeed succeed in creating

a representation of the data. This can be evaluated visually via the

ordering and clustering of the various weight patterns.

When the test data set was used however, the actual level of

sorting was found to be very poor throughout, with noise and target

data lines achieving little separation as regards to the winning

network node:

When the trained network is presented a line of yet unseen data, a

calculation is carried out to obtain the vectorial position of this data

within the network's hyperspace. The winning node is that closest

to this position, and the actual distance between the input and the

winning node is taken as a confidence level to the association with

this node's previously defined data class or label.

In most of the cases considered here, the winning node and

distance for both target and noise data lines was often the same,

highlighting the inability of the networks to distinguish between

these two data classes, even though the data sorting process had

appeared to run successfully.

INTELLIGENT OPTICAL SENSOR - 246

SYSTEM DEVELOPMENT

The situation thus presented is now twofold:

1 - The data used has no relevant information permitting a clear

class definition between noise and target to be made.

2 - The data used is too complex to fully model on this type of

network, indicating a need for more degrees of movement within

the network to allow an accurate segregation between the data

classes to be carried out. The modelling done to date was involved

mainly in matching the data complexities of a single class.

Effectively a case of network saturation.

Given that the segments data being studied here is directly linked

to the object geometry and mass distribution, it is unlikely that the

separation between noise and target not be represented in the final

data set. This is corroborated by the standard deviation curves of

the two data sets, which show visible separations.

In order to provide a more accurate mapping model, the size of the

SOM network was increased fourfold to 20x20 architecture. The

mathematical degrees of freedom within the network are now:

20x20x8 = 3200 (This is a direct measure, without taking into

account the relational links between each node in the system).

The same process was now carried out as described previously,

training three networks for each condition with learning times of

INTELLIGENT OPTICAL SENSOR - 247

SYSTEM DEVELOPMENT

100, 150 and 200 cycles and random weight initialisation.

Once again, visually, a good degree of data sorting occurred,

although now a certain level of clustering could also be observed

[Appendix) - 20x20 SOM Network Tests]. When observing the

actual results using the test data set, a much better data separation

was also achieved, showing the network's increased mapping

capacity.

On all models except the "Middles" data set, a clear clustering

pattern is apparent within the network weights: indeed, the

"middles" trained networks also showed the worst separation when

using the test data set. This shows that the dataset used does

indeed contain the information necessary to providing a good

separation between the two classes: target and noise.

When considering the actual results, the best class separations

where achieved by the Centres and Extremes Data sets using

slightly higher training cycles [Appendix) - Results].

Out of this, a new data set was generated, combining certain

features of both original sets. The actual layout of this combination

set is as shown in Fig.122:

INTELUGENT OPTICAL SENSOR - 248

S YSTEM D EVELOPMENT

Combine

Fig. 122:Combine Segments

The features selected in this set represent general areas containing

the body, head and feet in extreme conditions.

A selection of networks was trained to evaluate the mapping

capacities according to various starting parameters. This approach

is necessary to obtain the best possible network, as all the initial

weight values are randomly set, leading to different minimisation

possibilities each time. In addition to this, depending on the actual

network topology (Weights distributions within the network space),

a local minima can lead a training process to optimise in an

incorrect direction, thus blocking any further optimisations which

might otherwise have been achieved.

As can be seen [Appendix) - Network Mapping], various separation

models have been achieved. These charts show the firing rates

achieved for the test data sets, expressed as a percentage of the

total dataset size.

INTELLIGENT O PTICAL SENSOR - 249

SYSTEM DEVELOPMENT

Although this might be an encouraging sign, it is necessary to

evaluate whether this separation is indeed representative of the

data classes or not. If this is not the case, the use of this pre­

sorting network, working with the current datasets, cannot be

justified, as the mapping output would provide no further

information as to the object's classifying likelihood - This would

simply result in unnecessary information being fed into the next

classifying stage, thus tying up a number of resources and

compromising the final system performance.

At the very least, this would represent a waste of processing time,

which cannot be justified on a realtime system, where the system

effectiveness is measured by its update interval.

The actual percentage of target to noise data in the various data

sets is as follows:

Centres: 63.80 % of Target conditions.

Combine: 64.43% of Target conditions.

Extremes: 63.80 % of Target conditions.

The most accurate data splitting was generally achieved by the

"Extremes" dataset, with a clear separation between the two main

classes, and an effective mapping separation of 64% mapped target

to 36% mapped noise.

INTELUGENT OPTICAL SENSOR - 250

SYSTEM DEVELOPMENT

This is close enough to the dataset separation of 63.8% - 36.2% to

be considered a valid mapping separation. The incorrectly mapped

0.2% of the cases are due to a number of factors which are

essentially due to conditions where the target and noise data

present no clear separation, thus necessitating a further

classification stage assisted by further data parameters for the

condition considered.

The effect achieved through the use of this type of SCM network is

effectively a form of data compression via a mapping mechanism:

Starting from a set of 8 unsorted data inputs, the SOM net has

optimised these and converted them into a probability measure as

to their belonging to a certain class within the data. This particular

class in itself is not specified, but using the expected results against

the test data set, the classification areas can be roughly estimated.

As the output of the SCM network is not intended to be directly

interpreted, but will in turn be fed into a further classifying stage

using a supervised learning process, it is at this stage not actually

necessary to carry out the labelling process, apart from the

information it would give as to the reliability of the SCM sorting

process.

This probability measure is dependant not only on the actual

INTELUGENT OPTICAL SENSOR - 251

SYSTEM DEVELOPMENT

winning node coordinates, but also on the vectorial distance to this

node, and the associated metric (although these values are indeed

related):

The chance of an input data set of belonging to a certain data class

decreases as the vectorial (Euclidean) distance to the winning node

representing this data class increases. Conversely, the smaller the

vectorial distance, the greater the likelihood of the dataset actually

belonging to the described class.

There are thus a number of outputs from the SOM network to be

considered. These are:

- Winning node x coordinate.

- Winning node y coordinate.

- Vectorial distance from dataset to winning node.

- Metric measure.

In this case, the use of a SOM actually results in a net data

compression ratio of 500/0, coupled with the advantage of a form of

preparatory data mining as to the classification of the data.

This effectively completes the initial development of the preliminary

mapping stage.

INTELUGENT OPTICAL SENSOR - 252

SYSTEM DEVELOPMENT

6.6.3 - Classifier

The development of the classifier module is, in a way, a lot easier

than the initial data mapper, as the process to be used follows a

supervised training method: The system is presented with a set of

data inputs and simultaneously with the expected output values.

This makes it very easy to measure the actual performance of the

network, the main difficulties lying in the steps of data selection,

data preparation and network optimisation.

During the system evaluation phase, the main validation tool used

was a series of small backpropagation networks. Indeed, the entire

data preparation carried out was to optimise the obtained data for

exactly this type of network.

The choice of input data is also partially dependant on the data

output by the original mapping layer. Data available from here is:

- Winning X Node.

- Winning Y Node.

- Euclidean Distance to input data.

- Maximum Boundary Measure.

- Metric (Relative measure of Sum of input data to the

boundary size).

Data used in previous small classifier nets was:

- Box Width.

INTELUGENT OPTICAL SENSOR - 253

SYSTEM DEVELOPMENT

- Box Height.

- Centroid X Position.

- Centroid Y Position.

- % of total boundary area set by object.

Also available as possible inputs are the various radial measures,

which could be treated in the same way as the individual segment

measurements, by processing them through a separate mapper.

The other measurements currently available are either irrelevant

(Box X Pos, Box Y Pos), or are represented by other measurements

(Box Area, can be calculated using Box Width and Box Height).

Whether the classifier will be able to deduce these relationships is

not clear, and it might be worth considering some form of

preparation.

Considering the values Box Width, Box Height and Box Area, these

could be represented as:

1 - Box Height, Box Width.

2 - Box Area.

3 - Box Area, (Box Width/Box Height).

Considering the various methods:

1: Provides the full information, although the link between Height

INTEWGENT OPTICAL SENSOR - 254

SYSTEM DEVELOPMENT

and Width will not necessarily be recognised. Original data can be

reconstructed.

2: Provides the most condensed form of data, however, the object

dimensions are lost in the data. Does not allow a full reconstruction

of the original data. Original data can be reconstructed, although a

scaling problem might arise.

3: This approach provides a comprehensive coverage of the actual

data space, giving a condensed form of the object relationships

For the data to be fed into a classifier network, it should ideally be

within the range of 0/1 or -1/+1.

If a simple ration is taken of Box Width/Box Height, this will not

necessarily be below 1, as for given objects the width might be

greater than the height.

Inverting the result in such a case is not acceptable, as the network

input order must always remain consistent.

One solution would be to present the data in vectorial form:

Max = Max(Width, Height)

V = Width/ Max
Width

V
HOIO

.' = Height/Max

although this does result in two output values, it does still represent

an improvement in the description of the data, and provides a

INTELLIGENT OPTICAL SENSOR - 255

SYSTEM DEVELOPMENT

simultaneous normalising effect. Coupled with the normalised Box

Area value, a full reconstruction of the original data is still possible,

showing that data loss has not occurred.

This does not however solve the problem of providing a single value

which will consistently be in the 0-1 range without inverting the

presentation order for given circumstances.

The next step would thus be to create an artificial data split at 0.5,

where values below this would indicate a normally low ratio (less

than 1), and values above a high ratio (over 1) although the

techniques used to execute such a transform always lead to a loss

of the original data, which is contrary to the entire principle of data

optimisation.

6.6.4 - Classifier Training

The initial training dataset for the final classifier will then consist of

the following input vectors:

- SCM Winning Node X Pos

- SCM Winning Y Node

- SCM Euclidean Distance

- SCM Metric

- Centroid X Pos

- Centroid Y Pos

- Box Area

- Box Width

INTELLIGENT OPTICAL SENSOR - 256

SYSTEM DEVELOPMENT

- Box Height

although none of these will be presented in their raw extraction

form.

The types of optimisations are shown below:

SOM Winning X Node:

1 in n encoding. n taken as maximum SOM network width.

D, = Som Winning X Node / 20.

This form of l/n encoding is generally not recommended, due to the

artificial ranking which it creates within the data ranges represented

for the particular vector. In this case however, a geometrical

relationship already exists due to the topography of the network. It

is therefore entirely correct to create this implied ordering which

gives an idea as to the actual position within the total grid

SOM Winning Y Node:

1 in n encoding. n taken as maximum SOM network height.

D, = Som Winning Y Node / 20.

SOM Euclidean Distance to winning node:

D, = Distance / Number of SOM inputs

D, = Distance / 8.

SOM Metric:

Metric = Sum of SOM inputs/Max Boundary

INTELUGENT OPTICAL SENSOR - 257

Where Max Boundary = 8.

Metric = 0
M'"

Metric = 1
M"

D = Metric.
4

Centroid X Position:

SYSTEM DEVELOPMENT

The data extracted represents the absolute position from the image

edge. This must be processed to result in a measure relative to the

current object's position.

D = (CXPos - X)/Width
5 MIn

Centroid Y Position:

This is similar to the X Position.

D. = (CYPos - YJ/Height

Which results in a relative percentual measure between 0 and 1.

Box Width:

D,=Width/Max(Width,Height)

where Max(Width,Height) relates only to the current input vector,

not the entire dataset.

INTELUGENT OPTICAL SENSOR - 258

SYSTEM DEVELOPMENT

Box Height:

DB = HeightjMax(Width,Height)

where Max(Width,Height) relates only to the current input vector,

not the entire dataset.

Box Area:

D. = BoxArea/(320x240)

No dynamic scaling is used here, as smaller values are intentionally

suppressed in favour of larger objects.

A number of networks were trained [Appendix A - 9.3], based on

these inputs and a poll of the best performing SOM networks

developed previously.

The necessity to develop a number of different models, even when

using the same setup parameters, arises from two main factors:

Initially, a networks weights are randomly initialised. This random

starting pattern effectively changes the energy states within the

network, leading to a unique internal structure for every run.

The second factor which will affect the network development is the

type of data used to train it, as well as the order in which the data

is presented to the network.

An MLP network is also very flexible in its actual internal structure.

As mentioned by L. Tarassenko in "A Guide to Neural Computing

applications" [16], a three layer architecture is capable of solving

INTELUGENT OPTICAL SENSOR - 259

SYSTEM DEVELOPMENT

most non-linear problems, the difficulty remains only in selecting

the correct number of nodes on each of these layers.

For the network considered here, the input layer has nine neurons,

and the output has a single neuron.

As yet, no theory has been developed as to the exact relationship

between the network architecture, training data and layer sizes.

This process is thus, initially at least, fairly empirical.

Initially, this was set to a guessed value.

The available known data set was split into two randomly selected

non-equal sections:

Training (approx. 2/3 of the data).

Validation (approx. 1/3 of the data).

The sets were selected using a random sorting process, in order to

obtain representative samples for all conditions in both data sets.

This ensures that all three data sets (training, testing and

validation) all have variety of data samples, leading to a balanced

network training process and thus optimising the generalisation

potential of the final network. This would not be the case if the

training data had been severely biased towards a particular type of

condition, for example only crouching humans, which would reduce

the networks ability to correctly classify conditions it had not

encountered during the training phase.

INTEWGENT OPTICAL SENSOR - 260

SYSTEM DEVELOPMENT

A further Testing set was created using the original noisy data, in

order to evaluate the actual generalisation potential of the final

networks.

6.6.5 - MLP Considerations

The process of training an MLP network involves carefully watching

the output error reduction to select the best point to interrupt

training, at the stage where the output error is the lowest, however

without having the network simply learn the training data and loose

its ability to generalise to yet unseen data, a process known as

overtraining, or overfitting.

The method used is to present the network with the separate

testing data set after a preset number of training epochs. This will

be shown to the network in a pure analysis and not training mode,

and the output compared to the expected value. This effectively

generates a second error plot, which can be monitored in parallel

with the first.

The lowest point on the second curve can indicate the ideal training

pOint of the network, as after this the network weights will gradually

start to overfit to the training data (Fig. 123).

INTELUGENT OPTICAL SENSOR - 261

SYSTEM DEVELOPMENT

Training Set Error
Ideally
Trained

L.. Network 0
'-L..
UJ
(J)

~
c:c: Validation Set

:______ Error

' ~ , , , , , , , ,
• • I I , • t I
, I I I
I I I I
, I I , ,

~
I I I I
I I I • ,
• I I • , :
• I • •

Number of Training Cycles

Fig. 123:RMS Training Error against Testing Error

The simple evaluation of these curves is, however, not really

sufficient to determine the best training breaking pOint. Even

though a network might be giving a satisfactory classification rate,

the system itself might well be processing redundancy: The actual

Size of the network might still be optimisable.

The number of neurons on each layer will closely determine the

effectiveness of the network.

Too few neurons will cause the network to perform poorly where

many different data classes are to be evaluated, as well as causing

a poor network performance on new data. Such a fault is however

normally to be recognised during the training phase, as the network

training error is then unlikely to converge to 0, but will generally

retain a fairly high value, depending on the complexity of the

training data.

INTELUGENT OPTICAL SENSOR - 262

SYSTEM DEVELOPMENT

Too many neurons however are unlikely to adversely affect the

classification rate of a given network. Due however to the number

of calculations involved in a complex network structure, the sheer

excess of neurons will lead to waste of processing power and time.

It is also eventually to be considered that the network internal data

groupings will be spread out more widely throughout the network

structure, leading to poorer performance in the case of the

introduction of new features during the testing phase.

A network can be gradually pruned, either on an empirical basis,

where a limited number of neurons are disabled and the network

performance then evaluated, or by considering the firing rates and

values of specific neurons. A neuron with a low firing rate (i.e.

rarely activated) and low output values (near to zero), can be

evaluated as participating little in the network performance. Such a

neuron can then be disabled to test its actual contribution to the

classification process.

If no deterioration in the network performance is observed on a

representative data set (it is important that all data cases be tested,

as a given neuron might only fire for a given situation), the selected

neuron could be completely erased from the network structure.

Many of the available neural software packages are capable of

dealing with the evaluation of such neurons, either automatically, or

via user prompts for confirmation.

INTELLIGENT OPTICAL SENSOR - 263

SYSTEM DEVELOPMENT

In network optimisation, the actual ordering of the data inputs can

also be of importance [16]. If logical or mathematical relationships

exist within the input data set, it can assist the network

classification to present this data to the network in a sorted fashion.

In this example, the Box Area, Box Height and Box Width values are

all linked, and are thus to be presented to the network at adjacent

inputs. This also applies to the Centroid X and Y pOSitions.

6.6.6 - MLP Training

Using the values presented earlier (SOM_X, SOM_ Y, Euclidean

Distance, Metric, Centroid_X, Centroid_ Y, Box Width, Box Height,

Box Area), a number of networks have been developed, based on a

three layer structure (2 hidden layers and 1 output layer) and using

a sequential training process.

The number of neurons per layer was varied between 4 and 7 for

layer 1, and 2 and 5 for layer 2. The output layer was kept

consistent with a single output.

A single output is, in this case, suffiCient, as the data is being

classified into one of two classes (person, or no person). A

possibility would be to enlarge the output layer to two neurons,

thus dedicating one neuron to each data class, but tests carried out

INTELUGENT OPTICAL SENSOR - 264

SYSTEM DEVELOPMENT

during the initial SOM tests (linked to small MLP's for performance

evaluation) showed no improvement between the two structures. In

a number of cases with different MLP structures and a variety of

mapping SOM networks, the output error varied only between a

few decimal positions, with no consistent trend justifying the

increased network complexity.

It must not be forgotten that the final structure is to be kept to the

absolute minimum size, in order to enable a rapid translation to a

hardware model. The final network size and input data vector size

will be instrumental in determining the processing power required in

the final system, in this case, a system to be integrated into the

actual camera module, thus critical in determining the cost of the

entire system.

The networks developed are based on two particular SOM models

using the Extremes data set. The best performing SOM networks

with training cycles of 200 and 400 epochs, initial learning rates of

0.4 and momentum rates of 0.1. The learning rate and momentum

rate values are dynamically updated during the training process in

order to optimise the results obtained: Whilst these parameters

initially start with quite high values which allow for larger adaptation

within the network, their values are gradually reduced to near-zero

following an exponential curve.

INTELUGENT OPTICAL SENSOR - 265

SOM
Output

Network
Output

Input Layer
Fig. 124:Final Network Architecture

(Note: Not all connections in the networks are shown)

The complete network structure is shown in Fig.124.

SYSTEM DEVELOPMENT

The diagram above illustrates the most successful form of network

which was developed, using a 20x20 SOM network to process the

Extremes segment measurements, the results of this mapper and 6

other inputs from the raw data being in turn fed into an MLP

network with the following structure:

Input Layer: 9 Neurons.

Hidden Layer 1: 7 Neurons.

Hidden Layer 2: 4 Neurons.

INTELUGENT OPTICAL SENSOR - 266

SYSTEM DEVELOPMENT

Output Layer: 1 Neuron

(As the input layer does not contain any adjustment weights, taking

the data values directly, this is not considered as an actual

adjustment layer of the network).

A number of sequential training sessions were carried out with the

said architecture in order to obtain the best starting point, an

important feature considering the network weights random

initialisation process.

The training interruption parameters were set as follow:

Interruption via testing results or on reaching a minimum RMS error

of 0.01 on the training data.

The effectively reached interruption point eventually retained the

following values:

Training Data RMS error: 0.087258.

Testing Data error: 0.065488.

overall training period: 97 Epochs.

Even though the target RMS error value had not been reached, the

training process was stopped at this stage as further training cycles

were only leading to a worsening of the network resolution when

INTELUGENT OPTICAL SENSOR - 267

SYSTEM DEVELOPMENT

considering the performance of the network on unseen data, thus

implying that further training was only leading to an overfitting of

the training data set.

The network training was then repeated using the same

initialisation pOint, as the data presentation order had been

randomised.

This process was repeated, using variations to the network

momentum and learning rate values, in order to optimise the

particular set of starting weight values.

The entire process was repeated over a selection of new weight

initialisations, which provide not only new parameters to optimise

the training run, but an entirely different topology offering different

minimisation possibilities.

Carrying out these optimisations over approximately 10 new weight

initialisations reduced the final error level by a value 0.007, thus

providing nearly a 10/0 improvement in the network resolution.

This can be seen in Fig.125:

Fig. 125: Optimised Network Resolution

INTELLIGENT OPTICAL SENSOR - 268

S YSTEM DEVELOPMENT

! o~n r---~----~--~~~--~~ : : : : : : ...----------,
0.412 ~. ~ -; .. -- .. - ; .. --~ : -- --; - :--- .. _ -

0 ;)4.]

0 293

0253

0 203

01 63

0.1113

0.074

I f , I ,
• • • • I • • - -~-- -,. ----..;-- .. -- ; .. ----:-- .. --i---- .; ... _- ... ----
I I I , • I I
• • I I • I I

-- .. -; .. - -- ; ----..;----- ; ----:--- -i --:- -----
f I I I I I I

• I I I • _ J __ .. __ L __ .J ___ L _ __ ' .. ___ _ J __ _ .. ,.}_ .. __ .. ___

t • fl ' t
I I • • , I

• • I • • I •
...... LII 1 _....

: : : : : : : .

\
_.. ~- ~:.... ~ : ;: ~

• I I I I , I I
I • I I I • I I

• • I I I , t -- .. ~ --~----~ .. ---- r- ---1---- -~ - i-" _ ~-- .. --
I I I I I I I

" I 1 I I I I •

.. "'~{:_~ ~ :":':';1"~:': ;" h~-J."""~:'- -~:- .. -- .. : --

• I • • t •

o 42 as 27 U9 212 254 2£6 IT:!))1

EJDch

T ki"t • .J fllo fl.l l
ICI.U7S':.Ull

r E¢I Ellet INel~KlI I

IUQ83T14j

Where the testing data error represents the performance of the

network on a random selection of novel data, representative of the

full data-range.

As can be seen on the graph above, the crossing point of the two

error lines occurs, in this case, on approximately the 310th training

epoch, after which point the testing error starts to increase whilst

the training error continues to decrease, indicating that the network

is now purely learning the training dataset instead of general ising it,

and is thus losing its ability to classify novel data sequences.

The graph in Fig. 125 showsn that this is not the first crossing pOint

of the training and validation error lines, which is due to the

overcoming of a local minima in the network topology. This is

shown by the slight rise in the training error value, followed by a

relatively sharp drop from 0.118 to 0.074. Such a local minima is a

common feature in most networks which, if not taken into

consideration, can provide sub-optimal performance. The

INTELLIGENT OPTICAL SENSOR - 269

SYSTEM DEVELOPMENT

momentum factor in the training sequence is used to overcome this

particuliarity, by modifying (normally increasing) the calculated

weight change factor.

This effect was observed on all networks of this size, suggesting a

limitation has been reached for the representation of the data, and

that a further reduction in size of either of the hidden layers would

lead to a decrease in problem resolution. This was confirmed when

smaller networks were trained but failed to achieve RMS error

values lower than 1.2.

Examining the weights of the most successful network also revealed

no values close enough to zero to justify cutting a particular

connection out of the network structure.

Considering the other option, i.e., enlarging the network structure,

a few experiments were carried out using structures varying

between 2 and 3 hidden layers, with up to 15 nodes per layer.

Unlike a more restricted network, where the network topology does

not allow the network to map the data accurately enough, thus

leading to poor problem resolution, the larger a network becomes,

the greater the danger of the network overtraining and simply

learning the training data set, thus not developing any

generalisation rules for unknown data.

INTELLIGENT OPTICAL SENSOR - 270

SYSTEM DEVELOPMENT

This effect was observed on the larger network tests, with the RMS

error value dropping down below 0.03, but coupled to an ever

increasing value for the test data set error.

This factor seemed to occur immediately when a third hidden layer

was introduced, and for a two layer structure, was apparent when

the first hidden layer size surpassed the size of the input vector.

Experiments in inverting the layer distributions (first hidden layer

smaller than the second hidden layer) were briefly tested, but the

problem being considered is not one of data compression or nOise

suppression, but one of accurate classification. This type of

structure is therefore not suited to the type of data analysis

expected of the network.

6.7 - Conclusion

Using the current approaches in the stages of data extraction,

preparation and analysis, a valid system has been established which

permits a satisfactory resolution of the problem at hand.

The addition of a second supportive SCM mapper using the radial

object measures might be worth considering, to obtain a yet higher

accurate final classification rate, although this would be at the

INTELUGENT OPTICAL SENSOR - 271

SYSTEM DEVELOPMENT

expense of a slower system response, due to both the data

extraction and analysis through the network.

With an overall error rate of 0.0654 on data not seen in the training

stage, the final network is pleasantly compact:

7x9 connections on level 1 : 63

7x4 connections on level 2 : 28

4 connections on level 3 : 4

Total MLP connections of 95.

The heavier part of the processing is embodied in the SOM data

mapper, with a 20x20 structure and 8 inputs, which results in 3200

connections.

The advantage however remains in the fact that the dynamic

adaptations are taking place in the initial image analysis stage, thus

not requiring any further training on the part of the networks

presented here.

INTELUGENT OPTICAL SENSOR - 272

CONCLUSION

7 - Conclusion

There comes a time in the history of any project when it becomes

necessary to shoot the engineers and begin production - MacUser,1990

The initial reason for starting the development of the Intelligent

Optical System was in response to the extremely high rates of false

alarms of unattended surveillance systems, and as a way of

promoting the use of optical surveillance methods within the home

security segment, doing away with the need for trained personnel in

both the system setup and the system operation phases.

Initially, the study was to cover the fields of both fire detection and

intruder detection. After a period of initial research, the fire

detection aspect was dropped as extending the scope of the project

too much, and it was decided to concentrate on the field of intruder

detection.

Although, due to unforeseen circumstances (Weyrad Ltd. filed for

bankruptcy in late 1999 and was subsequently split up and sold to

a number of different companies), the product itself was never

developed to the stage of a commercial prototype, the system

development can be considered to be a success.

INTELLIGENT OPTICAL SENSOR - 273

CONCLUSION

From a failure rate (False alarms and mis-classifications) in

commercial systems approaching 970/0, the IDS system has reached

a correct classification rate of 940/0, with the largest proportion of

the remaining 6% being due to false negatives, using an approach

which can be mounted in any type of environment without having to

retrain the entire system.

This dynamic adaptation to the system's environment represents a

huge advantage for a commercial application, meaning that

successful detection can be carried out within a changing

environment without any detrimental effects to the actual detection

rate, a problem which is commonplace in many automated

surveillance processes.

Given the initial conditions, these have been satisfied:

• The final system is capable of operating with no prior knowledge

of its environment.

The system camera installation does not require any special

training, any location will do.

• The system is capable of analysing multiple objects in each

image, even if these are partially obstructed or affected by other

noise.

• The system can operate entirely without operator intervention

(even though it is currently in the form of modules, created for

ease of development and testing, these can easily be integrated

into a single streamlined package, as each module only needs to

be started - all calculations are carried out autonomously of

INTEWGENT OPTICAL SENSOR - 274

CONCLUSION

operator intervention.)

• The system has been kept compact to allow for easy integration

into a stand-alone product.

• Running on a Pentium II-300Mhz computer running Windows NT,

the system is able to run a complete image analysis sequence

within 0.0625 seconds. This does depend on the image

complexity and the number of objects detected, and is a

combined value taken from timing the various separated

processes. Once these are integrated into a single streamlined

package, running on dedicated hardware, it is assumed that this

time would drop approximately by half, thus allowing for a close­

enough match to real-time performance for a regular surveillance

system.

The final network structure can be observed in Appendix K.

INTELUGENT OPTICAL SENSOR - 275

FURTHER STUDIES

8 - Further Studies

Now that we have all this useful information, it would be nice to be able

to do something with it - Unix manual

The system developed so far, although it uses many dynamic

features within the image processing stages, is essentially a static

system which analyses one image at a time, and does this

completely separately of previous images within a single

surveillance sequence.

On the current system, there are two main areas which would

benefit of an entirely dynamic, time-based approach:

8.1 - Datum Image Setting

The datum image is currently set at the beginning of a detection

sequence, and is then used throughout the surveillance period,

using various methods to optimise it in regards to the incoming

camera images.

If however, the surveillance conditions are subject to larger

changes, the datum image will no longer be presenting an optimal

measurement base. In such a situation, it would be advisable to

INTEWGENT OPTICAL SENSOR - 276

FURTHER STUDIES

capture a new datum image, obviously only if no actual object

movement is detected in the surveillance area!

Such a new datum image capture could be triggered by one of two

types of changes:

• Dramatic overall light level change.

On each image, the median colour level is measured. If this

median level on the camera image is consistently higher or lower

by a factor of 100/0, a new datum image should be generated.

The actual time frame on which to base such a decision should be

sufficient to take into account normal variations due to:

• - Cloud Movement.

• - Objects temporarily covering the entire camera lens.

A suggested value would be set to approximately 10 minutes,

thus avoiding too many updates from occurring due to changing

weather conditions.

It would thus be sufficient to plot the average median light level

difference over the selected time frame to provide an update

decision. This is therefore based on an already existing

calculation, thus avoiding an excessive extra calculation load from

being put on the overall system.

• Constant image difference detection over a given time period.

Such a condition is likely to occur on an outdoors based

INTELUGENT OPTICAL SENSOR - 277

FURTHER STUDIES

surveillance system, where the actual surveillance area might not

be completely controlled. This would apply if the surveillance area

was covering an area such as a storage area, where a change in

the actual environmental geometry might occur:

• A box might be added to or removed from the surveillance area.

Once such an event has been registered by the detection process,

as long as it remains present, it need not be repeatedly analysed.

• Using the current system, each area of change within the image

is initially stored within its own matrix, providing a number of

definitions relating to the geometry of the object.

It would be possible to store at least a subset of this information,

allowing the system to memorise or compare the position of non­

target objects within an image.

• Over a predefined time frame, the constant detection of a given

object could then lead to a system datum image update, thus

removing a source of system slowdown (each object detected

leads to a system response penalty, as the object must first be

analysed then classified).

The two methods considered essentially lead to the type of effect

within the image. One will be an overall light level change, whilst

the other will lead to a local effect. In order to combine the

processing of these parameters, one method would be to split the

INTELUGENT OPTICAL SENSOR - 278

FURTHER STUDIES

overall image into a number of sub-grids, which can then be

analysed for light level differences. This would effectively remove

the need to memorise all detected object parameters, depending on

the size of the defined grid, as a constant difference within one or

more of the subzones would lead to an overall datum image update.

B.2 - The Object Classification Process

The object classification process, although dependant on a number

of dynamic features, it itself also basically a static process,

analysing each image entirely independently of the previous ones.

For a surveillance system, this is however a disadvantage, as

objects within a scene follow dynamic paths: A person might walk

behind a car, thus being partially or entirely hidden for a few

seconds.

Not only this, but the recognition ratio of an object is likely to

change over time as different aspects and thus geometries are

presented to the camera.

It is important to note that the final classifier does not output a

simple YES/NO condition, but results in a classifier percentage level

of confidence, in this case a six-digit precision value, which will

INTELLIGENT OPTICAL SENSOR - 279

FURTHER STUDIES

fluctuate for each frame of an image, depending on the object

position and geometry as well as the image noise level (The noise

correction algorithm does affect the final data extracted for a given

object within the image).

It is therefore advisable to provide a confidence level tracking value

for each identified object within the image [66, 61]. Using such a

function, the previous classifier output, or an average value of the

previous classifier outputs over a given number of frames, can be

provided as an extra input to the final classifying stage, thus

providing a form of bias which can help in situations where an

object is temporarily lost of partially hidden. Such a process could

also assist in eliminating obvious non-target objects before these

are processed by the classifier, although such an approach is

slightly more dangerous, as a valid target could well initially be

classified as 0% valid if it is not within the actual detection range.

This would then provide an artificial bias to a non-target output,

which would then require a number of successful target

classifications to reach a non-biased situation, unless the actual

network output were considered on a logarithmical basis, thereby

leading to a much larger contribution by valid targets as compared

to non-valid objects.

The overall mechanism of such a process can be seen in Fig.126:

INTEWGENT OPTICAL SENSOR - 280

Incoming
Object
Data

Classifier

Feedback
Weighting

Fig. 126: Feedback Process

FURTHER STUDIES

Network
Output

Such an approach would then open the way to additional features

such as object trajectory prediction, which would provide extra

information as to the nature of the object detected. [17].

INTELUGENT OPTICAL SENSOR - 281

9 - Appendix A

9.1 - Noise Analysis
-""

! 11-·
I
~ 1-

m ~ 0_,,<'>8
---'>

I

I

--Y'

~-

~

~

~

ApPENDIX A

LEVEL

INTELLIGENT OPTICAL SENSOR - 282

ApPENDIX A

9.2 - Image Subtraction Results

The following images illustrate a few cases of image substraction

using the developed object detectionand noise reduction algorithms,

as well as a classification using the first test MLP network. Although

fully trained on artificial data, these images show a satisfactory

performance on real data.

The sequences show the datum image, the incoming camera image

to be analysed and the final object recognition with initial network

classification, where the classification range is a percentage of

certainty from a to 100 that the target considered is valid.

Fig. 127:Sequence 01

Void
Obfec.tl,,, ...

Fig. 127 shows a fairly clean capture, where the resultant difference

is very clean and a high classification is reached.

INTELLIGENT OPTICAL SENSOR - 283

ApPENDIX A

Fig.128:Sequence 02

Fig.12B shows a slightly more difficult condition with ground

shadows and similar colour bands.

Fig. 129:Sequence 03

Fig.129 shows a situation with a high level of distributed noise due

to light casting. Note how the noise reduction algorithm serves to

correctly isolate the valid target.

x

Fig. 130:Sequence 04

Fig.130 shows a more difficult situation where the target has

identical colour shades to the background, creating local loss of

INTELLIGENT OPTICAL SENSOR - 284

ApPENDIX A

difference. The noise correction algortihm helps to counteract this

effect, succesfully identifying the final object.

Datum Image Camera Image

Fig. 131:Sequence 05

Fig.131 illustrates a difficult environment with many reflections and

shadows. Partial loss of difference due to ground shadows on the

target legs.

Datum Image Camera Image

Fig. 132:Sequence 06

Void
Ob,o<l. ,....,,, -

x

Fig.132 shows a similar situation to fig.131, however with more

distributed noise on the right and lower edges of the image.

INTELLIGENT OPTICAL SENSOR - 285

,
i

Datum Image

A pPENDIX A

Fig. 133:Sequence 07

Fig.133 illustrates a condition with multiple targets, two valid and

one non valid, as correctly classified by the initial network. Note the

loss of the first targets' torso due to colour similarieties with the

background, and the ensueing lower classification value.

- .E.I

Datum Image Camera Image

Fig. 134:Sequence 08

Fig.134 shows a fairly straightforward target analysis with multiple

occlusions in the torso area due to background patterns.

Datum Image Camera Image

Fig. 135:Sequence 09

Fig.135 is again a fairly straightforward analysis on a smaller

object.

INTELLIGENT O PTICAL S ENSOR - 286

ApPENDIX A

Datum Image Camera Image

Fig. 136:Sequence 10

Fig.136 illustrates a condition with severe shadowing, which is

combined with the actual target into a single object with partial

noise cleaning - Classification is still correct.

Datum Image Camera Image

Fig. 137:Sequence 11

Fig.137 illustrates a condition with quite a high noise level due to

light and shadow casting. The single valid target in the frame is

correctly classified.

Datum Image Camera Image

Fig. 138:Sequence 12

INTELLIGENT OPTICAL SENSOR - 287

ApPENDIX A

Fig.138 illustrates a case of an invalid target with a high local

noise value due to surface reflections.

Datum Image Camera Image

Fig. 139:Sequence 13

Fig.139 illustrates the case of an invalid moving target, couple with

noise artifacts due to light/shadow casting. It is interesting to note

that the noise artifact is not classified as well as the actual invalid

target(the dog).

Datum Image Camera Image

Fig. 140:Sequence 14

Fig.140 shows a valid and an invalid target in the same frame, with

Correct detection and classification for both.

INTELLIGENT OPTICAL SENSOR - 288

ApPENDIX A

- - ~

Datum Image Camera Image

Fig.141:Sequence 15

Fig.141 shows two correctly identified and classified valid targets in

a single frame. Note that shadows have been eliminated via the

noise correction procedure.

INTELLIGENT OPTICAL SENSOR - 289

ApPENDIX A

9.3 - MLP Network Evaluations example

The exampe below shows an evaluation of a number of MLP-type

networks on a same data set but with different architectures and

weight initialisations.

Results False Po T e 51 IV S

Linear RMS I Normal RMS IArchitecture Cycles I Train Mode ~
!'let 1 Sequential Random Replace

01 -1 87,24 87,24 10-6-3-2 30000 X
01- 87,24 87,24 10·6·3·2 25000 X X

0

~et 2
01 94,42 94,42 85,71 85,71 10-6-3·2 30000
0 92,19 87,88 85,71 55,26 10·6·2 20000 X

F'let 3
01-1 76,71 77,35 0,68 10·5·3·2 20000 X X
01- 76,71 77,35 0,7 10·5·3·2 30000 X
'02-1 72,89 73,68 94,11 96,97 10·8·2 24400 X X
'02- 78,79 78,15 3 2,9 10-8·2 20000 X X
02- 91 ,97 9 ,23 75 76,36 10·8-2 30000 X X

~et4
01 83,73 83,57 92,15 91,26 10-5-3·2 34500

02-1 78,47 78,47 0,74 0,74 10·6·4·2 30000 X
02- 85,96 85,96 5,68 5,68 10·6-4-2 29000 X X
02- 78,31 78,31 0,73 0,73 10·6·4·2 60000 X X
03-1 86,28 N/A 10-6-4-1 20000 X X
03- 82,62 N/A 10·6·4·1 60000 X X
04·1 82,93 N/A 10·5·1 50000 X X
04- 85,33 N/A 10·5-1 20000
04- 85,33 N/A 9·5·1 20000-15n
04- 73,68 N/A 10·5·1 30000 X
04-~ 49,6 N/A 10-5·1 12100 X

F'let :>
01-1 94, 8 94,42 38,25 37,14 10-6-3-2 30000 X
01- 83,25 80,7 5,71 4,95 10·6·3·2 30001 X
02-1 81 ,02 81,02 98,3 98,3 10·7·4·2 29500 X
02- 87,56 87,56 6,41 6,41 10·7·4-2 30000 X
02- 86,76 86,76 12,05 12,05 10·7·4·2 30001 X X
02-4 94,74 94,74 63,63 63,63 10·7-4-2 30002 X
02=5 88,68 88,68 8,45 8,45 10·7·4·2 50000 X
03-1 83,57 83,57 2,94 2,91 10·8·5·2 30000 X
03- 83,09 83,09 5,66 5,66 10·8·5·2 30001 X X
03- 94,74 94,74 63,63 63,63 10·8·5-2 30002 X X

~et6

01-1 48 ,01 48,01 100,00 100,00 10·4·3·2 20000X
01- 95,06 95,06 19,35 19,35 10·4·3·2 30000X
01 - 67,94 67,94 95,52 95,52 10·4·3·2 20001 X X
01·4 95,37 95,37 37,93 37,93 10·4·3·2 30001 X X
01=5 95,69 95,69 14,81 14,81 10-4-3·2 20002 X
01~ 95,22 95,22 36,67 36,67 10·4·3·2 40002 X
01 - 95,69 95,53 40,74 39,29 10-4·3·2 20003 X X
01~ 94,74 94,74 15,15 15,15 10·4·3·2 60003 X X
02-1 48,01 48,01 100,00 100,00 10·3·2·2 20000~

02~ 95,53 95,53 25,00 25,00 10·3·2·2 I 20001 X
I I III

02-41 51,99 51,99 0,00 0,00 10·3·2·2 30000lX ~ I
I " : " : I III

L 02-61 94,74 94,74 18,18 18,18 10·3·2·2 30002 ..1 X ~ X I

INTELLIGENT OPTICAL SENSOR - 290

ApPENDIX B - RELEVANT BRITISH STANDARDS

10 - Appendix B - Relevant British Standards

BS 5839: Fire Detection and Alarm Systems for Buildings

BS 7230: Theft Detection Systems

BS 7807: Fire and Security Integrated Systems

BS 820: Anti-Burglar measures in Buildings

BS 5446: Components of Automatic Fire Alarm Systems for

Residential Premises

BS 4737: Intruder Alarm Systems

BS 5979: Code of Practice for Remote Centres for Alarm Systems

BS 6799: Code of Practice for Wire-free Intruder Alarm Systems

INTELUGENT OPTICAL SENSOR - 291

ApPENDIX C - SPECIALISED SOFTWARE

11 - Appendix C - Specialised Software
Packages Used

11.1 - Neural Modelling

- Neural Works Pro II

- Neusciences Neuframe

- TLearn v 1.03

11.2 - Data Analysis

- Neural Works Predict

- SPss

11.3 - Artificial Data Modelling

- Macromedia Poser I

- 3D Studio Max

- Adobe Photoshop

11.4 - Code Generation

- Microsoft Visual C++ v5

INTELLIGENT OPTICAL SENSOR - 292

ApPENDIX C - SPECIAUSED SOFTWARE

11.5 - Main Self-written Packages

- Bitmap Wave Comparator

Analyses the colour waves of two bitmaps for rapid change

detection.

Includes auto adjustment to varying light levelsover the images

- Cheat Office

Image analysis deomonstrator showing the process of image

feature extraction as an executive toy, allowing an office

background to be cancelled and replaced by any specified image.

- Data Extractor

Extracts required data parameters from a vas format file

- Multiple Data Extractor

Extracts required data parameters from a vas format file. Can deal

with image noise and multiple objects

- Neural Demo

Small demontrator of a simple MLP network for human

classification. Works directly on vas format files.

- Results Filter

Package for adjusting the varying data formats from the TLearn

package, for further use in Excel.

INTELUGENT OPTICAL SENSOR - 293

ApPENDIX C - SPECIAUSED SOFTWARE

- SOM Trainer

Self Organising Map generation and training software with visual

display of resulting network structures.

- VIOS Neural Demonstrator

More advanced neural demonstrator including image processing

algorithms for object detection and noise cancellation.

- VosDemo

Simple demonstrator package for grabbing and comparing camera

images. Also capable of saving the direct difference.

- VosReader

VOS manipulating package, allows user defined filters to be applied

to a VOS format file.

- VosViewer

Rapid viewer for VOS format files.

- Weyrad Demo

Active demonstrator of image processing algorithms. offers

sequential timed or manual activation, saves the resulting VOS files.

Used for mass data generation.

INTELLIGENT OPTICAL SENSOR - 294

ApPENDIX D - DATA PRE-PROCESSING TECHNIQUES

12 - Appendix D - Data Pre-processing
techniques, a Summary

12.1 - Scaling / Normalising

The resulting value Y from an input X is calculated by:

Y = (X-Xmin)/Xrange

This type of scaling is used for continuous variables, where each

variable has its own separate dynamic range, and where the

distribution of the values within the variable's range is fairly even.

12.2 - Angular Transforms

Each input is transformed into an angular representation in radians,

and a sin or cosine of the resulting angle is taken. This is then

combined with the vector length to give a two component

representation of complex data pattern.

Well suited to periodic variables, or for frequency analysis within

determined ranges.

INTELLIGENT OPTICAL SENSOR - 295

ApPENDIX D - DATA PRE-PROCESSING TECHNIQUES

12.3 - Zero-Mean Unit Variance

Used for continuous data, this method is applied to a complete data

set and be applied either by row or by column (either by input set

or by variable set).

The actual transform is as follows:

Y = (X-mean)/Standard Deviation

12.4 - Binary Coding

This techniques is useful for categorical variables where a scaling

transform would artificially accentuate certain items.

The input can be coded using various methods, some of which are:

1 in n: 100, 010, 001

Gray Scaling: 000, 001, 011, 010, 110 ...

hermometer: 100, 110, 111

Continuous: l/n, 2/n, 3/n n/n

INTElliGENT OPTICAL SENSOR - 296

ApPENDIX D - DATA PRE-PROCESSING TECHNIQUES

This does generally imply that a single data line becomes

represented by a number of lines, defined by the encoding method

chosen.

12.5 - Vector Augmentation

This method can be applied to multidimensional data vectors, and is

used to extract either the size or the direction of the data,

depending on the method chosen.

12.5.1 - Method 1, used when the vector size is
critical

Given an input vector E'=(e"e"e,,,e)

E' is calculated for all input vectors, where

IIE'II = --.i(Le,') = 1

A va I ue N is then chosen such that N > E' (N = 1.1 E') a nd a new

entry d to the input vector is calculated such that

This results in a new vector E"=(d,e"e"e,,,e)

The final data vector is then considered as

INTEWGENT OPTICAL SENSOR - 297

ApPENDIX D - DATA PRE-PROCESSING TECHNIQUES

E=E"/N

12.5.2 - Method 2, used when the direction of the
vector is critical

E' is calculated as above, but the final data vector is obtained by :

E = E' / II E' II

INTELLIGENT OPTICAL SENSOR - 298

A pPENDIX E - I MAGE S TABILISING M ETHODS

13 - Appendix E - Image Stabilising Methods

Two main methods exist for image vibration supression

1 - Mechanical , using stabilisors or compensators.

2 - Software, by calcuting image movement and introducing a

corrective vector.

In Fig.142 is shown a modern mechanical system, as built in

professional digital cameras.

Fig.142:Image Stabiliser, Courtesy of "Digital Photography Revjew",

source Konika Minolta.

In such a system, a motion sensor is used to capture the type of

motion, and the entire lens and capture device is then moved

accordingly to compensate for the movement. This approach is

rapid and effective, but also highly expensive, and dependent on a

I NTELLIGENT OPTICAL S ENSOR - 299

ApPENDIX E - IMAGE STABILISING METHODS

combination of mechanical components which are subject to normal

wear.

Software compensation depends on comparing successive image

frames to determine the size and direction of movement. Many

systems limit themselves to comparing a specific area of the image

(i.e. The center) in order to speed up the process, and then attempt

to lock onto a recogniseable feature of an appropriate size.

Although this method is computationally more expensive, it is

cheaper to implement and does not really on any mechanical

systems which are prone to failure.

In Fig.143 is shown a sequence of images illustrating the software

correction process (courtesy of Stable Eyes, Ovation Systems Ltd.

http://www .ovation.co. uk)

Un-stabilised video sequence

S abilised video sequence

Fig. 143 : Stabilised Video Sequence

INTELLIGENT OPTICAL SENSOR - 300

ApPENDIX F - MEETING SUMMARY

14 - Appendix F - A Meeting with Dr. Paul
Rosin, 19.11.98

Dr. Paul Rosin from Uxbridge was approached to lend some expert

opinion, having many years of experience in image feature

extraction. This is the stage which effectively converts the filtered

image data into a data set useable in a neural architecture.

Throughout the meeting, he outlined a number of different methods

for image feature extraction and matching, which will be reviewed

below:

14.1 - Line matching

This approach consists of trying to describe the data as accurately

as possible using lines and polylines. Obviously, the more accurately

the image is described, the more lines this will entail to be

calculated.

The problems related to such processing are:

14.1.1 - Fairly intensive processing

We cannot predetermine how many line segments will be required

to accurately define a shape, thus making the following network

architecture more difficult to establish.

If the number of line segments is limited to the major segments

only, there might and probably will, be a loss of important

INTELLIGENT OPTICAL SENSOR - 301

ApPENDIX F - MEETING SUMMARY

description data.

As the shape is described more accurately, the calculations become

more and more unreliable and prone to error, as each line is

calculated with reference to its successor.

14.1.2 - Shape Properties

We are here considering calculating a fixed number of relationships

within the image. These could be features such as max height and

width, positioning of Centroid, area calculation, perimeter

measurement, generic displacement vectors and global image

Positioning.

Certain of these properties are unreliable as a basis for object

recognition, for example, perimeter measurements can very easily

be influenced by noise in the shape, in this case, area measurement

is much more relevant and reliable. Obviously, many of these

measurements will be scale dependent, but will be interlinked. The

use of a graduated camera would make measurements easier,

giving full scalar information, but distance can be compiled from the

data interaction.

Certain shape properties will also be heavily influenced by image

resolution, thus requiring a standardised set of image input

parameters.

