INTELLIGENT OpPTICAL METHODS
IN
IMAGE ANALYSIS
FOR
Human DETECTION

A THESIS SUBMITTED FOR THE DEGREE OF DocToR oF PHILOSOPHY

BY
Jean-Marc GRAUMANN

ScHooL oF ENGINEERING AND DEsIGN
BRuUNEL UNIVERSITY

June 2005

ACKNOWLEDGMENTS

Acknowledgments

I would like to use this opportunity to extend my thanks to the
various people who helped me along the way:

Dr. Chris Kirkham

Dr. Stan Swallow

Neil Brown (Weyrad Electronics Ltd.)
Paul Gammans

Adrian Long

My father, for proofreading

And last but not least, my wife, for putting up with me and helping
me to finish !

Jean-Marc Graumann, June 2005

InTeLLIGENT OpTicAL SENsOR - 2

ABSTRACT

Abstract

This thesis introduces the concept of a person recognition system
for use on an integrated autonomous surveillance camera.

Developed to enable generic surveillance tasks without the need for
complex setup procedures nor operator assistance, this is achieved
through the novel use of a simple dynamic noise reduction and
object detection algorithm requiring no previous knowledge of the
installation environment and without any need to train the system
to its installation.

The combination of this initial processing stage with a novel hybrid
neural network structure composed of a SOM mapper and an MLP
Classifier using a combination of common and individual input data
lines has enabled the development of a reliable detection process,
Capable of dealing with both noisy environments and partial
occlusion of valid targets.

With a final correct classification rate of 94% on a single image
analysis, this provides a huge step forwards as compared to the
reported 97% failure rate of standard camera surveillance systems.

InTeLuigent OpricaL Sensor - 3

Table of Contents

1 - Introduction and hypothesis........cccvevvviiiiiiiiiiiiic e 25
2 - LIteratlure REVIEW....uuivu it ierieeieiietiineenessreenseneseanenaeneeneanennes 30
2.1 - Why do we Need SENSOIS 2...uuivuiuiiieinenieneenreaenrneeenannes 31
258 = THHOEE DF SONBORE . s rmpnswssie onmshn s s s e 25 s 32
2.2.1 - PIR SENSOIS. . ttiuiiutintintritrineresnssnsansassnssnsansensansnnens 32
Z.2.2 = NIDration SeNBOIS. .o sessens sxmssias srnasas snus siis s swis s s sl 35
2.2.3 - CAMEBIAS. e iuiieritrnrteerreernrarrerasassaseanrasasansasansnsennes 37
2o~ MOEE OF FRIIIIE. » o/ s50m w5t sy 560 0000 gmhrsss 6w el 425008 5 U 18 48
2.4 - POSSIbIE SOIULIONS..eviiiiiiieii i eeaes 51
i d, = FInal-Sysbonm COSE v sommem s fovrvies viny ssx i s spes maiia 52
2.4.2 - Ease of Installation and Operation..........cocevvvvinnnnnn. 52
2.4.3 - Overall System PerformancCe........ccccviiiirvernnrnenianns 53

2.5 = SENSOr SUMMAIY utuiuiuitiaeerenrerrsensararenenrenenrarararenenenns 54
2.6 ~ ANalySIs TOChNIQUES .. s essrtrntansmmss soxs snnn pxsasunsnssns sxswnnne s 56
2.6.1 = Conventional TechRIGUES ws virwusssssssisnsisassmsssmrams suss s 56
2.6.2 ~ Smat TechnIQUES. ssssksrsssnsy inservosnanssssmussnmmmmnymmsenns i B
2.6.3 - Types of Networks and Intelligent Processes............. 65
2.6.4 - Summary of analysis techniques...........ccoevvviiiiiennnn. 79

3 - StUAY DEfiNItIONS. .uuiviiriiriitiiriieeerirtee e e areneeneeaeenes 82
3.1 - Study ObDJECHIVE. . euitiiiiriieiieie i e e eens 82
3:2 = DEfintion of 2 Perto e csrarespin usoss sy maiamsanns s aniasimo 83