Generally, the first processing algorithm must be the best and most

reliable, as any errors occurring at this stage will be fed right

INTELUGENT OPTICAL SENSOR - 302

ApPENDIX F - MEETING SUMMARY

through any further processing and be exaggerated at every single

stage. The final cumulative error and data loss can become quite

large for complex algorithms.

INTELLIGENT OPTICAL SENSOR - 303

ApPENDIX G - INFRA RED IMAGING

15 - Appendix G - Infra-Red Imaging

As mentioned in the previous section, an experimental capture was

also run using a small board camera with limited IR response.

A number of different situations were examined, with various

lighting set ups, including no lighting at all apart from the onboard

IR LED's.

Generally, the quality of the images obtained was quite high, with

accurate and sharp object outlines and little or no blurring over the

focal range (.5m -> 10m). The effects of the IR response were very

interesting. All following comments are valid within the range of the

IR illuminance only:

Under purely artificial lighting conditions, most shadows cast from

objects were altogether cancelled out. Although clearly visible to the

naked eye under the trial conditions, they did not appear either on

the monitor used at the time, nor on the final saved film. Objects in

the cast shadow suffered from no loss of definition in any way.

Under natural light conditions, this shadow cancellation was very

much reduced, to the point of being practically non existent,

however, the sharper images more than compensated for the loss

of this 'feature'.

INTELUGENT OPTICAL SENSOR - 304

ApPENDIX G - INFRA RED IMAGING

Under no light or low light conditions, the effect of the IR

illumination and response was most marked. Although objects

tended to lose any tonal information, their general outlines were

enhanced. At this stage, it is not the colour of the object which is

affecting its visibility, but the material it is made of, and also its

heat absorbance capacity. For example, polished black leather

shoes appeared as near white when within the IR range.

To explain the marked difference in shadow elimination between

natural and artificial lighting conditions, our assumption is that the

wavelength of the artificial lights (regular white fluorescent tubes)

have a much lower red component. Indeed, these types of lights

are normally balanced nearer towards the blue end of the spectrum,

due to the process of phosphorus excitation which they employ. Any

shadows created under these conditions will therefore be colder

than the same shadows cast by natural light. If we were to use

regular incandescent bulbs as our light source, we might very well

find this shadow elimination property much reduced, as such bulbs

have a higher red response.

INTELUGENT OPTICAL SENSOR - 305

ApPENDIX G - INFRA RED IMAGING

I NCANDESC ENT LIGHT

300 500 '800

Fig. 144:Sunlight versus Incandescent Lamp

Fig.144 shows the spectrum for sunlight and an incandescent light.

The higher intensity of the IR component for the light bulb can be

clearly observed. The values on the scale are in Nm (Nanometers),

with human vision ranging from about 320 to just over 700, IR

being at the higher end of the scale.

INTELLIGENT OPTICAL SENSOR - 306

16 - Appendix H
Data

ApPENDIX H - EXPERIMENTS IN ARTIFICIAL DATA

Experiments in Artificial

Wihtin this context of target analysis, we need only analyse moving

objects which are large enough to classify as being a possible

intruder. This precludes the possibility of having to analyse

inanimate objects or random movements. Natural motion due to

leaves moving etc are delt with in the preprocessing stage. The only

possible targets which then remain are human and large animal.

Having developed the system with human training sets, we know

that performance in that respect is adequate fro this first network.

We have however not presented it with any animal data.

For the sake of ease of use, the room modelled in 3DStudio in the

previous sections was used, with a mesh of a large sized dog, and a

number of scenes were thus created, as can be seen in Fig.145:

INTELLIGENT OPTICAL SENSOR - 307

A pPENDIX H - EXPERIMENTS IN A RTIFICIAL D ATA

Fig. 145:Dog Mesh

The final analysis of the data showed certain interesting

cha racteristics:

When presented side on, the dog was generally classified as being

between 40% and 60% positive target. However, presenting the

dog in a frontal view caused a dramatic rise in the recognition level,

with the final output lying between 70% and 85%.

Although the classification never rose above 900/0, it is still

sufficient ly high to raise concerns as to the current network validity .

If we observe the front profile of the dog (Fig.146), we can see that

it very closely resembles the ideal human profile, although

obviously smaller. Within this system, we are however never taking

INTELLIGENT O PTICAL S ENSOR - 308

A pPENDIX H - E XPERIMENTS IN A RTIFICIAL D ATA

account of scale, only of the direct screen size of objects.

Fig.146: Highlighted outline of dog seen in a frontal pose

This aspect of changing target resolution as the object moves

relative to the camera also highlights the benefits which could be

obtained in using some form of history, or time tracking. If each

frame's target resolution were recorded, and each object tracked

(parameters such as Centroid displacement and relative size could

be used) the final recognition output would not be a straight

network calculation but would be a summation of past responses.

This final result could also be calculated using an intelligent system,

or might just be a straight averaging calculation.

INTELLIGENT OPTICAL S ENSOR - 309

ApPENDIX I - CONTOUR ANALYSIS CONSIDERATIONS

17 - Appendix I - Contour Analysis
Considerations

Whilst the experimentation sequences described in the previous

sections have proved most successful, we are starting to investigate

a different technique for identifying an intruder.

The current approach of identifying every moving object within the

image, and analysing each of these separately can be quite a

lengthy process. In addition to this, non-human objects could be

misclassified, leading to false alarm conditions. We could however

analyse the entire difference image as a set of fixed contours, which

we would then attempt to map onto objects in the image. If we

have generic contour maps for a standing human and a crouching

human, and maybe also for similar objects, such as a dog walking,

we could present each of these to the image and compare the

resulting correlation values to determine wether or not the target is

human.

This approach requires only a number of adjustable templates to be

stored in memory. These can then be deformed within set limits to

map onto the image.

Similar work has been carried out by the Universities of Leeds and

Reading, with their Vehicle Tracker and People Tracker. When

INTELUGENT OPTICAL SENSOR - 310

ApPENDIX I - CONTOUR ANALYSIS CONSIDERATIONS

observing their work, the only detection flaw resided in the fact that

the person had to be completely visible before the system could

carry out a positive identification. Once the person had been picked

up, they could then be partially obscured whilst still being tracked,

due to the use of incremental time information in the accuracy of

the mapping. Whilst this work made use of extensive calculations

which could not be used in a real time system, the approach was

interesting, and could be adapted to a neural system with a SOM

network.

Using this approach, a direct analysis could be made of the

incoming camera image, without going through the stage of image

comparison. If the image is reduced to tonal value contours, we can

then apply the templates directly to this. This might be a much

faster way of analysing an image, with a corresponding lower loss

of detail.

An analysis was carried out on the capture sequences, to determine

a generic standing human shape, and a generic crouching human

shape. The results can be seen in Fig.147 and Fig. 148. As we can

see, the human form can fairly easily be reduced to a number of

simple geometric shapes, with variable mathematical relationships

within and around these shapes varying according to the aspect of

the target to the camera and the pose of the target.

r

INTELUGENT OPTICAL SENSOR - 311

Idsall-l ul11i!ln ~hBpe.

BlaCk linK I'Bpr~s~nl poUl

it ustme f vee kits

Fig. 147:Human Shape Analysis

A pPENDIX I - C ONTOUR A NALYSIS C ONSIDERATIONS

Ide.all-luman tiMpe.
Blatk Iml!'!';. Bp~s@nl pcf§.S1

adJu&.tmen! veckll's

Fig. 148:Ideal Human Shape

Further experimentation with Adobe Photoshop has shown that pure

image tonal level analysis might be insufficient to extract suitable

contours without the need for extensive reconstruction through data

extrapolation. This can be seen in Fig.149:

,II .
'I·
01 , .

,I'
j' I.

I I' . , .. , ,.

Fig. 149:Note the legs of the target which have been lost to the contours

INTELLIGENT O PTICAL S ENSOR - 312

ApPENDIX I - CoNTOUR ANALYSIS CONSIDERATIONS

In our discussion with Dr Paul Rosin, pure contour analysis via line

matching generally results in computationally expensive but not

highly efficient or reliable recognition systems.

A better approach to this problem would be to keep the existing

working preprocessing stages, and replace the network section only

with a SOM architecture. This can be trained to the stylised

templates we have just discussed. The input to the network remains

the same data as we are already using, whilst the output is some

type of confidence measure, or the correlation between each

existing template and the image object being analysed. In this way,

we can use a type of voting structure, and can also plot the varying

likelihood of the target being human over a certain time span. Such

a feature could assist in the constant detection of a target being

partially obscured and deformed through spurious shadow effects or

through the target being momentarily obscured by other objects in

the image.

INTELLIGENT OPTICAL SENSOR - 313

A pPENDIX J - DEVELOPMENT I MAGES

18 - Appendix J - Development Images

18.1 - 10x10 SOM Network Tests

The following images show the final network node mapping and

weight distributions for a lOxlO SOM network after the given

number of training cycles.

18.1.1 - Center Data Set

Fig. 150:Center - 100 Cycles Fig. 151 : Center - 150 Cycles

INTELUGENT O PTICAL SENSOR - 314

A pPENDIX J - D EVELOPMENT I MAGES

18.1.2 - Cross Data Set

Fig.153:Cross - 100 Cycles Fig. 154:Cross - 150 Cycles

Fig. 155:Cross - 200 Cycles

INTELLIGENT O PTICAL S ENSOR - 315

ApPENDIX] - DEVELOPMENT IMAGES

18.1.3 - Extremes Data Set

Fig. 156: 100 Cycles Fig. 157:150 Cycles

Fig. 158:200 Cycles

INTELLIGENT OPTICAL SENSOR - 316

ApPENDIX] - DEVELOPMENT IMAGES

18.1.4 - Middle Data Set

Fig.159:100 Cycles Fig. 160: 150 Cycles

Fig. 161 : 200 Cycles

INTELLIGENT OPTICAL S ENSOR - 317

ApPENDIX] - DEVELOPMENT I MAGES

18.2 - 20x20 SOM Network Tests

The following images show the final network node mapping and

weight distributions for a 20x20 SOM network after the given

number of training cycles, showing a much better data space

resolution.

18.2.1 - Centres Data Set

Fig.162: 100 Cycles

INTELLIGENT OPTICAL SENSOR - 318

A pPENDIX J - D EVELOPMENT I MAGES

Fig. 163:150 Cycles

Fig. 164:200 Cycles

I NTELUGE NT O PTICAL S ENSOR - 319

A pPENDIX J - D EVELOPMENT IMAGES

18.2.2 - Cross Data Set

II

FIg. 165: 1 00 Cycles

Fig. 166: 150 Cycles

INTELLIGENT O PTICAL S ENSOR - 320

ApPENDIX J - DEVELOPMENT IMAGES

Fig. 167:200 Cycles

INTELLIGENT OPTICAL SENSOR - 321

ApPENDIX J - DEVELOPMENT IMAGES

18.2.3 - Extremes Data Set

Fig. 168 : 1 00 Cycles

INTELLIGENT O PTICAL SENSOR - 322

A pPENDIX J - D EVELOPMENT I MAGES

Fig. 169 : 150 Cycles

Fig. 170:200 Cycles

I NTELLIGENT O PTICAL S ENSOR - 323

ApPENDIX J - DEVELOPMENT IMAGES

18.2.4 - Middles Data Set

Fig. 171 : 1 00 Cycles

Fig. 172 : 150 Cycles

INTELLIGENT OPTICAL SENSOR - 324

ApPENDIX J - DEVELOPMENT IMAGES

Fig. 173:200 Cycles

INTELLIGENT OPTICAL SENSOR - 325

ApPENDIX J - DEVELOPMENT IMAGES

18.3 - Network Mapping

The following images illustrate tha data mapping of trained

networks for a single data instance, illustrating the acheived data

separations within the network structure.

The highlighted entries illustrate the number of data classes

mapped within the network, with the actual values being the levels

of confidence of class attachment of the input data presented.

18.3.1 - Centres Data Set

0.00 0.00 0.00 0.00 000

0.00 0.00 0.00 0.00 0.00 0.00 coo o.ro 0.00 0.00 0.00 0.00 0.00 0.00 0-00
0..00 0.00 0.00 0.00 0.00 (tOO 000 o.ro 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.00 0.00 a.m om 000 coo 0.00 0.00 0.00 0.00 000 000
0.00 0.00 0.00 0.00 0.00 oeo 000 0.00 0..00 0.00 0.00 0.00 0.00 0.00 0-00
0.00 0.00 0.00 0.00 0.00 000 000 coo 0..00 0.00 0.00 0.00 0.00 0.00 (100

0.00 0.00 0.00 0.00 000 Geo 000 000 000 0.00 0.00 0.00 0.00 000 oeo
0,00 0.00 0,00 000 coo 000 000 000 coo O,CO 0,00 0,00 000 000 000

000 0.00 0..00 0,00 0.00 000 oeo 000 000 oeo coo 000 o.ro 0,00 0,00 000 000 000
0 .00 0.00 0.00 0.00 000 000 000 000 0.00 o 00[TIJ 000 0.00 0.00 000 000 000 000

0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 coo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000

0.00 0.00 0.00 0.00 0.00 0.00 (l00 0.00 coo 0.00 0.00 0.00 o.ro[Q;W 0.00 0.00 0.00 000

0..00 0.00 0.00 0.00 0.00 0.00 o,co 0.00 000 0.00 0..00 O.OJ 0.00 0.00 0.00 0.00 0,00 0..00
0..00 0..00 0.00 0.00 0.00 0.00 0..00 0.00 oro 0..00 0..00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0..00 0..00 0.00 O.IX) 0.00 0.00 0.00 0.00 0.00 0.00
O.IX) O.IX) 0.00 0.00 0.00 0.00 1100 000 oro 0..00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (100

0.00 0.00 0.00 0.00 0.00 0.00 oeo coo coo 000 0.00 O.IX) 0.00 0.00 0.00 0.00 000 000

0.00 0.00 0.00 0.00 0.00 000 000 000 coo 000 000 0.00 0.00 0.00 0.00 000 000 000

000 000 0.00 000 0,00 000 000 000 coo coo COO oro 0.00 0.00 0.,00 000 oeo 000

0.00 000 0.00 0.00 0..00 000 000 000 000 coo 00 o.ro 0.00 0.00 0.00 0,00 000 000

Fig. 174:300 Cycles

0..00 0.00 0.00 000 OGO 000 000 000 0,00 0,00 000 000 000 000 coo 0,00 0.00 0,00 0.00

0.00 0.00 0.00 000 000 000 0..00 0.00 0.00 0.00 0.00 0.00 000 000 000 0.00 0.00 0..00 0..00

0..00 0.00 0..00 0.00 000 oro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0..00 0.00 0.00 0.00 0..00 0.00

0..00 0.00 0.00 0.00 0.00 0.00 coo 0.00 0..00 0.00 0.00 0.00 0.00 0.00 0..00 0..00 0.00 0.00 0.00 0.00

0..00 0.00 0.00 0.00 0.00 0.00 0.00 0..00 0..00 0.00 0.00 0.00 0.00 oco 0..00 0..00 0..00 0.00 0.00 0.00

0..00 0.00 0.00 0.00 0.00 0-00 0.00 0..00 0.00 0.00 0.00 0.00 0.00 0-00 0..00 0.00 0..00 0.00 0.00 0.00

0 .00 0.00 0.00 0.00 0.00 0.00 coo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 coo 0.00 0..00 0.00 0.00 0.00

0.00 O.IX) 0.00 0.00 000 000 coo coo 0.00 0.00 0.00 0.00 000 000 000 0. .00 0.00 0.00 0.00 0.00

000 0,00 0.,00 0..00 000 000 000 coo 000 0.00 0,00 000 000 000 000 coo 000 0,00 0,00 0.00

000 0.00 0,00 0.00 000 000 000 coo 0.00 o.ro 0.00 0..00 000 000 000 coo 000 0. ,00 0,00 0.00

0..00 O.OCJ 0.00 0.00 0.00 000 000 0. .00 0.00 0.00 0.00 0,00 0.00 000 000 coo 0.00 0.00 0.00 0,00

0..00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0,00 0.00 0.00 0.00 000 0. .00 0.00 0.00 0.00 0.00

0..00 0.00 (W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0..00
0.00 0.00 0.00 0.00 0.00 0.0) oro 0..00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.1X) 0.00 0.00

0.00 0.00 0.00 O.OD 0.00 0.0) 0..00 0.00 0..00 0.00 0.00 0.00 0.00 0.0) 0.00 0,00 0.00 0.00 0.00 O.OD

0.00 0.00 0.00 0.00 0.00 oeo oro 0.00 0.00 0.00 0.00 0.00 0.00 o.eo 000 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0,00 0,00 0.00 0.00 000 000 coo 0..00 0.00 0.00 0.00

000 0,00 0.00 0.00 000 000 000 000 000 0,00 0,00 000 000 000 000 000 000 0.00 0,00 000

000 0.00 0,00 0.00 000 000 000 coo 000 0,00 0.00 0.00 000 000 000 000 000 0,00 0,00 0.00

Fig. 175:400 Cycles

INTELUGENT OPTICAL SENSOR - 326

ApPENDIX J - DEVELOPMENT IMAGES

18.3.2 - Combined Data Set

000 000 000 OOJ 000 0,00 000 000 000 000 000 000 O,to O,OJ 0,00 0,00 000 000 000
000 0 .00 1).00 O.OJ 0.00 0,00 0.00 000 000 000 0 .00 1 0,0) O.OJ O.OJ 0.00 0.00 0.00 0.00 000
000 0.00 am 0.00 0.00 0.00 0.00 a.co 000 000 0.00 0.00 O.OJ 0.00 0.00 0.00 0.00 000 000
0.00 0.00 0.00 a.OJ 0.00 0.00 0.00 0'.00 000 0.00 0.00 0.00 a.OJ O.OJ 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 a.OJ 0.00 0.00 0.00 0'.00 GOO 0.00 0.00 0.00 O.OJ 0.00 0.00 0.00 0.00 0.00 0.00
0 .00 0.00 D.O) O.ro 0.00 0.00 0.00 0.00 000 000 0.00 0,00 O.ro O.OJ 0.00 0.00 0.00 0.00 0.00
000 0 ,00 0.00 O.ro 0.00 0.00 0.00 aoo 000 000 0.00 0,00 O.OJ 0.00 0.00 0.00 0.00 000 000
000 0.00 0.00 O.OJ 0.00 0.00 000 000 000 000 000 000 O.OJ 0.00 0.00 0.00 0.00 oco 000
000 000 000 oro 000 0,00 000 000 000 000 000 000 oro oro 0,00 0,00 000 000 000
000 000 000 OOJ 0,00 0.00 0..12 000 000 000 000 000 O.OJ o,to 0.00 000 000 000 000
000 0,0) 0.00 0.00 0.00 0.00 0.00 0'00 000 000 0.00 .00 O.to om 0.00 0.00 0.00 000 000
000 0.00 0.00 O,OJ 0.00 0.00 0.00 000 000 000 0.00 0 ,00 O.OJ O,OJ 0.00 0,00 0.00 0.00 0.00
0.00 0 .00 0.00 O.OJ 0.00 0.00 0.00 0:.00 000 ODO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000
0.00 0 .00 0.00 O.OJ 0.00 0.00 0.00 0.00 0.00 oro 0.00 0.00 O.OJ O.D::) 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 O.ro 0.00 0.00 0.00 0,00 000 oro 0.00 0.00 0.00 O.ro 0.00 0.00 0.00 0.00 0.00
000 0 .00 O.ro O.D::) 0.00 0.00 0.00 000 000 000 0,00 0.00 O.D::) 0.00 0.00 0.00 0.00 o.col CUg
000 0 ,00 0 .00 0,00 0.00 0.00 0.00 000 000 000 000 0 ,00 0.00 o,ro 0.00 0.00 0.00 000 000
000 000 000 000 0,00 0,00 000 000 000 000 000 00 0,00 1),00 0,00 000 000 00(1 000
000 000 O,OJ 0,00 0,00 0,00 000 000 1]00 000 000 000 000 000 O,OJ 0,00 000 0,00 000 000

Fig. 176:300 Cycles

0,00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 OIXl 000 0,00 0,00

0,00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
0.00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0 ,00 0 ,00 000
0.00 0.00 000 000 000 (I,(X) 000 000 000 000 000 000 000 000 000 000 000 0.00 0.00
0.00 0.00 0.00 000 000 000 000 000 000 000 000 000 000 000 0 ,00 0 ,00 0.00 0 .00 0.00
0.00 0.00 0.00 0.00 000 0'00 000 000 000 000 ODO 000 000 0.00 0.00 0 .00 0 .00 0 .00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 000 0.00 000 oro am 0.00 0.00 0.00 0,00 0.00 0.00

0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 000 oro 000 0.00 0.00 0 .00 0.00 0 .00 0 .00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0 ,00 0.00 0.00 0.00 0.00 0.00 0.00 0,00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 aDO 000 0.00 0.00 0.00 0.00 0 .00 0.00 0.00

0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 000 0.00 0.00 000 0.00 0 .00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 0..00 000 0.00 000 0.00 0,00 0.00 0,00 0.00

0.00 0.00 0.00 0.00 0.00 0:.00 000 000 000 000 oro oro 0.00 0 .00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 000 0.00 0.00 000 000 000 000 000 000 000 0.00 0 .00 0.00 0 .00 0 .00 llOO 0.00

0.00 0.00 0.00 000 000 000 000 000 000 000 000 000 000 000 000 0 .00 0 .00 0 .00 0.00

000 0.00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 lI.nl
000 000 000 000 000 000 GOO 000 000 000 oC() 000 000 000 000 000 000 0000,00

000 0.00 000 000 000 GOO 000 000 000 000 000 000 000 000 000 000 000 000 0.00

0.00 0.00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Fig.177:4oo Cycles

INTELLIGENT OPTICAL SENSOR - 327

ApPENDIX J - DEVELOPMENT IMAGES

18.3.3 - Extremes Data Set

0.00 0.00 000 000 o co 000 000 000 000 000 000 000 000 000 000 000 0 .00 000 0.00
0.00 0.00 000 000 000 000 000 000 000 0 00 000 000 000 000 000 000 0.00 000 0.00
0.00 000 000 000 000 000 000 000 000 000 oro 000 oro 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
0.00 000 000 000 000 000 000 000 000 aoo 000 000 000 000 000 000 000 000 0.00
000 0.00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0.00 000 0.00
0.00 0.00 000 000 000 000 000 000 000 000 000 000 000 am 000 000 0.00 0 .00 0.00
0.00 0.00 000 000 000 000 000 000 000 000 000 am 000 am 000 0 .00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 000 o.m 000 000 000 000 000 000 am 0.00 0.00 0.00 0 .00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 000 0.00 0.00 0 .00 0.00 0 .00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 am am 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 a.oo (100 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00 0.00 O.OO@!
0.00 0.00 0.00 0.00 O.OJ (1OJ O,OJ 0.00 0.00 0.00 0.00 am 0.00 0.00 0.00 0.00 0.00 0.00 0 .00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0 .00 0 .00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 am 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 000 000 000 0.00 0 .00 0.00 0 .00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 0.00 0.00 0.00 0 .00 0 .00 0 .00 0.00 0 .00 0.00
0.00 0.00 0.00 O.CO O.CO 000 000 000 000 0.00 0.00 0.00 000 000 0.00 0 .00 0.00 0.00 0.00

Fig. 178:200 Cycles

000 000 000 0 .00 o.():) 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 000 000 000 000 0.00
000 000 000 000 0.00 000 0,00 000 0.00 0,00 000 000 000 000 000 oro 000 000 000 000
000 000 000 000 O,DJ 000 O.OJ 0,00 0.00 0.00 0 00 0.00 000 oco 000 000 000 000 000 000
000 000 000 0 .00 O.DJ O.ro O.OJ 0.00 0.00 0.00 0 00 0 00 000 000 000 000 000 000 000 0.00
0.00 000 0 .00 0 .00 O.DJ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 000 0.00 000 000 0 .00 0 .00 0 .00
000 0.00 0 .00 O.DJ O.DJ O.DJ 0.0Cl 0.00 0.00 0.00 0.00 0.00 000 000 000 000 000 0.00 0 .00 0.00
000 0.00 0.00 0.00 0.00 o.(() O.ro 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 am 0.00 0 .00 O.DJ
0.00 0.00 0.00 0.00 0.00 o.(() 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0 .00 o.(()
0.00 0.00 0 .00 0.00 o.(() o.(() o.(() 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0 .00 0.00 0 .00 0.00
000 0.00 0.00 0.00 o.(() o.(() 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0..00 000 0 .00 0 .00 0.00
000 0.00 0 .00 0.00 o.(() 0.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0..00 am 0.00 0 .00 0.00
0.00 0.00 0.00 0 .00 O.ro 0.0Cl 0.00 0.00 0.00 0.00 0.00 0.00 0 00 000 000 0.00 0.00 0 .00 0 .00 0.00
0.00 0.00 0 .00 0 .00 O.ro o.re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 0.00 0 .00 0 .00 0.00
000 0.00 0.00 0.00 o.re o.re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 0.00 0.00 0 .00 0 .00

000 000 0 .00 0.00 o.re o.re 0.00 0.00 0.00 0.00 0.00 0.00 oro 000 000 000 000 0 .00 0 .00 0.00

000 000 0 .00 0 .00 0.00 0.0) 0.00 0.00 0.00 0.00 0.00 000 000 000 000 000 000 000 000 0.00

000 000 000 000 0,00 0,00 0.00 0.00 0,00 0,00 0,00 000 000 000 000 000 000 000 00 000

000 000 000 000 oro O,OJ 0.00 0.00 0,00 0.00 0 00 000 000 000 000 000 000 000 000 000

000 0001 I) ,~ I 000 O.ro 0.00 0.00 0.00 0,00 0.00 0 00 000 000 000 000 000 000 000 000 000

Fig. 179:400 Cycles

I NTELUGENT Q PTlCAL S ENSOR - 328

Appendix K - Final System Structure

19 - Appendix K - Final System Structure

Below is a listing of the final network weights for the selected

architecture.

19.1 - SOM Layer

SOMNET

Number of inputs: 8

SOM map size:20x20

Learning Rate Max (initial) value: 0.4

Learning rate Min value: 0.01

Minimum Neighborhood: 0

Number of training epochs: 200

Weight Values:

Row 0

0.742983 0.809236 0.829152
0.663736 0.647426 0.80132
0.964242 0.880896 0.952623
0.958066 0.956557

0.724673 0.908545 0.782919
0.700337 0.767314 0.77855
0.900149 0.95155 0.995684
0.983374 0.980562

0.889565 0.998207 0.962176
0.718395 0.885702 0.931431
0.839779 0.992556 0.992069
0.996107 0.953173

0.900831 0.992445 0.932285

0.782873
0.974913
0.953795

0.897536
0.949909
0.942028

0.96495
0.917144
0.948128

0.913082
0.0315898 0.119517 4.36351e-005
0.539591 0.789764 0.933946 0.965259
0.919925 1 0.952105

0.994801 0.980288 0.658888 0.278495
0.743922 0.859326 0.826908 0.880834
0.818834 0.934781 0.896473 0.960657
0.954752 0.96648

0.970825 0.911677 0.790883 0.793988 -

0.755458 0.664619
0.956669 0.929929
0.977781 1

0.794244 0.660787
0.94846 0.91471
0.960366 0.987284

0.837316 0.674574
0.921331 0.916599
0.969409 0.993051

0.545246 0
0 0.18445
0.981593 0.956445

0.537529 0.690643
0.90153 0.893127
0.925879 0.89282

0.770213 0.767493

INTELLIGENT OPTICAL SENSOR - 329

Appendix K - Final System Structure

0.817974 0.912238 0.913098 0.935301 0.523414 0.529922
0.523678 0.581866 0.479821 0.982723 0.953821 0.919925
0.924608 0.998196

0.921702 0.895987 0.962827 0.940526 0.896549 0.873726
0.902742 0.950376 0.999908 0.919067 0.910365 0.9926
0.97887 0.889695 0.614608 0.602774 0.734451 0.87037
0.956537 0.992053

0.106051 0.0485273 0.00119537 0.142474 0.285244
0.557698 0.696085 0.952879 0.937552 0.879641 0.944501
0.974052 0.999349 0.876683 0.99819 0.935636 0.951999
0.987747 0.954223 0.997037

Row 1

0.750437 0.887746 0.881645 0.908422 0.78605 0.687292
0.690106 0.666212 0.865606 0.961826 0.966529 0.921067
0.996645 0.965412 0.93334 0.956935 0.979016 0.987181
0.864925 0.955033

0.782133 0.904879 0.93295 0.904713 0.835354 0.693511
0.69897 0.707464 0.85963 0.906578 0.934849 0.957166
0.998837 0.930364 0.993605 0.957616 0.860325 0.863271
0.904361 0.991723

0.939337 0.998547 0.993582 0.952606 0.796585 0.663158
0.615224 0.706035 0.866096 0.86443 0.927909 0.871592
0.914966 0.887409 0.976479 0.958299 0.965697 0.978478
0.895336 0.999995

0.941099 0.99449 0.946083 0.948587 0.781705 0.0875249 0
0.00521966 0.01989 0.000330516

0.240472 0.502841 0.722048 0.801672 0.852412 0.925796
0.946277 0.978993 0.974297 0.981267

0.954595 0.957756 0.814906 0.605185 0.636634 0.711096
0.731199 0.683329 0.806941 0.809529 0.733137 0.844344
0.799582 0.688329 0.765881 0.861715 0.950649 0.856771
0.999748 0.893465

0.848206 0.830267 0.811311 0.654478 0.830384 0.761148
0.789892 0.977914 0.889823 0.723786 0.650995 0.721013
0.714181 0.66746 0.899684 0.930871 0.979097 1
0.990943 0.973971

0.513817 0.702729 0.93401 0.666631 0.928136 0.875331
0.896196 0.991348 0.975143 0.99911 0.825372 0.880629
0.935304 0.77922 0.727198 0.702119 0.884464 1
0.95408 0.974598

0.0741963 0.000974041 0.0279821 0.0010605 0.239649
0.549138 0.690106 0.976405 0.945818 0.998344 0.945171
0.978329 0.961312 0.895119 0.907349 0.943447 0.966558
0.999435 0.899106 0.858373

Row 2

0.762596 0.927543 0.969389 0.797226 0.708148 0.911609
0.73259 0.934628 0.995402 0.953144 0.880334 0.935961
0.991411 0.906262 0.981837 0.952773 0.961046 0.984027

INTEWGENT OPTICAL SENSOR - 330

Appendix K - Final System Structure

0.962424 0.974955

0.749172 0.83878 0.917886 0.783656 0.709346 0.85384
0.850598 0.721957 0.941254 0.963123 0.914786 0.963349
0.957995 0.984149 0.95065 0.972832 0.884243 0.774856
0.858779 0.997071

0.809385 0.997081 0.859508 0.826783 0.692282 0.667434
0.451692 0.604479 0.777572 0.830949 0.940828 0.892933
0.934766 0.960482 0.911502 0.929838 0.915667 0.967862
0.973466 0.99024

0.813318 0.989903 0.903695 0.791094 0.662492 0.00647031
0.00381984 0.000102088 0

0.116407 0.336091 0.532513 0.816974 0.936834 0.908572
0.815083 0.90449 0.955936 0.965131 0.957709

0.888747 0.930137 0.90357 0.882643 0.870505 0.696368
0.73449 0.730369 0.585396 0.591631 0.398297 0.582641
0.423828 0.611788 0.627497 0.811839 0.904898 0.999027
0.96104 0.930185

0.436081 0.539579 0.414679 0.721289 0.42787 0.7679
0.820348 0.871185 1 0.846445 0.61192 0.754701
0.761317 0.808215 0.923221 0.914292 0.99469 0.995025
0.967738 0.857186

0.43437 0.794517 0.932254 0.954452 0.755078 0.884452
0.871385 0.982815 1 0.998852 0.969075 0.972817
0.951257 0.761699 0.655738 0.806989 0.992903 0.999592
0.976871 0.735893

0 0.000901167 0.0636823 0.00259277
0.156836 0.559278 0.841262 0.931335 0.99977 0.967013
0.959208 0.992285 0.941549 0.907715 0.966217 0.988593
0.961633 0.979034 0.871887 0.746737

Row 3

0.936043 0.917144 0.775097 0.896062 0.8523 0.95159
0.938766 0.961244 0.962163 0.973232 0.850589 0.983455
0.987681 0.822503 0.941779 0.949104 0.937129 0.916941
0.923402 0.926957

0.896688 0.722952 0.767003 0.869318 0.807564 0.945437
0.943172 0.918772 0.886221 0.982476 0.956062 0.987449
0.980724 0.963938 0.971214 0.968133 0.863523 0.807136
0.838157 0.939491

0.996546 0.96807 0.655012 0.5212 0.365503 0.151614
0.157207 0.322104 0.532745 0.712121 0.580598 0.921593
0.892203 0.947143 0.907019 0.73736 0.804107 0.930004
0.966166 0.965687

0.944134 0.956059 0.668492 0.339149 0.520208 0.0438943
0.0123401 0.1154 0.035495 0.0181068 0.376942 0.412081
0.692525 0.890311 0.938767 0.818411 0.862664 0.913867
0.957588 0.957904

0.911337 0.743754 0.86629 0.788997 0.726465 0.69534
0.684486 0.689374 0.532821 0.445397 0.28632 0.0375876

INTELUGENT OPTICAL SENSOR - 331

Appendix K - Final System Structure

0.250167 0.401899 0.588094 0.732648 0.903797 0.964851
0.97785 0.943361

0.113866 0.0804849 0.153148 0.0118031 0.292478 0.657851
0.841155 0.973472 0.899777 0.643303 0.948457 0.71046
0.677637 0.733669 0.952454 0.925815 0.889075 0.971443
0.95113 0.923189

0.612847 0.903626 0.910581 0.936234 0.880691 0.696541
0.88371 0.934225 0.953877 0.943974 0.982064 0.880721
0.861056 0.874684 0.941452 0.931291 0.990643 0.966221
0.95861 0.96651

7.83605e-005 0.000309194 0.0113453 0.00698481
0.264946 0.684521 0.855251 0.958475 0.965073

0.89013 0.945294 0.965814 0.867205 0.688298 0.843198
0.997593 0.94632 0.95986 0.854999 0.491454

Row 4

0.94001 0.9362 0.915471 0.810865 0.868304 0.93947
0.849777 0.962329 0.896239 0.977943 0.966892 0.905855
0.640668 0.889587 0.949611 0.775443 0.77408 0.734897
0.635247 0.855632

0.926748 0.926746 0.883382 0.817906 0.791811 0.644785
0.782168 0.899226 0.719167 0.920715 0.909548 0.904888
0.690153 0.772776 0.761305 0.691168 0.830273 0.807714
0.998522 0.815318

0.95464 0.944917 0.656328 0.000343663 0.0061447
0.000596269 0 1.29811e-005 0.000774757

0.353227 0.774312 0.741052 0.672458 0.765212
0.712421 0.828769 0.770697 0.834546 0.991999 0.999618

0.895559 0.89832 0.713928 0.47311 0.637823 0.355064
6.57931e-006 0.0365681 0.000267175 0.188415
0.050488 0.54407 0.661473 0.793286 0.925438 0.760433
0.594292 0.820375 0.968977 0.991586

0.94395 0.868434 0.794409 0.514778 0.751324 0.742577
0.775642 0.598193 0.0395431 0.00394424 0.0189213
3.0861e-005 3.10741e-006 0.270457 0.665103
0.697997 0.834976 0.942599 0.953336 0.93706

0.0207014 0.00612785 0.115964 2.51167e-005
0.0086166 0.541436 0.816786 0.983327 0.860988 0.824862
0.759013 0.763861 0.695248 0.865802 0.909582 0.975498
0.959304 0.995928 0.906255 0.892546

0.946801 0.935191 0.916115 0.858008 0.813834 0.939416
0.939778 0.983954 0.80862 0.757004 0.837583 0.883922
0.748749 0.86581 0.941007 0.925893 0.918522 0.901786
0.789775 0.768259

7.25048e-006 0.152644 0.124157 0.000758961
0.414225 0.976561 0.970631 0.985986 0.93766 0.98993
0.855528 0.991845 0.890598 0.895756 0.947195 0.955675
0.973425 0.973985 0.846122 0.708113

RowS

INTEWGENT OPTICAL SENSOR - 332

Appendix K - Final System Structure

0.920271 0.963853 0.869767 0.80416 0.895576 0.896468
0.916267 0.884615 0.964809 0.79412 0.916187 0.913808
0.94947 0.785295 0.796679 0.956471 0.720685 0.538532
0.255639 0.25356

0.943 0.923755 0.887062 0.870434 0.906506 0.882687
0.842121 0.797635 0.671162 0.522883 0.53228 0.603386
0.546428 0.593926 0.617831 0.555305 0.706689 0.897203
0.777286 0.878024

0.969519 0.886316 0.61517 0.305864 0.0824473 0.0245414
0.0874239 0 1.39026e-005 0.246322 0.914259 0.791

0.854878 0.591824 0.580278 0.789804 0.89277
0.930053 0.881844 0.937137

0.893983 0.927108 0.750877 0.670799 0.813467 0.604303
0.271947 1.22935e-005 0.058464 0.00122278
6.76604e-005 0.506977 0.781016 0.847128 0.93295
0.544996 0.714595 0.843009 0.983015 0.963691

0.907558 0.895027 0.799817 0.744597 0.881623 0.666056
0.649927 0.325255 0.0698491 0.0748718 4.47103e-006 0

1.4333ge-005 0.0803574 0.693456 0.892809
0.921806 0.903015 0.90928 0.959215

1.2686e-005 0.536559 0.25613 0.30322 0.103849
0.615869 0.668479 0.892702 0.769599 0.912269 0.867277
0.854471 0.955222 0.908125 0.866596 0.973787 0.834098
0.956087 0.473537 0.909072

0.905655 0.935682 0.803194 0.721393 0.842164 0.67337
0.793493 0.939968 0.40028 0.970253 0.851633 0.856275
0.928672 0.745063 0.964015 0.954264 0.95859 0.955454
0.800324 0.806666

0.429446 0.493484 0.434479 0.623745 0.865074 0.896656
0.968646 0.975599 0.924368 0.947822 0.966854 0.96126
0.978548 0.901406 0.749189 0.890215 0.89715 0.961181
0.920027 0.819492

Row 6

0.968724 0.926589 0.920745 0.748319 0.872137 0.937745
0.949199 0.895931 0.823202 0.859556 0.843906 0.983055
0.897716 0.877977 0.838177 0.639704 0.672801 0.464627
5.18936e-005 5.8118ge-005

0.955136 0.942849 0.899061 0.873746 0.887125 0.879095
0.756424 0.739878 0.569419 0.441068 0.288064 0.183395
0.0395849 0.217029 0.23229 0.429839 0.658259 0.665874
0.753913 0.989731

0.987336 0.883578 0.713722 0.477035 0.328404 0.307262
0.0499345 0.067381 0.334608 0.564104 0.829491 0.937117
0.636543 0.771739 0.761813 0.809557 0.696812 0.784005
0.88874 0.980452

0.96804 0.809981 0.702584 0.702442 0.71094 0.689263
0.355838 0.0381338 0.0160283 0.0311371 0.0994819 0.461207
0.733546 0.80705 0.805553 0.70873 0.776131 0.886367

INTELUGENT OPTICAL SENSOR - 333

Appendix K - Final System Structure

0.942853 0.952179

0.926577 0.900256 0.784578 0.784604 0.698456 0.591364
0.726775 0.4035 0.51783 0.408734 0.501091 0.052407
0.000897236 0.56011 0.828309 0.971142 0.885076
0.98386 0.924953 0.955991

1.32527e-005 0.000262547 0.47567 0.466763
0.327854 0.238561 0.0411949 0.468916 0.589366 0.813514
0.832661 0.980537 0.938848 0.930137 0.923386 0.920259
0.828247 0.975799 0.994026 0.812085

0.783514 0.774412 0.632084 0.634222 0.54765 0.430599
0.884423 0.808252 0.87792 0.862491 0.934371 0.861849
0.884777 0.854372 0.862937 0.932056 0.796068 0.954529
0.942919 0.50829

0.740051 0.74648 0.732805 0.735819 0.87286 0.943921
0.880361 0.923337 0.937403 0.946445 0.950855 0.965991
0.983732 0.916938 0.874753 0.663141 0.916561 0.720609
0.913978 0.73799

Row 7

0.934896 0.772798 0.429449 0.792228 0.934525 0.963256
0.955122 0.835641 0.777273 0.715023 0.940432 0.813865
0.93625 0.952204 0.868314 0.698523 0.343038 0.00185278

0.00189838 0.0197544

0.960976 0.560181 0.871686 0.897716 0.933388 0.92686
0.911367 0.693939 0.476472 0.355848 0.00179162
0.000489541 0.000504343 0.000391338 0

0.180192 0.783634 0.817607 0.862388 0.726869

0.997746 0.983818 0.82003 0.616595 0.701 0.627997
0.555034 0.0637632 0.525349 0.858786 0.842656 0.839199
0.82941 0.875617 0.606381 0.73358 0.558365 0.586716
0.712403 0.905318

0.962773 0.962958 0.870657 0.6901 0.631357 0.265385
0.238046 7.9607e-005 0.0198979 7.63551e-006
0.160551 0.530429 0.786263 0.789589 0.903414 0.80816
0.665758 0.935862 0.867435 0.924792

0.939236 0.896805 0.707899 0.822298 0.561894 0.777353
0.752672 0.763708 0.742744 0.77102 0.777632 0.750674
0.510347 0.979131 0.994034 0.977708 0.970363 0.916891
0.888488 0.946342

2.6991ge-005 0.00196564 0.282488 0.288415
0.148298 0.0224374 0.0150122 0 0.407163 0.704171
0.879286 0.849201 0.872916 0.929036 0.992041 0.942923
0.871126 0.837033 0.806486 0.974843

0.439681 0.71425 0.746165 0.744766 0.599121 0.740941
0.737899 0.940221 0.959858 0.973926 0.990364 0.876386
0.948274 0.764059 0.976095 0.844279 0.900958 0.806334
0.814409 0.870328

0.75106 0.766779 0.945775 0.817836 0.921764 0.817569
0.83452 0.934284 0.909323 0.965915 0.965546 0.893773

INTELUGENT OPTICAL SENSOR - 334

Appendix K - Final System Structure

0.94832 0.917114 0.916775 0.893293 0.889335 0.942447
0.699582 0.607758

RowS

0.946215 0.978938
0.977196 0.890051
0.888902 0.690091
0.00157948

0.99738 0.991249
0.971909 0.759477
3.60326e-006
2.65568e-006
0.720021

0.999676
0.777796
0.673642
0.671734

0.974375
0.370385
0.836647
0.946278

0.950725 0.945776
0.00425821
0.00956786
0.768838 0.83011
0.986427

0.892345 0.653702
0.524166 0.731105
0.909547 0.932893
0.972364 0.948118

0.0349388 0.00119253

0.832793
0.703006
0.672797
0.0609335

0.991639
0.866814
0.557806

0.975838 0.950729
0.370335 0.216718
0.000334715
0.0188618 0.532981

0.922548
0.787218
0.89345

0.845528
0.661557
0.587557

0.804884 0.720854
0.00786877
0.00807414
0.961706 0.726842

0.639016 0.798426
0.851181 0.743814
0.971316 0.966458

0.249418
2.13233e-006 0.00663955

0.0982184 0.774033 0.961296 0.861323
0.939688 0.990519 0.980664 0.972892

0.632581 0.748348 0.814619 0.968199
0.704494 0.941333 0.929675 0.892704
0.850251 0.978138 0.718097 0.969733
0.79651 0.842946

0.9871 0.952976 0.97127 0.940064
0.751486 0.947706 0.651195 0.718478
0.538633 0.846183 0.928572 0.914134
0.407672 0.0618451

Row 9

0.967468 0.905302 0.9448 0.93259
0.955139 0.973371 0.776632 0.690106
0.961506 0.57381 0.000141461

0.00785306 0.010077

0.947143 0.848969 0.923674 0.807603
0.95442 0.8109 0.457999 0

0.0830806 0.0178848 0.0309448
0.0305919 0.434348 0.731934 0.0878512

0.973854 0.939931 0.886055 0.848469
0.855021 0.854268 0.7951-37 0.778151

0.867847 0.961585
0.821325 0.909694
0.0139085 0.0751958

0.931191 0.949307
0.00482776
0.000125219
0.85773 0.812709

0.86706 0.923779
0.75382 0.917774
0.0739206 0.204087

0.399759 0.0259235
0.00334694
0.39586 0.659659
0.876951 0.996373

0.947093 0.882441
0.982615 0.976021
0.869512 0.891631

3.88476e-005
0.0155036

0.890863 0.945585
0.866578 0.805439

0.820606 0.927333
0.930634 0.830005
0.898371 0.922256

0.783306 0.800625
0.891476 0.756433
0.890703 0.720344

0.915028 0.990616
0.716676 0.882177

0

0.0352523 9.69822e-006
0.056103

0.96107 0.987952
0 0.00117685
0.00813594

0.917048 0.967426
0.779921 0.885042

INTELUGENT OPTICAL SENSOR - 335

Appendix K - Final System Structure

0.804487 0.796816 0.733938 0.428092 0.201719 0.031055
0.0168783 0.744761

0.909068 0.896725 0.952793 0.758286 0.499805 0.0855554
0.00305541 0.00421644 0.0234857 0
0.00189148 0.601018 0.744732 0.766709 0.883903
0.826794 0.87951 0.937928 0.97152 0.834237

0.598585 0.455275 0.571984 0.404345 0.478435 0.394564
0.862985 0.780684 0.772854 0.680865 0.967577 0.91998
0.996316 0.985138 0.970144 0.800389 0.2626 0.858293
0.991807 0.961862

0.388713 0.215879 0.0526075 0.00910445 0
0.0118976 0.225755 0.433482 0.524225 0.66111 0.944322
0.958377 0.938594 0.962381 0.980372 0.972624 0.977571
0.936273 0.935971 0.815616

0.52422 0.782289 0.856268 0.848038 0.830902 0.97702
0.796441 0.762292 0.665117 0.639378 0.9721 0.361648
0.891215 0.893026 0.936049 0.969781 0.966547 0.183462
0.646981 0.829296

0.941345 0.929577 0.931948 0.945963 0.697869 0.974831
0.905783 0.914391 0.803249 0.650515 0.606203 0.512145
5.22785e-005 0.607481 0.832448 0.972958 0.800775
0.801706 0.0115412 0.0168976

Row 10

0.976445 0.959139 0.826051 0.958976 0.981505 0.968443
0.905371 0.836092 0.754415 0.772224 0.74471 0.891268
0.553474 0.331905 0.000259981 0.102686 0.0505553
0.00139313 0.468687 0.516395

0.968301 0.96211 0.941119 0.945484 0.928991 0.95167
0.972828 0.897346 0.67692 0.43017 0.312164 0.0197363
0.0368704 0.0710305 0.000224959 0.0909371 0.00118344

0.00229014 0.0692255 0.0736205

0.798432 0.829173 0.96927 0.878332 0.76923 0.849157
0.898725 0.725153 0.811407 0.840628 0.839128 0.928905
0.824539 0.751806 0.660424 0.332352 0.00192269
0.000943107 0.253626 0.0521408

0.886351 0.907538 0.929716 0.862702 0.852048 0.566221
0.119878 0.000796413 0.279443 0.0273152 0.0571988
0.0720801 0.385041 0.540932 0.662133 0.735921 0.81402
0.739465 0.846243 0.523914

0.173538 0.165592 0.321266 0.179735 0 0.309481
0.775252 0.848718 0.84825 0.783694 0.835183 0.958987
0.959013 0.961184 0.954738 0.715838 0.71052 0.801516
0.838372 0.911644

0.386458 0.353476 0.310211 0.127217 0 0.122549
0.432541 0.53915 0.616014 0.786111 0.858366 0.985199
0.960014 0.952448 0.934206 0.949994 0.945811 0.879673 0.8777

0.77371

0.90611 0.894916 0.758183 0.873278 0.991135 0.873339

INTELUGENT OPTICAL SENSOR - 336

Appendix K - Final System Structure

0.807646 0.555479 0.525168 0.551028 0.61843 0.736145
0.855311 0.924504 0.884201 0.954066 0.966949 0.754954
0.166897 0.876844

0.986235 0.985237 0.985301 0.959465 0.964709 0.930314
0.994009 0.996427 0.956984 0.683858 0.580324 0.0672747
0.413941 0.609311 0.822582 0.837121 0.989067 0.600298
0.0354399 0

Row 11

0.995164 0.965013 1 0.956812 0.992539 0.99089
0.932909 0.917131 0.91566 0.934057 0.689482 0.237669
0.121205 0.0769973 0.259167 0.0656044 0.572608 0.598617
0.847608 0.936119

0.974099 0.97378 0.999447 0.968094 0.990478 0.94513
0.951824 0.882155 0.867896 0.934404 0.772073 0.00701746

0.0233641 0.0757652 0.148894 0.0301173 0.500635
0.465386 0.65011 0.68786

0.73262 0.802035 0.981946 0.894382 0.969085 0.963331
0.858619 0.733928 0.771755 0.894791 0.962356 0.704298
0.790568 0.839445 0.544222 0.0598326 0.21474 0.201342
0.0379553 0.00128605

0.885669 0.912253 0.959068 0.910699 0.966154 0.704377
0.326586 0.0487002 0.0318139 0.117555 0.00772872 0

0.084521 0.300777 0.357334 0.500998 0.603475
0.716372 0.832392 0.914449

0 0.0287945 0.0117881 0.0207035 0.00119392
0.023168 0.377674 0.268194 0.407682 0.768544 0.957141
0.97912 0.926062 0.933873 0.942964 0.92745 0.963371
0.814446 0.804623 0.729314

0.422549 0.437417 0.358959 0.21152 0.0344505 0.272444
0.412719 0.642088 0.744651 0.876107 0.974954 0.982195
0.954637 0.946615 0.90939 0.925219 0.890452 0.834159
0.825734 0.85838

0.995613 0.909372 0.726857 0.813407 0.712401 0.789329
0.356218 0.214324 0.218123 0.490997 0.593902 0.952172
0.899503 0.889561 0.94898 0.927397 0.97057 0.77237
0.883107 0.839967

0.993386 0.960465 1 0.955167 0.993441 0.929622
0.735773 0.929026 0.873842 0.765396 0.520871 0.419353
0.758204 0.850354 0.743125 0.880358 0.710725 0.800535
0.467699 0.0288322

Row 12

0.877382 0.944729 0.871969 0.858784 0.888293 0.930249
0.945074 0.946807 0.934941 0.917312 0.713487 0.114622 0

0.0233486 0.409101 0.617772 0.77703 0.78152
0.988348 0.927768

0.927541 0.969377 0.990053 0.999141 0.992421 0.938641
0.866895 0.919135 0.898481 0.932146 0.73894 0.180027 0

0.010337 0.0451-504 0.0952756 0.00337171

INTELLIGENT OPTICAL SENSOR - 337

Appendix K - Final System Structure

0.637535 0.986554 0.956988

0.530055 0.827678 0.980954 0.975733 0.984006 0.924092
0.696509 0.683802 0.83724 0.927711 0.890938 0.786929
0.76386 0.643963 0.352014 0.0981411 0.00140254
0.266495 0.00220791 0.0296609

0.878798 0.944727 0.937195 0.939143 0.891156 0.634407
0.212269 0 0.0671856 0.0171538 0.000887448 0

0 0.0276614 0.129109 0.17556 0.511559
0.698359 0.822356 0.887869

0 0 0.00025515 0.0305126 0.00276362
0.00193582 0.0188775 0.00842628

0.563247 0.751251 0.928466 0.90787 0.92134 0.815608
0.868125 0.880416 0.943675 0.790779 0.841013 0.723411

0.741481 0.683125 0.473397 0.367534 0.39187 0.459679
0.696554 0.70798 0.823706 0.899037 0.828448 0.896177
0.946252 0.858555 0.785411 0.822771 0.92991 0.78228
0.821295 0.976345

0.80382 0.804409 0.845964 0.599959 0.357434 0.0431185
0.0671634 0.0309985 0.0910972 0.223429 0.309639 0.723398
0.867938 0.983165 0.951335 0.955113 0.927237 0.725027
0.786817 0.958679

0.902946 0.949476 0.721885 0.99995 0.945404 0.900607
0.920108 0.923401 0.899666 0.818485 0.709708 0.760717
0.832715 0.945355 0.816639 0.748329 0.911309 0.858408
0.888322 0.744794

Row 13

0.957316 0.968903 0.96719 0.957517 0.939559 0.826075
0.978719 0.98724 0.876914 0.926871 0.711001 0.000282851

0 0.0572788 0.648029 0.734594 0.835027
0.915404 0.956015 0.87271

0.940832 0.989535 0.964375 0.984337 0.974453 0.827462
0.933349 0.573203 0.847942 0.94618 0.780336 0.00104383

0.00302046 0.0640642 0.00299649 0
0.533256 0.939409 0.965724 0.880481

0.643544 0.987113 0.945281 0.889242 0.991332 0.776163
0.652106 0.608922 0.8131 0.948572 0.902987 0.740994
0.768433 0.672594 0.0147762 0 0.244071 0.442526
0.190971 0

0.865279 0.913357 0.8052 0.908419 0.965909 0.712509
0.445071 0.0813209 0.0171415 0.115549 0.0723882 0
0.000489164 0.0103707 0.00280631 0
0.505181 0.836442 0.900864 0.869765

0 0.0182457 0.000167387 0.000453558
0.0292516 0.000310515 0.000541416 0.147492
0.551751 0.847829 0.837887 0.842962 0.869173 0.858485
0.811635 0.850183 0.814767 0.650815 0.923205 0.877173

0.926809 0.84451 0.657176 0.52605 0.496634 0.589762
0.769075 0.858004 0.4848.96 0.867386 0.837164 0.828282

INTELUGENT OPTICAL SENSOR - 338

Appendix K - Final System Structure

0.664945 0.631605 0.495374 0.850342 0.826761 0.739179
0.970298 0.986629

0.938195 0.84685 0.658708 0.453347 0.000100434
0.000302321 0.000146685 0.000793905
0.00531168 0 0.134478 0.456983 0.906167
0.901555 0.889913 0.982208 0.885168 0.842611 0.989562
0.987168

0.85426 0.895866 0.666097 0.678337 0.914923 0.89498
0.936207 0.892106 0.982749 0.951431 0.902456 0.787438
0.905304 0.888801 0.936074 0.674322 0.871365 0.994939
0.932813 0.963585

Row 14

0.965027 0.983572 0.938241 0.728597 0.983279 0.920132
0.727599 0.923135 0.797013 0.581254 0.106642 0
0.162764 0.00391511 0.515898 0.645825 0.817918
0.990757 0.913433 0.898755

0.84774 0.887586 0.992442 0.995665 0.996323 0.876325
0.726116 0.931062 0.857537 0.739506 0.85899 0.387357
0.34383 0.288925 0.103429 0.126219 0.484869 0.966544
0.88627 0.788892

0.908021 0.833155 0.975374 0.95247 0.980748 0.850473
0.703843 0.896252 0.801941 0.869451 0.819628 0.790065
0.732967 0.669848 0.219927 0 0.212853 0.44744
0.137222 0

0.938411 0.972868 0.92637 0.97517 0.955085 0.819359
0.852377 0.629838 0.468292 0.319996 0.082734 0.502486
0.235651 0.0488863 0.00671232 0 0.381185
0.771129 0.77869 0.629785

8.77704e-005 0.000390185 0 0.000108833
0 0.000120388 0.229233 0.365501

0.778907 0.806336 0.638043 0.570383 0.489793 0.744506
0.620918 0.724869 0.694938 0.91409 0.82799 0.958058

0.978977 0.95552 0.86931 0.743279 0.917327 0.797366
0.677764 0.735687 0.800711 0.698513 0.623005 0.623239
0.390701 0.00207056 0.598819 0.799435 0.82686
0.932328 0.947999 0.996038

0.957097 0.810784 0.462483 0.22337 2.7843ge-006 0
Q 0 0.00187503 0.0344075

0.129258 0.189381 0.463588 0.866228 0.861708 0.84434
0.899145 0.97059 0.962954 0.99331

0.750777 0.831371 0.807775 0.805185 0.864266 0.955428
0.985852 0.799515 0.871138 0.85959 0.882248 0.236876
0.576892 0.888507 0.722867 0.758369 0.808843 0.998669
0.978906 0.984456

Row 15

0.835431 0.887506 0.962064 0.964107 0.844264 0.910624
0.959267 0.974712 0.532326 0 3.98018e-005 0

0.290986 0.680753 0.542466 0.627636 0.839291

INTELLIGENT OPTICAL SENSOR - 339

Appendix K - Final System Structure

0.824126 0.910485 0.99285

0.881862 0.986791 0.908995 0.968146 0.963047 0.936532
0.907793 0.99724 0.714459 0.680821 0.000549417
0.437198 0.522439 0.499999 0.285172 0.150515 0.533426
0.649493 0.843288 0.95778

0.8332 0.948003 0.792128 0.916705 0.942351 0.927266
0.949767 0.945981 0.858249 0.63939 0.841062 0.794981
0.703172 0.661093 0.25139 0 0.212773 0.284124
0.0390796 0.0607946

0.946269 0.962118 0.734252 0.951426 0.875238 0.913175
0.912673 0.794946 0.785304 0.639391 0.874486 0.659631
0.347918 5.35387e-005 0.0346699 0 0.518911
0.644613 0.741733 0.442923

0.0795829 0.00396779 3.4173e-005 0.000397895
6.1149ge-006 0.191355 0.373156 0.561867

0.670589 0.671229 0.948736 0.368831 0.329831 0.000126657
0.117819 0 0.468751 0.521507 0.634426

0.566421

0.941168 0.965582 0.889418 0.957823 0.973398 0.830054
0.659598 0.55583 0.50929 0.738529 0.111786 0.627644
0.264334 0 0.471457 0.784101 0.832311 0.90393
0.888091 0.999365

0.741891 0.550742 0.438608 0.151228 2.62754e-006 0
0 0 0.0145153 4.13ge-0060.165362

1.851ge-005 0.31202 0.438203 0.6631 0.715682
0.872215 0.955515 0.920613 0.999591

0.953177 0.922396 0.986657 0.779927 0.933228 0.916026
0.905481 0.993686 0.828112 0.738562 0.624117 0
0.455309 0.84621 0.570218 0.389076 0.821665 0.995089
0.973529 0.999268

Row 16

0.428903 0.870806 0.934191 0.922072 0.956497 0.89685
0.913776 0.86754 0.703442 0.598604 0.482463 0.52649
0.588699 0.804128 0.720372 0.882054 0.776755 0.810266
0.795732 0.964775

0.984773 0.864709 0.912027 0.972461 0.998256 0.855615
0.985108 0.921669 0.955869 0.656768 0.555677 0.778633
0.621349 0.641259 0.232167 0.0235128 0.121855 0.167269
0.867787 0.903958

0.971971 0.916855 0.941486 0.950169 0.976908 0.908437
0.944647 0.946025 0.962403 0.86075 0.813871 0.64679
0.614503 0.499264 0.225784 0.0272932 0.0622384 0.00120888

0.000518342 0.101247

0.822277 0.93312 0.921782 0.913334 0.801084 0.92595
0.975446 0.915664 0.699248 0.641222 0.563697 0.359369
0.495186 0.585245 0.0193013 0.0512663 0.410562 0.81979
0.692237 0.855158

0.0143444 0.300771 0.300986 0.251476 0.322424 0.370916

INTELUGENT OPTICAL SENSOR - 340

Appendix K - Final System Structure

0.522158 0.598236 0.776669 0.823604 0.805698 0.630974
0.130685 0.00503741 0.0246785 0.00409707
0.104769 0.414067 0.396338 0.266277

0.908499 0.832596 0.899034 0.901371 0.873159 0.862985
0.749047 0.471207 0.433889 0.13986 0.103978 0.00290895

0.137984 0.0455656 0.615922 0.843382 0.843511
0.817757 0.830996 0.930376

0.64804 0.547984 0.386992 0.174825 0.00149981 0
0 7.87842e-006 0.00631615

0.047024 0.0430437 0.00165895 0.149012 0.333235
0.463282 0.797354 0.789924 0.929837 0.895307 0.944828

0.915784 0.791486 0.839319 0.892344 0.965436 0.908678
0.896708 0.815426 0.78758 0.698409 0.617678 0.278211
0.437707 0.772114 0.624624 0.915496 0.734394 0.927091
0.999616 0.969648

Row 17

0.560032 0.774724 0.902236 0.893907 0.88462 0.837166
0.886884 0.901555 0.738047 0.734079 0.683226 0.829529
0.79929 0.831788 0.872921 0.883784 0.899671 0.86182
0.906956 0.957271

0.879413 0.85205 0.999898 0.997798 0.909566 0.989998
0.990118 0.916787 0.998849 0.807875 0.675893 0.823326
0.683698 0.530695 0.00253291 0.107541 0.000163838

0.342256 0.833892 0.945416

0.88163 0.976832 0.955085 0.947093 0.95195 0.946416
0.96069 0.91917 0.996764 0.879858 0.801147 0.872343
0.475005 0.442119 0.46893 0.165786 0.0766972 0.0603441
7.75411e-005 0.000816793

0.93094 0.89816 0.937143 0.900049 0.874377 0.945805
0.962391 0.930185 0.975713 0.644614 0.579728 0.0059929
0.674136 0.469869 0.00332156 0.465617 0.689244
0.681682 0.842049 0.602367

0.455661 0.443317 0.46773 0.469529 0.486743 0.593255
0.69553 0.875277 0.888752 0.813796 0.818306 0.751631 0

0.0258322 0.115638 0.0192837 0.000181241
0.162604 0.000562188 0.00395561

0.885852 0.680078 0.867391 0.771576 0.956681 0.931574 0.7367
0.568264 0.291156 0.132134 0 0.0496621 0
0.233759 0.721963 0.831849 0.914839 0.891938

0.96074 0.706293

0.557075 0.412259 0.377182 0.19526 3.3711ge-005
1.65335e-006 0.0008443 2.17797e-006 0.00109715

0.0512152 0.00580124 8.58378e-005 0
0.0389195 0.000905185 0.394094 0.72367

0.774964 0.881857 0.841173

0.936956 0.873736 0.885695 0.827527 0.786342 0.941993
0.874075 0.849195 0.711203 0.678979 0.675802 0.829882
0.399225 0.56989 0.865,231 0.925754 0.916156 0.946409

INTELUGENT OPTICAL SENSOR - 341

Appendix K - Final System Structure

0.964538 0.94087

Row 18

0.829264 0.835922 0.84616 0.94825 0.921175 0.936111
0.685558 0.664221 0.555898 0.76815 0.880943 0.976588
0.939887 0.915694 0.922126 0.823478 0.873642 0.840451
0.86182 0.749311

0.94746 0.956619 0.990494 0.992811 0.990106 0.973097
0.91422 0.99941 0.991727 0.843294 0.887588 0.952292
0.535505 0.384693 0.252388 0.0793095 0.332349 0.517415
0.901822 0.926159

0.945165 0.943124 0.927992 0.989218 0.954801 0.98881
0.943355 0.995831 0.997601 0.910249 0.910008 0.701132
0.605427 0.445481 0.394916 0.00331333 0.266579
0.446079 9.13963e-005 0

0.96501 0.906072 0.926978 0.895214 0.7843 0.977389
0.975257 0.980062 0.967313 0.743171 0.684645 0.586925
0.731201 0.611049 0.619888 0.69497 0.739333 0.7749
0.938152 0.614431

0.58735 0.63726 0.66148 0.693353 0.787103 0.89756
0.940895 0.990553 0.86807 0.827462 0.826858 0.819528 0.596

0.403259 0.393175 0.000150132 0 0
0 0

0.753661 0.79603 0.811121 0.885913 0.79704 0.925209
0.895021 0.938934 0.389308 0.230519 0.0475383 0.000118924

0.553752 0.68968 0.858757 0.739162 0.854297
0.942204 0.944528 0.568847

0.618603 0.426553 0.289674 0.179949 1.36622e-005
4.13062e-006 0.0214942 0.000478044 0.331976
0.0791712 0.0773675 0.00154219 0.106947 0.0877716
0.0965148 0.00332852 0.295521 0.464947 0.498249
0.879594

0.750962 0.818506 0.856373 0.946854 0.920258 0.865503
0.819289 0.449776 0.470556 0.52397 0.773583 0.670728
0.880226 0.817688 0.937999 0.969894 0.929402 0.83911
0.963866 0.950218

Row 19

0.937104 0.797958 0.837057 0.76941 0.777791 0.931619
0.145596 0.178606 0.664011 0.901289 0.941531 0.992615
0.962738 0.959322 0.919561 0.791199 0.869857 0.901596
0.733528 0.577128

0.903537 0.903363 0.925444 0.940816 0.799013 0.944855
0.962061 0.940417 0.752603 0.924417 0.973991 0.990481
0.514923 0.31182 0.243571 0.000664393 0.564191
0.87411 0.797198 0.718178

0.988708 0.972282 0.884463 0.926532 0.759774 0.998597
0.925311 0.933846 0.948686 0.939898 0.98067 0.970405
0.62243 0.472948 0.433852 0.596479 0.502497 0.0594165
0.0451007 0

INTEWGENT OPTICAL SENSOR - 342

Appendix K - Final System Structure

0.957325 0.986518 0.760391 0.637386 0.792052 0.999212
0.988192 0.958589 0.908788 0.956352 0.968571 0.765185
0.737725 0.719547 0.730921 0.718641 0.826801 0.689597
0.74663 0.753645

0.871294 0.985675 0.835355 0.777096 0.821619 0.944582
0.934859 0.930139 0.932142 0.744833 0.786226 0.874756
0.682502 0.593622 0.448535 0 0 0 0

0

0.643583 0.92713 0.914394 0.883278 0.866106 0.88004
0.910839 0.880648 0.608584 0.241225 0.0763791 0.0235763
0.628654 0.8932 0.873923 0.892901 0.889935 0.722969
0.718021 0.669542

0.465663 0.42956 0.340458 1.4569ge-005 0.00036217
0.0490995 8.05294e-005 0.0570215 0.09342

0.131067 0.000282264 0.1254 0.122962 0.12967
0.101538 0.118305 0.109273 0.0894796 0.462799 0.661592

0.649126 0.696708 0.829593 0.840561 0.924965 0.576054
0.721598 0.116841 0.0594525 0.131157 0.679131 0.990157
0.956128 0.952822 0.94319 0.925347 0.898803 0.973106
0.804733 0.647698

INTELUGENT OPTICAL SENSOR - 343

Appendix K - Final System Structure

19.2 - HLP Layer

NumberOfInputs = 9;

NumberOfOutputs = 1;

NumberOfLayers = 4;

Layer sizes:

Input Layer: 9

Hidden Layer 1: 7 + Bias

Hidden Layer 2: 3 + Bias

Output Layer: 1

Transfer Function: Sigmoid

Training Method: Sequential

Initial Learning Rate: 0.2

Initial Momentum: 0.8

Triained for 97 epochs

Weights per layer per node:

Weights:

Layer 2

Node 1 Bias is -1.16695377441978

Node 1 Weight from 1 is 0.287749382606513

Node 1 Weight from 2 is 6.68779653502263

Node 1 Weight from 3 is 2.12380318025296

Node 1 Weight from 4 is -2.99195778125491

Node 1 Weight from 5 is -2.79258647191585

Node 1 Weight from 6 is -0.813940272990039

Node 1 Weight from 7 is -0.9933645895901

Node 1 Weight from 8 is -0.993318215932311

Node 1 Weight from 9 is 0.833333455198896

Node 2 Bias is 0.490869824141896

Node 2 Weight from 1 is -0.400118053183008

Node 2 Weight from 2 is -3.79257307516019

Node 2 Weight from 3 is -0.92824726602038

INTELUGENT OPTICAL SENSOR - 344

Node 2

Node 2

Node 2

Node 2

Node 2

Node 2

Node 3

Node 3

Node 3

Node 3

Node 3

Node 3

Node 3

Node 3

Node 3

Node 3

Node 4

Node 4

Node 4

Node 4

Node 4

Node 4

Node 4

Node 4

Node 4

Node 4

Node 5

Node 5

Node 5

Node 5

Node 5

Node 5

Node 5

Node 5

Node 5

Node 5

Appendix K - Final System Structure

Weight from 4 is

Weight from 5 is

Weight from 6 is

Weight from 7 is

Weight from 8 is

Weight from 9 is

1.38639761223755

2.32751524737333

-0.518193799649914

-0.167100691183909

0.283150766230358

-0.919194069687385

Bias is 0.462423248578962

Weight from 1 is -1.02146462143204

Weight from 2 is -4.85562040553977

Weight from 3 is -0.634953235901165

Weight from 4 is 1.81905614370662

Weight from 5 is 2.99874088792403

Weight from 6 is -0.514936487972874

Weight from 7 is 0.165035939614431

Weight from 8 is 0.734926667956098

Weight from 9 is -0.349716852733153

Bias is -0.251549161583715

Weight from 1 is -0.20429322142147

Weight from 2 is

Weight from 3 is

Weight from 4 is

Weight from 5 is

Weight from 6 is

Weight from 7 is

Weight from 8 is

-1.8120072178301

-0.428959914282485

0.437774619554934

0.667978125317098

-0.608167141256914

-0.410622260324976

0.421968397606879

Weight from 9 is -0.510107005826963

Bias is 0.260565806085845

Weight from 1 is 0.13882193385232

Weight from 2 is -1.99748635878574

Weight from 3 is -0.755544646206114

Weight from 4 is 0.0575742524314847

Weight from 5 is 1.2838943241021

Weight from 6 is -0.35320445650789

Weight from 7 is -0.19338942524826

Weight from 8 is -0.077286083531646

Weight from 9 is -0.457640242412167

INTELUGENT OPTICAL SENSOR - 345

Node 6

Node 6

Node 6

Node 6

Node 6

Node 6

Node 6

Node 6

Node 6

Node 6

Node 7

Node 7

Node 7

Node 7

Node 7

Node 7

Node 7

Node 7

Node 7

Node 7

Layer 3

Node 1

Node 1

Node 1

Node 1

Node 1

Node 1

Node 1

Node 1

Node 2

Node 2

Node 2

Node 2

Node 2

Node 2

Node 2

Appendix K - Final System Structure

Bias is 0.672870926034741

Weight from 1 is -0.620512114843159

Weight from 2 is -3.93227024052153

Weight from 3 is -0.43580820259583

Weight from 4 is 1.1964255424759

Weight from 5 is 2.14471444777331

Weight from 6 is -0.486088569238042

Weight from 7 is -0.35192936109598

Weight from 8 is -0.160725731350153

Weight from 9 is -0.271990436990789

Bias is -0.855929725364306

Weight from 1 is 0.913092592130773

Weight from 2 is 5.22940063718065

Weight from 3 is 0.978445705530449

Weight from 4 is -2.73469503393611

Weight from 5 is -3.1816814868644

Weight from 6 is 0.274046120320427

Weight from 7 is -0.54343677253497

Weight from 8 is -0.873690620372073

Weight from 9 is 1.15417676137488

Bias is -0.37972958555123

Weight from 1 is

Weight from 2 is

Weight from 3 is

Weight from 4 is

Weight from 5 is

Weight from 6 is

Weight from 7 is

-0.48781192969308

0.3245452147136

-0.202350774731255

-0.123909787703083

0.119192312507584

0.278067920189425

-1.0262302778878

Bias is -0.502822254680326

Weight from 1 is

Weight from 2 is

Weight from 3 is

Weight from 4 is

Weight from 5 is

Weight from 6 is

4.4655146412411

-2.46537370502533

-3.08536094836032

-1.47204977253768

-1.43296850744446

-2.40489109847024

INTELUGENT OPTICAL SENSOR - 346

Node 2

Node 3

Node 3

Node 3

Node 3

Node 3

Node 3

Node 3

Node 3

Layer 4

Node 1

Node 1

Node 1

Node 1

Appendix K - Final System Structure

Weight from 7 is 3.41765232849167

Bias is -0.239005008952351

Weight from 1 is -3.58265830122547

Weight from 2 is 2.19699217640588

Weight from 3 is 2.94417315657475

Weight from 4 is 0.972994265465855

Weight from 5 is 1.19805491826407

Weight from 6 is 2.42635076476544

Weight from 7 is -2.75230672757084

Bias is -1.49952950899378

Weight from 1 is

Weight from 2 is

Weight from 3 is

0.464671423180393

-8.71082800308455

6.30597300806232

INTELUGENT OPTICAL SENSOR - 347

ApPENDIX L - SOFTWARE SOURCE CODE

20 - Appendix L - Software Source Code

20.1 - Sam Trainer

II Som TrainerDlg.cpp : implementation file
II

#include "stdafx.h"
#include "5om Trainer.h"
#include "Som TrainerDlg.h"
#include "DlgProxy.h"
#include "ViewWeightsDlg.h"
#include "5omHeader.h"
#include <iomanip.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THISJILE
static char THIS_FILE[] = _FILE_;
#endif

11111111111111111111//////111///1111111///11///1///111//////1111111//////1//I
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:

CAboutDlgO;

I I Dialog Data
II{ {AF)CDATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX};
II} }AFX_DATA
II ClassWizard generated virtual function overrides
II { {AFX_ VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
II} }AFX_VIRTUAL

I I Implementation
protected:

};

II{ {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_MAP()

CAboutDlg: :CAboutD190 : CDialog(CAboutDlg:: IDD)
{

}

II{ {AFX_DATA_INIT(CAboutDlg)
II} }AFX_DATA_INIT

void CAboutDlg: : DoDataExchange(CDataExchange* pDX)
{

}

CDialog: : DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
11{{AFX_MSG_MAP(CAboutDlg) -

INTELUGENT OPTICAL SENSOR - 348

ApPENDIX L - SOFTWARE SOURCE CODE

/I No message handlers
/I} }AF)CMSG_MAP

END_MESSAGE_MAPO

/1///1///1//1///1///1//1//1////1////1//1////1///////1//1//1////1////1////////
/ / CSomTrainerDlg dialog

IMPLEMENT _DYNAMIC(CSomTrainerDlg, CDialog);

CSomTrainerDlg: : CSomTrainerDlg(CWnd* pParent /*=NULL *f)
: CDialog(CSomTrainerDlg::IDD, pParent)

{

}

/ / { {AF)CDATA_INIT(CSomTrainerDlg)
m_FileName = _T("");
mJileSize = 0;
m_MapHeight = 0;
m_MapWidth = 0;
m_MaxTrain = 0;
m_MinNeighbour = 0;
m_NumInputs = 0;
m_MaxLeam = 0.0;
m_MinLeam = 0.0;
m_SaveName = _T("");
//} }AF)CDATA_INIT
// Note that Load Icon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO->LoadIcon(IDR_MAINFRAME);
m_pAutoProxy = NULL;

//***
/ / Declaring Instance of SOM

SOM SomNet;

i nt CheckAll = 0;

//**

CSomTrainerDlg: : ~CSomTrainerDlgO
{

}

// If there is an automation proxy for this dialog, set
/I its back pointer to this dialog to NULL, so it knows
/ / the dialog has been deleted.
if (mJ)AutoProxy != NULL)

m_pAutoProxy->mJ)Dialog = NULL;

void CSomTrainerDlg:: DoDataExchange(CDataExchange* pDX)
{

}

CDialog: : DoDataExchange(pDX);
//{ {AFX_DATA_MAP(CSomTrainerDlg)
DDX_Text(pDX, IDC_FILE_EDIT, mJileName);
DDX_Text(pDX, IDCJILESIZE_EDIT, mJileSize);
DDX3ext(pDX, IDC_MAPHEIGHT_EDIT, m_MapHeight);
DDX3ext(pDX, IDC_MAPWIDTH_EDIT, m_MapWidth);
DDX_Text(pDX, IDC_MAXTRAIN_EDIT, m_MaxTrain);
DDX_ Text(pDX, IDC_MINNEIGH_EDIT, m_MinNeighbour);
DDX_Text(pDX, IDC_NUMINPUTS_EDIT, m_NumInputs);
DDX_Text(pDX, IDC_MAXLEARN_EDIT, m_MaxLeam);
DDX3ext(pDX, IDC_MINLEARN_EDIT, m_MinLeam);
DDX_Text(pDX, IDC_SAVE_EDIT, m_SaveName);
/ /} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CSomTrainerDlg, CDialog)
//{ {AFX_MSG_MAP(CSomTrainerDlg) -

INTELUGENT OPTICAL SENSOR - 349

ON_WM_SYSCOMMANDO
ON_ WM_DESTROYO
o N_WM_PAINTO
ON_WM_QUERYDRAGICONO
ON_WM_CLOSEO
ON_BN_CUCKED(IDC_FILESELECT_BUTTON, OnFileselectButton)
ON_BN_CUCKED(IDC_ TRAIN_BUTTON, OnTrainButton)
ON_BN_CUCKED(IDC_CHECK_BUTTON, OnCheckButton)
ON_COMMAND(IDJILE_EXIT, OnFileExit)
ON_COMMAND(IDJILE_LOADNETWORK, OnFileLoadnetwork)
ON_COMMAND(ID_FlLE_SAVENATWORK, OnFileSavenatwork)
ON_COMMAND(ID_NETWOK_SAVEWEIGHTS, OnNetwokSaveweights)
ON_COMMAND(ID_NETWOK_VIEWWEIGHTS, OnNetwokViewweights)
ON_COMMAND(ID_ TEST _SAVERESULTS, OnTestSaveresults)
ON_COMMAND(ID_ TEST _ TESTNETWORK, OnTestTestnetwork)
ON_COMMAND(1D _TEST _ VIEWRESULTS, OnTestViewresults)
ON_EN_CHANGE(IDC_FlLE_EDIT, OnChangeFileEdit)
ON_EN_CHANGE(IDCJILESIZE_EDIT, OnChangeFilesizeEdit)
ON_EN_CHANGE(IDC_MAXLEARN_EDIT, OnChangeMaxlearnEdit)
ON_EN_CHANGE(IDC_MAXTRAIN_EDIT, OnChangeMaxtrainEdit)
ON_EN_CHANGE(IDC_MINLEARN_EDIT, OnChangeMinleamEdit)
ON_EN_CHANGE(IDC_MINNEIGH_EDIT, OnChangeMinneighEdit)
ON_BN_CUCKED(IDC_ TESTSET _BUTTON, OnTestsetButton)
ON_BN_CUCKED(IDC_TESTSAVE_BUTTON, OnTestsaveButton)
II} }AFX_MSG_MAP

EN D_MESSAGE_MAPO

I I I I I I I I /1/1/1/1/1/1/1/1/1/1 I I 11/1//1//1/1 11/1//1//1/1/1/1 I I I I I I I I /1/ I I I 11/1/
II CSomTrainerDlg message handlers

BOOL CSomTrainerDlg: :OnInitDialogO
{

CDialog: :OnInitDialogO;
II Add "About..." menu item to system menu.
II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu ! = NULL)
{

CString strAboutMenu;
strAboutMenu. LoadString(IDS_ABOUTBOX);
if (! strAboutMenu .lsEmptyO)
{

ApPENDIX L - SOFTWARE SOURCE CODE

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
Setlcon(m_hIcon, TRUE); II Set big icon
Setlcon(m_hIcon, FALSE); II Set small icon

II TODO: Add extra initialization here
m_MapHeight = 10;
m_MapWidth = 10;
m_Numinputs = SOM_NUMBER_INPUTS;
m_MaxLearn = 0.4;
m_MinLearn = 0.01;
m_MinNeighbour = 0;
m_MaxTrain = 4000;

UpdateData(FALSE) ;
return TRUE; I I return TRUE unless you set the focus to a control

}

INTELUGENT OPTICAL SENSOR - 350

ApPENDIX L - SOFTWARE SOURCE CODE

void CSomTrainerDlg: :OnSysCommand(UINT nID, LPARAM IParam)
{

}

if ((nID & OxFFFO) == IDM_ABOUTBOX)
{

CAboutDlg dlgAbout;
dlgAbout.DoModaIO;

}
else
{

CDialog: :OnSysCommand(nID, IParam);
}

void CSomTrainerDlg: :OnDestroyO
{

}

WinHelp(OL, HELP_QUIT);
CDialog: :OnDestroyO;

II If you add a minimize button to your dialog, you will need the code below
II to draw the icon. For MFC applications using the document/view model,
I I this is automatically done for you by the framework.

void CSomTrainerDlg: :OnPaintO
{

}

if (IsIconic())
{

CPaintDC dc(this); II device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetsafeHdcO, 0);

II Center icon in client rectangle
int cxIcon = GetsystemMetrics(SM_CXICON);
int cyIcon = GetsystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect) ;
int x = (rect.WidthO - cxIcon + 1) I 2;
int y = (rect.HeightO - cyIcon + 1) I 2;

I I Draw the icon
dc.DrawIcon(x, y, m_hIcon);
}
else
{

CDialog: :OnPaintO;
}

II The system calls this to obtain the cursor to display while the user drags
II the minimized window.
HCURSOR CSomTrainerDlg: : OnQueryDragIconO
{

return (HCURSOR) m_hIcon;
}

I I Automation servers should not exit when a user closes the UI
I I if a controller still holds on to one of its objects. These
II message handlers make sure that if the proxy is still in use,
I I then the UI is hidden but the dialog remains around if it
II is dismissed.

void CSomTrainerDlg: :OnCloseO
{

}

if (CanExit())
CDialog: :OnCloseO;

Void CSomTrainerDlg: :OnOKO
{

INTELLIGENT OPTICAL SENSOR - 351

}

if (canExit())
CDialog: :OnOKO;

void CSomTrainerDlg: : Oncancel 0
{

if (canExit())
CDialog: :OncanceIO;

}

BOOL CSomTrainerDlg: :canExitO
{

I I If the proxy object is still around, then the automation
II controller is still holding on to this application. Leave
II the dialog around, but hide its UI.
if (m_pAutoProxy != NULL)
{

}

ShowWindow(SW_HIDE) ;
return FALSE;

return TRUE;
}

void CSomTrainerDlg: :OnFileselectButtonO
{

II TODO: Add your control notification handler code here
CFileDialog dlg(TRUE,"*.txt","*.txt",NULL);
dlg.DoModaIO;
m_FileName = dlg.GetPathNameO;
m_TestFile = mJileName;
UpdateData(FALSE) ;

if(! SomNet.SetFi leName(m_Fi leName))
{

ApPENDIX L - SOFTWARE SOURCE CODE

MessageBox("File doesn't exist, or is being used. Please reselect","File Selection
Error", MB_ICONERROR);

m_FileName = '''';
UpdateData(FALSE) ;

}
}

void CSomTrainerDlg: :OnQuitButtonO
{

}

II TODO: Add your control notification handler code here
OnOKO;

void CSomTrainerDlg: :OnTrainButtonO
{

II TODO: Add your control notification handler code here
if(CheckAlI! = 1)
{

MessageBox("Please initialise all parameters", "Initialisation Error" ,MB_ICONWARNING);
retum;

}
BeginWaitCursorO;
CProgressCtrl * ProgControl;
ProgControl= (CProgressCtrl*) GetDlgItem(IDC3RAIN_PROGRESS);
ProgControl->SetRange(O,m_MaxTrain);
for(int loop = 0; loop< m_MaxTrain; loop++)
{

if(!SomNet.RunNetO)
{

loop = m_MaxTrain;
EndWaitCursorO;

INTELLIGENT OPTICAL SENSOR - 352

}

ApPENDIX L - SOFTWARE SOURCE CODE

MessageBox("Network training Failed","Network Error",MB_ICONERROR);
return;

}
SomNet. IncCycleO;
ProgControl->SetPos(loop);

}
EndWaitCursorO;
MessageBox(''Training Completed","Network Training",MB_ICONINFORMATION);
progControl->SetPos(O);

void CSomTrainerDlg: :OnCheckButtonO
{

1/ TODO: Add your control notification handler code here
UpdateData(TRUE) ;
SomNet.InitCurCycleO;
if(m_FileName= = ,on)
{
MessageBox("You must select a training file","Initialisation Error", MB_ICONERROR);

return;
}
if(!SomNet.SetDataUnes(m_Fi leSize»
{

MessageBox(''Training File Size must be a positive value","Initialisation Error",MB_ICONERROR);
//mJileSize= 0;

}

/ /UpdateData(FALSE);
return;

if(!SomNet. CheckFileSizeO)
{

MessageBox(''Training file size does not match actual file","Initialisation Error",MB_ICONERROR);
/ /mJileSize = 0;

}

/ /UpdateData(FALSE);
return;

SomNet. SetNumInputsO;
SomNet.SetMapSizeO;
if(!SomNet.SetRates(m_MinLearn, m_MaxLearn»
{

MessageBox("Learning Rates must be positive,\nMax Learning rate must be larger value","Initialisation
Error",MB_ICONERROR);

m_MaxLeam = 0.4;
m_MinLearn = 0.01;
UpdateData(FALSE) ;
return;

}
if(!SomNet.SetMinNeighbour(m_MinNeighbour»
{

MessageBox("Min Neighbourhood must be positive", "Initialisation Error" ,MB_ICONERROR);
m_MinNeighbour = 0;
UpdateData(FALSE) ;
return;

}
if(!SomNet.SetMaxCycles(m_MaxTrai n»
{

MessageBox("MaxTraining Cycles must be a positive Integer","Initialisation Error",MB_ICONERROR);
m_MaxTrain = 2000;
UpdateData(FALSE) ;
return;

}
SomNet.calcMaxNeighbourO;
SomNet. calcCurNeighbourO;
SomNet.calcCurRateO;
SomNet. RandomWeightsO;
SomNet.InitFilePosO;

MessageBox("AIi parameters initialised, ready for training","Network Ready",MB_ICONINFORMATION);
CheckAll = 1; -

INTELLIGENT OPTICAL SENSOR - 353

}

void CSomTrainerDlg: :OnFileExitO
{

}

II TODO: Add your command handler code here
OnOKO;

void CSomTrainerDlg: :OnFileLoadnetworkO
{

II TODO: Add your command handler code here
CString Load fileName;

APPENDIX L - SOFTWARE SOURCE CODE

CFileDialog dlg(TRUE, "vsf", "*. vsf" ,OFN_OVERWRITEPROMPT,"Vios SOM File *. vsfllText File * .txt" ,NULL);
dlg.DoModaIO;

}

LoadFileName = dlg.GetPathNameO;
m_NetFile = Load FileName;
ifstream Load Fi le(LoadFileName,ios: : nocreate);

char *Header = "SOMNET";
char *Temp="";
Load File > > Temp;
if (strcmp(Header,Temp)!=O)
{

}

MessageBox("File Header Mismatch");
return;

LoadFile > > m_Numlnputs;
LoadFile » m_MapWidth;
LoadFile » m_MapHeight;
Load File » m_MaxLearn;
LoadFile» m_MinLearn;
LoadFile» m_MinNeighbour;
Load File » m_MaxTrain;

char *Templ="";
intTemp2;
double Temp3;
int loopl, loop2, loop3;

for (loop2 = 0; loop2<m_MapHeight; loop2++)
{

}

LoadFile » Templ;
LoadFile » Temp2;

for (loop3 = 0; loop3<m_Numlnputs; loop3++)
{

}

for (loopl = 0; loopl<m_MapWidth; loopl++)
{

LoadFile »Temp3;
SomNet.SetWeight(loopl, loop2, loop3, Temp3);

}

LoadFile.closeO;

SomNet.SetMapSizeO;
SomNet.SetNumlnputsO;
SomNet. SetMaxCycles(m_MaxTrain);
SomNet.SetRates(m_MinLearn, m_MaxLearn);
SomNet.SetMinNeighbour(m_MinNeighbour);
MessageBox("Network Loaded");
UpdateData(FALSE) ;

void CSomTrainerDlg: :OnFileSavenatworkO
{

II TODO: Add your command handler code here
int loopl, loop2, loop3; -

INTELUGENT OPTICAL SENSOR - 354

ApPENDIX L - SOFTWARE SOURCE CODE

CString SaveFileName;

CFileDialog dlg(FALSE,"vsf","*.vsf",OFN_OVERWRITEPROMPT,"Vios SOM File *.vsfIIText File *.txt",NULL);
dlg.DoModaIO;

}

SaveFileName = dlg.GetPathNameO;
ofstream SaveFile(SaveFileName);
SaveFile « "SOMNEl\n";
SaveFile « m_NumInputs « endl;
SaveFile « m_MapWidth « "\t" « m_MapHeight« endl;
SaveFile « m_MaxLearn « "\t" « m_MinLearn « endl;
SaveFile« m_MinNeighbour« endl;
SaveFile « m_MaxTrain «endl;
for (loop2 = 0; loop2<m_MapHeight; loop2++)
{

}

SaveFile « "Row" « loop2«endl;
for (loop3 = 0; loop3<m_NumInputs; loop3++)
{

for (Ioopl = 0; loopl<m_MapWidth; loopl++)
{

SaveFile « SomNet.GiveWeight(loopl,loop2,loop3) « "\t";
}
SaveFile« endl;

}

SaveFile.closeO;

void CSomTrainerDlg: :OnNetwokSaveweightsO
{

II TODO: Add your command handler code here
int loopl, loop2, loop3;

CFileDialog dlg(FALSE,"vwf","*.vwf",OFN_OVERWRITEPROMPT,"Vios Weights File *.vwfIIText File
*.txt",NULL);

dlg.DoModaIO;
CString SaveFileName;
SaveFileName = dlg.GetPathNameO;
ofstream SaveFile(SaveFileName);

for (loop2 = 0; loop2<m_MapHeight; loop2++)
{

SaveFile « "Row" « loop2«endl;
for (loop3 = 0; loop3<m_NumInputs; loop3++)
{

}

for (loopl = 0; loopl<m_MapWidth; loopl++)
{

SaveFile « SomNet.GiveWeight(loopl,loop2,loop3) « "\t";
}
SaveFile « endl;

}
SaveFile.closeO;

}

void CSomTrainerDlg: :OnNetwokViewweightsO
{

II TODO: Add your command handler code here
ViewWeightsDlg m_dlg;
int loopl, loop2, loop3;

m_dlg.MaxCycies = m_MaxTrain;
m_dlg.MaxLines = m_FileSize;

for(loopl = 0; loopl<lO; loop1++)
{

INTEWGENT OPTICAL SENSOR - 355

for(loop2 = 0; loop2<10; loop2++)
{

for (loop3 = 0; loop3<5; loop3++)
{

ApPENDIX L - SOFlWARE SOURCE CODE

m_dlg.WeightVals[loop2][loop1][loop3] = SomNet.GiveWeight(loop2, loop1, loop3);
}

}

}
}

m_dlg.FireRates[loop2][loop1] = SomNet.GiveFire(loop2, loop1);

for(loop1= 0; loop1<5; loop1++)
{

m_dlg.Inputs[loop1] = SomNet.GiveData(loop1);
}
m_dlg.Test = 0;
m_dlg. DoModalO;

void CSomTrainerDlg: :OnTestSaveresultsO
{

II TODO: Add your command handler code here

}

void CSomTrai nerDlg: : OnTestTestnetworkO
{

II TODO: Add your command handler code here
ViewWeightsDlg m_dlg;
int loop1, loop2, loop3;

if(m_FileName=="")
{

MessageBox("You must select a training file","Initialisation Error", MB_ICONERROR);
return;

}
SomNet.SetDataLines(1);

m_FileSize = 1;
UpdateData(FALSE) ;
SomNet.InitFilePosO;
SomNet. Read Data Li neO;

II MessageBox(mJileName);
char Text[500];
sprintf(Text,"Values are: %f - %f - %f - %f - %f",SomNet.GiveData(O),SomNet.GiveData(l),

SomNet.GiveData(2),SomNet.GiveData(3),SomNet.GiveData(4));
MessageBox(Text) ;

SomNet.CalcWinnerO;
m_dlg.Test = 1;
m_dlg.WinX = SomNet.GiveWinnerXO;
m_dlg.WinY = SomNet.GiveWinnerYO;
m_dlg.MaxCycies = m_MaxTrain;
m_dlg.MaxLines = m_FileSize;
double Max = 0;
double Min = 100;
for(loop1 = 0; loop1<10; loop1++)
{

for(loop2 = 0; loop2<10; loop2++)
{

for (loop3 = 0; loop3<5; loop3++)
{

m_dlg.WeightVals[loop2][loop1][loop3] = SomNet.GiveWeight(loop2, loop1, loop3);
if(m_dlg. WeightVals[loop2][loop1][loop3] >Max) Max = m_dlg. WeightVals[loop2][loop1][loop3];
if(m_dlg.WeightVals[loop2][loop1][loop3]<Min) Min = m_dlg.WeightVals[loop2][loop1][loop3];

}
}

}
m_dlg.FireRates[loop2][loop1] = SomNet.GiveFire(loop2, loop1);

m_dlg.MaxWeight = Max;
m_dlg.MinWeight = Min;

INTELLIGENT OPTICAL SENSOR - 356

}

Max = 0;
Min = 100;
for(loop1= 0; loop1<5; loopl++)
{

}

m_dlg.Inputs[loopl] = SomNet.GiveData(loopl);
if(m_dlg.Inputs[loopl]>Max) Max = m_dlg.Inputs[loopl];
if(m_dlg.Inputs[loop1]<Min) Min = m_dlg.Inputs[loopl];

m_dlg.MaxIn = Max;
m_dlg.MinIn = Min;

m_dlg.Test = 1;
m_dlg.DoModaIO;
m_dlg.Test = 0;
m_FileName ="";
UpdateData(FALSE) ;

void CSomTrainerDlg: :OnTestviewresultsO
{

II TODO: Add your command handler code here

}

void CSomTrainerDlg:: OnChangeFileEditO
{

CheckAll = 0;
}

void CSomTrainerDlg: :OnChangeFilesizeEditO
{

CheckAll = 0;
}

void CSomTrainerDlg:: OnChangeMaxlearnEditO
{

CheckAll = O' } ,

void CSomTrainerDlg: :OnChangeMaxtrainEditO
{

CheckAll = 0;
}

void CSomTrainerDlg: :OnChangeMinleamEditO
{

CheckAll = 0;
}

void CSomTrainerDlg: :OnChangeMinneighEditO
{

CheckAll = 0;
}

void CSomTrainerDlg: :OnSavetestButtonO
{

II TODO: Add your control notification handler code here

}

void CSomTrainerDlg: :OnTestsetButtonO
{

II TODO: Add your control notification handler code here
int loop,loopl;
BeginWaitCursorO;
UpdateData(TRUE) ;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 357

char store;
int count=l;
ifstream TestFile(m_FileNarne,ios: :nocreate);
while(TestFile)
{

}

TestFile.get(store);
if(store=='\n')

count++;

TestFile.closeO;
m_FileSize = count;

SomNet.SetDataUnes(mJileSize) ;
UpdateData(FALSE);
SomNet.InitFilePosO;

of stream OutFile(m_SaveName);
OutFile« "Results from "« m_NetFile« endl;
OutFile « ''Tested using "« m_TestFile « endl « endl;
OutFile < < "Wi nX\tWi ny\tVectorial Distance\tBoundary Size\tMetric\n\n";
CProgressCtrl* ProgControl;
ProgControl = (CProgressCtrl*) GetDlgItem(IDC_ TRAIN_PROGRESS);

ProgControl->SetRange(O,mJileSize);
ProgControl->SetPos(O);
for(loop = 0; loop<m_FileSize; loop++)
{

SomNet. ReadDataLineO;

II char Text[500];

ApPENDIX L - SOFTWARE SOURCE CODE

II sprintf(Text,"Values are: %f - %f - %f - %f - %f",SomNet.GiveData(O),SomNet.GiveData(l),
SomNet.GiveData(2),SomNet.GiveData(3),SomNet.GiveData(4));
II MessageBox(Text);

SomNet.calcWinnerO;
double Temp = 0;
double Distance = 0;
//calc distance from input to winning node
double InputsSum = 0;
for(loopl= 0; loopl<SOM_NUMBER_INPUTS; loopl++)
{