4 = DabE BRI wunsvammsnssrnssssneripsnnssossseyyinnebiEinlersgonsn srsvsssmmss 86
b I 1y T o 1 O L, o 87
4.2 - Methods of ANalYSiS......vviviiiiiriiiiiiiirr e, 91
4.2.1 - Searching for KNnOWn Data....c.ceesenevmnsvenmsmvsnnnsenscasanns 91
4.2.2 - Searching for unknown Dok, sussssusssvrsssesssussn st 93
4.2.3 - Extraction Mode BalanCe...cussresvssarsvensaesnsnnesensnnnnsain 94
424 = HoW Many SERAUES. 7. sueuvsnanssusirsansmmsrdiesunsnhsaiPsmiis 96
4.2.5 - Target Area Recognition......ccorrumrsreervorsersnrenssnnsanns 100
4.2:6 =~ Analysis SeQUSNEe. .« s susvninmssmmies posmsgusin oo sz 102

2 PESOH OF CORCEPE. . ..svnosnmsmmsssnspsninomnenansssisigibtdsp s sy 127
Bl = IO BN, o cxasnosvnivissnsansy s srss sipases s ovss svasNinEs el 127
5.2 - Feasibility Framework........cvuviviiiuiiiiiiiieeneieceeenen, 127
5:8 = Methods . OF FESUING . o sxssmns sasaunsvss iz a s pribimnssania 129
5.3.1 - Constant Scene with Lighting Changes................... 134
5.3.2 - Constant Lighting, Changing Scene...........ccvvvvinnnn, 145
Bl Fs b = TN C SO ko iomcmeniinss s ms o wows sons s Ba R i i 148

el INDDIICER a0 asbuismnss nume i ma by ssussse i xS srssay 150
Db L = N OBII ORI o wvsiciniwsBioiwss s im0 oS M A 151
Dkl = WOBRBBCUET, v vneuns smesiummumnssitins iuisrmnes sy s st s 158

Db ATEITICIAD EIEE s s s yrusss wvies wiow e wacs 1 s i e Hmi kit ki 168
5.5.1 - General Considerations........ccvovvivviiiiiiiiiiiiineaens 168
5:5.2 ~ Data PAratMeEErS. o cossons sxnvinsinsasnsssnrinsassnnnsssansn 169

5.6 - Validity TeStiNg..uvuiiiiriiiiiiiiiiiir e 174

InTeLuiGenT OpricaL Sensor - 4

5.6 1= Test ErvirO NS it s oo cuusimeinsans i s Greansi 174

il > TRSE DS SOk i it i SR s s s etk Bey 1745
5.6.3 - Image Evaluation Methods.......cicccarmemssearsnisesnvaranes 176
242 Trnage Dl BT BCTION i sminmmms sssbunstdmmeinsmminmsmm 182

5.7 = Yos Data Extractor= VDE ... o exssssnsssssssmmsnsmassssssvmarssssns 184
5.8 - Initial Network Creation and Evaluation.............ccceueeee. 189
5.8.1 = Data Considerations...c. . crsressmunascssansesessrsssninsnsans 189
9.858 = D e e s amorseng e R 190
BRI ol T o g o R R S 196

6 - System DevelopmMeNnt......viiiieii i 204
6.1 =~ Enhanced Data CoOMPIEXItY.. ...cndvurcriniibaninsansvus vonsssasenas 204
6.2 - Multiple Targets and NOISE.. civsvssssnisunvsvssmss svassmanass s v 205
B:2.1 =~ Miltiple TargRlS. i i ssssnamii s s s s va 207
6.2.2 ~ NOISE ReUUCHION: 5 nisssmsvemns smmines oaams sss wansniss sk s vams 210

6.3 = MUltiple Datal EXEFACLON, s vis vinsmivsss swesssnssie o sxnn saus senn s ve 213
6.3.1' = Multiple Dbject Parametiers: ... iooaisuseimns sxs wws ws waiws i 213
6.3.2 - Deriving the Dynamic Noise Correction Level........... 219
6.3.3 - "Intelligent” Noise Reduction......coccirssiessssrarancannnans 228

0:3.4 = ProCeBsiiG TAMEE . & 5 fesssmossmin s s tbioakmsn sxis § 55y i 230

6.4 - Image Feature AnalysSiS.......ceviiiiiiiniieniriririneieeaeens 230
B.5 = DIata SelBCtiOn: il s sass o sbsssnswsrnssememans s b s 234
6.5.1 - Network Architecture......ccccocviiiiiiiiiiiiiiiiiniiienae., 234
6.5.2 - Data Pre-Classifier.......cccoiiiiiiiiiiiiiiiiiiiiiiiniennnne, 236
B:5. 3 = Hybirid ArGhEectliG s s asansws vvssnmmosimorymes s o0 s 237

6.6 - Data Optimisation.....cccvviviererriiiiiiirerarei e 242
6:6.1 = Data M auBINGg s soerrsmimmswimam i sl ssb a5 242
0:6.2 = SQOM GENeration..x. o sssieisisamnsssssvions siknssnasssssomess 243
B3 b BT ol s s asssss s s nsnd BRHLS O Sumans dyme et 256
6./6.4 ~ Classifier Traiting . .ccacsisrcs b s snremssiniesmnes e s 259

6.6.5 - MLP Considerations.......ccevvvviiiiiiiniiiiniinneniniinnennn, 264
65:60.5 ~ MLP TERIRING S0 005 400 v esas stsnassspampamusansarmns s marsm st 267

G = R T et B bt s wwtsrey S s P A s N SR 274
=R 0 L (] S Cr) QO Ly w T AT AL ST SRS g 276
8 = FUMthEr StUAIES. ..uivirieiiiiiicce e e e ea s eaeaes 279
8.1 - Datum Image Setting......cvocvveriiiiiiiiiniinnereniirenrinienns 279
8.2 - The Object Classification Process.........cccevveeirinriiriinnen, 282

O T R BT IIIE U {7 s om0 s s ks B s 285
9.1 & NOISE BNVAIWEIS. ixx s saxane s twn ovis s s siws s sws s wikis » o ke e s s 285
9.2 - Image Subtraction Results........ccceevvieririiiiiiiiiiniiinian, 286
9.3 - MLP Network Evaluations. eXample.. cv.sveoessssevosnuwsven sviass 293
10 - Appendix B — Relevant British Standards........c.ccovvvviiininene. 294
11 - Appendix C - Specialised Software Packages Used............. 295
1.1 ~ Neural MOUGIING . sowvems smms snm s wis v s sims sonsin sosin s sscws xms s sva o5 295
L1:2 = DU ANEIBIS v s wmns wwsis wansn wiwnos s ks s e § cbit A0k ¥ s § i i 295
11.3 - Artificial Data Motdelling.: s osisnivasisssomvsninposss ins shiwss 295
114 = Code GeNMEration ., .o sxsones nmks susyensamsws imms varssnns swansnsenssn s 295

InTELLIGENT OPTICAL SENSOR - 5

11.5 - Main Self-written Packages.........cocvvvviiiiiiiiiiinininnnnnnes 296
12 - Appendix D - Data Pre-processing techniques, a Summary..298