Temp = SomNet.GiveWeight(SomNet.GiveWinnerXO,SomNet.GiveWinnerYO,loop1) - SomNet.GiveData
(loop1);

}

Distance += sqrt(pow(Temp,2»;
Temp = 0;

for(loop1 = 0; loopl<SOM_NUMBER_INPUTS; loop1++)
InputsSum += SomNet.GiveData(loop1);

llcaic wining node's boundary distance
double Boundary = 0;
double d[8];
for(int loop=O; loop<8; loop++)

d[loop] = 0;
intTot = 8;
if(SomNet.GiveWinnerYO I =0)
{

if(SomNet.GiveWinnerXOI =0) d[O] = calcDistance(SomNet.GiveWinnerXO-1, SomNet.GiveWinnerYO-1);
else Tot--;
d[l] = calcDistance(SomNet.GiveWinnerXO, SomNet.GiveWinnerYO-1);

if(SomNet.GiveWinnerXOI=9) d[2] = calcDistance(SomNet.GiveWinnerXO+ 1, SomNet.GiveWinnerYO-1);
else Tot--;

}
else Tot -= 3;

if(SomNet.GiveWinnerXOI=O) d[3] = calcDistance(SomNet.GiveWinnerXO-1, SomNet.GiveWinnerY());
else Tot--;

if(SomNet.GiveWinnerXO I =9) d[4] = calcDistance(SomNet.GiveWinnerXO+ 1, SomNet.GiveWinnerY());

else Tot--;
if(SomNet.GiveWinnerYO I =9)

INTELUGENT OPTICAL SENSOR - 358

ApPENDIX L - SOFTWARE SOURCE CODE

{
if(SomNet.GiveWinnerXOI =0) d[O] = CalcDistance(SomNet.GiveWinnerXO-1, SomNet.GiveWinnerYO+ 1);

else Tot--;
d [1] = calcDistance(SomNet. GiveWi nnerXO, SomNet. GiveWi nnerYO + 1);

if(SomNet.GiveWinnerXOI =9) d[2] = CalcDistance(SomNet.GiveWinnerXO+ 1, SomNet.GiveWinnerYO+ 1);
else Tot--;

}
else Tot -=3;
//find average distance, and take half I
double Avge = 0;
//for(loop = 0; loop <8; loop++)
//Avge += d[loop];
//Avge = 0.5*(double)(Avge{Tot);

Avge = 0;
for(loop = 0; loop<8; loop++)
{

if(d[loop]>Avge) Avge = d[loop];
}

/ /calc Metric
double Metric = InputsSum/Avge;

//now save the data
OutFile« SomNet.GiveWinnerXO «"\t"«SomNet.GiveWinnerYO
«"\t"«Distance«"\t"«Avge«"\t"«Metric«endl;

progControl->SetPos(loop);
}
OutFile.closeO;
EndWaitCursorO;
MessageBox("Testing Completed","SOM Trainer",MB_OK);

}

void CSomTrainerDlg: :OnTestsaveButtonO
{

// TODO: Add your control notification handler code here
CFileDialog Saver(FALSE, "txt", "* . txt" ,OFN_ OVERWRITEPROMPT, "Results File I * . txt II", NULL);
if(Saver. DoModalO= = IDOK)
{

}
}

m_SaveName = Saver.GetPathNameO;
UpdateData(FALSE) ;

double CSomTrainerDlg: :CalcDistance(int X, int Y)
{

double Vals[5];
double Weightl, Weight2;
for(int loop = 0; loop<5; loop++)
{

Weightl = SomNet.GiveWeight(SomNet.GiveWinnerX(),SomNet.GiveWinnerYO,loop);
Weight2 = SomNet.GiveWeight(X,Y,loop);

}

Vals[loop] = sqrt(pow(Weight2-Weightl,2»;
}
double retval = 0;
for(loop = 0; loop <5; loop++)

retval += Vals[loop];
return(retval);

// Som TrainerDlg.h : header file

INTELLIGENT OPTICAL SENSOR - 359

ApPENDIX L - SOFTWARE SOURCE CODE

II

#if !defined(AF)CSOMTRAINERDLG_H_952466AB_ACC2_11D3_B160_8BFB919D1E24_INCLUDED~
#define AF)CSOMTRAINERDLG_H_952466AB_ACC2_11D3_B160_8BFB919D1E24_INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif II _MSC_ VER > = 1000

class CSomTrainerDlgAutoProxy;

11/11/11/11//11//11/1111/11 11/ 11/ / / 11/11 / 11/ II II 11/11/11//11//11/11/11// / 11/ /
II CSomTrainerDlg dialog

class CSomTrainerDlg : public CDialog
{

DECLARE_DYNAMIqCSomTrainerDlg) ;
friend class CSomTrainerDlgAutoProxy;

II Construction
public:

double calcDistance(int X,int Y);
CString m_TestFile;
CString m_NetFile;
CSomTrainerDlg(CWnd* pParent = NULL);
virtual ~CSomTrainerDlgO;

II Dialog Data
II{ {AFX_DATA(CSomTrainerDlg)
enum { IDD = IDD_SOMTRAINER_DIALOG };
CString m]ileName;
int m_FileSize;
int m_MapHeight;
int m_MapWidth;
int m_MaxTrain;
int m_MinNeighbour;
int m_NumInputs;
doublem_MaxLearn;
doublem_MinLearn;
CString m_SaveName;
II} }AFX_DATA

II standard constructor

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CSomTrainerDlg)
protected:

virtual void DoDataExchange(CDataExchange* pDX);
II} }AFX_VIRTUAL

II DDX/DDV support

II Implementation
protected:

CSomTrainerDlgAutoProxy* m-pAutoProxy;
HICON m_hIcon;

BOOL canExitO;

II Generated message map functions
II{ {AFX_MSG(CSomTrainerDlg)
virtual BOOL OnInitDialogO;
afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnDestroyO;
afx_msg void OnPaintO;

afx_msg HCURSOR OnQueryDragIconO;
afx_msg void OnCloseO;
virtual void OnOKO;
virtual void OncancelO;

INTEWGENT OPTICAL SENSOR - 360

};

ancmsg void OnFileselectButtonO;
ancmsg void OnLoadButtonO;
ancmsg void OnQuitButtonO;
afx_msg void OnSaveButtonO;
ancmsg void OnTrainButtonO;
afx_msg void OnCheckButtonO;
afx_msg void OnFileExitO;
afx_msg void OnFileLoadnetworkO;
afx_msg void OnFileSavenatworkO;
afx_msg void OnNetwokSaveweightsO;
afx_msg void OnNetwokViewweightsO;
afx_msg void OnTestSaveresultsO;
afx_msg void OnTestTestnetworkO;
afx_msg void OnTestviewresultsO;
afx_msg void OnChangeFileEditO;
afx_msg void OnChangeFilesizeEditO;

afx_msg void OnChangeMaxleamEditO;
afx_msg void OnChangeMaxtrainEditO;
afx_msg void OnChangeMinleamEditO;
afx_msg void OnChangeMinneighEditO;

afx_msg void OnSavetestButtonO;
afx_msg void OnTestsetButtonO;
afx_msg void OnTestsaveButtonO;
II} }AF)CMSG
DECLARE_MESSAGE_MAP()

II { {AF)UNSERT _LOCATION} }

ApPENDIX L - SOFTWARE SOURCE CODE

II Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif II !defined
(AFX_SOMTRAINERDLG_H __ 952466AB_ACC2_11D3_B160_8BFB919D1E24 __ INCLUDED_)

II ViewWeightsDlg.cpp : implementation file
II

#inciude "stdafx.h"
#inciude "Som Trainer.h"
#inciude "ViewWeightsDlg.h"
#inciude "Som TrainerDlg.h"
#include <math.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THISJILE
static char THIS_FILE[] = __ FILE __ ;
#endif

I I I I I I I I I I II I I I I I I I I I I I I /II /II I I /II I /II I I I I I I I I I I I I I /II I I I I I I I I I /II I I I I I I I I I I
II ViewWeightsDlg dialog

ViewWeightsDlg: :ViewWeightsDlg(CWnd* pParent I*=NULL */}
: CDialog(ViewWeightsDlg: :IDD, pParent)

{
II { {AFX_DATA_INIT(ViewWeightsDlg)
II NOTE: the ClassWizard will add member initialization here
II} }AFX_DATA_INIT

}

void ViewWeightsDlg: : OoData Exchange(CDataExchange* pDX)
{ -

INTELUGENT OPTICAL SENSOR - 361

CDialog: : DoDataExchange(pDX);
II { {AF)CDAT~MAP(ViewWeightsDlg)
II NOTE: the ClassWizard will add DDX and DDV calls here
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(ViewWeightsDlg, CDialog)
II { {AFX_MSG_MAP(ViewWeightsDlg)
ON_BN_CUCKED(IDC_PlOT_BUTTON, OnPlotButton)
ON_BN_CUCKED(IDC_SUM_BUTTON, OnSumButton)
ON_BN_CUCKED(IDC_BARS_BUTTON, OnBarsButton)
ON_ WM_MOUSEMOVEO
ON_BN_CUCKED(IDCJIRING_BUTTON, OnFiringButton)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

11//11111111111//1//1//11111111111//111//111111111//1111111111111111//11//111
II ViewWeightsDlg message handlers

BOOl ViewWeightsDlg: :OnInitDialogO
{
CDialog: : OnInitDialogO;

II TODO: Add extra initialization here
OnPlotButtonO;

}

InvalidateO;
return TRUE; I I return TRUE unless you set the focus to a control

II EXCEPTION: OCX Property Pages should return FALSE

void ViewWeightsDlg: :OnOKO
{
II TODO: Add extra validation here
CDialog: :OnOKO;

}

void ViewWeightsDlg: :OnPaintO
{

II Do not call CDialog: :OnPaintO for painting messages
}

void ViewWeightsDlg: :OnPlotButtonO
{
II TODO: Add your control notification handler code here
CClientDC dc(this);
int StartX;
int Starty;

CPen RectPen;
RectPen.CreatePen(PS_SOUD,l,RGB(255,255,255»;
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&RectPen);

for(Starty = 10; StartY<360; StartY+=35)
{

for (StartX = 10; StartX<360; StartX+=35)
{

Rectangle(dc,StartX,StartY,StartX + 30 , Sta rtY + 30);

ApPENDIX l - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 362

}
}

if (Test==l)
{

CPen WinPen;
WinPen.CreatePen(PS_SOUD,4,RGB(255,100,Q));
pOriginalPen = dc.SelectObject(&WinPen);
StartX = 10 + (35 * WinX);
StartY = 10 + (35 * Winy);
Rectangle(dc,StartX, StartY, StartX + 30, StartY + 30);

}

CPen PlotPen;
PlotPen.CreatePen(PS_SOUD,1,RGB(255,0,0));
pOriginalPen = dc.SelectObject(&PlotPen);

int Posx, Posy;

for(StartY = 10; StartY<360; StartY+=35)
{

for (StartX = 10; StartX<360; StartX+=35)
{

Posx = StartX;
Posy = StartY + 29;
MoveToEx(dc, Posx, Posy,NULL);

for (int loop3 = 0; loop3<NumIns; loop3++)
{

ApPENDIX L - SOFTWARE SOURCE CODE

Posy = StartY + 30 - (int)(30*WeightVals[(StartX-1O)/35][(StartY-10)/35][loop3]);
UneTo(dc,Posx,Posy);

}

}
}

Posx += int(35/NumIns);
}

void ViewWeightsDlg: :OnSumButtonO
{
II TODO: Add your control notification handler code here
CClientDC dc(this);
int StartX;
int StartY;
int loop3;
double Sum;
int loopl;
int loop2;

for(StartY = 10; StartY<360; StartY+=35)
{
for (StartX = 10; StartX<360; StartX+=35)
{

Sum = 0;
double Dist = 0;
for(loop3 = 0; loop3<NumIns; loop3++)
{
double Temp = WeightVals[(StartX-10)/35][(StartY-1O)/35][loop3];
Sum += sqrt(pow(Temp,2));
I IDist += WeightVals[(StartX-10)/35][(StartY-10)/35][loop3] - Inputs[loop3];

}
IISum = (int)(Dist*51);
int Mult = 255/(NumIns*MaxWeight);
for (Ioopl = 0; loopl<30; loopl++)
{

INTELLIGENT OPTICAL SENSOR - 363

for (loop2 = 0; loop2<30; loop2++)
{

ApPENDIX L - SOFTWARE SOURCE CODE

SetPixel(dc,StartX + loop1, StartY+loop2,RGB(0,(int)(Mult*Sum),(int)(Mult*Sum)));
}

}
}

}
if (Test==l)
{

}

}

CPen WinPen;
WinPen.CreatePen(PS_SOUD,4,RGB(255,100,0»;
CPen* pOriginalPen;
pOriginalPen = dC.SelectObject(&WinPen);

StartX = 10 + (35 * WinX);
StartY = 10 + (35 * Winy);
MoveToEx(dc, StartX, StartY, NULL);
UneTo(dc, StartX+30, Starty);
UneTo(dc, StartX+30, StartY+30);
UneTo(dc, StartX, StartY + 30);
UneTo(dc, StartX, StartY);

void ViewWeightsDlg: :OnBarsButtonO
{

II TODO: Add your control notification handler code here
CClientDC dc(this);
int StartX;
int StartY;
int loop3;
int loop1;
int loop2;

CPen RectPen;
RectPen.CreatePen(PS_SOUD,1,RGB(255,255,255»;
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&RectPen);

for(StartY = 10; StartY<360; StartY+=35)
{

}

for (StartX = 10; StartX<360; StartX+=35)
{

Rectangle(dc,StartX,StartY,StartX+30,StartY+30);
}

for(StartY = 10; StartY<360; StartY+=35)
{

for (StartX = 10; StartX<360; StartX+=35)
{

for(loop3 = 0; loop3<NumIns; loop3++)
{

for(loop1 = 0; loop1<NumIns+1;loop1++)
{

for (loop2 = 0; loop2«int)(30*WeightVals[(StartX-10)/35][(StartY-10)/35][loop3]); loop2++)
{

SetPixel(dc,StartX + (NumIns+1)*loop3 + loop1, StartY + 30 - loop2,RGB(0,50,(int)
(255*WeightVals[(StartX-1O)/35][(StartY-10)/351[loop3])) ;

}
}

}
}

}

INTELLIGENT OPTICAL SENSOR - 364

}

if (Test==1)
{

}

CPen WinPen;
WinPen.CreatePen(PS_SOUD,4,RGB(255,100,O»;
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&WinPen);
StartX = 10 + (35 * WinX);
StartY = 10 + (35 * Winy);
MoveToEx(dc, StartX, StartY, NULL);
UneTo(dc, StartX+30, Starty);
LineTo(dc, StartX+30, StartY+30);
UneTo(dc, StartX, StartY + 30);
LineTo(dc, StartX, StartY);

ApPENDIX L - SOFTWARE SOURCE CODE

void ViewWeightsDlg: :OnFiringButtonO //distances
{

II TODO: Add your control notification handler code here
int StartX;
ClientDC dc(this);
int StartY;
int loop3;
double Sum;
int loop1;
int loop2;
int Mult;

double Res1 = abs(MaxWeight-MinIn);
double Res2 = abs(MaxIn - MinWeight);
if(Res1>Res2) Mult = 255/(NumIns*Res1);
else Mult = 255/(NumIns*Res2);

for(StartY = 10; StartY<360; StartY+=35)
{

for (StartX = 10; StartX<360; StartX+=35)
{

Sum = 0;
double Dist = 0;
for(loop3 = 0; loop3<NumIns; loop3++)
{

double Temp= WeightVals[(StartX-lO)/35][(StartY-lO)/35][loop3] - Inputs[loop3];
Sum += sqrt(pow(Temp,2»;

}
Sum = (int)(Sum*Mult);
for (loop1 = 0; loop1<30; loop1++)
{

for (loop2 = 0; loop2<30; loop2++)
{

SetPixel(dc,StartX + loop1, StartY+loop2,RGB(Sum,O,O»;II(int)(51 *Sum»);
}

}
}

}

if (Test==1)
{

CPen WinPen;
WinPen.CreatePen(PS_SOUD,4,RGB(255,100,O»;
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&WinPen);
StartX = 10 + (35 * WinX);
StartY = 10 + (35 * Winy);
MoveToEx(dc, StartX, StartY, NULL); -

INTELUGENT OPTICAL SENSOR - 365

}

}

UneTo(dc, StartX+30, StartY);
UneTo(dc, StartX+30, StartY+30);
UneTo(dc, StartX, StartY + 30);
UneTo(dc, StartX, Starty);

double WinDist=O;
for(int loop = 0; loop <NumIns; loop++)
{

}

double Temp = WeightVals[WinX)[WinY)[loop) - Inputs[loop);
WinDist += sqrt(pow(Temp,2»;

char Text[500);
sprintf(Text,"Vectorial Distance is : %f - Mult :%i",WinDist,Mult);
MessageBox(Text) ;

ApPENDIX L - SOFTWARE SOURCE CODE

#if !defined(AF)CVIEWWEIGHTSDLG_H_A3E1F763_ACFO_llD3_B160_8BFB919D1E24_INCLUDED~
#define AFX_ VIEWWEIGHTSDLG_H_A3E1F763_ACFO_llD3_B160_8BFB919D1E24_INCLUDED_

#if _MSC_VER >= 1000
#pragrna once
#endif II _MSC_ VER > = 1000
II ViewWeightsDlg.h : header file
II

const int NumIns=8;
II II 1// I I 1// 11// 1// II II 1// I 1// II II 1// 1// 111// II 1// 1// I 1// 1// 1// II II II 1// 1// II
II ViewWeightsDlg dialog

class ViewWeightsDlg : public CDialog
{
I I Construction
public:

ViewWeightsDlg(CWnd* pParent = NULL); II standard constructor
double WeightVals[lO)[lO)[NumIns);
int FireRates[lO][lO);
int MaxCycles;
int MaxUnes;
double Inputs[NumIns);
int Test;
int WinX;
intWinY;
double MaxWeight;
double MinWeight;
double MaxIn;
double MinIn;

I I Dialog Data
II { {AFX_DATA(ViewWeightsDlg)
enum { IDD = IDD_WEIGHTS_DIALOG };
I I NOTE: the ClassWizard will add data members here

II} }AFX_DATA

II Overrides
II ClassWizard generated virtual function overrides
II { {AFX_ VIRTUAL(ViewWeightsDlg)
protected:

INTELUGENT OPTICAL SENSOR - 366

ApPENDIX l - SOFTWARE SOURCE CODE

virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
II} }AFX_ VIRTUAL

I I Implementation
protected:

II Generated message map functions
II { {AFX_MSG(ViewWeightsDlg)
afx_msg void OnPaintO;
virtual BOOlOnInitDialogO;
virtual void OnOKO;
afx_msg void OnPlotButtonO;
afx_msg void OnSumButtonO;
afx_msg void OnBarsButtonO;
afx_msg void OnFiringButtonO;
II} }AFX_MSG
DECLARE_MESSAGE_MAPO

};
II{ {AFX_INSERT_lOCATION}}
1/ Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif 1/ !defined
(AFX_VIEWWEIGHTSDlG_H_A3E1F763_ACFO_llD3_B160_8BFB919DlE24_INClUDED_)

1**\
1 1
1 Header code for SOM network
1 1
1--
1
1
**1

#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

const int SOM_NUMBER_INPUTS = 8;

class SOM
{

Iidesigned for a lOxlO network with 5 inputs, to adapt change the
Iisize of the arrays Weight[][)[], Winner[)[] and Input[]
llDesigned to read it's info from an ASOI file

private:
double MaxRate; IIMaximum leaming Rate
double MinRate; IIMinimum learning Rate
double CurRate; IICurrent learning Rate
int MaxCycles; IIMax number of training cycles
int CurCycle; IICurrent cycle value

int MaxNeighbour; IIMaximum neighbourhood
int MinNeighbour; IIMinimum Neighbourhood
int CurNeighbour; IICurrent Neighbourhood

double Weight[10][10][SOM_NUMBER_INPUTS];
int Fire[10][1O];

int WinnerX;
int WinnerY;

INTELUGENT OPTICAL SENSOR - 367

ApPENDIX L - SOFTWARE SOURCE CODE

double Error;

int MapWidth;
int MapHeight;
int NumInputs;
double Input[SOM_NUMBER_INPUTS];

int DataUnes; /lNo of lines of data in file to be read
CString FileName; /lName of file to be presented
int FilePos; /lCurrent Position of file pointer

public:

int SetDataUnes(int); /lreturn 0 for error, 1 for success
int CheckFileSizeO; /lreturns 1 if size is equal to DataUnes, else 0
int SetFileName(CString); //checks for file existance and returns 1 for success, else 0
int ReadDataUneO; //reads a row of data from file and stores it in Input[]. If the data
//is not >=0 and <=1, returns a zero
double GiveData(int); /lreturns the value of Input[int]
int GiveWidthO{return MapWidth;}
int GiveHeightO{return MapHeight;}
double GiveRateO{return CurRate;}
int GiveNeighbourO{return CurNeighbour;}
int GiveMaxNeighbourO{return MaxNeighbour;}
int GiveCycleO{return CurCycle;}
int GiveWinnerXO{return WinnerX;}
int GiveWinnerYO{return WinnerY;}
double GiveWeight(int X,int Y, int I){return Weight[X][Y][I];}
void DisplayWeightsO;
double GiveErrorO{return Error;}
int GiveFire(int x, int y){return Fire[x][y];}

void InitCurCycleO{CurCycie = a;}
int SetMaxCycles(int); //sets the value of MaxCycles, returns 1 on success, 0 on fail
int SetMinNeighbour(int);//sets the value of Min Neighbour, returns 1 on success
int SetRates(double, double); //sets the maximum and minimum learning rate values
void InitFilePosO{FilePos = a;}
void SetNumInputsO{NumInputs=SOM_NUMBER_INPUTS;}
void SetMapSizeO{MapHeight=lO;MapWidth=lO;}
void SetWeight(int x,int y, int z, double val)
{

Weight[x][y][z] = val;
}

void ealcMaxNeighbourO; //ealculates the maximum neighbourhood
void ealcCurNeighbourO; //ealculates the current neighbourhood
void ealcCurRateO; //ealculates the curretn learning rate
void RandomWeightsO; /lInitialises the network weights to random values
void IncCycleO{CurCycle++;}
void ealcWinnerO;
void ealcErrorO; //Runs network through one sequence of data for all nocles
/leall ReadDataUneO, ealcCurNeighbourO, ealcCurRateO
/lbefore applying this function.
int RunNetO; //returns 1 on success, 0 on fail
/lHandles all ealls required by ealcErrorO
/lealls ealcErrorO
int InitNet(char*,int,int,int,double,double);/leali this to initialize the network
//variables sent are : FileName, Number of Data Unes in File
/ /No of Training Cycles, Min Neighbourhood, Max Learning Rate
//min Learning Rate

};

/1### ########
/1### ########

INTELUGENT OPTICAL SENSOR - 368

ApPENDIX L - SOFTWARE SOURCE CODE

//******************** END OF CLASS BODY ***********************

int SOM: :SetDataUnes(int Number)
{

if (Number>O)
{

}

DataUnes = Number;
return(l);

else return 0;
}

//***

int SOM: :SetFileName(CString Name)
{

}

ifstream TestFile(Name,ios: :nocreate,filebuf: :shJead);
if (TestFile)
{

FileName = Name;
TestFile.closeO;
return 1;

}
else
{

}

TestFile.closeO;
return 0;

//***

int SOM: : CheckFileSizeO
{

}

char store;
int count=l;
ifstream TestFile(Fi leName,ios: : nocreate);
while(TestFi Ie)

{

}

TestFile.get(store);
/I TestFile.seekg(l,ios: :cur);
if(store=='\n')
count++;

TestFile.closeO;

FilePos = 0;
if (count== DataUnes)

retum 1;
else return 0;

//***

int SOM: : ReadDataLineO
{

int loop;

ifstream DataFile(FileName,ios:: nocreate,filebuf: :sh_read);
DataFile.seekg(FilePos,ios: : beg);

for (loop = 0; loop <Numlnputs; loop++)
{

Data File » Input[loop];
if ((Input[loop]<O) II (Input[loop]>l»

return 0;

INTEWGENT OPTICAL SENSOR - 369

DataFile.seekg(l,ios: :cur);
FilePos = DataFile.tellgO;

}
DataFile.closeO;

II ofstream CheckFile("Checkfile.txt");
II for(loop = 0; loop < Numlnput5; loop++)
II {
II CheckFile « Input[loop] « " - ";
II }
II CheckFile.closeO;

return 1;
}

ApPENDIX L - SOFTWARE SOURCE CODE

11***

double SOM: : GiveData(int Pos)
{

return (Input[Pos]);
}

11***

int SOM: :SetMaxCycles(int max)
{

if (max>O)
{

}

MaxCycies = max;
return 1;

else return 0;
}

11***

int SOM: :SetMinNeighbour(int min)
{

}

if (min>=O)
{

}

MinNeighbour = min;
retum 1;

else return 0;

11**

int SOM::SetRates(double min, double max)
{

}

int check1 = 0;
int check2 = 0;
int check3 = 0;

if (max>=min) check1 = 1;
if ((min>=O) && (min<=l)) check2 = 1;
if ((max>=O) && (max<=l)) check3 = 1;

if ((check1==1)&&(check2==1)&&(check3==1))
{

}

MinRate = min;
Max Rate = max;
return 1;

else return 0;

INTELUGENT OPTICAL SENSOR - 370

ApPENDIX L - SOFTWARE SOURCE CODE

//***

void SOM: :calcMaxNeighbourO
{

}

div_t div_result;
int MapSize= MapWidth*MapHeight;
div_result = div((int)(sqrt(MapSize», 2);
MaxNeighbour = divJesult.quot;

//***

void SOM: :calcCurNeighbourO
{

int NeighDiff;
double CycieDiff;

NeighDiff = MaxNeighbour - MinNeighbour;
CycieDiff = (MaxCycies - CurCycle);

CurNeighbour = (int)(MinNeighbour + «NeighDiff)*(pow«CycleDiff/MaxCycles),2»)));
}

//***

void SOM: : calcCurRateO
{

double RateDiff;
double CycieDiff;
RateDiff = MaxRate - MinRate;
CycieDiff = MaxCycies - CurCycle;

CurRate = MinRate + «RateDiff)*(pow«CycleDiff/MaxCycles),2)));
}

//***

void SOM:: RandomWeightsO
{

int loop1, loop2, loop3;
srand«unsigned)time(NULL»;

for (loop1=0; loop1<MapHeight; loop1++)
{

}
}

for (loop2 = 0; loop2<MapWidth; loop2++)
{

for (loop3 = 0; loop3<Numlnputs; loop3++)
{

Weight[loop2][loop1][loop3] = (float)(rand())/RAND_MAX;
}
Fire[loop2][loop1] = 0;

}

//**

void SOM: :calcWinnerO
{

int loop1;
int loop2;
int loop3;
double Dist=O;

INTELUGENT OPTICAL SENSOR - 371

}

double Result=O;
double SmaliDistance = 50; //Set it to the maximum value
WinnerX = 10;
WinnerY = 10;

IIFlrst present the line of data to the network, and calculate the node with
lithe lowest activation level

for (loop2 = 0; loop2<MapHeight;loop2++)
{

for (loop1 = 0; loop1<MapWidth; loop1++)
{

Result = 0;
Dist = 0;
for (loop3 = 0; loop3<NumInputs; loop3++)
{

}

Dist = (Weight[loop1][loop2][loop3] - Input[loop3]);
Result += pow(Dist,2);

if (Result < SrnaliDistance)
{

ApPENDIX L - SOFTWARE SOURCE CODE

WinnerX = loop1; IIstores location of winning node

}
}

}

WinnerY = loop2;
SrnaliDistance = Result;
Fire[loop1][loop2] ++;

//**

void SOM: :calcErrorO
{

int loop1;
int loop2;
int loop3;
double Dist=O;

double Result=O;
double Small Distance = 50; IISet it to the maximum value
WinnerX = 10;
WinnerY = 10;

IIFirst present the line of data to the network, and calculate the node with
lithe lowest activation level
for (loop2 = 0; loop2<MapHeight;loop2++)
{

for (loop1 = 0; loop1<MapWidth; loop1++)
{

Result = 0;
Dist = 0;
for (loop3 = 0; loop3<NumInputs; loop3++)
{

}

Dist = (Weight[loop1][loop2][loop3] - Input[loop3]);
Result += pow(Dist,2);

if (Result < SrnaliDistance)
{

WinnerX = loop1; IIstores location of winning node
WinnerY = loop2;
SrnaliDistance = Result;
Fire[loop1][loop2]++;

}

INTELUGENT OPTICAL SENSOR - 372

ApPENDIX L - SOFTWARE SOURCE CODE

}
}

//Now run the error through the network
//Checks that the neighbiurhood doesn't run over the map boundaries
//Adjust the weight values for each Input/Node

double Correc = 0;
int StartX, StartY, EndX, EndY;

if «WinnerX - CurNeighbour)<O) StartX = 0;
else StartX = WinnerX - CurNeighbour;
if «WinnerX + CurNeighbour»=MapWidth) EndX = MapWidth-1;
else EndX = WinnerX + CurNeighbour;
if «WinnerY - CurNeighbour)<O) StartY = 0;
else StartY = WinnerY - CurNeighbour;
if «WinnerY + CurNeighbour»=MapHeight) EndY = MapHeight-1;
else EndY = WinnerY + CurNeighbour;

for (loop2 = StartY; loop2 <= EndY; loop2++)
{

for (loop1 = StartX; loop1<=EndX; loop1++)
{

for (loop3 = 0; loop3<NumInputs; loop3++)
{

Dist = 0;
Correc = 0;
Dist = (Weight[loop1][loop2][loop3] - Input[loop3]);
Correc = (CurRate*Dist);
//if «Correc>=-l) && (Correc<=O»
Weight[loop1][loop2][loop3] -= Correc;
if (Weight[loop1][loop2][loop3]>1) Weight[loop1][loop2][loop3] = 1;
if (Weight[loop1][loop2][loop3]<0) Weight[loop1][loop2][loop3] = 0;
if (Weight[loop1][loop2][loop3]<0.000001) Weight[loop1][loop2][loop3] = 0;

}

}

}
}

//**

int SOM::RunNetO
{

}

int loop;
for (loop = 0; loop<DataUnes; loop++)
{

}

if(ReadDataUneO)
{

CalcCurNeighbourO;
calcCurRateO;
calcErrorO;

}
else

return 0;

FilePos = 0;
return 1;

//**

int SOM: : InitNet(char *filenarne, int numlines, int traincycles,int minneighbour,
double maxrate, double minrate)

{
CurCycie = 0;
if (!SetFileNarne(filenarne» return 0; -

INTELUGENT OPTICAL SENSOR - 373

if (!SetDataUnes(numlines» return 0;
if (!CheckFileSize()) return 0;
SetNumInputsO;
SetMapSizeO;
if (!SetRates(minrate, rnaxrate» return 0;
if (!SetMinNeighbour(minneighbour» return 0;
if (!SetMaxCycles(traincycles» return 0;
calcMaxNeighbourO;
calcCurNeighbourO;
calcCurRateO;
RandomWeightsO;
InitFi lePosO;

return 1;
}

ApPENDIX L - SOFTWARE SOURCE CODE

//***

void SOM:: DisplayWeightsO
{

double Sum = 0;
int loop1, loop2, loop3;
for (loop2 = 0; loop2< MapHeight; loop2++)
{

}
}

for (loop1 = 0; loop1<MapWidth; loop1++)
{

}

for (loop3 = 0; loop3 < NumInputs; loop3++)
{

Sum+= Weight[loop1][loop2][loop3];
}
cout «Sum«"\t";
Sum = 0;

cout «"\n";

20.2 - Results Filter

1/ ResultsFilterDlg.cpp : implementation file
1/

INTELLIGENT OPTICAL SENSOR - 374

ApPENDIX L - SOFTWARE SOURCE CODE

#include "stdafx.h"
#include "ResultsFilter.h"
#include "ResultsFilterDlg.h"
#include <fstream.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THISJILE
static char THIS_FILE[] = _FILE_;
#endif

//1//1//1//1//1//1/11/1/11 /1/ II / / /1/11 /1/ / / /1/ / / //1//1//1//1// /1/ /1/ II /1//1//
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
CAboutDl90;

II Dialog Data
II{ {AF)CDATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX};
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
II}}AFX_ VIRTUAL

II Implementation
protected:
II{ {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_MAP()

};

CAboutDlg: :CAboutD190 : CDialog(CAboutDlg: :IDD)
{
II{ {AFX_DATA_INIT(CAboutDlg)
II} }AFX_DATA_INIT

}

void CAboutDlg: : DoDataExchange(CDataExchange* pDX)
{
CDialog:: DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{ {AFX_MSG_MAP(CAboutDlg)
II No message handlers

II} }AFX_MSG_MAP
END_MESSAGE_MAPO

11111111111111111111/1/11
II CResultsFilterDlg dialog

CResultsFilterDlg: : CResultsFilterDlg(CWnd* pParent /* =NULL * /)
: CDialog(CResultsFilterDlg: :IDD, pParent)

{
II { {AFX_DATA_INIT(CResultsFilterDlg)
m_Source = _T("");
II} }AFX_DATA_INIT
II Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO->LoadIcon(IDR_MAINFRAME);

INTELLIGENT OPTICAL SENSOR - 375

}

void CResultsFilterDlg: : DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
I/{ {AFX_DATA_MAP(CResultsFilterDlg)
DDX_Text(pDX, IDC_SOURCE_EDIT, m_Source);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CResultsFilterDlg, CDialog)
II{ {AFX_MSG_MAP(CResultsFilterDlg)
ON_WM_SYSCOMMANDO
o N_WM_PAINTO
ON_WM_QUERYDRAGICONO
ON_BN_CUCKED(IDC_PROCESS_BUlTON, OnProcessButton)
ON_BN_CUCKED(IDC_SElECT_BUlTON, OnSelectButton)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

111//11 I /II I I I I I I I 111//11 I /II /II /II I 1/1111 I I I I I I I I I I I I I I I I /II /II I I I I I I I I I I I I I
II CResultsFilterDlg message handlers

BOOl CResultsFilterDlg: :OnInitDialogO
{

CDialog: :OnInitDialogO;

II Add "About..." menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu ! = NUll)
{

CString strAboutMenu;
strAboutMenu. loadString(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty())
{

ApPENDIX l - SOFTWARE SOURCE CODE

pSysMenu- >AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); 1/ Set big icon
SetIcon(m_hIcon, FALSE); II Set small icon

II TODO: Add extra initialization here

return TRUE; II return TRUE unless you set the focus to a control
}

void CResultsFilterDlg: :OnSysCommand(UINT nID, lPARAM IParam)
{

}

if ((nID & OxFFFO) == IDM_ABOUTBOX)
{

CAboutDlg dlgAbout;
dlgAbout.DoModaIO;

}
else
{

CDialog: :OnSysCommand(nID, IParam);
}

INTELUGENT OPTICAL SENSOR - 376

ApPENDIX L - SOFTWARE SOURCE CODE

1/ If you add a minimize button to your dialog, you will need the code below
1/ to draw the icon. For MFC applications using the document/view model,
I I this is automatically done for you by the framework.

void CResultsFilterDlg: :OnPaintO
{

}

if (IsIconic())
{

CPaintDC dc(this); II device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect) ;
int x = (rect.WidthO - cxIcon + 1) I 2;
int y = (rect.HeightO - cyIcon + 1) I 2;

I I Draw the icon
dc.DrawIcon(x, y, m_hIcon);

}
else
{

CDialog: :OnPaintO;
}

I I The system calls this to obtain the cursor to display while the user drags
II the minimized window.
HCURSOR CResultsFilterDlg: : OnQueryDragIconO
{

return (HCURSOR) m_hIcon;
}

void CResultsFi IterDlg: : OnProcessButtonO
{

}

ifstream InFile(m_Source,ios: :nocreate);
of stream OutFi le(,'Temp. tmp");
if(!InFile)
{

}

MessageBox("File not found !");
return;

while(InFile)
{
}
InFile.closeO;
Outfile.closeO;

void CResultsFilterDlg:: OnSelectButtonO
{

CfileDialog m_Open(FALSE,"txt","*.txt",OFN_FILEMUSTEXIST,"Results File (*.txt)I*.txtll",NULL);
if(m_Open. DoModaIO==IDOK)
{

}
}

m_Source = m_Open.GetPathNameO;
UpdateData(FALSE) ;

INTELLIGENT OPTICAL SENSOR - 377

ApPENDIX L - SOFTWARE SOURCE CODE

20.3 - Bitmap Wave Comparator

II bitmap wave comparatorDlg.cpp : implementation file
II

#include "stdafx.h"
#include "bitmap wave comparator.h"
#include "bitmap wave comparatorDlg.h"
#include <fstream.h>
#include <math.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THISJILE
static char THIS_FILE[] = _FILE_;
#endif

I I I I /II I I I I I I I I I I I I /II /II /II /II /II /II I I I I I I I I I 1/11 /II /II /II I I I I I I I I I I I I I 1/111
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
CAboutDl90;

II Dialog Data
II { {AF)CDATA(CAboutDlg)
enum { 100 = IOD_ABOUTBOX };
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II { {AFX_ VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pOX); II DDX/DDV support
II}}AFX_VIRTUAL

I I Implementation
protected:
II { {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_MAP()

};

CAboutDlg: :CAboutD190 : CDialog(CAboutDlg: :100)
{
II{ {AFX_DATA_INIT(CAboutDlg)
II} }AFX_DATA_INIT

}

void CAboutDlg:: DoDataExchange(CDataExchange* pOX)
{
CDialog:: DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{ {AFX_MSG_MAP(CAboutDlg)
I I No message handlers
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

I I I /II I I I I I I /II I I I I I I I I I I I I I /II I I I /II I /II I I I I fill I I /II I /II I I 1/11 I I I I I I I I I I I I I

INTELUGENT OPTICAL SENSOR - 378

ApPENDIX L - SOFTWARE SOURCE CODE

II CBitmapwavecomparatorDlg dialog

CBitmapwavecomparatorDlg: :CBitmapwavecomparatorDlg(CWnd* pParent /*=NULL *!)
: CDialog(CBitmapwavecomparatorDlg: :IDD, pParent)

{
II{ {AF)CDATA_INIT(CBitmapwavecomparatorDlg)
m_DiffCheck = FALSE;
m_OveriayCheck = FALSE;
m_AutoCheck = FALSE;
m_Image = FALSE;
II} }AFX_DATA_INIT
II Note that Loadlcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetAppO->Loadlcon(IDR_MAlNFRAME);

}

void CBitmapwavecomparatorDlg:: DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II { {AFX_DATA_MAP(CBitmapwavecomparatorDlg)
DDX_Check(pDX, IDC_DIFF _CHECK, m_DiffCheck);
DDX_Check(pDX, IDC_OVERLAY_CHECK, m_OveriayCheck);
DDX_Check(pDX, IDC_AUTO_CHECK, m_AutoCheck);
DDX_Check(pDX, IDC_IMAGE_CHECK, m_Image);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CBitmapwavecomparatorDlg, CDialog)
II { {AFX_MSG_MAP(CBitmapwavecomparatorDlg)
ON_ WM_SYSCOMMANDO
ON_WM_PAINTO
ON_ WM_QUERYDRAGICONO
ON_BN_CUCKED(IDC_B1ANALYSE_BUTTON, OnBlanalyseButton)
ON_BN_CUCKED(IDC_B2ANALYSE_BUTTON, OnB2analyseButton)
ON_BN_CUCKED(IDC_BITMAP1_BUTTON, OnBitmaplButton)
ON_BN_CUCKED(IDC_BITMAP2_BUTTON, OnBitmap2Button)
ON_BN_CUCKED(IDC_QUIT _BUTTON, OnQuitButton)
ON_BN_CUCKED(IDC_DIFF _CHECK, OnDiffCheck)
ON_BN_CUCKED(IDC_OVERLAY_CHECK,OnOverlayCheck)
ON_BN_CUCKED(IDC~UTO_CHECK, OnAutoCheck)
ON_BN_CUCKED(IDC_IMAGE_CHECK, OnlmageCheck)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

1111/1111/11/11 II II II II II II 11/ II 11/ II 11/ 11/11 II II II II II II II II II 11/ II II II II 11/
II CBitmapwavecomparatorDlg message handlers

BOOL CBitmapwavecomparatorDlg:: OnlnitDialogO
{
CDialog: : OnlnitDialogO;

II Add "About..." menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu ! = NULL)
{
CString strAboutMenu;
strAboutMenu. LoadString(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty())
{

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

INTELUGENT OPTICAL SENSOR - 379

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog

ApPENDIX L - SOFTWARE SOURCE CODE

SetIcon(m_hlcon, TRUE); II Set big icon
SetIcon(m_hlcon, FALSE); II Set small icon

II TODO: Add extra initialization here

return TRUE; II return TRUE unless you set the focus to a control
}

void CBitrnapwavecomparatorDlg: :OnSysCommand(UINT nID, LPARAM IParam)
{
if «nID & OxFFFO) == IDM_ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout.DoModal0 ;

}
else
{
CDialog::OnSysComrnand(nID,IParam);

}
}

I I If you add a minimize button to your dialog, you will need the code below
II to draw the icon. For MFC applications using the document/view model,
I I this is automatically done for you by the framework.

void CBitrnapwavecomparatorDlg: :OnPaintO
{
if (IsIconic())
{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetCI ientRect(&rect);
int x = (rect.WidthO - cxlcon + 1) I 2;
int y = (rect.HeightO - cylcon + 1) I 2;

I I Draw the icon
dc.Drawlcon(x, y, m_hlcon);

}
else
{
CPaintDC dc(this);
int loop, loop2;
for(loop = 0; loop<320; loop++)
{

}

for(loop2 = 0; loop2<240; loop2++)
{
int Gray = Bitmap1[loop][loop2];
dc.SetPixel(loop+13, loop2+13, RGB(Gray, Gray, Gray»;

}

for(loop = 0; loop<320; loop++)
{

}

for(loop2 = 0; loop2<240; loop2++)
{
int Gray = Bitmap2[loop][loop2];
dc.SetPixel(loop+350, loop2+13, RGB(Gray, Gray, Gray»;

}

INTELUGENT OPTICAL SENSOR - 380

CPen RedPen, WhitePen,GreenPen,YeliowPen;
RedPen.CreatePen(PS_SOUD,1,RGB(255,0,0));
WhitePen.CreatePen(PS_SOUD,1,RGB(255,255,255));
Green Pen . CreatePen(PS_SOUD, 1 ,RGB(0,255 ,0));
YeliowPen. CreatePen(PS_SOUD, 1 ,RGB(255,255 ,0));
CPen* pOriginalPen;

de.MoveTo(15,480);
de.UneTo(333,480);
de.MoveTo(352,480);
de.UneTo(669,480);

pOriginalPen = de.SelectObject(&RedPen);
de. MoveTo(13,480);
for(loop = 0; loop<320; loop++)
{

de. UneTo(13+loop, 480-Sum[0][loop]/240);
}

pOriginalPen = de.SelectObject(&WhitePen);
de. MoveTo(350,480);
for(loop = 0; loop<320; loop++)
{

de.UneTo(350+loop, 480-Sum[1][loop]/240);
}
int Diff;
int Mea n Level = (int)(sqrt(pow(Mean1-Mean2,2)));
if(m_DiffCheck)
{

pOriginalPen = de.SelectObject(&GreenPen);
de. MoveTo(350,480);
for(loop = 0; loop<320; loop++)
{
Diff = (int)(sqrt(pow(Sum[0][loop]/240-Sum[1][loop]/240,2)));

Ilif (Diff<MeanLevel) Diff = MeanLevel + Diff;
IIDiff = (int)(Diff- sqrt(pow(Mean1 - Mean2,2)));
de. UneTo(350+loop, 480-Diff);1 IRGB(255,0,Q));

}
}

if(m_ OverlayCheck)
{

pOriginalPen = de.SelectObject(&WhitePen);
de. MoveTo(13,480);
for(loop = 0; loop<320; loop++)
{
de.UneTo(13+loop, 480-Sum[1][loop]/240);

}
if(m_DiffCheck)
{

pOriginalPen = de.SelectObject(&GreenPen);
de. MoveTo(13,480);
for(loop = 0; loop<320; loop++)
{
Diff = (int)(sqrt(pow(Sum[0][loop]/240-Sum[1][loop]/240,2)));

II Diff = abs(Diff- sqrt(pow(Mean1/240 - Mean2/240,2)));
II if (Diff<MeanLevel) Diff = MeanLevel + Diff;
de.UneTo(13+loop,480-Diff);IIRGB(255,0,0));

}
}

}

if(m_Image)
{

pOriginalPen = de.SelectObject(&YeliowPen);
int Summed=O;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 381

}

int Diff;
int Max=O;
int MaxRef = 0;

for(loop = 0; loop<320; loop++)
{

Diff = (int)(sqrt(pow(Sum[O][loop]/240-Sum[l][loop]/240,2)));
Summed+= Diff;
if (Diff>Max)
{

}

Max = Diff;
MaxRef = loop;

}

II if((MaxRef<O) I I (MaxRef>320)) MaxRef = 0;
Summed = Summed/320;

int Xmin= 0;
int Xmax = 0;
loop = MaxRef;
int Gap = 0;
do
{

Diff = (int)(sqrt(pow(Sum[O] [loop]/240-Sum[1][Ioop]/240,2)));
if(Diff<MeanLevel) Gap++;
loop--;

}

if(loop==O) Gap = 4;
}
while (Gap<4);
Xmin = loop+4;

loop = MaxRef;
Gap =0;
do
{

Diff = (int)(sqrt(pow(Sum[O][loop]/240-Sum[l][loop]/240,2)));
//if(Diff<Summed) Gap++;
if(Diff<MeanLevel) Gap++;
loop++;
if(loop==320) Gap = 4;

}
while (Gap<4);
Xmax = loop-4;

dc.MoveTo(350 + Xmin,13);
dc.LineTo(350 + Xmin,253);
dc.MoveTo(350 + Xmax,13);
dc.LineTo(350 + Xmax,253);
dc.MoveTo(350+Xmin,270);
dc.LineTo(350+Xmin, 490);
dc. MoveTo(350+ Xmax,270);
dc. LineTo(350+Xmax,490);

CDialog: :OnPaintO;
}

II The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CBitmapwavecomparatorDlg: :OnQueryDragIconO
{
return (HCURSOR) m_hIcon;

}

void CBitmapwavecomparatorDlg:: OnBlanalyseButtonO
{

ApPENDIX L - SOFTWARE SOURCE CODE

INTEWGENT OPTICAL SENSOR - 382

II TODO: Add your control notification handler code here
int loop, loop2;
/lZero all values
for(loop = 0; loop<320; loop++)
{
Sum[O][loop] = 0;

}
Meanl = 0;
for(loop = 0; loop<320; loop++)
{
for (loop2 = 0; loop2<240; loop2++)
{

IIAdd current pixel value to sum
Sum[O][loop] += Bitmapl[loop][loop2];

}
Meanl+=Sum[0][loop]/240;

}
Meanl = Mean1/320;
InvalidateRect(CRect(13,250,333,500»;

}

void CBitmapwavecomparatorDlg: :OnB2analyseButtonO
{
II TODO: Add your control notification handler code here
int loop, loop2;
for(loop = 0; loop<320; loop++)
{
Sum[l][loop] = 0;

}
Mean2 = 0;
for(loop = 0; loop<320; loop++)
{
for (loop2 = 0; loop2<240; loop2++)
{

Sum[l][loop] += Bitmap2[loop][loop2];
}
Mean2+=Sum[1][loop]/240;

}
Mean2 = Mean2/320;
InvalidateRect(CRect(350,250,670,500»;
if(m_OverlayCheck) InvalidateRect(CRect(13,250,333,500»;