12.1 = Sealing § NOFmIBHSING. cs csmmsvexassssn vessnensmlsmsmmmssmsansss 298
12.2 ~ ANgUIAr THaNS OIS s vmsw s srssmmunssansmssssamussnsmen sy ks 298
12.3 - Zero-Mean Unit VarianCe.......covvvieiiiiiiiiiiiiciieeeeenenn 299
L2 8 = BINAIEY ORI UG 150005 w0 s v viowongin Wi i s o s i 299
12.5 - Vector Augmentation.........cocveiiiirsienninninsiirsrsrersenenans 300
12 5.1 = NS Ll veressamims imgmommmm e e s s s 300
12.5.2 = MBENOE 2. oovrsnivansiss s ntnstovims e me s s s s 301
13 - Appendix E - Image Stabilising Methods...........ccocvvvunenenen. 302
14 - Appendix F — A Meeting with Dr. Paul Rosin, 19.11.98........ 304
24,1 = Line rMateIiing . smor snes sens vosmmysnbinest o ks plamasamanss snen yasss 304
14.1.1 - Fairly intensive proCcessing.......cccvvvviiiiiiiiinniiinnnnns 304
14.1.2 - Shape Properties ...orivineiciosmansinrsmsiss smaiss rovns 305
15 - Appendix G - Infra-Red IMaging.......ccoevvveneerneenienneennennnns 307
16 - Appendix H - Experiments in Artificial Data...............eeueenes 310
17 - Appendix I - Contour Analysis Considerations.................... 313
18 - Appendix] - Development IMages.........ovevvuveerneernnersneenns 317
18.1 - 10x10 SOM Network TeStS....ccvvvirerrerinininirieieianannenens 317
18.1.1 < Canter Data BeL... .o sesneuns e ssssssbs i Snvsvssusmms sy snss s 317
18.1.2 - Cross Daka SEL. ... cux v imenss s saciiiiises sy v ss 318
18.1.3 - Extremes Data Set......ccvviiiiiiiiiiiiiiiiiiiiiiienans 319
18.1.4 - Middle Data Set......cveiiiiiiiiiiiiiiiiiii i 320
18.2 - 20%20 SOM Network TeStS....cuvvuvuiriririiienrnenenenieeenenn. 321
18.2.1 ~ Centres Data SOt .. -usss st sussisssnsvinniossussasssessrs 321
18.2.2 ~ Cross Daka SEL. v swsannssnsasvansimpiibm skt ess g 323
18.2.3 - Extremes Data Setl.....cciissscsonssassssnnasussssassssisnannss 325
18.2.4 - Middles Data Setcoveveieiiiiiiiiiiirreaas 327
18.3 =~ Mt Work MaPDING. .. ossssenns mrsammshsduniss smins s sants rakmiis =srs 329
18.3.1 - Centres Data Set......cccvvvviviiiniiiiiiiiinne e, 329
18.3.2 - Combined Data Stscssscaassasennnsnsrsassssissnsnsnnanne 330
18.3.3 - Extremes Data Set.....ccovvviiiiiiiriiiiiiiiiiiiiiaiaaes 331
19 - Appendix K - Final System Structure............coeeeeeeeerevennnnns 332
19,1 = SOM LAYEE.0ssissessvssnssssunasnnsnsssnsessssanssmsassnsisnesinnssansss 332
LB e ML LBYBE: saavswmesosmnmonausnbsnssnnsssisnvs s pomeisssvesssens snnens 347
20 - Appendix L — Software Source Code...........ccovvrurrrrrrrreeenen. 351
20.1 = SOM TTAINET . ervnrcossonsansssmrnsiessssaesnsmnnssmsnnsesmmmmmenss 351
20.2 = RESUILS Filtr .. uivuniirniitniiieiiee i e e eaeerees e et e e e ennaes 377
20.3 - Bitmap Wave COmMPArator..........ceeeererrnerererrunrereennnnns, 381
20.4 - NEUral DEMO. .. ceeneieeien et e e e ereeesie e e ieeeaaeeeranes 392
20.5 - ChIOrIdE DEMO. .. ceeverreeeeeenieeeeeeeeeeereieeseeseeeeenneees 403
20.6 - Bitmap HEadersS.......cevvvvuueiieeereeriieieeeeeeeeeesnssi s 425
20.7 = ChEAt OffiCuu etrreeeeeieeeeeeeee e e e e e e e eeaessraneeeenaaeees 427
20.8 - VOS REAAET eeeerrrrrrereetenaeserenaassestsnssssreneseennneseens 440
20.9 = VOSVIEWET.......ceiieiiiirrrrieieeeeeeeeeeeeiarerereeeeeeeeeeeeeeeaees 460
20.10 = WeYrad DEMO...eeveeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeseeeeeseeenns 466
e