}

void CBitmapwavecomparatorDlg:: OnBitmaplButtonO
{
II TODO: Add your control notification handler code here
CFileDialog OpenFile(TRUE,".bmp","*.bmp");
if(OpenFile.DoModaIO==IDOK)
{
CString Temp = OpenFile.GetPathNarneO;
OpenBitmap(O,Temp);
int loop;

for (loop = 0; loop<320; loop++)
{

Sum[O][loop] = 0;
}
InvalidateRect(CRect(13,13,363,253»;
if(m_AutoCheck) OnBlanalyseButtonO;

}
}

void CBitmapwavecomparatorDlg: :OnBitmap2ButtonO
{
II TODO: Add your control notification handler code here
CFileDialog OpenFile(TRUE,".bmp","*.bmp");
if(OpenFile.DoModaIO==IDOK)
{

ApPENDIX L - SOFTWARE SOURCE CODE

INTEWGENT OPTICAL SENSOR - 383

}

CString Temp = OpenFile.GetPathNameO;
OpenBitmap(l,Temp);
int loop;
for(loop = 0; loop<320; loop++)
{

Sum[l][loop] = 0;
}
InvalidateRect(CRect(350, 13,670,253»;
if(m_AutoCheck) OnB2analyseButtonO;

}

DWORD ReadLong(fstream InFile)
{

BYTE a1,a2,a3,a4;
DWORD RetumVal;

InFile »a1;
InFile » a2;
InFile » a3;
InFile »a4;

ApPENDIX L - SOFTWARE SOURCE CODE

ReturnVaI =(DWORD)(a1 + a2*256 + a3*pow(256,2) + a4*pow(256,3));

return ReturnVal;
}

WORD ReadShort(fstream InFile)
{

BYTE a1,a2;
WORD ReturnVal;

InFile » a1;
InFile » a2;

ReturnVaI = (WORD)(a1 + a2*256);

return ReturnVal;
}

void CBitmapwavecomparatorDlg: :OnQuitButtonO
{
1/ TODO: Add your control notification handler code here
OnOKO;

}

void CBitmapwavecomparatorDlg: :OpenBitmap(BOOL Source, CString FileName)
{
II TODO: Add your command handler code here
BeginWaitCursorO;

fstream InFile;
InFile.open(FileName,ios:: binaryjios:: in);

WORD Header;
Header = ReadShort(InFile);
if(Header!=«'M'«8) + 'B')) IIExpect to read BM as first two bytes
{
EndWaitCursorO;
return;

}

INTEWGENT OPTICAL SENSOR - 384

DWORD FileSize = ReadLong(InFile);
WORD Res1 = ReadShort(InFile);
WORD Res2 = ReadShort(InFile);
DWORD ImageOffset = ReadLong(InFile);
DWORD HeaderSize = ReadLong(InFile);
DWORD Width = ReadLong(InFile);
DWORD Height = ReadLong(InFile);
if (ReadShort(InFile) !=1)
{
EndWaitCursorO;
return;

}
WORD Col Depth = ReadShort(InFile);
DWORD Compression = ReadLong(InFile);
DWORD ImageSize = ReadLong(InFile);
DWORD XPelsMeter = ReadLong(InFile);
DWORD YPelsMeter = ReadLong(InFile);
DWORD Colours = ReadLong(InFile);
DWORD ImpColours = ReadLong(InFile);

if(Compression!=O) IINot designed for compressed bitmaps
{
EndWaitCursorO;
return;

}
if(Width! =320)
{
EndWaitCursorO;
return;

}
if(Height!=240) //only for a 320x240 bitmap!
{
EndWaitcursorO;
return;

}
if(Col Depth ! =24) //only for 24bit bitmaps
{
EndWaitCursorO;
return;

}

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

ApPENDIX L - SOFTWARE SOURCE CODE

InFile.seekg(ImageOffset,ios: : beg); //set file pointer to start of image data

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)
{

PixelB = InFile.getO;
PixelG = InFile.getO;
PixelR = InFile.getO;

if(Source) Bitmap2[loop2][240-loop-1] = (unsigned _int8)«PixeIR)*0.3 + (PixeIG)*0.59 + (PixeIR)
*0.11);

else Bitmap1[loop2][240-loop-1] = (unsigned _int8)«PixeIR)*0.3 + (PixeIG)*0.59 + (PixeIR)*O.l1);

}
}
InFile.closeO;

EndWaitCursorO;
}

void CBitmapwavecomparatorDlg:: OnDiffCheckO

INTELLIGENT OPTICAL SENSOR - 385

{
II TODO: Add your control notification handler code here
UpdateData(TRUE);
InvalidateRect(CRect(3S0,2S0,670,SOO));
InvalidateRect(CRect(13,2S0,333,SOO));

}

void CBitmapwavecomparatorDlg:: OnOverlayCheckO
{
II TODO: Add your control notification handler code here
UpdateData(TRUE) ;
InvalidateRect(CRect(13,2S0,333,SOO));

}

void CBitmapwavecomparatorDlg: :OnAutoCheckO
{
II TODO: Add your control notification handler code here
UpdateData(TRUE) ;

}

void CBitmapwavecomparatorDlg:: OnImageCheckO
{
II TODO: Add your control notification handler code here
UpdateData(TRUE) ;
InvalidateRect(CRect(3S0,13,670,2S3));
InvalidateRect(CRect(3S0,260,670,SOO));

}

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 386

/ / bitmap wave comparatorDlg.h : header file
1/

#if !defined

ApPENDIX l - SOFTWARE SOURCE CODE

(AFX_BITMAPWAVECOMPARATORDlG_H __ CD5D3756_275C_llD4_93BE_0060084FB4CD __ INClUDED_)
#define
AFX_BITMAPWAVECOMPARATORDlG_H __ CD5D3756_275C_llD4_93BE_0060OB4F84CD __ INClUDED_

#if _MSC_VER >= 1000
#pragma once
#endif 1/ _MSCVER >= 1000

/II 1/ /II /II 1/ /II 1//11 1/ 1/ /II 1//11 1/ 1/ 1/ /II /II 1/ 1/1//11 1//11 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ CBitmapwavecomparatorDlg dialog

class CBitmapwavecomparatorDlg : public CDialog
{
1/ Construction
public:
int Mean2;
int Meanl;
int Sum[2)[320);
unsigned _intB Bitmapl[320)[240);
unsigned _intB Bitmap2[320][240);
void OpenBitrnap(BOOl,CString);
CBitmapwavecomparatorDlg(CWnd* pParent = NUll);

1/ Dialog Data
1/ { {AFX_DATA(CBitmapwavecomparatorDlg)
enum {1OD = 1OD_BITMAPWAVECOMPARATOR_DIAlOG};
BOOl m_DiffCheck;
BOOl m_OveriayCheck;
BOOl m_AutoCheck;
BOOl m_Image;
I/} }AFX_DATA

1/ ClassWizard generated virtual function overrides
1/ { {AFX_ VIRTUAl(CBitmapwavecomparatorDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
I/} }AFX_VIRTUAl

1/ standard constructor

1/ DDX/DDV support

INTELLIGENT OPTICAL SENSOR - 3B7

II Implementation
protected:
HICON m_hIcon;

I I Generated message map functions
II { {AF)CMSG(CBitmapwavecomparatorDlg)
virtual BOOlOnInitDialogO;
afx_msg void OnSysCommand(UINT nID, lPARAM IParam);
afx_msg void OnPaintO;
afx_msg HCURSOR OnQueryDragIconO;
afx_msg void OnBlanalyseButtonO;
afx_msg void OnB2analyseButtonO;
afx_msg void OnBitmaplButtonO;
afx_msg void OnBitmap2ButtonO;
afx_msg void OnQuitButtonO;
afx_msg void OnDiffCheckO;
afx_msg void OnOverlayCheckO;
afx_msg void OnAutoCheckO;
afx_msg void OnImageCheckO;
II} }Af)CMSG
DECLARE_MESSAGE_MAPO

};

II{ {Af)UNSERT_lOCATION}}

ApPENDIX l - SOFTWARE SOURCE CODE

II Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif II! defined
(AFX_BITMAPWAVECOMPARATORDlG_H __ CD5D3756_275C_llD4_93BE_OO60084F84CD __ INClUDED_)

INTELLIGENT OPTICAL SENSOR - 388

ApPENDIX L SOFTWARE SOURCE CODE

20.4 - Neural Demo

I I Neural Demo 2Dlg.cpp : implementation file
II

#include "stdafx.h"
#include "Neural Demo 2.h"
#include "Neural Demo 2Dlg.h"
#include <fstream.h>
#include <math.h>
#include "m_Dialog1.h"
#include "HELPDIALOG.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FlLE[] = _FlLE_;
#endif

/III I I /II I I I /II I I I I I II I I II I I I I I I I I /II /II I I I I I I /I II /II I I I I I II I I II I I II I I I I I I I I I
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
CAboutD190;

1/ Dialog Data
II{ {AF)CDATA(CAboutDlg)
enum { IOD = IOD_ABOUTBOX};
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AF)CVIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
II} }AFX_VIRTUAL

I I Implementation
protected:
II{ {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_MAPO

};

CAboutDlg: :CAboutD190 : CDialog(CAboutDlg: :IOD)
{
II{ {AF)CDATA_INIT(CAboutDlg)
II} }AFX_DATA_INIT

}

void CAboutDlg: : DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{ {AFX_MSG_MAP(CAboutDlg)
II No message handlers
II} }AFX_MSG_MAP

EN D_MESSAGE_MAPO

I I I I I I 1// I 1// I I 1// 1// I I I I I 111// 1// 1//111 11// If! I I I I I 11// 111// I I I I I I I 1// I I I I I I

INTELUGENT OPTICAL SENSOR - 389

ApPENDIX L - SOFTWARE SOURCE CODE

II CNeuraiDemo2DIg dialog

CNeuralDemo2Dlg: :CNeuraIDemo2Dlg(CWnd* pParent I*=NULL *f)
: CDialog(CNeuraIDemo2Dlg: :IDD, pParent)

{
II{ {AF)CDATA_INIT(CNeuraIDemo2Dlg)
m_Objects = 0;
II} }AF)CDATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO->LoadIcon(IDR_MAINFRAME);

}

void CNeuraIDemo2Dlg:: DoDataExchange(CDataExchange* pDX)
{
CDialog:: DoDataExchange(pDX);
//{ {AFX_DATA_MAP(CNeuraIDemo2Dlg)
DDX3ext(pDX, IDC_OBJECTS_EDIT, m_Objects);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CNeuraIDemo2Dlg, CDialog)
II{ {AFX_MSG_MAP(CNeuraIDemo2Dlg)
ON_WM_SYSCOMMANDO
ON_WM_PAINTO
ON_ WM_QUERYDRAGICONO
ON_COMMAND(ID_MENU_ABOUT, OnMenuAbout)
ON_COMMAND(lD_MENU_BOUNDARIES, OnMenuBoundaries)
ON_COMMAND(ID_MENU_EXIT, OnMenuExit)
ON_COMMAND(ID_MENU_FILTER, On Menu Filter)
ON_COMMAND(ID_MENU_HELP, OnMenuHelp)
ON_COMMAND(ID_MENU_NETWORK, On Menu Network)
ON_COMMAND(ID_MENU_OPEN, OnMenuOpen)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

1111111111///1///1///11////////////1111111111111///1111///111111///1//////111
II CNeuraiDemo2DIg message handlers

11***

int Stored[320][240];
CString Title;
int sharp[80][60];
int counter;
int Pas = 4;
int Drawl=O,Draw2=0;
float NetOut=O;
float NetInput[S];

struct Object
{
int Xmin, Xmax;
int Xmini[60], Xmaxi[60];
int Ymin, Ymax;

};

Object Box[lOO];

BOOL CNeuralDemo2Dlg: :OnInitDialogO
{
CDialog: :OnInitDialogO;

INTELLIGENT OPTICAL SENSOR - 390

ApPENDIX L - SOFTWARE SOURCE CODE

II Add "About..." menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu ! = NULL)
{
CString strAboutMenu;
strAboutMenu. LoadString(IDS_ABOUTBOX);
if (! strAboutMenu. IsEmpty())
{

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

/I Set the icon for this dialog. The framework does this automatically
/I when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE);
SetIcon(m_hIcon, FALSE);

I I Set big icon
I I Set small icon

/I TODO: Add extra initialization here

return TRUE; II return TRUE unless you set the focus to a control
}

void CNeuralDemo2Dlg: :OnSysCommand(UINT nID, LPARAM IParam)
{
if «nID & OxFFFO) == IDM_ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout.DoModaIO;

}
else
{

}

CDialog: :OnSysCommand(nID, IParam);
}

II If you add a minimize button to your dialog, you will need the code below
II to draw the icon. For MFC applications using the document/view model,
I I this is automatically done for you by the framework.

void CNeuralDemo2Dlg: :OnPaintO
{
if (IsIconic())
{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect) ;
int x = (rect.WidthO - cxIcon + 1) I 2;
int y = (rect.HeightO - cyIcon + 1) I 2;

I I Draw the icon
dc.DrawIcon(x, y, m_hIcon);

}
else
{
CPaintDC dc(this);
int loop, loop2;

INTELLIGENT OPTICAL SENSOR - 391

if (Drawl)
{

for(loop = 0; loop<320; loop++)
{
for (loop2 = 0; loop2<240; loop2++)
{
if(Stored[loop][loop2])

SetPixel(dc,loop+12,loop2+18,RGB(O,lOO,200));
else SetPixel(dc,loop+12,loop2+18,RGB(O,O,O));

}
}

}
if (Draw2)
{

for (loop = 1; loop<=counter; loop++)
{

CPen BoxPen;
BoxPen.CreatePen(PS_SOUD,l,RGB(255,255,O));
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&BoxPen);
MoveToEx(dc,4*Box[loop].Xmin+ 12, 4*Box[loop] .Ymin+ 18,NULL);
LineTo(dc, 4*Box[loop].Xmax+16, 4*Box[loop].Ymin+18);
LineTo(dc, 4*Box[loop].Xmax+16, 4*Box[loop].Ymax+22);
LineTo(dc, 4*Box[loop].Xmin+12, 4*Box[loop].Ymax+22);
LineTo(dc, 4*Box[loop].Xmin+12, 4*Box[loop].Ymin+18);

}
}

CDialog: :OnPaintO;
}

}

liThe system calls this to obtain the cursor to display while the user drags
I I the minimized window.
HCURSOR CNeuralDemo2Dlg: :OnQueryDraglconO
{
return (HCURSOR) m_hlcon;

}

void CNeuralDemo2Dlg: :OnMenuOpenO
{
II TODO: Add your command handler code here
char FileName[500];
char FileTitle[lOO];
int count = 0;
int loop, loop2;

for (loop=O; loop < 320; loop++)
{
for (loop2 = 0; loop2 < 240 ; loop2++)
{

}
}

Stored[loop][loop2]=0;

Drawl = 0;
Draw2 = 0;
UpdateData(FALSE);
InvalidateRect(CRect(12,18,332,258), FALSE);

OPENFILENAME ofn;
ofn.IStructSize = sizeof(OPENFILENAME);

ofn.hwndOwner = m_hWnd;;
ofn.hlnstance = NULL;

ofn.lpstrFilter = TEXT("VosDerno files *:vos\O*.vos\O\O");

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 392

ofn.lpstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterIndex = 1;
ofn.lpstrFile = FileName;
ofn.nMaxFile = 500;
ofn.lpstrFileTitle = File Title;
ofn.nMaxFileTitle = 99;
ofn.lpstrInitialDir = NULL;
ofn.lpstrTitle = "Open VOS file";
ofn.Flags = OFN_FILEMUSTEXIST;
ofn.lpstrDefExt = "BMP";
ofn.ICustData = NULL;
ofn.lpfnHook = NULL;
ofn.lpTemplateName = NULL;

FileName(O] = '\0';

if (GetOpenFileName(&ofn»
{

}

ifstream file_in(FileName);
int value1;
int value2;

do
{

}

file_in » value1;
file_in » value2;

Stored(value1](value2] = 1;
count++;

while (file_in.eofO == 0);
file_in .closeO;

for (loop = 0; loop <320; loop++)
{

for (loop2 = 0; loop2 <240; loop2++)
{
if (Stored(loop](loop2] != 1)
{
Stored(loop](loop2] = 0;

}
}

}
Drawl = 1;
Pes = 6 + (int)(count/5000);
InvalidateRect(CRect(12,18,332,258), FALSE);

}

void CNeuralDemo2Dlg: :OnMenuFilterO
{
II TODO: Add your command handler code here
m_Dialog1 m_dlg;
m_dlg.m_Value = Pes;
m_dlg.DoModaIO;
Pos = m_dlg.m_Value;

}

ApPENDIX L - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 393

void CNeuralDemo2Dlg: :OnMenuBoundariesO
{
II TODO: Add your command handler code here
int loop, loop2,loop3,loop4;
int count = 0;
int Mem = 0;
int gap = 0, Set = 0;
//OnClearButtonO;

for (loop2=0; loop2<60; loop2++)
{
for (loop=O; loop<80; loop++)
{

sharp[loop][loop2] = 0;
count = 0;
for (loop3=0; loop3<4; loop3++)
{
for (loop4 = 0; loop4<4; loop4++)
{
if (Stored[4*loop+loop3][4*loop2+loop4]== 1)

count++;
}

}
if (count >Pos)
{
sharp[loop][loop2] = 1;

}
}

}
counter = 0;

for (loop = 0; loop<100; loop++)
{
Box[loop].Xmin = 80;
Box[loop].Ymin = 60;
Box[loop].Xmax = 0;
Box[loop].Ymax = 0;

}

//Check every line in the image
loop=O;
for(loop2=0; loop2<60; loop2++)
{
Set = 0;
Mem = 0;
gap = 0;

for (loop=O; loop<80; loop++)
{

if (sharp[loop][loop2]==1)
{
counter++;
Box[counter].Xmin = loop;
Box[counter].Ymin = loop2;
Box[counter].Ymax = loop2;
Box[counter].Xmax = loop;
Box[counter].Xmini[loop2] = loop;
Box[counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)
{
if((loop> =(Box[loop3] .Xmi n-2))&&(Ioop< =(Box[loop3] .Xmax+ 2))&&

«loop2-Box[loop3]. Ymax) < 3)&&(loop3! =cou nter) &&
(loop2>0))

{
Set = 1;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 394

Mem = loop3;
}

}
IIEnd of line check

while((gap<3)&&(loop<SO»
{
loop++;
if(sharp[loop)[loop2)==1)
{

gap = 0;
Box[counter).Xmax = loop;
Box[counter).Xmaxi[loop2) = loop;

IIPrevious line check for position matching
for(loop3 = 0; loop3<counter; loop3++)
{
if((loop> = Box[loop3) .Xmin-2)&&(loop< = Box[loop3) .Xmax+ 2)
&&(loop2-Box[loop3). Ymax <3)&&(loop3! =counter)&&(counter>O»

{

}

Set = 1;
Mem = loop3;

}

I lEnd of line check
}
else gap++;

}
gap = 0;

IIMatching correction code, updates matched object
I land deleted new object created
if (Set==l)
{

ApPENDIX L - SOFTWARE SOURCE CODE

if(Box[counter).Xmin<Box[Mem).Xmin) Box[Mem).Xmin = Box[counter).Xmin;
if(Box[counter).Xmax>Box[Mem).Xmax) Box[Mem).Xmax = Box[counter).Xmax;
Box[Mem).Ymax = loop2;

}

Box[counter).Xmin = SO;
Box[counter).Xmax = 0;
Box[counter).Ymin = 60;
Box[counter).Ymax = 0;
Box[Mem).Xmaxi[loop2) = Box[counter).Xmaxi[loop2);
Box[Mem).Xmini[loop2) = Box[counter).Xmini[loop2);
counter--;
Set = 0;
Mem = 0;

}

}
loop=O;

}
llBox size filtering code, checking for minimum target size

int IsZero = 0;

for (loop = 1; loop<=counter; loop++)
{
if (IsZero==l)
{

loop--;
IsZero = 0;

}
int TArea = ((Box[loop).Xmax - Box[loop).Xmin)*(Box[loop).Ymax-Box[loop].Ymin»;
if (TArea <74)
{

for (int loop1 = loop; loop1<=counter; loop1++)
{
Box[loop1] = Box[loop1+1];

INTELLIGENT OPTICAL SENSOR - 395

}
}

if (loop==1) IsZero = 1;
else loop--;

}
counter--;

m_Objects = counter;

}

UpdateData(FALSE) ;
Draw2 = 1;
InvalidateRect(CRect(12,18,333,259), FALSE);

void CNeuralDemo2Dlg: :OnMenuNetworkO
{
// TODO: Add your command handler code here

int value1;
int value2;
int Xmax, Xmin, Ymax, Ymin;
int Xtemp=O, Ytemp=O, m_Area=O, m_X=O, m_Y=O;
int loop, loop2, loop3, loop4;

int Width=O, Height=O,Weighting=O,BoxArea=O;

ApPENDIX L - SOFTWARE SOURCE CODE

int SegWidth=O, SegHeight=O,SegSet[4][6],SegAcc=O,SegArea=O, x_max=O, y-max=O;
int TempWidth=O, TempHeight=O;
int CountX=O, CountY=O;

//************* NECESSARY VARIABLE INmALISATIONS FOR BATCH PROCESS ********

value1 = 0;
value2 = 0;

Xtemp=O;
Ytemp=O;
m_Area=O;
m_X=O;
m_Y=O;

//************ START OF CALCULATIONS ***************************************

for (loop = 1; loop <= counter; loop++)
{
//******** CALCULATE BOX WIDTH< HEIGHT & AREA *********

Width = 0;
Height = 0;
Weighting = 0;
BoxArea = 0;

Xmin = 4*Box[loop].Xmin;
Xmax = 4*Box[loop].Xmax;
Ymin = 4*Box[loop].Ymin;
Ymax = 4*Box[loop].Ymax;

Width = Xmax - Xmin;
Height = Ymax - Ymin;
BoxArea = Width * Height;

//***************** C of G calculation ************
//checks if both the Stored value and the sharp value is set
//then checks that the pixel is within the Xmin - Xmax range for the
//particular line and object.

INTELUGENT OPTICAL SENSOR - 396

int Distl=O, Dist2=O, xaCC=O, Yacc=O, loopl, TotArea=O, Yval=l;

for (Ioopl= Xmin; loopl<=Xmax+4; loopl++)
{

for (loop2 = Ymin; loop2 <=Ymax+4; loop2++)
{

if «(Stored[loopl][loop2]==1) && (sharp[loopl/4][loop2/4]==1»

ApPENDIX L - SOFTWARE SOURCE CODE

&& ((Ioop1>= 4* Box[loop].Xmini[loop2/4]) && (Ioopl <= (4+4*Box[loop].Xmaxi[loop2/4]))))
{

}

TotArea++;
xacc += Distl;
Yacc += Dist2;

}
Distl++;
Yval++;

}
Distl = 0;
Yval = 1;
Dist2++;

div_t Xpos, Ypos;
Xpos = div(Yacc, TotArea);
Ypos = div(xacc, TotArea);

if (Xpos. rem> = (TotArea/2)) Xpos.quot++;
if (Ypos. rem> = (TotArea/2)) Ypos.quot++;

m_X = Xpos.quot + Xmin;
m_Y = Ypos.quot + Ymin;

//*************** END OF C of G CALCULATION ************

//*************** SEGMENT AREA CALC ********************
//The set rectangle will be split up into an 3*4 array of equal
//segrnents, on which % set pixels cales are carried out.

SegWidth=O;
SegHeight=O;
SegAcc=O;
SegArea=O;
x_max=O;
Lmax=O;
TempWidth=O;
TempHeight=O;

div_t h,w;
h = div(Width, 4);
w = div(Height, 6);
SegWidth = h.quot;
SegHeight = w.quot;

SegArea = SegWidth * SegHeight;

for (loop1 = 0; loopl <4; loopl++)
{ .

for (loop2 = 0; loop2<6; loop2++)
{
x_max = (Ioopl + 1) * SegWidth;
Lmax = (loop2 + 1) * SegHeight;
if (loopl ==3)
{
x_max = Width;
TempWidth = Width - (3 * SegWidth);

INTEWGENT OPTICAL SENSOR - 397

}
else TempWidth = SegWidth;
if (loop2 ==5)
{
Lmax = Height;
TempHeight = Height - (5 * SegHeight);
}
else TempHeight = SegHeight;
SegAcc = 0;
for (loop3=(loop1 *SegWidth); loop3<x_max;loop3++)
{
for (loop4=(loop2*SegHeight); loop4<y _max; loop4++)
{

if «Stored[Xmin+loop3)[Ymin+loop4)==1)
&& (sharp[(Xmin +loop3)/4)[(Ymin + loop4)/4)==1))
1/&& (loop1>= 4*Box[loop).Xmini[loop))
1/&& (loop1 <= 4*Box[loop).Xmaxi[loop)))

{
SegAcc++;

}
}

}
SegSet[loop1)[loop2) = 0;

ApPENDIX L - SOFTWARE SOURCE CODE

SegSet[loop1][loop2)=(int)«100 * SegAcc)/(TempWidth * TempHeight));

}

SegAcc=O;
}

1/**************** END OF SEGMENT AREA CALCULATION ****************

m_Area = (TotArea*100/BoxArea);
for (loop4 = 0; loop4<5; loop4++)
{

NetInput[loop4) = 0;
}

NetInput[O) = (f1oat)(pow(((Ymax-Ymin)*(-0.00880381)+2.86238),2)*0.351784 - 1.343);
NetInput[l) = (f1oat)(pow«m_Area*(-0.0377996)+3.71819),2)*0.224719 - 1.0225);
NetInput[2) = (f1oat)(tanh«SegArea*0.00110947)+1.52922)*28.2527 - 26.875);
NetInput[3) = (f1oat)(log«SegSet[1)[5)*0.156775)+3.46737)*1.l7052 - 2.456);
NetInput[4) = (f1oat)(log«SegSet[2][5)*0.156775)+3.15382)*1.l4088 - 2.311);

for (loop4 = 0; loop4<5; loop4++)
{

NetInput[loop4) = (f1oat)«NetInput[loop4)+1)*.5);
}

I/NETWORK CODE HERE
float Xsum7 = 0;
float Xout7 = 0;
NetOut = O·
/* Generati~g code for PE 0 in layer <Hidden1> (3) */

Xsum7 = (float)(9.4248371 + (-9.7122078) * NetInput[O) + (-0.82052672) * NetInput[l) +

(-4.1746411) * NetInput[2) + (-1.6331787) * NetInput[3) + (-2.0222914) * NetInput[4));
/* Generating code for PE 0 in layer <Hidden1> (3) */

Xout7 = (float)(tanh(Xsum7));

NetOut = (float)«0.15872838) + (0.04405418) * NetInput[O) + (-0.12671886) * NetInput[l) +
(-0.21494821) * NetInput[2) + (-0.029009042) * NetInput[3) + (-0.015902856) * NetInput[4) +

(0.91813892) * Xout7);

INTELUGENT OPTICAL SENSOR - 398

}

/* De-scale and write output from network * /
NetOut = (float)(NetOut * (0.625) + (0.5));

/lEND OF NETWORK CODE

int Temp = (int)(lOO*NetOut);
if (Temp> 100) Temp = 100;
if (Temp<O) Temp = 0;

char Text[5];
/ /Text[] = "";
itoa(Temp,Text,lO);
CClientDC dc(this);
dc.DrawText(Text,CRect(m_X,m_Y,m_X+30,m_Y+15),NULL);

UpdateData(FALSE) ;
}

void CNeuralDemo2Dlg: :OnMenuExitO
{
/I TODO: Add your command handler code here
OnOKO;

}

void CNeuralDemo2Dlg: :OnMenuHelpO
{

}

HELPDlALOG m_dlg;
m_dlg. DoModalO;

void CNeuralDemo2Dlg: :OnMenuAboutO
{
CAboutDlg m_dlg;
m_dlg. DoModalO;

}

ApPENDIX L - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 399

20.5 - Chloride Demo

I I Chloride DemoDlg.cpp : implementation file
II

#include "stdafx.h"
#include "Chloride Demo.h"
#include "Chloride DemoDlg.h"
#include <math.h>
#include "ViewDlg.h"
#include <time.h>
#include <direct.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THISJIlE
static char THIS_FIlE[] = _FIlE_;
#endif

I I I I I I I I I I /II I I I /II /II /II I /II I 1/11 I I I /II /II I 11/111/11 1/11 I II I I I I /II /II I I I I /II
II CAboutDlg dialog used for App About

struct BitmapStruct
{
CString Name;

ApPENDIX l - SOFTWARE SOURCE CODE

unsigned _intS Gray[320][240];
DWORD Sum;

Ilhoid bitmap grayscale info

int ThresholdLevel;llkeeps track of the total image intensity
Iidivide by 76S00 to get the grayscale median

IIWidth and Height of the Bitmap in Pixels
DWORD FileSize;
DWORD Width, Height;
DWORD Compression;
DWORD ImageOffset;

IISpecifies the type of compression used

start of file to image data
WORD ColDepth; Iitype of Bitmap
DWORD Colours;
DWORD ImpColours;

};

struct ImageObject
{

unsigned short int Xmin;
unsigned short int Xmax;
unsigned short int Ymin;
unsigned short int Ymax;
unsigned short int Xmini[60];
unsigned short int Xmaxi[60];

float NetInput[5];
unsigned _intS Result;

int SegArea[4][6];
};

BitmapStruct BitmapDatum, Bitmapcamera;
BOOl Difference[320][240];
BOOl Sharp[SO][60];
int NetworkThreshold;
ImageObject Box[100];

liN umber of bytes from

INTELLIGENT OPTICAL SENSOR - 400

ApPENDIX L - SOFTWARE SOURCE CODE

class CAboutDlg : public CDialog
{
public:
CAboutDl90;

/ / Dialog Data
I/{ {AF>CDATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
I/} }AF>CDATA

1/ ClassWizard generated virtual function overrides
1/ { {AF>C VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); 1/ DDX/DDV support
I/}}AF>C VIRTUAL

1/ Implementation
protected:
I/{ {AF>CMSG(CAboutDlg)
I/} }AF>CMSG
DECLARE_MESSAGE_MAPO

};

CAboutDlg: :CAboutD190 : CDialog(CAboutDlg: :IDD)
{
I/{ {AF>CDATA_INIT(CAboutDlg)
I/} }AF>CDATA_INIT

}

void CAboutDlg:: DoDataExchange(CDataExchange* pDX)
{

CDialog: : DoDataExchange(pDX);
I/{ {AF>CDATA_MAP(CAboutDlg)
I/} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
I/{ {AFX_MSG_MAP(CAboutDlg)
1/ No message handlers
I/} }AFX_MSG_MAP

END_MESSAGE_MAPO

1/1/1/1/1/1/1/1/1//111/11/11 1/ 1/ 1/1/1/1//11 I /II 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ /II 1/ 1/ 1/ /II
1/ CChlorideDemoDlg dialog

CChlorideDemoDlg: :CChlorideDemoDlg(CWnd* pParent I*=NULL */)
: CDialog(CChlorideDemoDlg: :IDD, pParent)

{
1/ { {AFX_DATA_INIT(CChlorideDernoDlg)
m_DatumName = _T('III);
m_cameraName = _T(nn);
m_Detail = 3("");
m_Batch = FALSE;
m_Savew = _T(nn);
II} }AFX_DATA_INIT
II Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO-> LoadIcon(IDR_MAINFRAME);

}

void CChlorideDemoDlg:: DoData Exchange(CDataExchange* pDX)
{
CDialog:: DoDataExchange(pDX);
I/{ {AFX_DATA_MAP(CChlorideDemoDlg)
DDX_Text(pDX, IDC_DATUM_EDIT, m_DatumNarne);
DDX_Text(pDX, IDC_CAMERA_EDIT, m_cameraNarne);
DDX_Text(pDX, IDC_DETAILEDIT, m_Detail);
DDX_Check(pDX, IDC_BATCH_CHECK, m_Batch);

INTELLIGENT OPTICAL SENSOR - 401

ApPENDIX L - SOFTWARE SOURCE CODE

DDX_Text(pDX, IDC_SAVE_EDIT, m_Savew);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CChlorideDemoDlg, CDialog)
II{ {AFX_MSG_MAP(CChlorideDemoDlg)
ON_WM_SYSCOMMANDO
ON_WM_PAINTO
ON_WM_QUERYDRAGICONO
ON_COMMAND(MENUJILE_EXIT, OnFileExit)
ON_COMMAND(MENU_OPEN_DATUM, OnOpenDatum)
ON_COMMAND(MENU_FILE_OPENCAMERA, OnFileOpencamera)
ON_COMMAND(ID_CALCULATIONS_IMAGEDIFFERENCE, OncalculationsImagedifference)
ON_COMMAND(ID_SAVE_SAVEDIFFERENCE, OnSaveSavedifference)
ON_COMMAND(ID_SAVE_SAVESHARP, OnSaveSavesharp)
ON_COMMAND(ID_CALCULATIONS_NOISEFILTERING, OncalculationsNoisefiltering)
ON_COMMAND(ID_CALCULATIONS_OBJECTBOUNDARIES, OncalculationsObjeetboundaries)
ON_COMMAND(ID_CALCULATIONS_NETWORKANALYSIS, OncalculationsNetworkanalysis)
ON_COMMAND(ID_SAVE_SAVEOBJECTS, OnSaveSaveobjects)
ON_COMMAND(ID_SAVE_SAVEVDFSPEROBJECTINFO, OnSaveSavevdfsperobjeetinfo)
ON_COMMAND(ID_SElTINGS_VIEWOPTIONS, OnSettingsViewoptions)
ON_BN_CUCKED(IDC_START_BUTTON,OnStartBatchButton)
ON_BN_CUCKED(IDC_BATCH_CHECK, OnBatchCheck)
ON_BN_CUCKED(IDC_NONE_RADIO, OnNoneRadio)
ON_BN_CUCKED(IDC_ALL_RADIO, OnAIiRadio)
ON_BN_CUCKED(IDC_PROMPT _RADIO, OnPromptRadio)
ON_BN_CUCKED(IDC_SAVE_BUTTON, OnSaveButton)
ON_COMMAND(MENU_HELP _ABOUT, OnHelpAbout)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

II I I II 11/ I II 11/ I 11/ I 11/ 11/ I I 11/ 11/ II II 11/ 11/ I I I I 11/ I II I 11/ I I I I 11/111/1 II 1111/
II CChlorideDemoDlg message handlers

BOOL CChlorideDemoDlg: :OnInitDialogO
{
CDialog: :OnInitDialogO;

II Add "About. .. " menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{
CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (! strAboutMenu .IsEmpty())
{

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); II Set big icon
SetIcon(m_hIcon, FALSE); II Set small icon

II TODO: Add extra initialization here

ShowDiff = FALSE;
ShowSharp = FALSE;
ShowBox = FALSE;
ShowNet = FALSE;
NumBoxes = 0;

INTELUGENT OPTICAL SENSOR - 402

BatchNone = TRUE;
BatchPrompt = FALSE;
BatchAIl = FALSE;

return TRUE; II return TRUE unless you set the focus to a control
}

void CChlorideDemoDlg::OnSysCommand(UINT nID, LPARAM IParam)
{
if «nID & OxFFFO) == IDM_ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout. DoModaIO;

}
else
{
CDialog: :OnSysCommand(nID, IParam);

}
}

I I If you add a minimize button to your dialog, you will need the code below
II to draw the icon. For MFC applications using the document/view model,
I I this is automatically done for you by the framework.

void CChlorideDemoDlg: :OnPaintO
{
if (IsIconic())
{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect{&rect) ;
int x = (rect.WidthO - cxIcon + 1) I 2;
int y = (rect.HeightO - cyIcon + 1) I 2;

I I Draw the icon
dc.DrawIcon(x, y, m_hIcon);

}
else
{
CPaintDC dc(this);

int loop, loop2;

CPen SharpPen;
SharpPen.CreatePen(PS_SOUD,l,RGB(255,O,255»;

I Idraw Datum and Camera images
for(Ioop2 = 0; loop2<240; loop2++)
{

for(loop = 0; loop<320; loop++)
{

int val = 256-BitmapCamera.Gray[loop][loop2];
dc.SetPixel(15+loop, 15+loop2,RGB(val,val,val»;lldraw Camera
val = 256-BitmapDatum.Gray[loop][loop2];
dc.SetPixel(350+loop/2, 15+loop2/2,RGB(val, val, val»;1 Idraw Datum
if (ShowDiff)
if(Difference[loop] [loop2])

ApPENDIX L - SOFTWARE SOURCE CODE

dc.SetPixel(15+loop, 15+loop2,RGB(255,255,O»; Iidraw Difference

}
}

INTELUGENT OPTICAL SENSOR - 403

ApPENDIX L - SOFTWARE SOURCE CODE

if(ShowSharp)
{

}

CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&SharpPen);
for (loop2 = 0; loop2<60; loop2++)
{
for(loop = 0; loop<80; loop++)
{

}

if(Sharp[loop] [loop2]==TRUE)
Rectangle(dc,(15+loop*4),(15+loop2*4),(19+loop*4),(19+loop2*4»;

}

if «ShowBox==TRUE) I I (ShowNet==TRUE»
{

for (loop = 1; loop<=NumBoxes; loop++)
{

CPen BoxPen;
BoxPen.CreatePen(PS_SOUD,2,RGB(0,255,0»;
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&BoxPen);
dc.SetBkColor(RGB(O,O,Q);
if(ShowBox)
{
dc.SetBkMode(TRANSPAREND;
dc.SetTextColor(RGB(0,255,0»;
char Text[2];
itoa(loop,Text, 10);
MoveToEx(dc,4*Box[loop].Xmin+15, 4*Box[loop].Ymin+15,NULL);
UneTo(dc, 4*Box[loop].Xmax+19, 4*Box[loop].Ymin+15);
UneTo(dc, 4*Box[loop].Xmax+19, 4*Box[loop].Ymax+19);
UneTo(dc, 4*Box[loop] .Xmin+ 15, 4*Box[loop]. Ymax+ 19);
UneTo(dc, 4*Box[loop].Xmin+15, 4*Box[loop].Ymin+15);
dc.DrawText(Text,CRect(4*Box[loop].Xmin+15,4*Box[loop].Ymin+15,4*Box[loop].Xmin+20,4*Box

[loop].Ymin+20),DT_NOCUP);
}

}

if(ShowNet)
{

}
}

dc.SetBkMode(OPAQUE);
dc. SetTextColor(RGB(255,0 ,255»;
char Text[5];
itoa(Box[loop].Result,Text,10);
int m_X = 4*Box[loop].Xmax+15;
int m_Y = 4*Box[loop].Ymin+15;
dc.DrawText(Text,CRect(m_X-1O,m_Y,m_X,m_Y+15),DT_NOCUP);

}

CDialog: :OnPaintO;
}

II The system calls this to obtain the cursor to display while the user drags
II the minimized window.
HCURSOR CChlorideDemoDlg: : OnQueryDragIconO
{
return (HCURSOR) m_hIcon;

}

void CChlorideDernoDlg: :OnFileExitO
{
II TODO: Add your command handler code here
OnOKO;

INTELUGENT OPTICAL SENSOR - 404

ApPENDIX L - SOFTWARE SOURCE CODE

}

I I //I I //I I I I //I I //I I I I I //I I //I I I II I //I /1/// I /1/// I /1///////// I 1////// I I
1***1
1**************** FILE OPENING OPERATIONS ***************************1
1***1
////1////// /I I //I /I /I /1////// /1////// /1///////// /1/////////////////////

DWORD ReadLong(fstream InFile)
{

BYTE al,a2,a3,a4;
DWORD ReturnVal;

InFile » al;
InFile » a2;
InFile» a3;
InFile »a4;

ReturnVaI =(DWORD)(al + a2*256 + a3*pow(256,2) + a4*pow(256,3»;

return ReturnVal;
}

WORD ReadShort(fstream In File)
{

BYTE al,a2;
WORD ReturnVal;

InFile »al;
InFile » a2;

ReturnVal = (WORD)(al + a2*256);

return ReturnVal;
}

void CChlorideDemoDlg: :OnOpenDatumO
{
/I TODO: Add your command handler code here
CFileDialog FileDlg(TRUE, "bmp", ,,* .bmp");
if(FileDlg.DoModaIO==IDCANCEL) return;
BeginWaitCursorO;
m_DatumName = FileDlg.GetPathNameO;
m_Detaii = no,;
UpdateData(FALSE) ;

BitmapDatum.Name = FileDlg.GetFileNameO;
int Pos = m_DatumName.Find(BitmapDatum.Name);
m_DatumDirectory = m_DatumName.Left(Pos);

fstream InFile;
InFile.open(m_DatumName,ios: :binarylios: :in);

WORD Header;
Header = ReadShort(InFile);
if(Header!=(CM'«8) + 'B'» /lExpect to read BM as first two bytes
{
m_Detail = "File Header incorrect";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}

INTELLIGENT OPTICAL SENSOR - 405

BitmapDatum.FileSize = ReadLong(InFile);
WORD Res1 = ReadShort(InFile);
WORD Res2 = ReadShort(InFile);
BitmapDatum.lmageOffset = ReadLong(InFile);
DWORD HeaderSize = ReadLong(InFile);
BitmapDatum. Width = ReadLong(InFile);
BitmapDatum.Height = ReadLong(InFile);
if (ReadShort(InFile) !=1)
{
m_Detaii = "File has more than one colour plane";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}
BitmapDatum.ColDepth = ReadShort(InFile);
BitmapDatum.Compression = ReadLong(InFile);
DWORD ImageSize = ReadLong(InFile);
DWORD XPelsMeter = ReadLong(InFile);
DWORD YPelsMeter = ReadLong(InFile);
BitmapDatum.Colours = ReadLong(InFile);
BitmapDatum.lmpColours = ReadLong(InFile);

ApPENDIX L - SOFTWARE SOURCE CODE

if(BitmapDatum.Compression!=O) //Not designed for compressed bitmaps
{
m_Detaii = "Bitmap File is Compressed";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}
if(BitmapDatum. Width! =320)
{
m_Detail = "Image Width is not 320 pixels";
UpdateData(FALSE);
EndWaitCursorO;
return;

}
if(BitmapDatum.Height!=240) //only for a 320x240 bitmap!
{
m_Detaii = "File's Height is not 240 pixels";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}
if(BitmapDatum.CoIDepth!=24) //only for 24bit bitmaps
{
m_Detaii = "File is not a 24bit RGB image";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

BitmapDatum.Sum = 0;
InFile.seekg(BitmapDatum.lmageOffset,ios: : beg);

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)
{

PixelB = InFile.getO;
PixelG = InFile.getO;
PixelR = InFile.getO;

//set file pointer to start of image data

BitmapDatum.Gray[loop2][240-loop-1] = (unsigned _int8)«255-PixeIR)*0.3 + (255-PixeIG)*0.59 +
(255-PixeIR)*0.11);

BitmapDatum.Sum += BitmapDatull1.Gray[loop2][240-loop-1];

INTEWGENT OPTICAL SENSOR - 406

Difference[loop2][loop] = FALSE;
Sharp[loop2/4][loop/4] = FALSE;

}
}
InFile.closeO;

NumBoxes = 0;

/lFinished reading the bitmap file, now calculate threshold
/land threshold version of image map

BitmapDatum. ThresholdLevel = (i nt)(BitmapDatum.Sum/76800);
EndWaitCursorO;
InvalidateO;

}

void CChlorideDemoDlg:: OnFileOpencameraO
{
/I TODO: Add your command handler code here
CFileDialog FileDlg(TRUE,"bmp","* .bmp");
if(FileDlg.DoModaIO==IDCANCEL) return;
BeginWaitCursorO;
m_cameraName = FileDlg.GetPathNameO;
m_Detaii = "";
UpdateData(FALSE) ;

Bitmapcamera.Name = m_CameraName;
clock_t a = clockO;

fstream InFile;
InFile.open(m_cameraNarne,ios: :binarylios: :in);

WORD Header;
Header = ReadShort(InFile);
if(Header!=«'M'«8) + 'B'» /lExpect to read BM as first two bytes
{
m_Detaii = "File Header incorrect";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}
Bitrnapcamera.FileSize = ReadLong(InFile);
WORD Res1 = ReadShort(InFile);
WORD Res2 = ReadShort(InFile);
Bitmapcamera.ImageOffset = ReadLong(InFile);
DWORD HeaderSize = ReadLong(InFile);
BitmapCarnera. Width = ReadLong(InFile);
Bitrnapcamera.Height = ReadLong(InFile);
if (ReadShort(InFile) !=1)
{
m_Detaii = "File has more than one colour plane";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}
Bitrnapcarnera.ColDepth = ReadShort(InFile);
Bitmapcamera.Compression = ReadLong(InFile);
DWORD IrnageSize = ReadLong(InFile);
DWORD XPelsMeter = ReadLong(InFile);
DWORD YPelsMeter = ReadLong(InFile);
BitmapCamera.Colours = ReadLong(InFile);
Bitmapcarnera.ImpColours = ReadLong(InFile);

ApPENDIX L - SOFTWARE SOURCE CODE

if(BitmapCamera.Compression! =0)
{

/lNot designed for compressed bitmaps

m_Detaii = "Bitmap File is Compressed";

INTELLIGENT OPTICAL SENSOR - 407

UpdateData(FALSE) ;
EndWaitCursorO;
return;

}
if(Bitmapcamera. Width! =320)
{
m_Detaii = "Image Width is not 320 pixels";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}

ApPENDIX L - SOFTWARE SOURCE CODE

if(Bitmapcamera.Height!=240) //only for a 320x240 bitmap!
{
m_Detail = "File's Height is not 240 pixels";
UpdateData(FALSE);
EndWaitCursorO;
return;

}
if(Bitmapcamera.CoIDepth!=24) /lonly for 24bit bitmaps
{
m_Detaii = "File is not a 24bit RGB image";
UpdateData(FALSE);
EndWaitCursorO;
return;

}

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

Bitmapcamera.Sum = 0;
InFile.seekg(Bitmapcamera.ImageOffset,ios: :beg); /lset file pointer to start of image data

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)
{

PixelB = InFile.getO;
PixelG = InFile.getO;
PixelR = InFile.getO;

Bitmapcamera.Gray[loop2][240-loop-l] = (unsigned _int8)«255-PixeIR)*0.3 + (255-PixeIG)*0.59 +
(255-PixeIR)*0.11);

}

Bitmapcarnera.Sum += Bitmapcamera.Gray[loop2][240-loop-l];
Difference[loop2][loop] = FALSE;
Sharp[loop2/4][loop/4] = FALSE;

}
InFile.closeO;

clock_t b = clockO;
float sees = (f1oat)«int)«b-a)*lOOOOO/CLOCKS_PER_SEC»/lOOOOO;
char Text[lOO];
sprintf(Text,"Image loaded in %.3f seconds",secs);
m_Detail = Text;
UpdateData(FALSE) ;

NumBoxes = 0;

/lFinished reading the bitmap file, now calculate threshold
/land threshold version of image map

Bitmapcamera.ThresholdLevel =(int)(Bitmapcamera.Sum/76800);
EndWaitCursorO;
InvalidateO;

}

INTELUGENT OPTICAL SENSOR - 408

void CChlorideDernoDlg: :OpenFile(CString Name)
{
BeginWaitCursorO;
m_cameraName = Name;
m_Detail = "";
UpdateData(FALSE);

Bitmapcamera.Name = m_CameraName;
clock_t a = clockO;

fstream InFile;
InFile.open(m_cameraName,ios:: binaryl ios:: in);

WORD Header;
Header = ReadShort(InFile);
if(Header!=«'M'«8) + 'B')) IIExpect to read BM as first two bytes
{
m_Detaii = "File Header incorrect";
UpdateData(FALSE);
EndWaitCursorO;
return;

}
Bitmapcamera.FileSize = ReadLong(InFile);
WORD Res1 = ReadShort(InFile);
WORD Res2 = ReadShort(InFile);
Bitmapcamera.ImageOffset = ReadLong(InFile);
DWORD HeaderSize = ReadLong(InFile);
Bitmapcamera.Width = ReadLong(InFile);
Bitmapcamera.Height = ReadLong(InFile);
if (ReadShort(InFile) !=1)
{
m_Detaii = "File has more than one colour plane";
UpdateData(FALSE);
EndWaitCursorO;
return;

}
Bitmapcamera.ColDepth = ReadShort(InFile);
Bitmapcamera.Compression = ReadLong(InFile);
DWORD ImageSize = ReadLong(InFile);
DWORD XPelsMeter = ReadLong(InFile);
DWORD YPelsMeter = ReadLong(InFile);
Bitmapcamera.Colours = ReadLong(InFile);
Bitmapcamera.ImpColours = ReadLong(InFile);

ApPENDIX L - SOFTWARE SOURCE CODE

if(Bitmapcamera.Compression!=O) IINot designed for compressed bitmaps
{
m_Detaii = "Bitmap File is Compressed";
UpdateData(FALSE);
EndWaitCursorO;
return;

}
if(BitmapCamera. Width! =320)
{
m_Detail = "Image Width is not 320 pixels";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}
if(Bitmapcamera.Height!=240) I/only for a 320x240 bitmap!
{
m_Detaii = "File's Height is not 240 pixels";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}

INTELUGENT OPTICAL SENSOR - 409

ApPENDIX L - SOFTWARE SOURCE CODE

if(BitmapCamera.CoIDepth!=24)
{

lIonly for 24bit bitmaps

m_Detail = "File is not a 24bit RGB image";
UpdateData(FALSE) ;
EndWaitCursorO;
return;

}

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

BitmapCarnera.Sum = 0;
InFile.seekg(BitmapCamera.ImageOffset,ios: :beg);

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)
{

PixelB = InFile.getO;
PixelG = InFile.getO;
PixelR = InFile.getO;

IIset file pointer to start of image data

BitmapCamera.Gray[loop2][240-loop-1] = (unsigned _int8)«255-PixeIR)*0.3 + (255-PixeIG)*0.59 +
(255-PixeIR)*0.11);

}

BitmapCamera.Sum += BitmapCamera.Gray[loop2][240-loop-1];
Difference[loop2][loop] = FALSE;
Sharp[loop2/4][loop/4] = FALSE;

}
InFile.closeO;

clock_t b = clockO;
float sees = (float)«int)«b-a)*100000/CLOCKS_PER_SEC»/100000;
char Text[100];
sprintf(Text,"Image loaded in %.3f seconds",secs);
m_Detail = Text;
UpdateData(FALSE) ;

NumBoxes = 0;

IIFinished reading the bitmap file, now calculate threshold
lIand threshold version of image map

}

BitmapCamera.ThreshOldLevel =(int)(BitmapCamera.Sum/76800);
EndWaitCursorO;
InvalidateO;

/II II II II /II /II II II II II II II II II /II II /II /II /II II //11 II /II /II 1111 II /II /II
/***/
/**************** IMAGE CALCULATION OPERATIONS **********************/
/***/
/ / / II /II /II II II II II II II /II II /II / /II II /II II /II II II II /II /II /II /II II II /II /

void CChlorideDemoDlg: : DoJitterO
{
//**
llFoliowing Code generates the thresholded array of the incomming image II
llfirst sequence, image as is
int loop, loop2, Space, Diff,count = 0;
int m_Mult = 5;

INTELUGENT OPTICAL SENSOR - 410

ApPENDIX L - SOFTWARE SOURCE CODE

Space = (int)sqrt(pow(Bitmapcamera.ThresholdLevel - BitmapDatum.ThresholdLevel,2»;
for (loop = 0; loop <320; loop ++)
{
for (loop2 = 0; loop2 < 240; loop2 ++)
{
/Ii mage jitter correction code
/lean compensate by 1 pixel in a certain direction
IINormal image
Diff = (int)sqrt(pow«Bitmapcamera.Gray[loop][loop2] - BitmapDatum.Gray[loop][loop2]),2»;
if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{

2»;

2»;

2»;

II If a difference is detected, the pixel is shifted
I I around by a distance of one pixel to evaluate if
II this is due to a small wind movement. The 9 pixels
II surrounding the current pixel will be evaluated
II Every image pixel ean be shifted in a different direction

IIImage shifted up and left
if ((Ioop<319)&&(loop2<239»
{
Diff = (int)sqrt(pow«BitmapCamera.Gray[loop+1][loop2+1] - BitmapDatum.Gray[loop][loop2]),2»;
if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity

{
IIImage shifted up
if (loop2<239)
{
Diff = (int)sqrt(pow«Bitmapcamera.Gray[loop][loop2+1] - BitmapDatum.Gray[loop][loop2]),2»;
if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{
III mage shifted up and right
if ((Ioop>0)&&(loop2<239»
{

Diff = (int)sqrt(pow«BitmapCamera.Gray[loop-1][loop2+ 1] - BitmapDatum.Gray[loop][loop2]),

if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{
III mage shifted left
if (loop<319)
{

Diff = (int)sqrt(pow«Bitmapcamera.Gray[loop+1][1oop2] - BitmapDatum.Gray[loop][loop2]),

if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{
llImage shifted right
if (loop>O)
{

Diff = (int)sqrt(pow«Bitmapcamera.Gray[loop-1][loop2] - BitmapDatum.Gray[loop][loop2]),

if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{
IIImage shifted down and left
if ((Ioop<319)&&(loop2>0»
{
Diff = (int)sqrt(pow«Bitmapcamera.Gray[loop+1][loop2-1] - BitmapDatum.Gray[loop]

[loop2]),2»;

[loop2]),2»;

if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{
IIImage shifted down
if (loop2>0)
{

Diff = (int)sqrt(pow«BitmapCamera.Gray[loop][loop2+1] - BitmapDatum.Gray[loop]

if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{

IIImage shifted down and right

INTELLIGENT OPTICAL SENSOR - 411

if «loop>0)&&(loop2>0))
{

ApPENDIX L - SOFTWARE SOURCE CODE

Diff = (int)sqrt(pow«Bitmapcamera.Gray[loop-1][loop2-1] - BitmapDatum.Gray[loop]
[loop2]),2));

if (Diff > (m_Mult*Space)) /lm_Mult adjusts the sensitivity
{
/lIf none of the pixel shifts Difference in a difference exclusion
lithe pixel is marked as a set movement difference
Difference[loop][loop2] = TRUE;

}
}

}
}

}
}

}
}

}
}

}
}

}

}
}

}

count++;
}

II If anyone of the pixel shifts Differences in a difference
Ilexclusion, the pixel is marked as non altered, ie only
Iia small movement due to wind or Bitmapcamera.Gray vibration

else Difference[loop][loop2] = FALSE;
}

}
II NetworkThreshold = 6 + (int)(countj5000);

NetworkThreshold = 6 + (int)(countj2222);
if (NetworkThreshold >15) NetworkThreshold = 15;

}

void CChlorideDemoDlg: : DoSharpO
{
int loop,loop2, loop3, loop4;
int count = 0;

for (loop2=0; loop2<60; loop2++)
{
for (loop=O; loop<80; loop++)
{

Sharp[loop][loop2] = FALSE;
count = 0;
for (loop3=0; loop3<4; loop3++)
{
for (loop4 = 0; loop4<4; loop4++)
{
if (Difference[4*loop+loop3][4*loop2+loop4])

count++;
}

}
if (count >NetworkThreshold)
{
Sharp[loop][loop2] = TRUE;

}

INTELUGENT OPTICAL SENSOR - 412

}
}

}

int CChlorideDemoDlg: : DoObjectsO
{
int counter = 0;
int loop, loop1, loop2, loop3;
int Mem, Set, gap;

for (loop = 0; loop<100; loop++)
{
Box[loop).Xmin = 80;
Box[loop).Ymin = 60;
Box[loop).Xmax = 0;
Box[loop).Ymax = 0;

}

IICheck every line in the image
loop=O;
for(loop2=0; loop2<60; loop2++)
{
Set = 0;
Mem = 0;
gap = 0;

for (loop=O; loop<80; loop++)
{

if (Sharp[loop)[loop2)==TRUE)
{
counter++;
Box[counter).Xmin = loop;
Box[counter).Ymin = loop2;
Box[counter).Ymax = loop2;
Box[counter].Xmax = loop;
Box[counter).Xmini[loop2) = loop;
Box[counter).Xmaxi[loop2) = loop;

//Previous line check for position matching
for(Ioop3 = 0; loop3<counter; loop3++)
{
if«loop>=(Box[loop3).Xmin-2»&&(loop<=(Box[loop3).Xmax+2))&&

{

«loop2-Box[loop3).Ymax)<3)&&(loop3!=counter)&&
(loop2>0»

Set = 1;
Mem = loop3;

}
}
//End of line check

while((gap<3)&&(loop<80»
{
loop++;
if(Sharp[loop][loop2)==1)
{

gap = 0;
Box[counter).Xmax = loop;
Box[counter).Xmaxi[loop2) = loop;

//Previous line check for position matching
for(Ioop3 = 0; loop3<counter; loop3++)
{

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 413

if((loop> = Box[loop3] .Xmin-2)&&(loop< = Box[loop3] .Xmax+ 2)
&&(loop2-Box[loop3].Ymax<3)&&(loop3!=counter)&&(counter>0»

{
Set = 1;
Mem = loop3;

}
}
/lEnd of line check

}
else gap++;

}
gap = 0;

/lMatching correction code, updates matched object
/land deleted new object created
if (Set==l)
{

ApPENDIX L - SOFTWARE SOURCE CODE

if(Box[counter].Xmin<Box[Mem].Xmin) Box(Mem].Xmin = Box[counter].Xmin;
if(Box(counter].Xmax>Box[Mem].Xmax) Box(Mem].Xmax = Box[counter].Xmax;
Box[Mem].Ymax = loop2;

}

Box[counter].Xmin = 80;
Box[counter].Xmax = 0;
Box[counter].Ymin = 60;
Box[counter].Ymax = 0;
Box[Mem].Xmaxi[loop2] = Box[counter].Xmaxi[loop2];
Box[Mem].Xmini[loop2] = Box[counter].Xmini[loop2];
counter--;
Set = 0;
Mem = 0;

}

}
loop=O;

}
/lBox size filtering code, checking for minimum target size

int IsZero = 0;

for (loop = 1; loop<=counter; loop++)
{
if (IsZero==l)
{

loop--;
IsZero = 0;

}
int TArea = «Box[loop].Xmax - Box[loop].Xmin)*(Box[loop].Ymax-Box[loop].Ymin»;
if (TArea <74)
{

for (loop1 = loop; loop1<=counter; loop1++)
{

Box[loop1] = Box[loop1+1];
if (loop==l) IsZero = 1;
else loop--;

}
counter--;

}
}
return counter;

}

void CChlorideDemoDlg: :GetNetInputsO
{
int loop,loop1,loop2,loop3, loop4;
int Width, Height;
int SegWidth,SegHeight,SegAcc,SegArea;

INTELLIGENT OPTICAL SENSOR - 414

for (loop = 0; loop <= NumBoxes; loop++)
{
//*************** SEGMENT AREA CALC ********************
//The set rectangle will be split up into an 3*4 array of equal
//segrnents, on which % set pixels cales are carried out.

SegWidth=O;
Seg Height=O;
SegAcc=O;
SegArea=O;
int x_max=O;
int y-max=O;
int TempWidth=O;
int TempHeight=O;
Width = 0;
Height = 0;
SegArea = 0;
SegAcc = 0;

Width = 4*Box[loop].Xmax - 4*Box[loop].Xmin;
Height = 4*Box[loop].Ymax - 4*Box[loop].Ymin;

div_t h,w;
w = div(Width, 4);
h = div(Height, 6);
SegWidth = w.quot;
SegHeight = h.quot;

SegArea = SegWidth * SegHeight;

for (loop1 = 0; loop1 <4; loop1++)
{

for (loop2 = 0; loop2<6; loop2++)
{
x_max = (loop1 + 1) * SegWidth;
y-max = (loop2 + 1) * SegHeight;
if (loop1 ==3)
{
x_max = Width;
TempWidth = Width - (3 * SegWidth);

}
else TempWidth = SegWidth;
if (loop2 ==5)
{
y-max = Height;
TempHeight = Height - (5 * SegHeight);

}
else TempHeight = SegHeight;
SegAcc = 0;
for (loop3=(loop1 *SegWidth); loop3<x_max;loop3++)
{
for (loop4=(loop2*SegHeight); loop4<y-max;loop4++)
{

if ((Difference[4*Box[loop].Xmin+loop3][4*Box[loop] .Ymin+loop4])
&& (Sharp[(Box[loop].Xmin +loop3)][(Box[loop].Ymin + loop4)]))
//&& (loop1>= 4*Box[loop].Xmini[loop])
//&& (loop1 <= 4*Box[loop].Xmaxi[loop]))

{
SegAcc++;

}
}

}
Box[loop].SegArea[loop1][loop2] = 0;

ApPENDIX L - SOFTWARE SOURCE CODE

Box[loop].SegArea[loop1][loop2]=(int)((100 * SegAcc)/(TempWidth * TempHeight));

SegAcc=O;
}

INTELLIGENT OPTICAL SENSOR - 415

}
}

}

void CChlorideDemoDlg:: RunNetO
{

IINElWORK CODE HERE
int loop;
float Output;
for(loop = 0; loop<NumBoxes; loop++)
{
float Xsum7 = 0;
float Xout7 = 0;
Output = 0;
1* Generating code for PE 0 in layer <Hidden1> (3) *1

ApPENDIX L - SOFTWARE SOURCE CODE

Xsum7 = (float)(9.4248371 + (-9.7122078) * Box[loop].NetInput[O] + (-0.82052672) * Box[loop].
NetInput[1] +

(-4.1746411) * Box[loop].NetInput[2] + (-1.6331787) * Box[loop].NetInput[3] + (-2.0222914) * Box
[loop].NetInput[4]);

1* Generating code for PE 0 in layer <Hidden1> (3) *1
Xout7 = (float)(tanh(Xsum7 »;

Output = (float)«0.15872838) + (0.04405418) * Box[loop].NetInput[O] + (-0.12671886) * Box[loop].
NetInput[1] +

(-0.21494821) * Box[loop].NetInput[2] + (-0.029009042) * Box[loop].NetInput[3] + (-0.015902856)
* Box[loop].NetInput[4] +

}

(0.91813892) * Xout7);

1* De-scale and write output from network *1
Output = (float)(Output * (0.625) + (0.5»;

IIEND OF NElWORK CODE
Box[loop].Result = (int)(lOO*Output);
if (Box[loop].Result>100) Box[loop].Result = 100;
if (Box[loop].Result<O) Box[loop].Result = 0;

}

11****************** MENU SELECTIONS *********************************11

void CChlorideDemoDlg: : OncalculationsImagedifferenceO
{
II TODO: Add your command handler code here
BeginWaitCursorO;
clock_t a = clockO;
DoJitterO;
clock_t b = clockO;
float sees = (float)((int)((b-a)*100000ICLOCKS_PE,,-SEC»/100000;
char Text[100];
sprintf(Text,"Dynamic Network Threshold: %i Processing time was %.3f

seconds",NetworkThreshold,secs);
m_Detail = Text;
UpdateData(FALSE) ;
EndWaitCursorO;
if(ShowDiff= = TRUE) InvalidateO;

}

void CChlorideDernoDlg: :OnCalculationsNoisefilteringO
{
II TODO: Add your command handler. code here

INTELLIGENT OPTICAL SENSOR - 416

BeginWaitCursorO;
clock_t a = clockO;
DoJitterO;
DoSharpO;
clock_t b = clockO;
float sees = (f1oat)((int)((b-a)*lOOOOO/CLOCKS_PER...SEc»/100000;
char Text[100];
sprintf(Text,"Dynamic Network Threshold: %i Processing time was %.3f

seconds",NetworkThreshold,secs);
m_Detail = Text;
UpdateData(FALSE) ;
EndWaitCursorO;
if((ShowDiff) II (ShowSharp» InvalidateO;

}

void CChlorideDemoDlg: : OncalculationsObjectboundariesO
{
II TODO: Add your command handler code here
BeginWaitCursorO;
clock_t a = clockO;
DoJitterO;
DoSharpO;
NumBoxes = DoObjectsO;
clock_t b = clockO;
float sees = (f1oat)((int)((b-a)*100000/CLOCKS_PER_SEc»/lOOOOO;
char Text[200];

ApPENDIX L - SOFTWARE SOURCE CODE

sprintf(Text,"Dynamic Network Threshold: %i %i Object(s) identified in image Processing time was %.3f
seconds", NetworkThreshold,NumBoxes,sees);
m_Detail = Text;
UpdateData(FALSE);
EndWaitCursorO;
if((ShowDiff) II (ShowSharp) II (ShowBox» InvalidateO;

}

void CChlorideDemoDlg:: OncalculationsNetworkanalysisO
{
II TODO: Add your command handler code here
BeginWaitCursorO;
clock_t a = clockO;
DoJitterO;
DoSharpO;
NumBoxes = DoObjectsO;
GetNetInputsO;
RunNetO;
clock_t b = clockO;
float sees = (f1oat)((int)((b-a)*lOOOOO/CLOCKS_PER_SEc»/lOOOOO;
char Text[200];
sprintf(Text,"Dynamic Network Threshold: %i %i Object(s) identified in image Processing time was %.3f

seconds",NetworkThreshold,NumBoxes,sees);
m_Detaii = Text;
UpdateData(FALSE);
EndWaitCursorO;
if((ShowDiff) II (ShowSharp) II (ShowBox) II (ShowNet» InvalidateO;

}

11111111/111111/11111/11111111/111111/111/1111111111/111111/1111111111I
1***1
1**************** FILE SAVING OPERATIONS ****************************1
1***1
I I I I I I I I I I II I I /II I /II /II //I I I /II //I I I I /II I I I I /II II I I II I I /II I I I I I 1/111 I I

INTELUGENT OPTICAL SENSOR - 417

void CChlorideDemoDlg: :OnSaveSavedifferenceO
{
1/ TODO: Add your command handler code here
int Pos = Bitmapcamera.Name.Find("bmp");
if (Pos==-l) Pos = Bitmapcamera.Name.Find("BMP");
CString SaveName;
SaveName = Bitmapcamera.Name.Left(Pos);
SaveName = SaveName + "vos";
CFileDialog FileDlg(FALSE, "vos" ,SaveName);
if(FileDlg.DoModaIO==IDOK)
{
BeginWaitCursorO;
CString Save Path = FileDlg.GetPathNameO;
DoJitterO;
of stream FileOut(SavePath);
if(!FileOut)
{

}

m_Detaii = "File write error - Info could not be saved";
UpdateData(FALSE);
EndWaitCursorO;
return;

int loop, loop2;
for (loop = 0; loop< 320; loop++)
{

for (loop2 = 0; loop2<240; loop2++)
{
if (Difference[loop][loop2])
FileOut « loop«"\t"«loop2«"\n";

}
}
FileOut.closeO;
m_Detail = SavePath + " written successfully";

}
EndWaitCursorO;
UpdateData(FALSE) ;

}

void CChlorideDemoDlg:: OnSaveSavesharpO
{
// TODO: Add your command handler code here

}

void CChlorideDemoDlg: :OnSaveSaveobjeetsO
{
1/ TODO: Add your command handler code here

}

void CChlorideDemoDlg:: OnSaveSavevdfsperobjectinfoO
{
1/ TODO: Add your command handler code here

}

1/1/1/1/1/11/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/

ApPENDIX L - SOFTWARE SOURCE CODE

/***/
/********************* SOFTWARE SETTINGS ****************************/
/***/
11/1/1/1/1/1/1/11/1/1/1/1/1/11/

INTELLIGENT OPTICAL SENSOR - 418

void CChlorideDemoDlg: : OnSettingsViewoptionsO
{
II TODO: Add your command handler code here
IICDialog ViewDlg(IDD_ VIEW_DIALOG);

m_Viewdlg.m_Sharp = ShowSharp;
m_Viewdlg.m_Diff = ShowDiff;
m_Viewdlg.m_Boxes = ShowBox;
m_Viewdlg.m_Net = ShowNet;

if(m_Viewdlg.DoModaIO==IDOK)
{
ShowSharp = m_Viewdlg.m_Sharp;
ShowDiff = m_Viewdlg.m_Diff;
ShowBox = m_Viewdlg.m_Boxes;
ShowNet = m_Viewdlg.m_Net;

}
}

void CChlorideDemoDlg: :OnStartBatchButtonO
{
II TODO: Add your control notification handler code here
ShowSharp = FALSE;
ShowDiff = FALSE;
ShowBox = TRUE;
ShowNet = FALSE;

CFileFind Finder;
CString Title;
chdir(m_DatumDirectory);
BOOl bWorking = Finder.FindFile("*.bmp");

MessageBox("About to enter File Search mode",MB_OK);
UpdateData(FALSE) ;
int loop, loop1,loop2;
while(bWorking)
{
bWorking = Finder.FindNextFileO;
Title = Finder.GetFileTitleO;
CString FuliName = Finder.GetFilePathO;
int Pos = FuIiName.Find(Title);
CString TempDir = FuIiName.Left(Pos);

OpenFile(FuIiName);
OncalculationsObjectboundariesO;
GetNetInputsO;
if «BatchAII) II (BatchPrompt»
{

for(loop = 1; loop<=NumBoxes; loop++)
{
char Text[100];
sprintf(Text,"Would you like to save info for Box %i ?",Ioop);
if (m_SaveDir=="")
{
m_SaveDir = TempDir;
m_Savew = m_SaveDir;
UpdateData(FALSE) ;

}
if(BatchPrompt)
{
if(MessageBox(Text, "Save Query" ,MB_ YESNO)==IDYES)
{

char Ext[10];
sprintf(Ext,"%s%s-%i.sdf",m_SaveDir,Title,loop);
of stream OutFile(Ext);
for(loop1 = 0; loop1<6; loop1++-)

ApPENDIX l - SOFTWARE SOURCE CODE

INTEWGENT OPTICAL SENSOR - 419

}

{
for(Ioop2 = 0; loop2<4; loop2++)
{
OutFile « (Box[loop].SegArea[loop2][loopl]) «"\t";

}
OutFile « endl;

}
OutFile « "Segment Area Measurements in order 4x6 grid\n";
OutFile« "Datum File: "« m_DatumName« endl;
OutFile « "Camera File: "« m_cameraName« endl;
OutFile « "Object No : " « loop;
OutFile.closeO;

}
if(BatchAII)
{

}
}

char Ext[10];
spri ntf(Ext, "%s%s-%i .sdf" ,m_SaveDir,Title,loop);

of stream OutFile(Ext);
for(loopl = 0; loopl<6; loop1++)
{

for(Ioop2 = 0; loop2<4; loop2++)
{
OutFile « Box[loop].SegArea[loop2][loopl] «"\t";

}
OutFile « endl;

}
OutFile « "Segment Area Measurements in order 4x6 grid" « endl;
OutFile« "Datum File: "« m_DatumName« endl;
OutFile « "camera File: "« m_cameraName « endl;
OutFile « "Object No : " « loop;
OutFile .close();

}

//Depending on the vBatch Svae settings
//save vdf file or not!
11***
I I INSERT INTERRUPT CODE HERE
11***

}
MessageBox{"End of Search",MB_OK);

}

void CChlorideDemoDlg: : On BatchCheckO
{
II TODO: Add your control notification handler code here

}

void CChlorideDemoDlg: :OnNoneRadioO
{
II TODO: Add your control notification handler code here
BatchNone = TRUE;
BatchAIl = FALSE;
BatchPrompt = FALSE;

}

void CChlorideDemoDlg: : OnAIlRadioO
{
II TODO: Add your control notification handler code here
BatchNone = FALSE;
BatchAll = TRUE;
BatchPrompt = FALSE;

}

ApPENDIX L - SOFTWARE SOURCE CODE

INTEWGENT OPTICAL SENSOR - 420

void CChlorideDemoDlg: : On PromptRadioO
{
II TODO: Add your control notification handler code here
BatchNone = FALSE;
BatchAIl = FALSE;
BatchPrompt = TRUE;

}

void CChlorideDemoDlg: :OnSaveButtonO
{
II TODO: Add your control notification handler code here
CFileDialog SaveDlg(FALSE, "save.sdf", "save.sdf");
if(SaveDlg.DoModaIO == lOOK)
{
m_Savew = SaveDlg.GetPathNameO;
CString Temp = SaveDlg.GetFileTitleO;
int Pos = m_Savew.Find(Temp);
m_SaveDir = m_Savew.Left(Pos);
m_Savew = m_SaveDir;
UpdateData(FALSE);

}
}

void CChlorideDemoDlg: :OnHelpAboutO
{
II TODO: Add your command handler code here
CAboutDlg m_dlg;
m_dlg.DoModaIO;

}

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 421

20.6 - Bitmap Headers

11/11 111/111/11/11/1 II I I /I I 11/ /I /III/ I 11/ I 11/11/ I 11/ /111/11/ 111/11/ I I I I I 11/11/
II
II BITMAPHEADER.H
II
I I Reference Header file in C++ designed for Bitmap Interpretation
II Aiming Specifically at a 320*240 24bit Bitmap
II
II When File is read, image data is saved in grayscale to an array
I I of type _i ntS
II All the bitmap major header infois also saved to a structure
II which must be declared in the main program
II
II
II Written: 01.03.2000 by Jean-Marc Graumann
II
11/1 I I I I I I I I I I 1111/11/1 I I I I I I I 1111/1 1111/1 1111/1111/1111/1 I I I I 1111/111/1111/11

#include <fstream.h>

struct BitmapStruct
{
CString Name;

ApPENDIX L - SOFTWARE SOURCE CODE

unsigned _intS Gray[320][240];
unsigned long Sum;

/lhold bitmap grayscale info

unsigned long FileSize;
unsigned short Width, Height;
unsigned char Compression;
unsigned long ImageOffset;
unsigned char ColDepth;
unsigned long Colours;
unsigned long ImpColours;

};

unsigned long ReadLong(fstream InFile)
{

unsigned char al,a2,a3,a4;
unsigned long ReturnVal;

al = InFile.getO;
a2 = InFile.getO;
a3 = InFile.getO;
a4 = InFile.getO;

II keeps track of the total image intensity
Iidivide by 76S00 to get the grayscale median

IIWidth and Height of the Bitmap in Pixels
IISpecifies the type of compression used
IINumber of bytes from start of file to image data
Iitype of Bitmap

ReturnVaI = al + a2«S + a3«16 + a4«24;

return ReturnVal;
}

unsigned short ReadShort(fstream InFile)
{

unsigned char al,a2;
unsigned short ReturnVal;

al = InFile.getO;
a2 = InFile.getO;

ReturnVaI = al + a2«S;

INTELUGENT OPTICAL SENSOR - 422

retum RetumVal;
}

BOOl CheckHeader(fstream InFile)
{
InFile.getO;// retum FALSE;
InFile.getO;// retum FALSE;

retum TRUE;
}

ApPENDIX l - SOFTWARE SOURCE CODE

BOOl ReadBitmapHeader(fstream InFile,BitmapStruct &Map)
{
CheckHeader(InFile);llretum FALSE;
Map.FileSize = ReadLong(InFile);
InFile.seekg(4,ios: :cur);
Map.ImageOffset = ReadLong(InFile);
unsigned long HeaderSize = ReadLong(InFile);
Map. Width = (unsigned short)ReadLong(InFile);

Ilif first to bytes are not BM, file format is invalid
IIGet the FileSize;
Iiskip over reserved bits
II Get the image offset

Map.Height = (unsigned short)ReadLong(InFile);
if(ReadShort(InFile)!=l) retum FALSE; IIBitmap can only have 1 colour plane
Map.ColDepth = (unsigned char)ReadShort(InFile);
Map.Compression = (unsigned char)Readlong(InFile);
unsigned long ImageSize = ReadLong(InFile);
unsigned long XPelsMeter = ReadLong(InFile);
unsigned long YPelsMeter = ReadLong(InFile);
Map.Colours = ReadLong(InFile);
Map.ImpColours = ReadLong(InFile);

retum TRUE;
}

BOOl ReadImageData(fstream InFile,BitmapStruct &Map)
{
if(Map.Compression!=O) retum FALSE;
if(Map.Width!=320) retum FALSE;
if(Map.Height!=240) retum FALSE;
if(Map.CoIDepth!=24) retum FALSE;

IINot designed for compressed bitmaps

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

Map.Sum = 0;
InFile.seekg(Map.ImageOffset,ios:: beg);

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)
{

PixelB = InFile.getO;
PixelG = InFile.getO;
PixelR = InFile.getO;

Iionly for a 320x240 bitmap!
Iionly for 24bit bitmaps

liset file pointer to start of image data

Map.Gray[loop2][240-loop-l] = (unsigned _int8)«255-PixeIR)*0.3 + (255-PixeIG)*0.59 + (255-PixeIR)
*0.11);

Map.Sum += Map.Gray[loop2][240-loop-l];
}

}

retum TRUE;
}

INTELUGENT OPTICAL SENSOR - 423

ApPENDIX L - SOFlWARE SOURCE CODE

20.7 - Cheat Office

/I Cheat OfficeDlg.cpp : implementation file
/I

#include "stdafx.h"
#include "Cheat Office.h"
#include "Cheat OfficeDlg.h"
#include <fstream.h>
#include <math.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

/II I /II I /II I /II /II /II I /II I /II /II /I I I /I /II I /II I I I /II /II /II /II /II I /II /II /II I I II
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
CAboutDl90;

I I Dialog Data
II{ {AF)CDATA(CAboutDlg)
enum {IDD = IDD_ABOUTBOX};
double m_Mult;
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
II} }AFX_VIRTUAL

I I Implementation
protected:
II{ {AFX_MSG(CAboutDlg)
afx_msg void OnMultButtonO;
II} }AFX_MSG
DECLARE_MESSAGE_MAPO

};

CAboutDlg: :CAboutDlgO : CDialog(CAboutDlg: :IDD)
{
II { {AFX_DATA_INIT(CAboutDlg)
m_Mult = 0.0;

INTELUGENT OPTICAL SENSOR - 424

ApPENDIX L - SOFTWARE SOURCE CODE

}

void CAboutDlg: : DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II{ {AF)CDATA_MAP(CAboutDlg)
DDX_Text(pDX, IDC_MULT_EDIT, m_Mult);
DDV_MinMaxDouble(pDX, m_Mult, 0., 5.);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II { {AFX_MSG_MAP(CAboutDlg)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

I I I I I I I /II /II I I I I I II 111/1111 II /II I I I /I /II I I I /III I /II /III /II I I I I /II II I I I I /II I I
II CCheatOfficeDlg dialog

CCheatOfficeDlg: :CCheatOfficeDlg(CWnd* pParent I*=NULL * /)
: CDialog(CCheatOfficeDlg::IDD, pParent)

{
II { {AFX_DATA_INIT(CCheatOfficeDlg)
m_DatumCheck = FALSE;
m_Mult = 0.0;
II} }AFX_DATA_INIT
II Note that Loadlcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetApPO->Loadlcon(IDR_MAINFRAME);

}

void CCheatOfficeDlg:: DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II { {AFX_DATA_MAP(CCheatOfficeDlg)
DDX_Check(pDX, IDC_DATUM_CHECK, m_DatumCheck);
DDX3ext(pDX, IDC_MULT_EDIT, m_Mult);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CCheatOfficeDlg, CDialog)
II { {AFX_MSG_MAP(CCheatOfficeDlg)
ON_WM_SYSCOMMANDO
ON_WM_PAINTO
ON_ WM_ QUERYDRAGICONO
ON_BN_CUCKED(IDC_BACKGROUND_BUTION, OnBackgroundButton)
ON_BN_CUCKED(IDC_DATUM_BUTION, OnDatumButton)
ON_BN_CUCKED(IDC_INCOMING_BUTION, OnlncomingButton)
ON_BN_CUCKED(IDC_EXIT_BUTION, OnExitButton)
ON_BN_CUCKED(IDC_PROCESS_BUTION, OnProcessButton)
ON_BN_CUCKED(IDC_SET_BUTION, OnSetButton)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

1/11 II I I II I I /II I II I I /II /II I I /I /II I I I /I II I I I I /II I I I /II /II /II I I I I I I I I I I I I I I I I I I
II CCheatOfficeDlg message handlers

BOOL CCheatOfficeDlg: :OnlnitDialogO
{
CDialog: : OnlnitDialogO;

II Add "About ... " menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

INTELUGENT OPTICAL SENSOR - 425

ApPENDIX L - SOFTWARE SOURCE CODE

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu ! = NULL)
{
CString strAboutMenu;
strAboutMenu. LoadString(IDS_ABOUTBOX);
if (! strAboutMenu. IsEmpty(»
{

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); II Set big icon
SetIcon(m_hIcon, FALSE); II Set small icon

II TODO: Add extra initialization here
for(int loop = 0; loop<320; loop++)
{
for (int loop2 = 0; loop2<240; loop2++)
{

}
}

camera.Data[loop][loop2] = 0;
Background.Data[loop][loop2] = 0;
Final.Data[loop][loop2] = 0;
Datum.Data[loop][loop2] = 0;

m_Mult = 0.2;
UpdateData(FALSE) ;
return TRUE; II return TRUE unless you set the focus to a control

}

void CCheatOfficeDlg: :OnSysCommand(UINT nID, LPARAM IParam)
{
if «nID & OxFFFO) == IDM_ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout. DoModaIO;

}
else

}

{
CDialog: :OnSysCommand(nID, IParam);

}

II If you add a minimize button to your dialog, you will need the code below
II to draw the icon. For MFC applications using the document/view model,
I I this is automatically done for you by the framework.

void CCheatOfficeDlg: :OnPaintO
{
if (IsIconic(»
{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect) ;
int x = (rect.WidthO - cxIcon + 1) I 2;
int y = (rect.HeightO - cyIcon + 1) 12;

I I Draw the icon
dc.DrawIcon(x, y, m_hIcon);

INTELUGENT OPTICAL SENSOR - 426

}
else
{
CPaintDC dc(this);
int loop, loop2;

for(loop2 = 0; loop2 <240; loop2++)
{

}

for (loop = 0; loop < 320; loop++)
{
int Value = FinaI.Data[loop][loop2];
dc.SetPixel(14 + loop, 14 + loop2, RGB(Value, Value, Value»;
Value = camera.Data[loop][loop2];
dc.SetPixel(345 + loop/2, 14 + loop2/2,RGB(Value, Value, Value»;
Value = Background.Data[loop][loop2];
dc.SetPixel(345 + loop/2, 148 + loop2/2,RGB(Value, Value, Value»;

}

CDialog: :OnPaintO;
}

}

II The system calls this to obtain the cursor to display while the user drags
II the minimized window.
HCURSOR CCheatOfficeDlg:: OnQueryDragIconO
{

return (HCURSOR) m_hIcon;
}

void CCheatOfficeDlg:: OnBackgroundButtonO
{
II TODO: Add your control notification handler code here
CFileDialog m_BackDlg(TRUE,"bmp","* .bmp");
CString Temp;
if (m_BackDlg.DoModaIO==IDOK)
{
Temp = m_BackDlg.GetPathNameO;
Background = OpenFileCTemp);
InvalidateO;

}
}

void CCheatOfficeDlg:: OnDatumButtonO
{
II TODO: Add your control notification handler code here
CFileDialog m_BackDlg(TRUE, "bmp","* .bmp");
CString Temp;
if (m_BackDlg.DoModaIO==IDOK)
{
Temp = m_BackDlg.GetPathNameO;
Datum = OpenFile(Temp);
camera = Datum;
InvalidateO;

ApPENDIX L - SOFTWARE SOURCE CODE

if(MessageBox("Do you want to use this Datum image ?","Datum Selection",MB_OKCANCEL)==IDOK)

}

m_DatumCheck = TRUE;
else m_DatumCheck = FALSE;
UpdateData(FALSE) ;

}

void CCheatOfficeDlg:: OnIncomingButtonO
{
II TODO: Add your control notification handler code here
CFileDialog m_BackDlg(TRUE, "bmp","* .bmp");
CString Temp;
if (m_BackDlg.DoModaIO==IDOK) .'

INTELUGENT OPTICAL SENSOR - 427

}

{
Temp = m_BackDlg.GetPathNameO;
camera = OpenFile(Temp);
InvalidateO;

}

void CCheatOfficeDlg: :OnExitButtonO
{
II roDO: Add your control notification handler code here
OnOKO;

}

DWORD ReadLong(fstream InFile)
{

BYTE al,a2,a3,a4;
DWORD ReturnVal;

InFile »al;
InFile » a2;
InFile » a3;
InFile »a4;

ApPENDIX L - SOFTWARE SOURCE CODE

ReturnVaI =(DWORD)(al + a2*256 + a3*pow(256,2) + a4*pow(256,3));

return ReturnVal;
}

WORD ReadShort(fstream InFile)
{

BYTE al,a2;
WORD RetumVal;

InFile» al;
InFile» a2;

ReturnVaI = (WORD)(al + a2*256);

return ReturnVal;
}

ImageInfo CCheatOfficeDlg: :OpenFile(CString Name)
{ .

ImageInfo Temp;
Temp.FileName = Name;
CString m_Detail;
BeginWaitCursorO;
fstream InFile;
InFile.open(Narne,ios: : binary I ios: : in);

WORD Header;
Header = ReadShort(InFile);
if(Header!=(CM'«8) + 'B')) IIExpect to read BM as first two bytes
{
m_Detaii = "File Header incorrect";
UpdateData(FALSE);
EndWaitCursorO;
return Temp;

}
DWORD FileSize = ReadLong(InFile);_

INTELUGENT OPTICAL SENSOR - 428

WORD Res1 = ReadShort(InFile);
WORD Res2 = ReadShort(InFile);
DWORD ImageOffset = ReadLong(InFile);
DWORD HeaderSize = ReadLong(InFile);
DWORD Width = ReadLong(InFile);
DWORD Height = ReadLong(InFile);
if (ReadShort(InFile) !=1)
{
m_Detaii = "File has more than one colour plane";
UpdateData(FALSE) ;
EndWaitcursorO;
retumTemp;

}
WORD ColDepth = ReadShort(InFile);
DWORD Compression = ReadLong(InFile);
DWORD ImageSize = ReadLong(InFile);
DWORD XPelsMeter = ReadLong(InFile);
DWORD YPelsMeter = ReadLong(InFile);
DWORD Colours = ReadLong(InFile);
DWORD ImpColours = ReadLong(InFile);

if(Compression!=O) //Not designed for compressed bitmaps
{
m_Detaii = "Bitmap File is Compressed";
UpdateData(FALSE) ;
EndWaitcursorO;
return Temp;

}
if(Width!=320)
{
m_Detaii = "Image Width is not 320 pixels";
UpdateData(FALSE) ;
EndWaitcursorO;
return Temp;

}
if(Height! =240) //only for a 320x240 bitmap!
{
m_Detaii = "File's Height is not 240 pixels";
UpdateData(FALSE) ;
EndWaitCursorO;
return Temp;

}
if(CoIDepth!=24) //only for 24bit bitmaps
{
m_Detaii = "File is not a 24bit RGB image";
UpdateData(FALSE) ;
EndWaitCursorO;
return Temp;

}

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

ApPENDIX L - SOFTWARE SOURCE CODE

InFile.seekg(ImageOffset,ios: : beg); //set file pointer to start of image data

int Sum = 0;

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)
{

PlxelB = InFile.getO;
PixelG = InFile.getO;
PixelR = InFile.getO;

Temp.Data[loop2][240-loop-1] = (unsigned _int8)«PixeIR)*0.3 + (PixeIG)*0.59 + (PixeIR)*O.l1);
Sum += Temp.Data[loop2][240-loop-1];

}

INTEWGENT OPTICAL SENSOR - 429

}
InRle.closeO;

IIRnished reading the bitmap file, now calculate threshold
Iland threshold version of image map
Temp.Median = (unsigned _intS)(Sum/76800);
EndWaitCursorO;
retum Temp;

}

void CCheatOfficeDlg: : OnProcessButtonO
{
II TODO: Add your control notification handler code here
if (!m_DatumCheck) return;
DoJitterO;
DoSharpO;
DoObject50;
int loop, loop2;
Final = Background;
for(loop = 0; loop<320; loop++)
{
for(loop2 = 0; loop2<240; loop2++)
{

}

lIif((Sharp[loop/4][loop2/4])&&(Difference[loop][loop2]))
if (Difference[loop][loop2])
FinaI.Data[loop][loop2] = camera.Data[loop][loop2];

}
InvalidateO;

}

ApPENDIX L - SOFTWARE SOURCE CODE

void CCheatOfficeDlg: : DoJitterO
{
11**
I/Following Code generates the thresholded array of the incomming image II
lifirst sequence, image as is
int loop, loop2, Space, Diff,count = 0;

Space = (int)sqrt(pow(camera.Median - Datum.Median,2));
for (loop = 0; loop <320; loop ++)
{
for (loop2 = 0; loop2 < 240; loop2 ++)
{

lIimage jitter correction code
lican compensate by 1 pixel in a certain direction
IINormal image
Diff = (int)sqrt(pow((camera.Data[loop][loop2] - Datum.Data[loop][loop2]),2));
if (Diff> (m_Mult*Space)) Ilm_Mult adjusts the sensitivity
{
II If a difference is detected, the pixel is shifted
II around by a distance of one pixel to evaluate if
II this is due to a small wind movement. The 9 pixels
II surrounding the current pixel will be evaluated
II Every image pixel can be shifted in a different direction

III mage shifted up and left
if ((loop<319)&&(loop2<239))
{
Diff = (int)sqrt(pow((camera.Data[loop+l][loop2+1] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) Ilm_Mult adjusts the sensitivity

{
IIImage shifted up
if (loop2<239)
{

INTElliGENT OPTICAL SENSOR - 430

}
}

}

ApPENDIX L - SOFTWARE SOURCE CODE

Diff = (int)sqrt(pow«camera.Data[loop][loop2+1] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) Ilm_Mult adjusts the sensitivity
{

}

llImage shifted up and right
if «loop>O)&&(loop2<239))
{
Diff = (int)sqrt(pow«camera.Data[loop-1][loop2+1] - Datum.Data[loopHloop2]),2));
if (Diff > (m_Mult*Space)) Ilm_Mult adjusts the sensitivity
{
III mage shifted left
if (loop<319)
{

}
}

}
}

Diff = (int)sqrt(pow«camera.Data[loop+1Hloop2] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) Ilm_Mult adjusts the sensitivity
{
IIImage shifted right
if (loop>O)
{

}
}

Diff = (int)sqrt(pow«camera.Data[loop-1Hloop2] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) Ilm_Mult adjusts the sensitivity
{
IIImage shifted down and left
if «loop<319)&&(loop2>O))
{

}

Diff = (int)sqrt(pow«camera.Data[loop+ 1Hloop2-1] - Datum.Data[loopHloop2]),2));
if (Diff > (m_Mult*Space)) Ilm_Mult adjusts the sensitivity
{
IIImage shifted down
if (loop2>O)

}

{
Diff = (int)sqrt(pow«camera.Data[loop][loop2+1] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) Ilm_Mult adjusts the sensitivity
{

//Image shifted down and right
if «loop>O)&&(loop2>O))
{

Diff = (int)sqrt(pow«camera.Data[loop-l][loop2-1] - Datum.Data[loopHloop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity
{
IIIf none of the pixel shifts Difference in a difference exclusion
lithe pixel is marked as a set movement difference
Difference[loopHloop2] = TRUE;

}
}

count++;
}

}
}

II If anyone of the pixel shifts Differences in a difference
Ilexclusion, the pixel is marked as non altered, ie only
Iia small movement due to wind or Bitmapcamera.Gray vibration

else Difference[loop][loop2] = FA~.!=;

INTELUGENT OPTICAL SENSOR - 431

}
}
NetworkThreshold = 6 + (int)(count/SOOO);

}

void CCheatOfficeDlg:: DoSharpO
{
int loop,Ioop2, loop3, loop4;
int count = 0;

for (loop2=0; loop2<60; loop2++)
{
for (loop=O; loop<SO; loop++)
{

}
}

}

Sharp[loop][loop2] = FALSE;
count = 0;
for (loop3=0; loop3<4; loop3++)
{
for (loop4 = 0; loop4<4; loop4++)
{
if (Difference[4*loop+loop3][4*loop2+loop4])

count++;
}

}
if (count >NetworkThreshold)
{
Sharp[loop][loop2] = TRUE;

}

void CCheatOfficeDlg:: DoObjectsO
{
int counter = 0;
int loop, loopl, loop2, loop3;
int Mem, Set, gap;

for (loop = 0; loop<lOO; loop++)
{
Box[loop].Xmin = SO;
Box[loop].Ymin = 60;
Box[loop].Xmax = 0;
Box[loop].Ymax = 0;

}

//Check every line in the image
loop=O;
for(loop2=0; loop2<60; loop2++)
{
Set = 0;
Mem = 0;
gap = 0;

for (loop=O; loop<SO; loop++)
{

if (Sharp[loop][loop2]==TRUE)
{
counter++;
Box[counter].Xmin = loop;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 432

ApPENDIX L - SOFTWARE SOURCE CODE

Box[counter].Ymin = loop2;
Box[counter].Ymax = loop2;
Box[counter].Xmax = loop;
Box[counter].Xmini[loop2] = loop;
Box[counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)
{
if«loop>=(Box[loop3].Xmin-2))&&(loop<=(Box[loop3].Xmax+2))&&

{

«loop2-Box[loop3]. Ymax) <3)&&(loop3! =counter)&&
(loop2>0))

Set = 1;
Mem = loop3;

}
}
//End of line check

while((gap<3)&&(loop<SO))
{
loop++;
if(Sharp[loop] [loop2] = = 1)
{

gap = 0;
Box[counter].Xmax = loop;
Box[counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)
{

}

if«loop>=Box[loop3].Xmin-2)&&(loop<=Box[loop3].Xmax+2)
&&(loop2-Box[loop3]. Ymax <3)&&(loop3! =counter)&&(counter>O))

{
Set = 1;
Mem = loop3;

}

//End of line check
}
else gap++;

}
gap = 0;

//Matching correction code, updates matched object
//and deleted new object created
if (Set==l)
{
if(Box[counter].Xmin<Box[Mem].Xmin) Box[Mem].Xmin = Box[counter].Xmin;
if(Box[counter].Xmax>Box[Mem].Xmax) Box[Mem].Xmax = Box[counter].Xmax;

}

Box[Mem].Ymax = loop2; .
Box[counter].Xmin = SO;
Box[counter].Xmax = 0;
Box[counter].Ymin = 60;
Box[counter].Ymax = 0;
Box[Mem].Xmaxi[loop2] = Box[counter].Xmaxi[loop2];
Box[Mem].Xmini[loop2] = Box[counter].Xmini[loop2];
counter--;
Set = 0;
Mem = 0;

}

}
loop=O;

}
//Box size filtering code, checking for minimum target size

int ISZero = 0;

INTELUGENT OPTICAL SENSOR - 433

for (loop = 1; loop<=counter; loop++)
{
if (IsZero==l)
{

}

loop--;
IsZero = 0;

ApPENDIX L - SOFTWARE SOURCE CODE

int TArea = «Box[loop].Xmax - Box[loop].Xmin)*(Box[loop].Ymax-Box[loop].Ymin));
if (TArea <74)
{

}
}

}

for (loop1 = loop; loop1<=counter; loop1++)
{

Box[loop1] = Box[loop1+1];
if (loop==l) IsZero = 1;
else loop--;

}
counter--;

void CCheatofficeDlg:: OnSetButtonO
{
II TODO: Add your control notification handler code here
UpdateData(TRUE) ;

}

II Cheat OfficeDlg.h : header file
II

#if !defined(AF)CCHEATOFFlCEDLG_H_C9352226_1C58_11D5_B1DAJ413A2AD906F _INCLUDED~
#define AFX_CHEATOFFICEDLG_H_C9352226_1C58_11D5_B1DAJ413A2AD906F _INCLUDED_

#if _MSC_ VER > = 1000
#pragma once
#endif II _MSC_VER >= 1000

I I //I I II I I //I I II I I I I I I II I I II //I I I I //I //I //I I I I I //I //I I I I I I II I I //I I //I I I //I //I
II CCheatofficeDlg dialog

struct ImageInfo
{

CString fileName;
unsigned _intB Data[320][240];
int Median;

};