InTeLLiGenT OpticAL Sensor - 6

20.11 = Multiple Data EXtraCHOr. . vmxssnomessmnssnussimpasmnsapsvssassonnss 479

InTELLIGENT OpTICAL SENSOR - 7

Index of Images

Fig.1:Perceptron Learning FUNCHION.ccvvveeiieeiiiieeerieeraneesereesaneeens 68
Fig.2:Perceptron NetWork OUEPUL........iveiirieieiieeeieeeeieeneeeeen e eaeeaeeanes 69
Fig.3:0utput Error Calculation...........uuieeerireeriieeeieeerieeeereeesnneeenneeennns 69
I L P Bhrsr B e syt eomtamae s padimusmsnc ey iplabamayes raraning 70
Fig.5:MLP Hidden to output layer weight update.........ccccevveevrnieevnnnnnnnn. 71
Fig.6:MLP hidden Weight Update.........vvvuieriieniiriiiniirnireneesinesnnernneeennns 72
Fig.7:MLP Weights delta with MOMENtUM......c.uviviiiiieiiieeieeereerieeeaens 72
Fig.8:SOM Euclidean DiStanCe..........ccuurerrnerruieernierennrersineeesneersnnersnnnes 76
Fig.9:SOM Weight AdJUSEMENt........ccvvuneririeeeiiieeeiieeeieeeri e esieeaeannnes 77
Pig. 10sCarners field OF VIBW. cy.. rrsosearssssssinansnmssismmssassiosss dirpasssss s ansns 89
B0 Ve En Al DBRUR. . smumsssmminnsasnsss Sumirnsdus SR Aot son b st st 98
Fig.12:Carpark With Changes..........uuuieiieriiieeiiiiiee s e e e e eananes 98
Fig.13:Full SCENE ChANGE. .. 1eirerrereersrrnerioriemnmirssersnsssronserenssmemasssrsnsss 98
Fig.14:Retained areas of Change.........c.uuuieierieiiiieseeeeeeeiiiin e eeeerannaanns 99
Fig.15:Carpark Difference analysis.........evererrureeerrnineeseriineennnineersnnnss 99
GO LG RRbTT TR s songmsmpmmunssss 1 sonasmnsiramun s SN SR s ianpansags 101
e B ST o P SRR . el | S —— 101
Fig.18:Difference image, showing potential targets............cccvvurerennn.. 101
Fig.19:Target Image, showing identified potential target areas............ 101
FIg. 202 POINE NOISBL . 1 14ssssmssssumsmnnssnns s ssswmumssneinn i1 »snssssnsbmmnissions s nsmsasssns 108
Fig.21:Datum IMage......uuieiiriiieiiiiiiieeeiie e e eee e e b e eaaaes 109
B 22 ATETE DB e s 10 smummsnti 11 s simamsi sremenmte s oy st 109
Fig.23:Differenceof Camera Image(fig.21) to Datum Image(fig.22)..... 109
Fig.24:Target features partially cut off by other objects................cu.... 115
Fig.25:Target only partially in the image frame.........cocvevvieeneinneennnnn. 115
Fig.26:SiNGIE ODJECL. ... ivvniieiiiiiiei e e e eaaas 116
Rt 2 PeSarmratet DBIBES.. .. wsosmmmmuassopumsns s iaperapamo s s 117
Fig.28:Boundary overlapping ObJeCtS. ... cuvuiiuniiuniiiiiiieeierreereeieens, 118
Fig.29:0verlapping ODJECES.uivrirneeriie et iiieei et eei et e ea e eanaens 118
U S0 L AIVUED T 10050t b s b e R B A N R 131
VG AL LB OFF o vvsnen e sinnsnmaissmenni s smmsinnspnsmesnsns s ses sumsmemstiaussessmmsnssmi s 131

InTeLLIGENT OpTICAL SENSOR - 8

Fig.32:Lamp Difference IMage......uiuuienirreiriesieriesieseenseneesreseeseennens 132

Fig.33:Lamp Difference ODJeCt.....uuiiviirniiiiieieinierneinieseesieeeneessneesneees 132
FUG S LI RO i ns sttt s s et sy s A SRR A SRR R E S 133
e C I 1Yo [10T o o T ol 2o o) o o 133
P30 DRI OO et » smammmsna s s b oy s R 48 3§ AAEE S 133
Fig.37:Light ROOM HiStOGram. ..uusussssnssansusmnsesnnessssssnunsansmnnsnnssssssassass 135
Fig.38:Medium lit room NiStOGram.......uvviiririeniiieririeriaiereeenieeneeneanns 135
Fig.39:Dark room hiStOgram.....civiessssrasssssensasnarnssessssassnsssssanssnsssns 135
i P2 L BT T T ol = g (R GO P 138
Fig.41:Medium Histogram Stretched.........ccvviiiiiriieeinieiieene e eeeeens 139
Fig.42:Dark Histogram StretChed.........oovvveereirieeiiiiineceeeaeeeineeaneens 139
Fig.43:Corrected ROOM Light......ccuuiuuiiniiieeiiiiieeeeeee e e e e nneeneees 140
Fig.44:Corrected ROOM MediUM.......civuuiiiuiiieirieeeeesie s s e eneeaaeeenneees 140
Fig.45:Corrected ROOM Dark.......cccuvivueeerieesersieisneeeneeeneessneeserannennns 140
Fig a6 Light Roott THESSHBIA, .ioiesransrsiminiin messmisassiaimssasmssmss 141
Fig.47:Medium Room Threshold.........cecvveveuiiiiiinieiineeneeeeeaneneanns 141
Fig.48:Difference of Fi.44 to Fig.43....cciceviuiiuiiiriieiiriieensenesneennenneanns 141
Fig.49:Difference of Fig.45 to Fig.43...ccuiviiriiiiriiiiiiiieneeiennensenennaneneans 141
Fig.50:Grayscale Fig.44-Fig-.43.....cccciuiiiiiriiniinieniiieiineassns s esnnenneaens 142
NO.51:Grayscale FigA5-Fig. 48 cuussmnsswessnsmnsmiiibimsaasssessiiges v 142
Fig.52: Thireshold Yalue CalCulEtion. . i ravmssnssnsissusbsninmisnmsese e 143
Fig.53:Threshold of TMg2-IMa L. . cnsssvsmns s s ssaninasrusesss s ssssosuernnmmsmansysbsmy 144
Fig.54:Threshold of IMG3=IMQGLy..sssssssensrs ssnspmssesos s vonnmnsmmsnmommuns vnasa 144
Fig.55:Maximum Threshold. ..o osiisssssssns sssssmsnsmnsnnsss sassusmumesndhnsns sesns 144
FIG.56: Datum IMB08 s usnsbsousns vosssnsnnnsos voisenssamsness spuss s mss 145
P8 7 T O DRI B s suummmessisnassiin s e S A N S S AR RS 145
s W Bl 0 T (B = ol T R DR ARSI A YN P50 146
FIG, 59 Caiiera SERECRBE i v tes it o annssumsmsmnisbsmss s anasnmsanspennss Sumuseamcs 146
Fig.60:Differenceof Camera to Datum image......coveviviiiiiiiiiiniiiinnnnnens 146
Fig.61:Thresholded Difference Image of Camera to Datum................. 147
Fig.62:VosDemo Operation SEQUENCE.....c.iiviiiiieieririeieeeriaenaeeneanaens 152
FIC B3V ASIDBING (hisisasasmnnssiormmmmsin sunsosausamnind i ssss st ausmsissas yisiinss 154
s W BT D01 o U R T Y S o RO OL . S 154
Fig. 65 Threshold Caleulation. ccwserscos s sassmmnmaysusonsawmnimnsrssssssis 155

InTELLIGENT OpTicAL SEnsOR - 9

Fig.66:Grayscale TransformMation..... ... ce.ieeeenrereineereerseereeeeesenerennns 155

FIg.67 :VOSREAAEvuieerieeitiieeiiiieee e e e erie e e e r e e e raa e e e aaa e e eaaa s 159
Fig.68:VosReader Operational SEqUENCE........cvvriivrirenieenierneerieeneennns 161
Pl B e A D HCEION cmmves s csmmmasmanes semnsansmirmmmsnns s sossasmsmssamassssusens 162
FIg. 20 AdAPEIVE FIEEMNG .. vex s raesasarsssssnnssusesanisanssnsnunansanssmsasassnassonnssns 163
T B T o e R0 et ko ey ko A R e S SR B 164
PIg 72 UL Er ADDIICAO . issiith duissins aiss ieitanbin s it vos thimans smassunssanusrsyssmsn 166
Fig.73:Bounding Box area of a human figure..........cceeeevevvvevvvvnnneennnn 178
Fig.74:TWo humMan Profiles..........uivveverrrrrriiiiiiieseeeeeeeeeseesssssinns 181
Fig.75:The main bounding BOX......uuueeeeieeeeeereeereirrerssssssssssssrssernnnnn. 185
TR T G RE R S NN UL S 190
P T D) o R o P S 190
Fig.78:Percentage NOrmaliSed NOISE.......uvvrrvrurereereeeeeeseerreeressenannns 191
Fig.79:Percentage NormalisSed Targel s .coiansssssruseiprpimamemsmr e spas 191
Fig.80:L0GarithmiC TranSfOrM. . uueeneeeeeseeeeeseeesseseeeeseeneeesssneeeeennns 193
Fig.81:Data Transformation EQUAtiON.........ceeiiuvreeeesiiurreeessirreessineeens 194
Fig.82:Data TranSfOrmMS......uiiieueesieeeeeerreeseireeesssseeesssreeessseeesssinenss 194
Fig.83:NetWOrk ArChitECtUI . . eveeeierserrereeeeeeeeeeeirrreeeeeeesesssbreraereeas 197
Fig.84:Selected SEGMENES......c.veeiveeiireeeiireeeirieesreesreeeeeesrreesreeserens 199
D DOl viwihs st st s ¥ s sy RS GRS RS s 201
B BV sttt S Tk v s st R AR R s 201
PG B 7 PErS O IOUBEEION, v v+ randissinds s s wbrsiasvss sabons S Wi s s sass 202
Fig.88:0bJECtS SEPArAted......eieeeeeeeeeeeeeeesseeeeeseeeesesaereeeeeessssesssennnns 208
Fig.89:Bounding Areas OVerlapping.........cveeeeueeeseeesiieeeseeesiieeesennes 208
Fig.90:0bjects OVEMAPPING.....ecivereereeeeeeeeeeeeeesereseeseeseeseesree e 208
FIg. 91 PIXel SHIft RANGE. ... vveeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e eeeeeesreeeenenes 212
Fig.92:Base image, showing distinct noise distribution areas............... 214
Fig.93:Noise reduction 16VEl SEt t0 0.......eveveererereesereeiieesereesiseesnens 215
Fig.94:Noise level redUCtion SEt t0B........eevereeeeereerreeesseeeeesieeenes 215
Fig.95:Noise level reduction SEt t0 15.....eueeveeoeeseeeeieesreseeseeseeeseen, 215
FIg.96:0 NOISE REAUCLION.e.vveveeeeeeeeee et eeee et e eeee e eeeeeneeeeeeeeenes 3 g
Fig.97:8 NOiSE REAUCLION.eeveeeereereerereeeeteeieeseeeeeseeseseesssteessee e, 217
FIg.98:15 NOISE REAUCKION. 1.« vtvveeeeeereseeesereeeeeeeeeeeseeeeeeeseeeeeeeseneesees 218
Fig.99:Noise Saturated IMage..evereeeeieeeeeeeeeeeeereeseeeeereereseeeeens 219