INTELUGENT OPTICAL SENSOR - 434

struct BoxInfo
{
unsigned _intB Xmin;
unsigned _intB Xmax;
unsigned _intB Ymin;
unsigned _intB Ymax;
unsigned _intB Xmini[60];
unsigned _intB Xmaxi[60];

};

class CCheatOfficeDlg : public CDialog
{
/ / Construction
public:
void DoObjectsO;
void DoSharpO;
void DoJitterO;

ApPENDIX L - SOFTWARE SOURCE CODE

ImageInfo OpenFile(CString Name);
CCheatOfficeDlg(CWnd* pParent = NULL); II standard constructor

II Dialog Data
II{ {AFX_DATA(CCheatOfficeDlg)
enum { IDD = IDD_CHEATOFFICE_DIALOG };
BOOL m_DatumCheck;
double m_Mult;
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CCheatOfficeDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
II}}AFX_ VIRTUAL

II Implementation
protected:
HICON m_hIcon;

II Generated message map functions
II{ {AFX_MSG(CCheatOfflceDlg)
virtual BOOL OnInitDialogO;
afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaintO;
afx_msg HCURSOR OnQueryDragIconO;
afx_msg void OnBackgroundButtonO;
afx_msg void OnDatumButtonO;
afx_msg void OnIncomingButtonO;
afx_msg void OnExitButtonO;
afx_msg void OnProcessButtonO;
afx_msg void OnSetButtonO;
II} }AFX_MSG
DECLARE_MESSAGE_MAP()

private:
BoxInfo Box[lOO];
int NetworkThreshold;
BOOL Sharp[BO][60];
BOOL Difference[320][240];
ImageInfo Final;
ImageInfo Background;
ImageInfo Datum;
ImageInfo Camera;

};

II DDX/DDV support

INTEWGENT OPTICAL SENSOR - 435

ApPENDIX L - SOFTWARE SOURCE CODE

//{ {Af)UNSERT_LOCATION}}
II Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif II !defined
(AFX_CHEATOFFICEDLG_H __ C9352226_1C58_11D5_B1DA_F413A2AD906F __ INCLUDED_)

INTELLIGENT OPTICAL SENSOR - 436

ApPENDIX L - SOFTWARE SOURCE CODE

20.8 - Vos Reader

II VosReaderDlg.cpp : implementation file
II

#include "stdafx.h"
#include "VosReader.h"
#include "VosReaderDlg.h"
#include <windowsx.h>
#include <string.h>
#include <fstream.h>
#include <iostream.h>
#include <direct.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[J = _FILE_;
#endif

I I II I I II I /II II I I 1/11 I I II I I II /II /II II /II I I I II /II I I I I I I I 1/11 /II I I /II II I I II /II I I
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
CAboutDl90;

I I Dialog Data
II { {AFX_DATA(CAboutDlg)
enum { 100 = IOD_ABOUTBOX};
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pOX); II DDX/DDV support
I I}}AFX_ VIRTUAL

I I Implementation
protected:
II{ {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_MAP()

};

CAboutDlg: :CAboutD190 : CDialog(CAboutDlg: :100)
{
II{ {AFX_DATA_INIT(CAboutDlg)
II} }AFX_DATA_INIT

}

void CAboutDlg: : DoDataExchange(CDataExchange* pOX)
{
CDialog: : DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{ {AFX_MSG_MAP(CAboutDlg)
I I No message handlers

II} }AFX_MSG_MAP
END_MESSAGE_MAPO

INTELUGENT OPTICAL SENSOR - 437

ApPENDIX L - SOFTWARE SOURCE CODE

II /II I /II I II I I II /II I /II I II /II I /II I II /II /II /II /II /II /II /II /II I I I I I I I II I /II I /II
II CVosReaderDlg dialog

CVosReaderDlg: :CVosReaderDlg(CWnd* pParent I*=NULL *!)
: CDialog(CVosReaderDlg: :IDD, pParent)

{
II { {AF)CDATA_INIT(CVosReaderDlg)
m_ComboResult = _T("");
II} }AF)CDATA_INIT
II Note that Load Icon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO->LoadIcon(IDR_MAINFRAME);

}

void CVosReaderDlg: : DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II { {AFX_DATA_MAP(CVosReaderDlg)
DDX_CBString(pDX, IDC_COMBOl, m_ComboResult);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CVosReaderDlg, CDialog)
II{ {AFX_MSG_MAP(CVosReaderDlg)
ON_WM_SYSCOMMANDO
ON_WM_PAINTO
ON_WM_QUERYDRAGICONO
ON_BN_CUCKED(IDC_EXIT_BUTTON, OnExitButton)
ON_BN_CUCKED(IDC_OPEN_BUTTON, OnOpenButton)
ON_BN_CUCKED(IDC_RESTORE_BUTTON, OnRestoreButton)
ON_BN_CUCKED(IDC_CREATE_BUTTON, OnCreateButton)
ON_BN_CUCKED(IDC_APPLY _BUTTON, OnApplyButton)
ON_BN_CUCKED(IDC_SAVE_BUTTON, OnSaveButton)
ON_WM_DESTROYO
ON_BN_CUCKED(IDC_VIEW_BUTTON, OnViewButton)
ON_BN_CUCKED(IDC_DELETE_BUTTON, OnDeleteButton)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

/II I /II I I I /II I II I I II I I I I /II I I /II /III II /II /II I I I /II I I /II I I I I I I I I I I I I I I /II I I I I I
II CVosReaderDlg message handlers

BOOL CVosReaderDlg: :OnInitDialogO
{
CDialog: :OnInitDialogO;

II Add "About..." menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu ! = NULL)
{
CString strAboutMenu;
strAboutMenu. LoadStri ng (IDS_ABOUTBOX) ;
if (!strAboutMenu.IsEmpty(»
{

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); II Set big icon

INTELUGENT OPTICAL SENSOR - 438

ApPENDIX l - SOFTWARE SOURCE CODE

SetIcon(m_hlcon, FALSE);

/I TODO: Add extra initialization here
Set! = 0;
Set2 = 0;
Set3 = 0;

char* buffer= "";
getcwd(buffer, 500);
m_Working = buffer;
CFileFind finder;
CString FilterDir = buffer;
FilterDir += "\\Filters";
chdir{FilterDir) ;

I I Set small icon

GetDlgItem(IDC_ VIEW _BUTTON)->EnableWindow(FALSE);

CComboBox* FilterList = (CComboBox*)GetDlgItem(IDC_COMB01);

BOOl bWorking = finder.FindFile("*.VRF");
while (bWorking)
{
bWorking = finder.FindNextFileO;
FilterUst->AddString(finder.GetFileTitleO);

}
chdir(buffer) ;

return TRUE; II return TRUE unless you set the focus to a control
}

void CVosReaderDlg: :OnSysCommand(UINT nID, lPARAM IParam)
{
if «nID & OxFFFO) == IDM.,..ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout. DoModalO;

}
else
{
CDialog:: OnSysCommand(nID, IParam);

}
}

11************************ GlOBALS *************************

int Stored[324][244];
int Screen[324][244];
int Change[324][244];
float Filter[25];
CString Used = 'OIl;

II If you add a minimize button to your dialog, you will need the code below
II to draw the icon. For MFC applications using the document/view model,
I I this is automatically done for you by the framework.

void CVosReaderDlg: :OnPaintO
{
if (IsIconic())
{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle

INTELUGENT OPTICAL SENSOR - 439

int cxlcon = GetsystemMetrics(SM_CXICON);
int cylcon = GetsystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect) ;
int X = (rect.WidthO - cxlcon + 1) / 2;
int y = (rect.HeightO - cylcon + 1) / 2;

/ / Draw the icon
dc.Drawlcon(x, y, m_hlcon);

}
else
{
CPaintDC dc(this);
if (Set3 == 0)
{

ApPENDIX L - SOFTWARE SOURCE CODE

HBITMAP hbitmap = : : LoadBitmap(: :AfxGetInstanceHandleO,MAKEINTRESOURCE(IDB_BITMAP2»;
HDC hMemDC = : :CreateCompatibleDC(NULL);
SelectObject(hMemDC,hbitmap);
: :StretchBlt(dc.m_hDC, 12, 18, 320, 240,hMemDC, 0,0,320, 240, SRCCOPy);
:: DeleteDC(hMemDC);
: : DeleteObject(hbitrnap);

}
else
{

}

for (int loop = 0; loop <320; loop ++)
{
for (int loop2 = 0; loop2<240; loop2 ++)
{

}

if (Screen[loop+2][loop2+2] == 1)
SetPixel(dc, loop+12, loop2+18,RGB(255,255,255»;

else
SetPixel(dc, loop+12, loop2+18, RGB(O,O,O»;

}

if (Set! != 0)
{

: : StretchDIBits(dc.m_hDC,
347,

}
else
{

18,
160,
120,
0,
0,
DibWidth(Irnagel),
DibHeight(Irnagel),
Dibptr(Imagel),
Diblnfo(Imagel),
DIB_RGB_COLORS,
SRCCOPY);

HBITMAP hbitmap = :: LoadBitrnap(: :AfxGetlnstanceHandleO,MAKEINTRESOURCE(IDB_BITMAP1»;
HDC hMemDC = ::CreateCompatibleDC(NULL);
SelectObject(hMemDC,hbitmap) ;
::StretchBlt(dc.m_hDC, 347,18,160, 120,hMemDC, 0,0,160,120, SRCCOPy);
: : DeleteDC(hMemDC);
: : DeleteObject(hbitmap);

}

if (Set2 ! = 0)
{

: : StretchDIBits(dc. m_hDC,
347,

INTELUGENT OPTICAL SENSOR - 440

}
else
{

141,
160,
120,
0,
0,
DibWidth(Image2),
DibHeight(Image2),
Dibptr(Image2),
DibInfo(Image2),
OIB_RGB_COLORS,
SRCCOPY);

ApPENDIX L - SOFTWARE SOURCE CODE

HBITMAP hbitmap = : : LoadBitmap(: :AfxGetInstanceHandleO,MAKEINTRESOURCE(IDB_BITMAP1»;
HDC hMemDC = ::CreateCompatibleDC(NULL);
SelectObject(hMemDC,hbitmap) ;
: : Stretch Blt(dc. m_hDC, 347, 141, 160, 120,hMemDC, 0,0,160, 120, SRCCOPY);
: : DeleteDC(hMemDC);

}

: : DeleteObject(hbitmap);
}

CDialog: :OnPaintO;
}

II The system calls this to obtain the cursor to display while the user drags
I I the minimized window.
HCURSOR CVosReaderDlg: :OnQueryDragIconO
{
return (HCURSOR) m_hIcon;

}

void CVosReaderDlg: :OnExitButtonO
{
II TODO: Add your control notification handler code here
OnOKO;

}

11***************** OWN FUNCTION ********************

POIB CVosReaderDlg: : DibOpenFile(LPSTR szFile)
{

HFILE fh;
DWORD dwLen;
DWORD dwBits;
POIB pdib;
LPVOID p;
OFSTRUCT of;

#if defined(WIN32) II defined LWlN32)
#define GetCurrentInstanceO GetModuleHandle(NULL)
#else
#define GetCurrentInstanceO (HINSTANCE)SELECTOROF«LPVOID)&of)
#endif

fh = OpenFile(szFile, &of, OF _READ\

INTELUGENT OPTICAL SENSOR - 441

if (fh == -1)
{
HRSRC h;
h = FindResouree(GetCurrentInstaneeO, szFile, RT_BITMAP);

#if defined(WIN32) II definedCWIN32)
if (h)

return (POIB)LockResouree(LoadResouree(GetCurrentInstaneeO, h));
#else

if (h)
fh = AeeessResource(GetCurrentInstaneeO,h);

#endif
}

if (fh == -1)
return NULL;

pdib = DibReadBitmaplnfo(fh);

if (!pdib)
return NULL;

dwBits = pdib->biSizelmage;
dwLen = pdib->biSize + DibPaletteSize(pdib) + dwBits;

p = GlobaIReAllocPtr(pdib,dwLen,O);

if (!p)
{
GlobaIFreePtr(pdib) ;
pdib = NULL;

}
else
{
pdib = (POIB)p;

}

if (pdib)
{

ApPENDIX L - SOFTWARE SOURCE CODE

_hread(fh, (LPBYTE)pdib + (UINT)pdib->biSize + DibPaletteSize(pdib), dwBits);
}

_Iclose(fh);

return pdib;

}

PDIB CVosReaderDlg: : DibReadBitmaplnfo(HFILE fh)
{

DWORD off;
HANDLE hbi = NULL;
int size;
int i;
int nNumColors;

RGBQUAD FAR *pRgb;
BITMAPINFOHEADER bi;
BITMAPCOREHEADER be;
BITMAPFILEHEADER bf;
POIB pdib;

if (fh == -1)
return NULL;

off = _lIseek(fh, OL, SEEK_CUR);

INTELUGENT OPTICAL SENSOR - 442

if (sizeof(bf) != _lread(fh,(LPSTR)&bf, sizeof(bf)))
return FALSE;

if (bf.bfType != BFT_BITMAP)
{
bf. bfOffBits = OL;
_lIseek(fh, off, SEEK_SET);

}

if (sizeof(bi) != Jread(fh,(LPSTR)&bi, sizeof(bi»)
return FALSE;

switch (size = (int)bi.biSize)
{

default:
case sizeof(BITMAPINFOHEADER): break;

case sizeof(BITMAPCOREH EADER) :
be = *(BITMAPCOREHEADER*)&bi;
bi.biSize = sizeof(BITMAPINFOHEADER);
bLbiWidth = (DWORD)be.beWidth;
bi.biHeight = (DWORD)be.beHeight;
bi.biPlanes = (UINT)bc.bePlanes;
bLbiBitCount = (UINT)be.beBitCount;
bi.biCompression = BeRGB;
bi.biSizelmage = 0;
bLbiXPelsPerMeter = 0;
bLbiYPelsPerMeter = 0;
bi.biClrUsed = 0;
bLbiClrlmportant = 0;

ApPENDIX L - SOFTWARE SOURCE CODE

_llseek(fh, (LONG)sizeof(BITMAPCOREHEADER)-sizeof(BITMAPINFOHEADER),SEEK_CUR);
break;

}

nNumColors = DibNumColors(&bi);

#ifO
if (bi.biSizelmage == 0)
bi.biSizelmage = DibSizelmage(&bi);

if (bi.biClrUsed == 0)
bi.biClrUsed = DibNumColors(&bi);

#else
FixBitmaplnfo(&bi) ;

#endif

pdib = (PDlB)GlobaIAllocptr(GMEM_MOVEABLE, (LONG)bi.biSize + nNumColors * sizeof(RGBQUAD»;

if (!pdib)
return NULL;

*pdib = bi;
pRgb = DibColors(pdib);

if (nNumColors)
{
if (size == sizeof(BITMAPCOREHEADER»
{

_Iread(fh, (LPVOID)pRgb, nNumColors * sizeof (RGBTRIPLE»;
for (i = nNumColors -1; i >=0; i--)
{

RGBQUAD rgb;
rgb.rgbRed = «RGBTRIPLE FAR *)pRgb)[i].rgbtRed;
rgb.rgbBlue = «RGBTRIPLE FAR *~pRgb)[i].rgbtBlue;

INTELUGENT OPTICAL SENSOR - 443

rgb.rgbGreen = ((RGBTRIPLE FAR *)pRgb)[i].rgbtGreen;
rgb.rgbReserved = (BYTE)O;

pRgb[i] = rgb;
}

}
else
{

_lread(fh,(LPVOID)pRgb, nNumColors * sizeof(RGBQUAD»;
}

}

if (bf.bfOffBits != OL)
_lIseek(fh, off + bf.bfDffBits, SEEK_SET);

return pdib;

}

void CVosReaderDlg::OnOpenButtonO
{
II TODO: Add your control notification handler code here
char FileTitle[100];
char FileName[500];
Set! = 0;
Set2 = 0;
Set3 = 0;

OPEN FILENAME ofn;
_frnemset(&ofn, 0, sizeof(ofn»;
ofn.IStructSize = sizeof(OPENFILENAME);

ofn.hwndOwner = m_hWnd;;
ofn.hInstance = NULL;

ofn.lpstrFilter = TEXT("VosDerno files *.vos\O*.vos\O\O");

ofn.lpstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterIndex = 1;
ofn.lpstrFile = FileName;
ofn.nMaxFile = 500;
ofn.lpstrFileTitle = File Title;
ofn.nMaxFileTitle = 99;
ofn.lpstrInitialDir = NULL;
ofn.lpstrTitle = "Open BMP file";
ofn.Flags = OFNJILEMUSTEXIST;
ofn.lpstrDefExt = "BMP";
ofn.ICustData = NULL;
ofn.lpfnHook = NULL;
ofn.lpTemplateName = NULL;

FileNarne[O] = '\0';

GetOpenFileName(&ofn) ;

if (FileName[O] != '\0')
{
CString Full Name;
CString PartName;

Full Name = FileName;
PartName = FileTitle;

char Name1[500];
char Name2[500];

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 444

for (int loop = 0; loop<500; loop ++)
{

Name1[loop] = NULL;
Name2[loop] = NULL;

}

for (loop = 0; loop < 324; loop ++)
{

for (int loop2 = 0; loop2 < 244; loop2 ++)
{
Change[loop][loop2] = 0;
Stored[loop][loop2] = 0;
Screen[loop][loop2] = 0;

}
}

int Count;
Count = FuIiName.Find(PartName);

for (loop = 0; loop < Count; loop ++)
{

Name1[loop] = FileName[loop];
Name2[loop] = FileName[loop];

}

strcat(Name2, "camera.bmp");
strcat(Name1, "Datum .bmp");

ifstream file_in(FileName);
int value1;
int value2;
do
{

}

file_in » value1;
file_in » value2;

Change[value1+2][value2+2] = 1;
Screen[value1+2][value2+2] = 1;
Stored[value1+2][value2+2] = 1;

while (file_in.eofO == 0);

for (loop = 2; loop <322; loop++)
{

for (int loop2 = 2; loop2 <242; loop2++)
{
if (Stored[loop][loop2] != 1)
{

}
}

Stored[loop][loop2] = -1;
Screen[loop][loop2] = -1;
Change[loop][loop2] = -1;

}

Set3 = 1;

InvalidateRect(CRect(12,18,332,258), FALSE);

if(Image1 = DibOpenFile(Name1»
{

Set! = 1;
}
if(Image2 = DibOpenFile(Name2»

ApPENDIX L - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 445

{
Set2 = 1;

}
}

InvalidateO;
}

void CVosReaderDlg: :OnRestoreButtonO
{
II TODO: Add your control notification handler code here
Used = "";
for (int loop=O; loop<324; loop++)
{
for (int loop2 = 0; loop2<244; loop2++)
{

Screen[loop][loop2] = Stored[loop][loop2];
Change[loop][loop2] = Stored[loop][loop2];

}
}
InvalidateRect(CRect(12,18,336,262»;

}

void CVosReaderDlg: :OnCreateButtonO
{
II TODO: Add your control notification handler code here
CString FilterDir = m_Working + "\\Filters" ;
chdir(FilterDi r);

m_dlg.DoModaIO;

CFileFind finder;
CComboBox* FilterUst = (CComboBox*)GetDlgItem(IDC_COMB01);
FilterUst-> ResetContentO ;
BOOL bWorking = finder.FindFile("*.VRP');
while (bWorking)
{
bWorking = finder.FindNextFileO;
FilterUst->AddString(finder.GetFileTitleO);

}
chdir(m_Working);

}

void CVosReaderDlg: :OnApplyButtonO
{
II TODO: Add your control notification handler code here
UpdateData(TRUE) ;
m_FilterName = m_Working + "\\Filters\\" + m_ComboResult + ".vrf";
Used = m_ComboResult;
ifstream file_in(m_FilterNarne);
char Validation1;
char Validation2;
char Validation3;

file_in » Validation1;
file_in » Validation2;
file_in » Validation3;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 446

ApPENDIX L - SOFTWARE SOURCE CODE

if «Validation1 =='V') && (Validation2 =='R') && «Validation3 =='3')1 1 (Validation3 =='5')))
{

for (int loop = 0; loop<5; loop ++)
{

}

Filter[O+loop] = 0;
Rlter[l+loop] = 0;
Rlter[2+loop] = 0;
Filter[3+loop] = 0;
Filter[4+loop] = 0;

file_in » Rlter[O+loop];
file_in » Rlter[1+loop];
file_in » Filter[2+loop];
file_in » Rlter[4+loop];

float Temp = 0;
for (loop = 0; loop <320; loop ++)
{

for (int loop2 = 0; loop2 <240; loop2 ++)
{
for (int loop3 = 0; loop3<5; loop3 ++)
{
Temp +=(Change[loop+loop3][loop2]) * (Rlter[loop3]);
Temp +=(Change[loop+loop3][loop2+1]) * (Rlter[loop3+5]);
Temp +=(Change[loop+loop3][loop2+2]) * (Filter[loop3+10]);
Temp +=(Change[loop+loop3][loop2+3]) * (Rlter[loop3+15]);
Temp +=(Change[loop+loop3][loop2+4]) * (Rlter[loop3+20]);

}
if (Temp >=0)
Screen[loop+2][loop2+2]=1;
else Screen[loop+2][loop2+2]=-1;
Temp = 0;

}
}

for (loop = 2;loop<322; loop++);
{

}

for (int loop2 = 2; loop2<242; loop2++)
{
Change[loop][loop2] = Screen[loop][loop2];

II Screen[loop][loop2] = Change[loop][loop2];
}

InvalidateRect(CRect(12,18,336,262»;
}
else MessageBox("Invalid Filter File");

}

void CVosReaderDlg: :OnSaveButtonO
{
/I roDO: Add your control notification handler code here
CString SaveDir = "";
SaveDir = m_Working + "\\Saved Data";
chdir(SaveDir);

CRleRnd finder;
BOOL bWorking = finder.FindRle("*.VRD");
int Trial = 1;
while (bWorking)
{
bWorking = finder.FindNextFileO;
if (Trial == atoi(finder.GetRleTitle()))
{

Trial ++;

INTELLIGENT OPTICAL SENSOR - 447

}
}
char* Temp = "";
itoa(Trial, Temp,lO);
CString NewName = Temp;
NewName + = ". vrd";

UpdateData(TRUE) ;

of stream SaveFile(NewName);

SaveFile « "VRD\n";
SaveFile « "Filter used : ";
Save File « Used «"\n";
SaveFile « "Original Data - Filtered Data :\n";
for (int loop = 2; loop <322; loop++)
{
for (int loop2 = 2; loop2 <242; loop2++)
{

SaveFile « Stored[loop][loop2]«"\t"«Screen[loop][loop2]«"\n";
}

}
SaveFile.closeO;
chdir(m_Working);

}

void CVosReaderDlg: :OnDestroyO
{
CDialog: :OnDestroyO;

II TODO: Add your message handler code here
GlobaIFreeptr(Imagel);
GlobaIFreeptr(Image2) ;

}

void CVosReaderDlg: :OnViewButtonO
{
II mDO: Add your control notification handler code here

II chdir(m_Working);
II m_dlg.DoModaIO;

}

void CVosReaderDlg: :OnDeleteButtonO
{
II mDO: Add your control notification handler code here
CString FilterDir = m_Working + "\\Filters" ;
chdir(FilterDir);

UpdateData(TRUE) ;

CString Temp = m_ComboResult;
m_FilterName = m_ComboResult + ".vrf";

if «Temp == 'III) II (DeleteFile(m_FilterName) == 0»
{
MessageBox("File could not be found");

}
else
{
CFileFind finder;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 448

CComboBox* FilterList = (CComboBox*)GetDlgItem(IDC_COMB01);
FilterList-> ResetContentO ;
BOOL bWorking = finder.FindFile("* .VRF");
while (bWorking)
{

bWorking = finder.FindNextFileO;
FilterList->AddString(finder.GetFi leTitleO);

}
}

chdir(m_Working);

}

II VosReaderDlg.h : header file

#indude "Editor.h"
II

ApPENDIX L - SOFTWARE SOURCE CODE

#if Idefined(AF)CVOSREADERDLG_H_CA31C186_ 4268_11D2_BAOC_0060084F84CD_INCLUDED_)
#define AF)C VOSREADERDLG_H_CA31C186_ 4268_11D2_BAOC_0060084F84CD_INCLUDED_

#if _MSC_ VER > = 1000
#pragma once
#endif II _MSC_VER >= 1000

11/1 II I I I I I I 11/1 11111/11 11/ I II II I 11/ I I I I I I I I I I 11/ I II 11/ 11/ 11/1 I I I I II 11/1 I I I I I
II CVosReaderDlg dialog
IIOverhead declarations for DlB manipulation
typedef LPBITMAPINFOHEADER PDlB;

#define DibWidth(lpbi) \
(UINT)«(LPBITMAPINFOHEADER)(lpbi»->biWidth)

#define DibHeight(lpbi) \
(UINT)«(LPBITMAPINFOHEADER)(lpbi»->biHeight)

#define DibColors(lpbi) \
«RGBQUAD FAR *)«LPBYTE)(lpbi) + (int)(lpbi)->biSize»

#ifdef WIN32
#define Dibptr(lpbi) \
((Ipbi)->biCompression == BI_BITFIELDS \
? (LPVOID)(DibColors(lpbi) + 3)\
: (LPVOID)(DibColors(lpbi) + (UINT)(lpbi)->biClrUsed»

#else
#define Dibptr(lpbi) \
(LPVOID)(DibColors(lpbi) + (UINT)(lpbi)->biClrUsed)

#endif

#define DibInfo(pDIB) \
«BITMAPINFO FAR *)(pDlB»

#define DibNumColors(lpbi) \
((Ipbi)->biClrUsed == 0 && (lpbi)->biBitCount <= 8 \
? (int)(l « (int)(lpbi)->biBitCount) \
: (int)(lpbi)->biCirUsed)

#define DibPaletteSize(lpbi) \
(DibNumColors(lpbi) * sizeof{RGBQUAD»

#define BFT_BITMAP Ox4d42

#define WIDTHBYTES(i) \
«unsigned)((i+31)&(",31»/8)

#define DibWidthBytesN(lpbi, n) \
(UINT)WIDTHBYTES«UINT)(lpbi)->bi'y~idth * (UINT)(n»

INTEWGENT OPTICAL SENSOR - 449

ApPENDIX L - SOFTWARE SOURCE CODE

#define DibWidthBytes(lpbi) \
DibWidthBytesN(lpbi, (lpbi)->biBitCount)

#define DibSizelmage(lpbi) \
«lpbi)->biSizelmage == 0 \
? «DWORD)(UINT)DibWidthBytes(lpbi) * (DWORD)(UINT)(lpbi)->biHeight) \
: (lpbi)->biSizeImage)

#ifndef BCBITFIELDS
#define BCBITFIELDS 3
#endif
#define FixBitmapInfo(lpbi) \
if «lpbi)->biSizeImage == 0) \
(lpbi)->biSizeImage = DibSizelmage(lpbi); \
if «lpbi)->biCirUsed == 0) \
(lpbi)->biClrUsed = DibNumColors(lpbi); \
if ((Ipbi)->biCompression == BCBITFIELDS && (lpbi)->biClrUsed == 0)

class CVosReaderDlg : public CDialog
{
II Construction
public:

int Set!;
int Set2;
int Set3;
POlB Imagel;
POlB Image2;
CString m_FilterName;
CString m_Working;

CVosReaderDlg(CWnd* pParent = NULL);

CEditor m_dlg;

I I Dialog Data
II{ {AF)CDATA(CVosReaderDlg)
enum { IDD = IDD_VOSREADER_OlALOG };
CString m_ComboResult;
II} }AFX_DATA

II standard constructor

II ClassWizard generated virtual function overrides
II{ {AF)CVIRTUAL(CVosReaderDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
II} }AFX_VIRTUAL

II DDX/DDV support

I I Implementation
protected:

HICON m_hIcon;
POlB DibOpenFile(LPSTR szFile);
PDIB DibReadBitmaplnfo(HFILE fh);

II Generated message map functions
II{ {AFX_MSG(CVosReaderDlg)
virtual BOOL OnlnitDialogO;
afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaintO;
afx_msg HCURSOR OnQueryDragIconO;
afx_msg void OnExitButtonO;
afx_msg void OnOpenButtonO;
afx_msg void OnRestoreButtonO;
afx_msg void OnCreateButtonO;
afx_msg void OnApplyButtonO;
afx_msg void OnSaveButtonO;

INTELUGENT OPTICAL SENSOR - 450

afx_msg void OnDestroyO;
afx_msg void OnViewButtonO;
aocmsg void OnDeleteButtonO;
I/} }AF)CMSG
DECLARE_MESSAGE_MAP()

};

II{ {AF)UNSERT_LOCATION}}

ApPENDIX L - SOFTWARE SOURCE CODE

II Microsoft Developer Studio will insert additional declarations immediately before the previous line.

II Editor.cpp : implementation file
II

#include "stdafx.h"
#include "VosReader.h"
#include "Editor.h"
#include <fstream.h>
#include <direct.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undefTHIS FILE
static char TtiIS_FILE[] = _FILE_;
#endif

I I II I I I I I I I I I I I I I I I I I I II /1/ I II I I 111//1/11 I I I II I /1/ I I I I 1/1//1/1/1/1 I I I I 11/1/11
1/ CEditor dialog

CEditor: :CEditor(CWnd* pParent I*=NULL */)
: CDialog(CEditor: :IOD, pParent)

{
II { {AF)CDATA_INIT(CEditor)
m_InputO = O.Of;
m_Inputl = O.Of;
m_InputlO = O.Of;
m_Inputll = O.Of;
m_Inputl2 = O.Of;
m_Inputl3 = O.Of;
m_Inputl4 = O.Of;
m_Inputl5 = O.Of;
m_Inputl6 = O.Of;
m_Inputl7 = O.Of;
m_Input18 = O.Of;
m_Inputl9 = O.Of;
m_Input2 = O.Of;
m_Input20 = O.Of;

INTELLIGENT OPTICAL SENSOR - 451

m_Input21 = O.Of;
m_Input22 = O.Of;
m_Input23 = O.Of;
m_Input24 = O.Of;
m_Input3 = O.Of;
m_Input4 = O.Of;
m_InputS = O.Of;
m_Input6 = O.Of;
m_Input7 = O.Of;
m_Input8 = O.Of;
m_Input9 = O.Of;
m_FilterName = _T('''');
II} }AF)CDATA_INIT

}

void CEditor:: DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
//{ {AFX_DATA_MAP(CEditor)
DDX_Text(pDX, IDC_EDITO, m_InputO);
DDX_Text(pDX, IDC_EDIT1, m_Inputl);
DDX_Text(pDX, IDC_EDIT10, m_InputlO);
DDX_Text(pDX, IDC_EDITll, m_Inputll);
DDX_Text(pDX, IDC_EDIT12, m_Inputl2);
DDX_Text(pDX, IDC_EDIT13, m_Inputl3);
DDX_Text(pDX, IDC_EDIT14, m_Input14);
DDX_Text(pDX, IDC_EDIT1S, m_InputlS);
DDX_Text(pDX, IDC_EDIT16, m_Input16);
DDX_Text(pDX, IDC_EDIT17, m_Inputl7);
DDX_Text(pDX, IDC_EDIT18, m_Inputl8);
DDX_Text(pDX, IDC_EDIT19, m_Inputl9);
DDX_Text(pDX, IDC_EDIT2, m_Input2);
DDX_Text(pDX, IDC_EDIT20, m_Input20);
DDX_Text(pDX, IDC_EDIT21, m_Input21);
DDX_Text(pDX, IDC_EDIT22, m_Input22);
DDX3ext(pDX, IDC_EDIT23, m_Input23);
DDX_Text(pDX, IDC_EDIT24, m_Input24);
DDX3ext(pDX, IDC_EDIT3, m_Input3);
DDX_Text(pDX, IDC_EDIT4, m_Input4);
DDX3ext(pDX, IDC_EDITS, m_InputS);
DDX_Text(pDX, IDC_EDIT6, m_Input6);
DDX_Text(pDX, IDC_EDm, m_Input7);
DDX_Text(pDX, IDC_EDIT8, m_Input8);
DDX_Text(pDX, IDC_EDIT9, m_Input9);
DDX_Text(pDX, IDC_FILTERNAME_EDIT, m_FilterName);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CEditor, CDialog)
II{ {AFX_MSG_MAP(CEditor)
ON_BN_CUCKED(IDC_CANCEL_BUTTON, OncancelButton)
ON_BN_CUCKED(IDC_SAVE2_BUTTON, OnSave2Button)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

II I I II I I II /II I I I I I I I I I II I I II I I I I I I I I /III /II I I I /II I I I II I I I I I I I I I I I I I I II /II / I I I
II CEditor message handlers

void CEditor: : Oncancel Button 0
{
II mDO: Add your control notification handler code here
OnOKO;

}

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 452

void CEditor:: OnSave2ButtonO
{
II TODO: Add your control notification handler code here
CString Name = "";
m_FilterName = "";
UpdateData(TRUE) ;
CFileFind finder;
int Error = 0;
chdir("Filters") ;

BOOL bWorking = finder.FindFile("*.vRF");
while (bWorking)
{
bWorking = finder.FindNextFileO;
if (finder.GetFileTitleO == m_FilterNarne)
{

Error = 1;
}

}
if (m_FilterName =="")
{
Error = 2;

}

switch (Error)
{
case O:{

Name = m_FilterName + ".vrf";
ofstream file_out(Narne);
file_out « "VRS\n";
file_out « m_InputO « "\t"

ApPENDIX L - SOFTWARE SOURCE CODE

< <m_Input1< <"\t"<<m_Input2<<"\t"<<m_Input3<<"\t"<<m_Input4«"\n";
file_out « m_InputS « "\t"

< <m_Input6< <"\t"< <m_Input7< <"\t"< <m_Input8< <"\t"< <m_In put9«"\n";
file_out « m_InputlO « "\t"

«m_Inputl1«"\t"«m_Input12«"\t"«m_Inputl3«"\t"«m_Input14«"\n";
file_out « m_InputlS« "\t"

«m_Input16«"\t"«m_Inputl7«"\t"«m_Inputl8«"\t"«m_Inputl9«"\n";
file_out « m_Input20 « "\t"

< <m_Input21 < <"\t"< <m_Input22< <"\t"< <m_Input23< <"\t"< <m _Input24«"\n";
file_out.closeO;

m_InputO = 0;
m_Inputl = 0;
m_Input2 = 0;
m_Input3 = 0;
m_Input4 = 0;
m_InputS = 0;
m_Input6 = 0;
m_Input7 = 0;
m_Input8 = 0;
m_Input9 = 0;
m_InputlO = 0;
m_Inputl1 = 0;
m_Inputl2 = 0;
m_Inputl3 = 0;
m_Inputl4 = 0;
m_InputlS = 0;
m_Input16 = 0;
m_Inputl7 = 0;
m_Inputl8 = 0;
m_Inputl9 = 0;
m_Input20 = 0;
m_Input21 = 0;
m_Input22 = 0;
m_Input23 = 0;

INTELLIGENT OPTICAL SENSOR - 4S3

}

UpdateData(FALSE) ;
OnOKO;
}
break;

case 1: MessageBox("Rle already exists");
break;

case 2: MessageBox("Enter a Filter Name");
break;

}

m_FilterName = "";

ApPENDIX L - SOFTWARE SOURCE CODE

#if !defined(AF)CEDITOR_H_60F2F6EO_ 4B4C_IID2_BAll_0060084F84CD_INCLUDED..J
#define AF)CEDITOR...-H_60F2F6EO_ 4B4C_IID2_BAIC0060084F84CD_INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif II _MSC_VER >= 1000
II Editor.h : header file
II

I I I I I I 11/1 II I I II I I 11/ I II I I I I I I II I I I I 11/11111/111/1 I I II I I I I II I I I I II I I I I II I I II I
II CEditor dialog

class CEditor : public CDialog
{

INTELUGENT OPTICAL SENSOR - 454

ApPENDIX L - SOFTWARE SOURCE CODE

II Construction
public:
CEditor(CWnd* pParent = NULL); II standard constructor

/ / Dialog Data
II{ {Af)CDATA(CEditor)
enum {IDD = IDD_EDIT_DIALOG };
float m_InputO;
float m_Inputl;
float m_InputlO;
float m_Inputll;
float m_Inputl2;
float m_Inputl3;
float m_Inputl4;
float m_Inputl5;
float m_Inputl6;
float m_Inputl7;
float m_Input18;
float m_Inputl9;
float m_Input2;
float m_Input20;
float m_Input21;
float m_Input22;
float m_Input23;
float m_Input24;
float m_Input3;
float m_Input4;
float m_Input5;
float m_Input6;
float m_Input7;
float m_Input8;
float m_Input9;
CString m_FilterName;
II} }Af)CDATA

II Overrides
II ClassWizard generated virtual function overrides
II{ {Af)CVIRTUAL(CEditor)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
II} }AFX_ VIRTUAL

II Implementation
protected:

II Generated message map functions
II{ {AFX_MSG(CEditor)
afx_msg void OncancelButtonO;
afx_msg void OnSave2ButtonO;
II} }AFX_MSG
DECLARE_MESSAGE_MAPO

};

II{ {AFX_INSERT_LOCATION}}
II Microsoft Developer StudiO will insert additional declarations immediately before the previous line.

INTELUGENT OPTICAL SENSOR - 455

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 456

ApPENDIX L - SOFTWARE SOURCE CODE

20.9 - VosViewer

II vos viewerDlg.cpp : implementation file
II

#include "stdafx.h"
#include "vos viewer.h"
#include "vos viewerDlg.h"
#include <fstream.h>
#include <direct.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

/1/1/1/11 /1/ /1/ II II /1/ II II /1//1/11 1111 /1/ /1/ II /1/ II II /1/ II II /1/ /1/ /1/ II II II II
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
CAboutD190;

II Dialog Data
II{ {AF)CDATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX};
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pOX); II DDX/DDV support
II} }AFX_VIRTUAL

II Implementation
protected:
II{ {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDI90 : CDialog(CAboutDlg::IDD)
{
II{ {AFX_DATA_INIT(CAboutDlg)
II} }AFX_DATA_INIT

}

void CAboutDlg: : DoDataExchange(CDataExchange* pOX)
{
CDialog: : DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{ {AFX_MSG_MAP(CAboutDlg)
II No message handlers

II} }AFX_MSG_MAP
END_MESSAGE_MAPO

/1//1//1/11 II II II II /1/ /1/ II /1/ /1/1111 /1//1/11 /1/ /1/ II II /1/ /1/11 II /1/ II /1/ II II
II CVosviewerDlg dialog

INTELLIGENT OPTICAL SENSOR - 457

ApPENDIX l - SOFTWARE SOURCE CODE

CVosviewerDlg: :CVosviewerDlg(CWnd* pParent 1*=NUll *!)
: CDialog(CVosviewerDlg: :IDD, pParent)

{
II{ {AF)CDATA_INIT(CVosviewerDlg)
m_Name = _T("");
II} }AF)CDATA_INIT
I I Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO->loadIcon(IDR_MAINFRAME);

}

void CVosviewerDlg:: DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II { {AFX_DATA_MAP(CVosviewerDlg)
DDX_Text(pDX, IDC_NAME_EDIT, m_Name);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CVosviewerDlg, CDialog)
II{ {AFX_MSG_MAP(CVosviewerDlg)
ON_WM_SYSCOMMANDO
ON_WM_PAINTO
ON_ WM_QUERYDRAGICONO
ON_BN_CUCKED(IDC_COPY _BUTTON, OnCopyButton)
ON_BN_CUCKED(IDC_DEl_BUTTON, OnDelButton)
ON_BN_CUCKED(IDC_NEXT _BUTTON, OnNextButton)
ON_BN_CUCKED(IDC_OPEN_BUTTON, OnOpenButton)
ON_BN_CUCKED(IDC_PREV_BUTTON, OnPrevButton)
ON_BN_CUCKED(IDC_QUIT_BUTTON, OnQuitButton)
ON_BN_CUCKED(IDC_COLl_BUTTON, OnCollButton)
ON_BN_CUCKED(IDC_COL2_BUTTON, OnCol2Button)
ON_BN_CUCKED(IDC_HOME_BUTTON, OnHomeButton)
ON_BN_CUCKED(IDC_LAST_BUTTON, OnLastButton)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

1//1 I I I I II I I II I I II I I I I I I 111// I 1//1 I I I I I I I I I I I I I 1// II I I II II 1// I I I II I I II I I II I I I
II CVosviewerDlg message handlers

BOOl CVosvlewerDlg: :OnInitDialogO
{
CDialog: :OnInitDialogO;

II Add "About..." menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NUll)
{
CString strAboutMenu;
strAboutMenu. loadString(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty(»
{

pSysMenu- >AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); II Set big icon
SetIcon(m_hIcon, FALSE); II Set small icon

II TODO: Add extra initialization here

INTElliGENT OPTICAL SENSOR - 458

ApPENDIX L - SOFTWARE SOURCE CODE

c_BackColor = RGB(O,O,O);
cJoreColor = RGB(255,255,0);
GetDlgItem(IDC_COPY _BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_DEL_BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_PREV _BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_NEXCBUTTON)-> EnableWindow(FALSE) ;
GetDlgItem(IDC_HOME_BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_LAST_BUTTON)->EnableWindow(FALSE);
FileOpen = FALSE;
retum TRUE; II retum TRUE unless you set the focus to a control

}

void CVosviewerDlg::OnSysCommand(UINT nID, LPARAM IParam)
{
if «nID & OxFFFO) == IDM_ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout.DoModaIO;

}
else
{
CDialog: :OnSysCommand(nlD, IParam);

}
}

II If you add a minimize button to your dialog, you will need the code below
II to draw the icon. For MFC applications using the document/view model,
II this is automatically done for you by the framework.

void CVosviewerDlg: :OnPaintO
{
if (IsIconic())
{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect) ;
int x = (rect.WidthO - cxIcon + 1) I 2;
int y = (rect.HeightO - cyIcon + 1) I 2;

I I Draw the icon
dc.DrawIcon(x, y, m_hIcon);

}
else
{
if (FileOpen==TRUE) DisplayFileO;
CDialog: :OnPaintO;

}
}

II The system calls this to obtain the cursor to display while the user drags
II the minimized window.
HCURSOR CVosviewerDlg: :OnQueryDragIconO
{
retum (HCURSOR) m_hIcon;

}

void CVosviewerDlg: :OnCopyButtonO
{
II TODO: Add your control notification handler code here
CFileDialog m_FileDlg(FALSE, "vos" ,m_FileName);
if(m_FileDlg.DoModaIO==IDOK)
{

INTELUGENT OPTICAL SENSOR - 459

CString Path = m_FileDlg.GetPathNameO;
CopyFile(m_PathName, Path,TRUE);

}
}

void CVosviewerDlg: :OnDeIButtonO
{
II TODO: Add your control notification handler code here

ApPENDIX l - SOFTWARE SOURCE CODE

if(MessageBox("Do you really want to delete this File ?","FileDelete", MB_YESNO)==IDYES)
if(DeleteFile(m_FileNarne))
{

}

MessageBox("File Deleted");
m_Name = '''';
GetDlgItem(IDC_DEl_BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_COPY _BUTTON)-> EnableWindow(FALSE);
FileOpen = FALSE;
UpdateData(FALSE) ;
InvalidateO;

else MessageBox("cannot delete File");
}

void CVosviewerDlg: :OnNextButtonO
{
II TODO: Add your control notification handler code here
CFileFind Finder;
BOOl bWorking = Finder.FindFile("*.vos");
int iResult = 0;
CString m_Temp;
while (bWorking)
{
bWorking = Finder.FindNextFileO; I/Try to find the current file
m_Temp = Finder.GetFileNameO;
if «m_Temp == mJileName) && (bWorking))
{

bWorking = Finder.FindNextFileO; IIWhen found, find the next file

}

m_NextFile = Finder.GetFileNameO;
m_PathName = Finder.GetFilePathO;
m_FileNarne = m_NextFile;
iResult = DisplayFileO;
bWorking = FALSE;

}
else if(!bWorking) MessageBox("End of File Ust");

}

void CVosviewerDlg: : OnOpen Button 0
{
II TODO: Add your control notification handler code here
CFileDialog mJiledlg(TRUE,"VOS data file","*.vos");
if(mJiledlg.DoModaIO==IDOK)
{
m_FileName = mJiledlg.GetFileNameO;
m_PathName = mJiledlg.GetPathNameO;
int iResult = DisplayFileO;

}
}

void CVosviewerDlg: :OnPrevButtonO
{
II TODO: Add your control notification handler code here
CFileFind Finder;
BOOl bWorking = Finder.FindFile("*.vos");
int iCount = 0;
int iResult = 0;
CString m_Temp;

bWorking = Finder.FindNextFileO;

INTELLIGENT OPTICAL SENSOR - 460

while(bWorking)
{
m_PrevRle = Finder.GetRleNameO;
m_PathName = Finder.GetFilePathO;

bWorking = Finder.FindNextFileO;
if (m_FileName==Finder.GetFileName())
{

}
}

bWorking=FALSE;
mJileName = m_PrevRle;
iCount = 1;

if (iCount==O) MessageBox("No Previous Rles");
else iResult = DisplayFileO;

}

void CVosviewerDlg: :OnQuitButtonO
{
II TODO: Add your control notification handler code here
OnOKO;

}

BOOl CVosviewerDlg:: DisplayFileO
{

m_Name = m_PathName;
UpdateData(FALSE) ;

GetDlgItem(IDC_DEl_BUTTON)-> EnableWindowCTRUE) ;
GetDlgItem(IDC_COPY_BUTTON)->EnableWindowCTRUE);
GetDlgItem(IDC_PREV _BUTTON)->EnableWindowCTRUE);
GetDlgItem(IDC_NEXCBUTTON)->EnableWindow(TRUE);
GetDlgItem(IDC_HOME_BUTTON)-> EnableWindowCTRUE) ;
GetDlgItem(IDC_LAST _BUTTON)->EnableWindow(TRUE);

ifstream InRle(m_RleName);
DWORD Attribs = GetFileAttributes(m_RleName);
if (Attribs == FIlE_ATTRIBUTE_READONlY)
{
MessageBox("Rle is Read Only");
GetDlgItem(IDC_DEl_BUTTON)->EnableWindow(FALSE);

}
II if(GetRleSize(InRle,NUll)==OxFFFFFFFF)
if (sizeof(InFile)==O)
{
MessageBox("Rle is Void");
GetDlgItem(IDC_COPY_BUTTON)->EnableWindow(FALSE);
return FALSE;

}

RleOpen = TRUE;
CClientDC dc(this);

int value1;
int value2;

for(int loop = 0; loop<320; loop++)
{
for (int loop2 = 0; loop2 <240; loop2++)
{

SetPixel(dc, loop+15, loop2+15,CBackColor);
}

}

do
{
InFile » value1;

ApPENDIX l - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 461

InFile » value2;
SetPixel(dc,valuel+15,value2+15,cJoreColor);

}
while (InFile.eofO == 0);

InFile.closeO;

return TRUE;
}

void CVosviewerDlg: :OnCollButtonO
{
II TODO: Add your control notification handler code here
CColorDialog m_Coldlg(TRUE);
m_Coldlg .DoModaIO;
c_BackColor = m_Coldlg.GetColorO;

}

void CVosviewerDlg: :OnCol2ButtonO
{
II TODO: Add your control notification handler code here
CColorDialog m_Coldlg(TRUE);
m_Coldlg.DoModaIO;
cJoreColor = m_Coldlg.GetColorO;

}

void CVosviewerDlg: :OnHomeButtonO
{
II TODO: Add your control notification handler code here
II TODO: Add your control notification handler code here

CFileFind Finder;
BOOl bWorking = Finder.FindFile("*.vos");
CString m_Temp;
int iResult;

bWorking = Finder.FindNextFileO;
mJileName = Finder.GetFileNameO;
m_PathName = Finder.GetFilePathO;
iResult = DisplayFileO;

}

void CVosviewerDlg: : On LastButton 0
{
II TODO: Add your control notification handler code here
CFileFind Finder;

BOOl bWorking = Finder.FindFile("*.vos");
CString m_Temp;
int iResult;
while(bWorking)
{
bWorking = Finder.FindNextFileO;

}
m FileName = Finder.GetFileNameO;
m:)athName = Finder.GetFilePathO;
iResult = DisplayFileO;

}

ApPENDIX l - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 462

ApPENDIX L - SOFTWARE SOURCE CODE

20.10 - Weyrad Demo

II Demo 2Dlg.cpp : implementation file
II

#include "stdafx.h"
#include "Demo 2.h"
#include "Demo 2Dlg.h"
#include <string.h>
#include <windowsx.h>
#include <direct.h>
#include <fstream.h>
#include <math.h>
#include <afx.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

11/1111/1 I I I I I 11/ 11/ II I I 11/1 I I 111/11/1 I I 1111/1 I I I I I I I I I I I 11/ II I I 11/1 I I I I II I I I
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
CAboutDl90;

I I Dialog Data
II{ {AF)CDATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX};
II} }AFX_DATA

II ClassWizard generated virtual function overrides
/I{ {AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
II} }AFX_VIRTUAL

I I Implementation
protected:
II{ {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_MAPO

};

CAboutDlg: :CAboutD190 : CDialog(CAboutDlg: :IDD)
{
II { {AFX_DATA_INIT(CAboutDlg)
II} }AFX_DATA_INIT

}

void CAboutDlg: : DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II { {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{ {AFX_MSG_MAI?(CAboutDlg)
II No message handlers
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

I I II I I II I I II I I 11/ I 111/ II I I I I I I 1111/1 I I 1111/1 I II I I I 11/ I I I I I I I I I III/II I I I I 11/ I I

INTELLIGENT OPTICAL SENSOR - 463

ApPENDIX L - SOFTWARE SOURCE CODE

II CDemo2DIg dialog

CDemo2Dlg: :CDemo2Dlg(CWnd* pParent I*=NULL *1)
: CDialog(CDemo2Dlg::IDD, pParent)

{
1/ { {AF)CDATA_INIT(CDemo2Dlg)
m_Source = _T("");
m_SaveEdit = _T("");
m_Batch = FALSE;
m_Mult = 0;
I/} }AF)CDATA_INIT
II Note that Load Icon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO->LoadIcon(IDR_MAINFRAME);

}

void CDemo2Dlg: : DoDataExchange(CData Exchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CDemo2Dlg)
DDX_Control(pDX, IDC_START_BUTTON, m_Start);
DDX_Text(pDX, IDC_SOURCE_EDIT, m_Source);
DDX_ Text(pDX, IDC_SAVE_EDIT, m_SaveEdit);
DDX_Check(pDX, IDC_BATCH_CHECK, m_Batch);
DDX_ Text(pDX, IDC_UPDATE_EDIT, m_Mult);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CDemo2Dlg, CDialog)
II{ {AFX_MSG_MAP(CDemo2Dlg)
ON_WM_SYSCOMMANDO
ON_WM_PAINTO
ON_WM_QUERYDRAGICONO
ON_BN_CUCKED(IDC_EXIT_BUTTON, OnExitButton)
ON_BN_CUCKED(IDC_GRAB1_BUTTON, OnGrablButton)
ON_BN_CUCKED(IDC_GRAB2_BUTTON, OnGrab2Button)
ON_BN_CUCKED(IDC_START _BUTTON, OnStartButton)
ON_BN_CUCKED(IDC_SELECT _BUTTON, OnSelectButton)
ON_ WM_DESTROYO
ON_BN_CUCKED(IDC_SAVESELECT _BUTTON, OnSaveselectButton)
ON_BN_CUCKED(IDC_BATCH_CHECK, OnBatchCheck)
ON_BN_CUCKED(IDC_UPDATE_BUTTON, OnUpdateButton)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

II I I II I I I I I I II I I I I /II I I /II II I I I I /II I I I I I I I 1//11 I II II I I I I I I II /II I I I I I II I I II I I I
II CDemo2DIg message handlers

BOOL CDemo2Dlg: :OnInitDialogO
{
CDialog: :OnInitDialogO;

I I Add "About ... " menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM-ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{
CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (! strAboutMenu .IsEmptyO)
{

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

INTELUGENT OPTICAL SENSOR - 464

ApPENDIX L - SOFTWARE SOURCE CODE

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); II Set big icon
SetIcon(m_hIcon, FALSE); II Set small icon

II TODO: Add extra initialization here
ButtonText="&STARr' ;
UpdateData(FALSE) ;
Selected = 0;
Selected2 = 0;
grabbed = 0;
m_Mult = 5;

UpdateData(FALSE) ;
GetDlgItem(IDC_START _BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_GRABCBUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_GRAB2_BUTTON)->EnableWindow(FALSE);

return TRUE; II retum TRUE unless you set the focus to a control
}

void CDemo2Dlg::OnSysCommand(UINT nID, LPARAM IParam)
{
if «nID & OxFFFO) == IDM~BOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout. DoModalO;

}
else
{
CDialog: :OnSysCommand(nID, IParam);

}
}

II If you add a minimize button to your dialog, you will need the code below
I I to draw the icon. For MFC applications using the document/view model,
I I this is automatically done for you by the framework.

11********************** GLOBAL VARIABLES DECLARATIONS **************************

int camera[320][240];
int Reference[320][240];
int Result[320][240];
POIB m_datum;
int Iterations = 10;
int Count = 0;
int DatumThreshold = 0;
int carneraThreshold = 0;
int Len = 0;
CString m_SourceDir;
11***

void CDerno2Dlg: :OnPaintO
{
if (IsIconic(»
{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle

INTELUGENT OPTICAL SENSOR - 465

int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect) ;
int X = (rect.WidthO - cxIcon + 1) / 2;
int y = (rect.HeightO - cyIcon + 1) / 2;

// Draw the icon
dc.DrawIcon(x, y, m_hIcon);

}
else
{
CPaintDC dc(this);
if (grabbed2 ==1)
{
: : StretchDIBits(dc. m_h DC,

354,

}

21,
320,
240,
0,
0,
DibWidth(m-PdibPicture),
DibHeight(m-PdibPicture),
DibPtr(m-PdibPicture),
DibInfo(m-PdibPicture),
DIB_RGB_COLORS,
SRCCOPY);

if (grabbed == 1)
{
: :StretchDIBits(dc.m_hDC,

15,

}

21,
320,
240,
0,
0,
DibWidth(m_datum),
DibHeight(m_datum),
DibPtr(m_datum),
DibInfo(m_datum),
DIB_RGB_COLORS,
SRCCOPY);

ApPENDIX L - SOFTWARE SOURCE CODE

//***
//Following Code grabs the image displayed on screen into an array(Incomming)
//Proceeds to invert the image (Invert), stores the inverted grayscale image
//(Grayed) and calculates the threshold //

int Red, Green, Blue;
int Sum = 0;
int loop, loop2;
int CoIMax=0,CoIMin=255;

for (Ioop=O; loop < 320;loop++)
{

for (loop2=0; loop2<240; loop2++)
{

Red = GetRValue(GetPixel(dc, 354+loop,21+loop2));
Green = GetGValue(GetPixel(dc, 354+loop,21+loop2));
Blue = GetBValue(GetPixel(dc, 354+loop,21+loop2));

INTELLIGENT OPTICAL SENSOR - 466

ApPENDIX L - SOFTWARE SOURCE CODE

camera[loop][loop2] = abs((int)((255-Red)*0.3) + (int)((255-Green)*0.58) + (int)((255-Blue)*0.12));

Col Min = (CoIMin>camera[loop][loop2])?camera[loop][loop2] :CoIMin;
ColMax = (CoIMax<camera[loop][loop2])?camera[loop][loop2]:CoIMax;

Sum += camera[loop][loop2];

}
}
of stream Check("c: \\temp\\check. txt");
Check « CoIMax«endl;
Check « CoIMin«endl;

int Range = CoIMax-CoIMin;

Check «Range;

cameraThreshold = abs(Sum/76000);

m_Mult = (int)((Range*3/255)+2);

UpdateOata(FALSE) ;

Check« m_Mult;
Check.closeO;

//**
/lFoliowing Code generates the thresholded array of the incomming image /I

/lfirst sequence, image as is

if ((grabbed != 0) && (ButtonText =="&STOP"))
{

int Space = (int)sqrt(pow(cameraThreshold - DatumThreshold,2));
for (loop = 0; loop <320; loop ++)
{
for (loop2 = 0; loop2 < 240; loop2 ++)
{
/Ii mage jitter correction code
/lean compensate by 1 pixel in a certain direction

/lNormal image
int Oiff = (int)sqrt(pow((camera[loop][loop2] - Reference[loop][loop2]),2));
if (Oiff > (m_Mult*Space)) /lm_Mult adjusts the sensitivity
{

/I If a difference is detected, the pixel is shifted
/I around by a distance of one pixel to evaluate if
/I this is due to a small wind movement. The 9 pixels
/I surrounding the current pixel will be evaluated
/I Every image pixel can be shifted in a different direction

//Image shifted up and left
if ((loop<319)&&(loop2<239))
{

Oiff = (int)sqrt(pow((camera[loop+1][loop2+1] - Reference[loop][loop2]),2));
if (Oiff > (m_Mult*Space)) /lm_Mult adjusts the sensitivity

{
//Image shifted up
if (loop2<239)
{

Oiff = (int)sqrt(pow((camera[loop][loop2+1] - Reference[loop][loop2]),2));
if (Oiff > (m_Mult*Space)) /lm_Mult adjusts the sensitivity
{
//Image shifted up and right
if ((loop>0)&&(loop2<239))

INTELUGENT OPTICAL SENSOR - 467

2»;

}
}

}
}

{

ApPENDIX L - SOFTWARE SOURCE CODE

Diff = (int)sqrt(pow«camera[loop-l][loop2+1] - Reference[loop][loop2]),2»;
if (Diff > (m_Mult*Space» /lm_Mult adjusts the sensitivity
{
/II mage shifted left
if (loop<319)
{

Diff = (int)sqrt(pow«Camera[loop+l][loop2] - Reference[loop][loop2]),2»;
if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{
llImage shifted right
if (loop>O)
{

Diff = (int)sqrt(pow«Camera[loop-1][loop2] - Reference[loop][loop2]),2»;
if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{
IIImage shifted down and left
if ((Ioop<319)&&(loop2>0»
{

}

Diff = (int)sqrt(pow«camera[loop+1][loop2-1] - Reference[loop][loop2]),2»;
if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{
III mage shifted down
if (loop2>0)

}

{

}

Diff = (int)sqrt(pow«camera[loop][loop2+1] - Reference[loop][loop2]),2»;
if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{

IIImage shifted down and right
if ((Ioop>0)&&(loop2>0»
{

}
}

}

Diff = (int)sqrt(pow«Camera[loop-1][loop2-1] - Reference[loop][loop2]),

if (Diff > (m_Mult*Space» Ilm_Mult adjusts the sensitivity
{

}

IIIf none of the pixel shifts result in a difference exclusion
lithe pixel is marked as a set movement difference
Result[loop][loop2] = 1;
SetPixel(dc,354+loop,21 +loop2, RGB(255,255 ,0»;

}
}

}
}

}
}

II If anyone of the pixel shifts results in a difference
/lexclusion, the pixel is marked as non altered, ie only
Iia small movement due to wind or camera vibration

else Result[loop][loop2] = 0;
}

}
}

CDialog: :OnPaintO;

INTELUGENT OPTICAL SENSOR - 468

}
}

II The system calls this to obtain the cursor to display while the user drags
1/ the minimized window.
HCURSOR CDemo2Dlg: :OnQueryDragIconO
{
return (HCURSOR) m_hIcon;

}

void CDemo2Dlg: :OnExitButtonO
{
1/ TODO: Add your control notification handler code here
OnOKO;

}

void CDemo2Dlg: :OnGrab1ButtonO
{
1/ TODO: Add your control notification handler code here

CopyFile(FileName, "Datum.tmp", FALSE);

m_datum = mJ)dibPicture;
grabbed = 1;
int loop, loop2;

for (loop = 0; loop < 320; loop++)
{
for (loop2 = 0; loop2 < 240; loop2++)
{

Reference[loop][loop2] = Camera[loop][loop2];
}

}
DatumThreshold = cameraThreshold;

InvalidateRect(CRect(15,21,335,261),FALSE);
}

void CDemo2Dlg: :OnGrab2ButtonO
{
1/ TODO: Add your control notification handler code here
mJ)dibPicture = DibOpenFile(FileName);
GetDlgItem(IDC_GRAB1_BUTTON)->EnableWindow(TRUE);
InvalidateRect(CRect(354,21,674,261),FALSE);

}

void CDemo2Dlg:: SaveFileO
{
I/File Details being Saved here

CString NewName;
CString OldExt;
OldExt = "bmp";
CString OldExt1;
OldExtl = "BMP";
CString NewExt;
NewExt = "vos";

CString Temp;

int Pos = m_Source.Find(OldExt);
if (Pos==-l)
{

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 469

Pos = m_Source.Find(OldExt1);
}
Temp = m_Source.Left(Pos);
Temp = Temp + NewExt;

Pos = m_SaveEdit.Find("image.vos");
NewName = m_SaveEdit.Left(Pos);

NewName = NewName + Temp;

ofstream file;
file.open(NewName);
for (int loop = 0; loop< 320; loop++)
{

}

for (int loop2 = 0; loop2<240; loop2++)
{
if (Result[loop][loop2] == 1)
file « loop«"\t"«loop2«"\n";

}

file.closeO;

/lEnd of Save procedure
}

void CDerno2Dlg: :OnStartButtonO
{
/I TODO: Add your control notification handler code here
if ((ButtonText == "&START') && (Selected != 0»
{
ButtonText = "&STOP";
GetDlgItem(IDC_SElECCBUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_SAVESElECT_BUTTON)-> EnableWindow(FALSE);
GetDlgItem(IDC_GRAB1_BUTTON)->EnableWlndow(FALSE);
GetDlgItem(IDC_EXIT_BUTTON)->EnableWindow(FALSE);

if (m_Batch==TRUE)
{

CFileFind Finder;
CString Title;
GetDlgItem(IDC_START _BUTTON)->EnableWindow(FALSE);

II chdir(m_SourceDir);

BOOl bWorking = Finder.FindFile("*.bmp");

while(bWorking)
{
II chdir(m_SourceDir);

bWorklng = Finder.FindNextFileO;
Title = Finder.GetFileTitleO;

char *title;
title = III';
strcat(title, Title);
m---PdibPicture = DibOpenFile(title);
InvalidateO;
SaveFileO;

}
}
else
{

InvalidateO;
SaveFileO;

}

}

ApPENDIX l - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 470

else
{
ButtonText = "&START';
GetDlgltem(IDC_SELECT _BUTTON)-> EnableWi ndow(TRUE);
GetDlgltem(IDC_EXIT _BUTTON)-> EnableWi ndow(TRUE);
GetDlgltem(IDC_GRABCBUTTON)->EnableWindow(TRUE);
GetDlgltem(IDC_SAVESELECT _BUTTON)->EnableWindow(TRUE);

}

SetDlgItemText(IDC_START _BUTTON,ButtonText);

}

void CDemo2Dlg: :OnSelectButtonO
{
II TODO: Add your control notification handler code here
Selected = 1;
ButtonText = "&START';
SetDlgItemText(IDC_START _BUTTON,ButtonText);

char FileTitle[lOO];

OPENFILENAME ofn;
mernset(&ofn, 0, sizeof(ofn));
ofn.IStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = NULL;
ofn.hlnstance = NULL;

ofn.lpstrFilter = TEXT("Bitmap Picture Files *.bmp\O*.bmp\O\O");

ofn.lpstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterlndex = 1;
ofn.lpstrFile = FileName;
ofn.nMaxFile = 500;
ofn.lpstrFileTitle = FileTitle;
ofn.nMaxFileTitle = 99;
ofn.lpstrlnitialDir = NULL;
ofn.lpstrTitle = "Open Bmp File";
ofn.Flags = OFNJILEMUSTEXIST;
ofn.lpstrDefExt = "BMP";
ofn.ICustData = NULL;
ofn.lpfnHook = NULL;
ofn.lpTemplateName = NULL;

FileName[O] = '\0';
GetOpenFileName(&ofn) ;

if (FileName[O] != '\0')
{
grabbed2 = 1;
m_Source = FileTitle;
CString Temp;
Temp = FileName;
int Pos;
Pos = Temp.Find(m_Source);
m_SourceDir = Temp.Left(Pos);

UpdateData(FALSE);
GetDlgltem(IDC_START _BUTTON)- >EnableWindow(TRUE);
GetDlgltem(IDC_GRAB2_BUTTON)->EnableWindow(TRUE);

CopyFile(FileName, "Camera.tmp", FALSE);
OnGrab2ButtonO;

}

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 471

}

void CDemo2Dlg: : OnSaveselectButtonO
{
II TODO: Add your control notification handler code here
CFileDialog dlg(FALSE,"vos file","image.vos");
dlg.DoModaIO;

}

m_SaveEdit = dlg.GetPathNameO;
UpdateData(FALSE);

void CDemo2Dlg: :OnBatchCheckO
{
II TODO: Add your control notification handler code here
if (m_Batch==TRUE) m_Batch = FALSE;
else m_Batch = TRUE;

}

11***************** OWN FUNCTION ********************

POIB CDemo2Dlg::DibOpenFile(LPSTR szFile)
{

HALE fh;
DWORD dwLen;
DWORD dwBits;
POIB pdib;
LPVOID p;
OFSTRUCT of;

#if defined(WIN32) II defined LWIN32)
#define GetCurrentinstanceO GetModuleHandle(NULL)
#else
#define GetCurrentinstanceO (HINSTANCE)SELECTOROF((LPVOID)&of)
#endif

fh = OpenFile(szFile, &of, OF_READ);

if (fh == -1)
{
HRSRC h;
h = FindResource(GetCurrentinstanceO, szFile, RT_BITMAP);

#if defined(WIN32) II definedLWIN32)
if (h)

return (POI B) LockResou rce(Load Resou rce(GetCurrentlnstanceO, h»;
#else

if (h)
fh = AccessResource(GetCurrentinstanceO,h);

#endif
}

if (fh == -1)
return NULL;

pdib = DibReadBitmaplnfo(fh);

if (!pdib)
return NULL;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 472

dwBits = pdib->biSizelmage;
dwLen = pdib->biSize + DibPaletteSize(pdib) + dwBits;

p = GlobaIReAllocptr(pdib,dwLen,O);

if (!p)
{
GlobaIFreeptr(pdib);
pdib = NULL;

}
else
{
pdib = (POlB)p;

}

if (pdib)
{

ApPENDIX L - SOFTWARE SOURCE CODE

_hread(fh, (LPBYTE)pdib + (UINDpdib->biSize + DibPaletteSize(pdib), dwBits);
}

_Iclose(fh);

return pdib;

}

PDIB CDem02Dlg: : DibReadBitmaplnfo(HFILE fh)
{

DWORD off;
HANDLE hbi = NULL;
int size;
int i;
int nNumColors;

RGBQUAD FAR *pRgb;
BITMAPINFOHEADER bi;
BITMAPCOREHEADER bc;
BITMAPFILEHEADER bf;
POlB pdib;

if (fh == -1)
return NULL;

off = _liseek(fh, OL, SEEK_CUR);

if (sizeof(bf) != _lread(fh,(LPSTR)&bf, sizeof(bf»)
return FALSE;

if (bf.bIType != BFT_BITMAP)
{
bf. bfOffBits = OL;
_lIseek(fh, off, SEEK_SED;

}

if (sizeof(bi) != _lread(fh,(LPSTR)&bi, sizeof(bi»)
return FALSE;

switch (size = (int)bi.biSize)
{

default:
case sizeof(BITMAPINFOHEADER):break;

INTELUGENT OPTICAL SENSOR - 473

case sizeof(BITMAPCOREHEADER):
be = *(BITMAPCOREHEADER*)&bi;
bLbiSize = sizeof(BITMAPINFOHEADER);
bLbiWidth = (DWORD)be.beWidth;
bLbiHeight = (DWORD)be.beHeight;
bLbiPlanes = (UINT}be.bePlanes;
bi.biBitCount = (UINT}be.beBitCount;
bi.biCompression = BI_RGB;
bi.biSizelrnage = 0;
bi.biXPelsPerMeter = 0;
bi.biYPelsPerMeter = 0;
bi.biClrUsed = 0;
bLbiClrlmportant = 0;

ApPENDIX L - SOFTWARE SOURCE CODE

_llseek(fh, (LONG)sizeof(BITMAPCOREHEADER)-sizeof(BITMAPINFOHEADER),SEEK_CUR);
break;

}

nNumColors = DibNumColors(&bi);

#ifO
if (bi.biSizelrnage == 0)
bLbiSizelrnage = DibSizelrnage(&bi);

if (bi.biOrUsed == 0)
bi.biClrUsed = DibNumColors(&bi);

#else
FixBitrnaplnfo(&bi) ;

#endif

pdib = (PDIB)GlobaIAllocptr(GMEM_MOVEABLE, (LONG)bLbiSize + nNumColors * sizeof(RGBQUAD»;

if (!pdib)
retum NULL;

*pdib = bi;
pRgb = DibColors(pdib);

if (nNumColors)
{
if (size == sizeof(BITMAPCOREHEADER»
{

}

_Iread(fh, (LPVOID)pRgb, nNumColors * sizeof (RGBTRIPLE»;
for (i = nNumColors -1; i >=0; i--)
{

RGBQUAD rgb;
rgb.rgbRed = ((RGBTRIPLE FAR *)pRgb)[i].rgbtRed;
rgb.rgbBlue = ((RGBTRIPLE FAR *)pRgb)[i].rgbtBlue;
rgb.rgbGreen = ((RGBTRIPLE FAR *)pRgb)[i].rgbtGreen;
rgb.rgbReserved = (B'fT'E)O;

pRgb[i] = rgb;
}

}
else
{

_lread(fh,(LPVOID)pRgb, nNumColors * sizeof(RGBQUAD»;
}

}

if (bf.bfOffBits != OL)
_lIseek(fh' off + bf.bfOffBits, SEEK_SET);

retum pdib;

INTEWGENT OPTICAL SENSOR - 474

void CDemo2Dlg: : On DestroyO
{
CDialog: : On DestroyO ;

/I TODO: Add your message handler code here
Global Freeptr(m-PCIi bPicture);
GlobaIFreeptr(m_datum);

}

void CDemo2Dlg: :OnUpdateButtonO
{
II TODO: Add your control notification handler code here
UpdateData(TRUE) ;

}

ApPENDIX L - SOFTWARE SOURCE CODE

INTELLIGENT OPTICAL SENSOR - 475

ApPENDIX L - SOFTWARE SOURCE CODE

20.11 - Multiple Data Extractor

/I Data ExtractorDlg.cpp : implementation file
II

#include "stdafx.h"
#include "Data Extractor.h"
#include "Data ExtractorDlg.h"

#include <windowsx.h>
#include <string.h>
#include <fstream.h>
#include <iostream.h>
#include <direct.h>
#include <rnath.h>
#include <iornanip.h>

#include <fstream.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

/I //I I //I I //I I I //I //I I I //I I I I I I I //I //I //I I I I //I //I 11//1 I I I //I I //I I //I //I I //I I
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
CAboutD190;

I I Dialog Data
II{ {AF)CDATA(CAboutDlg)
enum {IDD = IDD~BOUTBOX};
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
I I}}AFX_ VIRTUAL

I I Implementation
protected:
II{ {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_MAP()

};

CAboutDlg: : CAboutDI90 : CDialog(CAboutDlg:: IDD)
{
II { {AFX_DATA_INIT(CAboutDlg)
II} }AFX_DATA_INIT

}

void CAboutDlg: : DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

}

INTELUGENT OPTICAL SENSOR - 476

ApPENDIX l - SOFTWARE SOURCE CODE

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{ {AF)CMSG_MAP(CAboutDlg)
I I No message handlers
II} }AF)CMSG_MAP

END_MESSAGE_MAPO

II I I I I I I I I II I 1// I I I I II 11// I 1// // I I 1// I I I 11// 1// 1// 1// I I I I 1// I I II I 1// I I 1// I I I I
II CDataExtractorDlg dialog

CDataExtractorDlg: :CDataExtractorDlg(CWnd* pParent 1*=NUll *!)
: CDialog(CDataExtractorDlg: :IDD, pParent)

{
//{ {AF)CDATA_INIT(CDataExtractorDlg)
m_Target = _T(nn);
m_Objects = 0;
m_Percent = 0;
m_FuliName = _T('no);
II} }AF)CDATA_INIT
II Note that loadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO->loadIcon(IDR_MAINFRAME);

}

void CDataExtractorDlg:: DoDataExchange(CDataExchange* pOX)
{
CDialog: : DoDataExchange(pDX);
II { {AFX_DATA_MAP(CDataExtractorDlg)
DDX_Control(pDX, IDC_SECSUDER, m_SetSlider);
DDX_ Text(pDX, IDC3RAGET _EDIT, m3arget);
DDX_Text(pDX, IDC_OBJECT_EDIT, m_Objects);
DDX_ Text(pDX, IDC_PERCENT _EDIT, m_Percent);
DDX_Text(pDX, IDC_NAME_STATIC, m_FuIiName);
II} }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CDataExtractorDlg, CDialog)
II{ {AFX_MSG_MAP(CDataExtractorDlg)
ON_WM_SYSCOMMANDO
ON_WM_PAINTO
ON_ WM_QUERYDRAGICONO
ON_BN_CUCKED(IDC_EXIT_BllTTON, OnExitButton)
ON_BN_CUCKED(IDC_OPEN_BllTTON, OnOpenButton)
ON_BN_CUCKED(IDC_CLAC_BllTTON, OnClacButton)
ON_BN_CUCKED(IOC_ TARGET _BllTTON, OnTargetButton)
ON_BN_CUCKED(IDC_VAUD_CHECK, OnValidCheck)
ON_BN_CUCKED(IDC_BOUND_BllTTON, OnBoundButton)
ON_BN_CUCKED(IDC_ClEAR_BllTTON, OnClearButton)
ON_WM_HSCROllO
ON_BN_CUCKED(IDC_SAVE_BllTTON, OnSaveButton)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

1//1//11 I I II I I 11// II I I II I 1// 1// I 1// I I 1// I 1// I I I I I I I I 1// I I I I I II I I I I I I I I I I II I I I
II CDataExtractorDlg message handlers

int Stored[320][240];
int Checkl=O, Check2=O;
CString Title;
int sharp[80][60];
int Xmin[100],Xmax[100],Ymin[100],Ymax[100];
int counter;
int Pos = 7;

BOOl CDataExtractorDlg: :OnInitDialogO
{

INTELUGENT OPTICAL SENSOR - 477

ApPENDIX L - SOFTWARE SOURCE CODE

CDialog: :OnInitDialogO;

II Add "About..." menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{
CStrlng strAboutMenu;
strAboutMenu. LoadStri ng(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty())
{

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu);

}
}

II Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); II Set big icon
SetIcon(m_hIcon, FALSE); II Set small icon

II TODO: Add extra initialization here
m_Objects = 0;
CSliderCtrl* SliderOne = (CSliderCtrl*)GetDlgItem(IDC_SET _SUDER);
SliderOne-> SetRange(O ,15);
SliderOne->SetPos(7);
SliderOne->SetTicFreq(2);

char Temp[1024];
_getcwd(Temp,1024);
m_ProgDir = Temp;

return TRUE; II return TRUE unless you set the focus to a control
}

void CDataExtractorDlg: :OnSysCommand(UINT nID, LPARAM IParam)
{
if «nID & OxFFFO) == IDM_ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout.DoModaIO;

}
else
{
CDialog: :OnSysCommand(nlD, IParam);

}
}

II If you add a minimize button to your dialog, you will need the code below
II to draw the icon. For MFC applications using the document/view model,
II this is automatically done for you by the framework.

void CDataExtractorDlg: :OnPaintO
{
if (IsIconic())
{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrlcs(SM_CYICON);
CRect rect;

INTELLIGENT OPTICAL SENSOR - 478

ApPENDIX L - SOFTWARE SOURCE CODE

}

GetClientRect(&rect) ;
int X = (rect.WidthO - cxIcon + 1) I 2;
int y = (rect.HeightO - cyIcon + 1) I 2;

I I Draw the icon
dc.DrawIcon(x, y, m_hIcon);

}
else
{
CPaintDC dc(this);
CPen ShapePen;
ShapePen .CreatePen(PS_SOUD,1,RGB(255,0, 255));
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&ShapePen);

for(int loop = 0; loop < 320; loop++)
{

}

for(int loop2 = 0; loop2<240; loop2++)
{

if(Stored[loop][loop2]) SetPixel(dc,loop+ 12,loop2+ 1B-,RGB(0, 100,200));
}

for (loop = 0; loop<80; loop++)
{

}

for (int loop2 = 0; loop2<60; loop2++)
{
if (sharp[loop][loop2] == 1)
Rectangle(dc,(12+4*loop),(18+4*loop2),(16+4*loop),(22+4*loop2));

}

for (loop = 1; loop<=counter; loop++)
{

}

CPen BoxPen;
BoxPen.CreatePen(PS_SOUD, 1 ,RGB(0,255,0));
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&BoxPen);
MoveToEx(dc,4*Xmin[loop]+ 12, 4*Ymin[loop]+ 18,NULL);
LineTo(dc, 4*Xmax[loop]+ 16, 4*Ymin[loop]+ 18);
LineTo(dc, 4*Xmax[loop]+16, 4*Ymax[loop]+22);
LineTo(dc, 4*Xmin[loop]+12, 4*Ymax[loop]+22);
LineTo(dc, 4*Xmin[loop]+12, 4*Ymin[loop]+18);

CDialog: :OnPaintO;
}

II The system calls this to obtain the cursor to display while the user drags
II the minimized window.
HCURSOR CDataExtractorDlg: :OnQueryDragIconO
{
return (HCURSOR) m_hIcon;

}

void CDataExtractorDlg: :OnExitButtonO
{
II TODO: Add your control notification handler code here
OnOKO;

}

void CDataExtractorDlg: :OnOpenButtonO
{
II TODO: Add your control notification handler code here
char FileName[500];

INTELUGENT OPTICAL SENSOR - 479

char FileTitle[lOO];

OnClearButtonO;

int loop, loop2;

for (loop=O; loop < 320; loop++)
{
for (loop2 = 0; loop2 < 240 ; loop2++)
{

Stored[loop][loop2]=0;
}

}

UpdateData(FALSE) ;
InvalidateRect(CRect(12,18,332,258), FALSE);

OPENFILENAME ofn;
_fmemset(&ofn, 0, sizeof(ofn));
ofn.IStructSize = sizeof(OPENFILENAME);

ofn.hwndOwner = m_hWnd;;
ofn.hInstance = NULL;

ofn.lpstrFilter = TEXT("VosDerno files *.vos\O*.vos\O\O");

ofn.lpstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterIndex = 1;
ofn.lpstrFile = FileName;
ofn.nMaxFile = 500;
ofn.lpstrFileTitle = File Title;
ofn.nMaxFileTitle = 99;
ofn.lpstrInitialDir = NULL;
ofn.lpstrTitle == "Open VOS file";
ofn.Flags = OFNJILEMUSTEXIST;
ofn.lpstrDefExt = "BMP";
ofn.ICustData = NULL;
ofn.lpfnHook = NULL;
ofn.lpTemplateNarne = NULL;

FileName[O] = '\0';

if (GetOpenFileName(&ofn))
{
int count;

Check2 = 1;
CString FuliTitle = FileTitle;
count = FuIiTitle.Find(".vos");
Title = FuIiTitle.Left(count);

ifstream file_in(FileNarne);
mJileName = FileName;
m_FuliName = m_FileName;
int Pos = m_FuIiName.ReverseFind('\\');
m_FuliName = mJuliNarne. Right(mJuIiName.GetLengthO-Pos-1);
int value1;
int value2;

CPaintDC dc(this);

do
{

file_in » value1;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 480

file_in » value2;

Stored[value1][value2] = 1;
II SetPixel(dc, value1 + 12,value2+ 18,RGB(0,100,200));

}
while (file_in.eofO == 0);
file_in .closeO;

for (loop = 0; loop <320; loop++)
{

for (loop2 = 0; loop2 <240; loop2++)
{
if (Stored[loop][loop2] != 1)
{
Stored[loop][loop2] = 0;

}
else m_Percent++;

}
}

m_Percent = (int)(«float)m_Percent*100)/(320*240));
UpdateData(FALSE) ;

ApPENDIX L - SOFTWARE SOURCE CODE

int Correction = (int)(0.15*m_Percent + «100-m_Percent)/15)*sin(0.01 *3. 141592654*m_Percent));
CSliderCtr1* SliderOne = (CSliderCtrl*)GetDlgItem(IDC_SECSUDER);
SliderOne->SetPos(Correction);
CString Texter;
Texter. Format("%d",Correction);
SetDlgltemText(IDC_SET _STATIC, Texter);

InvalidateRect(CRect(12,18,332,258), FALSE);
II InvalidateRect(CRect(12,18,332,258), FALSE);
}

}

void CDataExtractorDlg: :OnClacButtonO
{
II TODO: Add your control notification handler code here
int loop, loop2,loop3,loop4;
int count = 0;
OnClearButtonO;

for (loop2=0; loop2<60; loop2++)
{
for (loop=O; loop<80; loop++)
{

sharp[loop][loop2] = 0;
count = 0;
for (loop3=0; loop3<4; loop3++)
{
for (loop4 = 0; loop4<4; loop4++)
{
if (Stored [4*loop+loop3][4*loop2+loop4]==1)

count++;
}

}
if (count >Pos) Il(Pos = Slider value)
{

sharp[loop][loop2] = 1;

INTEWGENT OPTICAL SENSOR - 481

}

InvalidateRect(CRect(12,18,332,258), FALSE);
}

}
}

void CDataExtractorDlg: :OnTargetButtonO
{
/I TODO: Add your control notification handler code here
UpdateData(TRUE) ;
if (chdir(m_Target))
{
MessageBox("Couldn't change to drive");
Checkl=O;

}
else Checkl=l;

}

void CDataExtractorDlg:: OnValidCheckO
{
II TODO: Add your control notification handler code here
UpdateData(TRUE) ;

}

void CDataExtractorDlg: :OnBoundButtonO
{
II TODO: Add your control notification handler code here
int loop, loop2, loop3, Mem = 0;
int gap = 0, Set = 0;
counter = 0;

for (loop = 0; loop<100; loop++)
{
Xmin[loop] = 80;
Ymin[loop] = 60;
Xmax[loop] = 0;
Ymax[loop] = 0;

}

IICheck every second line in the image
loop=O;
for(loop2=0; loop2<60; loop2++)
{
Set = 0;
Mem = 0;
gap = 0;
Ilwhile(loop2<80)
for (loop=O; loop<80; loop++)
{

if (sharp[loop][loop2]==1)
{
counter++;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 482

Xmin[counter] = loop;
Ymin[counter] = loop2;
Ymax[counter] = loop2;
Xmax[counter] = loop;

/lPrevious line check for position matching
for(loop3 = 0; loop3<counter; loop3++)
{
if«loop> =Xmin[loop3]-2)&&(loop< =Xmax[loop3]+2)&&

(loop2-Ymax[loop3] <3)&&(loop3! =counter)&&
(loop2>0»

{
Set = 1;
Mem = loop3;

}
}
/lEnd of line check

while«gap<1)&&(loop<80»
{
loop++;
if(sharp[loop][loop2]==1)
{

}

gap = 0;
Xmax[counter] = loop;

IIPrevious line check for position matching
for(loop3 = 0; loop3<counter; loop3++)
{
if«loop>=Xmin[loop3]-2)&&(loop<=Xmax[loop3]+2)
&&(loop2-Ymax[loop3] < 3)&&(loop3! =counter)&&(counter>O»

{
Set = 1;

}

Mem = loop3;
}

IIEnd of line check

else gap++;

}
gap = 0;

IIMatching correction code, updates matched object
/land deleted new object created
if (Set==l)
{

}

}

if(Xmin[counter]<Xmin[Mem]) Xmin[Mem] = Xmin[counter];
if(Xmax[counter]>Xmax[Mem]) Xmax[Mem] = Xmax[counter];
Ymax[Mem] = loop2;
Xmin[counter] = 80;
Xmax[counter] = 0;
Ymin[counter] = 60;
Ymax[counter] = 0;
counter--;
Set = 0;
Mem = 0;

}

loop=O;
}
m_Objects = counter;
UpdateData(FALSE) ;

ApPENDIX L - SOFTWARE SOURCE CODE

INTELUGENT OPTICAL SENSOR - 483

InvalidateRect(CRect(12,18,333,259), FALSE);

}

void CDataExtractorDlg: :OnClearButtonO
{
/I TODO: Add your control notification handler code here
int loop,loop2;
for (loop = 0; loop<80; loop++)
{
for (loop2 = 0; loop2<60; loop2++)
{

sharp[loop][loop2] = 0;
}

}

counter = 0;
m_Objects = 0;

for (loop = 0; loop<l1; loop++)
{
Xmin[loop] = 80;
Xmax[loop] = 0;
Ymin[loop] = 60;
Ymax[loop] = 0;

}
UpdateData(FALSE) ;
InvalidateO;

CPaintDC dc(this);
for (loop = 0; loop<320; loop++)
{
for (loop2 = 0;loop2<240; loop2++)
{

}
}

}

if(Stored[loop][loop2])
SetPixel(dc,loop+ 12,loop2+ 18,RGB(O, 100,200»;

ApPENDIX L - SOFTWARE SOURCE CODE

void CDataExtractorDlg: :OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{
II TODO: Add your message handler code here and/or call default
CSliderCtrl* SliderOne = (CSliderCtrl*)GetDlgItem(IDC_SET_SUDER);
Pos = SliderOne->GetPosO;
CString Texter;
Texter. Format("%d" ,SliderOne->GetPosO);
SetDlgItemText(IDC_SET _STATIC, Texter);

OnClacButtonO;
InvalidateRect(CRect(12, 18,333,259), FALSE);

CDialog: :OnHScroll(nSBCode, nPos, pScroIlBar);
}

void CDataExtractorDlg: :OnSaveButtonO
{
II TODO: Add your control notification handler code here
CSliderCtrl* SliderOne = (CSliderCtrl*)GetDlgItem(IDC_SET_SUDER);
Pos = SliderOne->GetPosO;

char Temp[1024];
_getcwd(Temp,1024);

_chdir{m_ProgDir);
of stream OutFile(IResults.log", ios: :app);

INTELUGENT OPTICAL SENSOR - 484

OutFile « m_FuliName « "\t" « m_Percent « "\t" « Pos « endl;
OutFile.closeO;

_chdir(Temp);
}

II Data ExtractorDlg.h : header file
II

ApPENDIX L - SOFTWARE SOURCE CODE

#if !defined(AF)CDATAEXTRACTORDLG_H_0690B747_B844_11D2_9F64_9FFlE749723B_INCLUDED-->
#defineAFX_DATAEXTRACTORDLG_H_0690B747_B844_11D2_9F64_9FF1E749723B_INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif II _MSC_VER >= 1000

1111///1///111111111///11///1111///111111111///11//////11111///111///1///1111
II CDataExtractorDlg dialog

class CDataExtractorDlg : public CDialog
{
I I Construction
public:
CString m_FileName;
CString m_ProgDir;
CDataExtractorDlg(CWnd* pParent = NULL); II standard constructor

I I Dialog Data
II{ {AFX_DATA(CDataExtractorDlg)
enum {IDD = IDD_DATAEXTRACTOR_DIALOG};
CSliderCtri m_SetSlider;
int m_Xcoord;
int m_Xmax;
int m_Xmin;
int m_Ymax;
int m_Ymin;
CString m_Target;
int m_X;
int m_Y;
int m_Area;
int m_SegArea;
int m_SegHeight;
int m_SegWidth;
BOOL m_ Valid Check;
int m_Objects;
int m_Percent;
CString m_FuIiName;
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II { {AFX_ VIRTUAL(CDataExtractorDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
II} }AFX_VIRTUAL

II DDX/DDV support

I I Implementation
protected:
HICON m_hIcon;

I I Generated message map functions
II { {AFX_MSG(CDataExtractorDlg)
virtual BOOL OnInitDialogO;
afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaintO;
afx_msg HCURSOR OnQueryDragIconO; _

INTELUGENT OPTICAL SENSOR - 485

ApPENDIX L - SOFTWARE SOURCE CODE

afx_msg void OnExitButtonO;
afx_msg void OnOpenButtonO;
afx_msg void OnClacButtonO;
afx_msg void OnTargetButtonO;
afx_msg void OnValidCheckO;
afx_msg void OnBoundButtonO;
afx_msg void OnClearButtonO;
afx_rnsg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScroIlBar);
afx_msg void OnSaveButtonO;
II} }AF)CMSG
DECLARE_MESSAGE_MAP()

};

II { {AF)UNSERT _LOCATION} }
II Microsoft Developer StudiO will insert additional declarations immediately before the previous line.

#endif II !defined
(AFX_DATAEXTRACTORDLG_H __ 0690B747_B844_11D2_9F64_9FF1E749723B __ INCLUDED_)

INTEWGENT OPTICAL SENSOR - 486

	423331_001
	423331_002
	423331_003
	423331_004
	423331_005
	423331_006
	423331_007
	423331_008
	423331_009
	423331_010
	423331_011
	423331_012
	423331_013
	423331_014
	423331_015
	423331_016
	423331_017
	423331_018
	423331_019
	423331_020
	423331_021
	423331_022
	423331_023
	423331_024
	423331_025
	423331_026
	423331_027
	423331_028
	423331_029
	423331_030
	423331_031
	423331_032
	423331_033
	423331_034
	423331_035
	423331_036
	423331_037
	423331_038
	423331_039
	423331_040
	423331_041
	423331_042
	423331_043
	423331_044
	423331_045
	423331_046
	423331_047
	423331_048
	423331_049
	423331_050
	423331_051
	423331_052
	423331_053
	423331_054
	423331_055
	423331_056
	423331_057
	423331_058
	423331_059
	423331_060
	423331_061
	423331_062
	423331_063
	423331_064
	423331_065
	423331_066
	423331_067
	423331_068
	423331_069
	423331_070
	423331_071
	423331_072
	423331_073
	423331_074
	423331_075
	423331_076
	423331_077
	423331_078
	423331_079
	423331_080
	423331_081
	423331_082
	423331_083
	423331_084
	423331_085
	423331_086
	423331_087
	423331_088
	423331_089
	423331_090
	423331_091
	423331_092
	423331_093
	423331_094
	423331_095
	423331_096
	423331_097
	423331_098
	423331_099
	423331_100
	423331_101
	423331_102
	423331_103
	423331_104
	423331_105
	423331_106
	423331_107
	423331_108
	423331_109
	423331_110
	423331_111
	423331_112
	423331_113
	423331_114
	423331_115
	423331_116
	423331_117
	423331_118
	423331_119
	423331_120
	423331_121
	423331_122
	423331_123
	423331_124
	423331_125
	423331_126
	423331_127
	423331_128
	423331_129
	423331_130
	423331_131
	423331_132
	423331_133
	423331_134
	423331_135
	423331_136
	423331_137
	423331_138
	423331_139
	423331_140
	423331_141
	423331_142
	423331_143
	423331_144
	423331_145
	423331_146
	423331_147
	423331_148
	423331_149
	423331_150
	423331_151
	423331_152
	423331_153
	423331_154
	423331_155
	423331_156
	423331_157
	423331_158
	423331_159
	423331_160
	423331_161
	423331_162
	423331_163
	423331_164
	423331_165
	423331_166
	423331_167
	423331_168
	423331_169
	423331_170
	423331_171
	423331_172
	423331_173
	423331_174
	423331_175
	423331_176
	423331_177
	423331_178
	423331_179
	423331_180
	423331_181
	423331_182
	423331_183
	423331_184
	423331_185
	423331_186
	423331_187
	423331_188
	423331_189
	423331_190
	423331_191
	423331_192
	423331_193
	423331_194
	423331_195
	423331_196
	423331_197
	423331_198
	423331_199
	423331_200
	423331_201
	423331_202
	423331_203
	423331_204
	423331_205
	423331_206
	423331_207
	423331_208
	423331_209
	423331_210
	423331_211
	423331_212
	423331_213
	423331_214
	423331_215
	423331_216
	423331_217
	423331_218
	423331_219
	423331_220
	423331_221
	423331_222
	423331_223
	423331_224
	423331_225
	423331_226
	423331_227
	423331_228
	423331_229
	423331_230
	423331_231
	423331_232
	423331_233
	423331_234
	423331_235
	423331_236
	423331_237
	423331_238
	423331_239
	423331_240
	423331_241
	423331_242
	423331_243
	423331_244
	423331_245
	423331_246
	423331_247
	423331_248
	423331_249
	423331_250
	423331_251
	423331_252
	423331_253
	423331_254
	423331_255
	423331_256
	423331_257
	423331_258
	423331_259
	423331_260
	423331_261
	423331_262
	423331_263
	423331_264
	423331_265
	423331_266
	423331_267
	423331_268
	423331_269
	423331_270
	423331_271
	423331_272
	423331_273
	423331_274
	423331_275
	423331_276
	423331_277
	423331_278
	423331_279
	423331_280
	423331_281
	423331_282
	423331_283
	423331_284
	423331_285
	423331_286
	423331_287
	423331_288
	423331_289
	423331_290
	423331_291
	423331_292
	423331_293
	423331_294
	423331_295
	423331_296
	423331_297
	423331_298
	423331_299
	423331_300
	423331_301
	423331_302
	423331_303
	423331_304
	423331_305
	423331_306
	423331_307
	423331_308
	423331_309
	423331_310
	423331_311
	423331_312
	423331_313
	423331_314
	423331_315
	423331_316
	423331_317
	423331_318
	423331_319
	423331_320
	423331_321
	423331_322
	423331_323
	423331_324
	423331_325
	423331_326
	423331_327
	423331_328
	423331_329
	423331_330
	423331_331
	423331_332
	423331_333
	423331_334
	423331_335
	423331_336
	423331_337
	423331_338
	423331_339
	423331_340
	423331_341
	423331_342
	423331_343
	423331_344
	423331_345
	423331_346
	423331_347
	423331_348
	423331_349
	423331_350
	423331_351
	423331_352
	423331_353
	423331_354
	423331_355
	423331_356
	423331_357
	423331_358
	423331_359
	423331_360
	423331_361
	423331_362
	423331_363
	423331_364
	423331_365
	423331_366
	423331_367
	423331_368
	423331_369
	423331_370
	423331_371
	423331_372
	423331_373
	423331_374
	423331_375
	423331_376
	423331_377
	423331_378
	423331_379
	423331_380
	423331_381
	423331_382
	423331_383
	423331_384
	423331_385
	423331_386
	423331_387
	423331_388
	423331_389
	423331_390
	423331_391
	423331_392
	423331_393
	423331_394
	423331_395
	423331_396
	423331_397
	423331_398
	423331_399
	423331_400
	423331_401
	423331_402
	423331_403
	423331_404
	423331_405
	423331_406
	423331_407
	423331_408
	423331_409
	423331_410
	423331_411
	423331_412
	423331_413
	423331_414
	423331_415
	423331_416
	423331_417
	423331_418
	423331_419
	423331_420
	423331_421
	423331_422
	423331_423
	423331_424
	423331_425
	423331_426
	423331_427
	423331_428
	423331_429
	423331_430
	423331_431
	423331_432
	423331_433
	423331_434
	423331_435
	423331_436
	423331_437
	423331_438
	423331_439
	423331_440
	423331_441
	423331_442
	423331_443
	423331_444
	423331_445
	423331_446
	423331_447
	423331_448
	423331_449
	423331_450
	423331_451
	423331_452
	423331_453
	423331_454
	423331_455
	423331_456
	423331_457
	423331_458
	423331_459
	423331_460
	423331_461
	423331_462
	423331_463
	423331_464
	423331_465
	423331_466
	423331_467
	423331_468
	423331_469
	423331_470
	423331_471
	423331_472
	423331_473
	423331_474
	423331_475
	423331_476
	423331_477
	423331_478
	423331_479
	423331_480
	423331_481
	423331_482
	423331_483
	423331_484
	423331_485
	423331_486
	423331_487
	423331_488
	423331_489
	423331_490