InTeLLiGenT OepticaL Sensor - 10

Fig.100:Saturated Objects DeteCted.......cuuuirrrirererrnrrrneeeeierrernnernans 219

FIg. 101 : Artificial Data.....u.eeerurerrriierrnieeereeesnneeeseessneessreeeneessneennns 221
Fig.102:Live-capture Data.........oiivuiieuiiiriiieiesiieesersneesnerneeenneeeanes 221
G L3 MO ST THEBBE o coussoncisinsssomynis snsssme s s i S R s RS 222
Fig.104:Valid TRAFGEE. .. s vssverrmronvayprpmusm st e TR PSRN ST 223
Fig.105:Required Correction LEVEl.........cuuievrsernieriiiineesneesneeeneennnnss 224
Fig.106:Potential Error Correction marked in yelloW........coevvvneevrnnennnn. 226
Fig.107:Error Correction FUNCHION........iviierueeeeersieeeeesiineeeeeesnnineeeeeas 226
Fig.108:Final Noise AdJUSEMENt.....ccvvvvrriiieeerrerriieeeeeeeeeeerrnrrnaees 227
Fig.109: Bottleneck NEtWOIrK.vvvvvvureeeeerrerrrrrrsnieseseeeeeeeereesessmnnnens 229
Fig.110:Light Variation AN@lYSiS.......eceerrrrrrrrruiiiseseeeeeereseeesssrssssmmnnnns 231
P 1112 Noise ReMBMEe: st ittt oo it s ossiummsasnssnsmss 232
Fig.112:Change IdentifiCation...........eeeereersuieeeesressseeseeseesssieseessssenes 233
Fig.113:Complex Network ArchiteCtUre. . .uuuueeireieeeeeereerererensanieeeeeens 239
Fig.114:Complex Network ArChiteCtUIrE 2.....iivvrereererreeeeeeerrrsisseseeennes 240
Fig.115:Data NOrmMaliSatioN.......eeeeessseesesssseasssssssssssssssssessssresesssnees 245
Fig.116:Centres SEGMENLS......cvciicvereeeiiirreeeesiiirreeeessinreeeesessreeeeens 245
PG L 7 X PRI ES SOOIMENES . pxeusussnvrins sxmisssnsss (insonthrerssonpssmshassmnsxs 245
Fig.118:Middles SEgMENtS........ccuvvvereeeeeriirrrreeeseireeeeesssnreeeeeaissnreess 246
FIg. 119:Crons Sogment. s emeemnasnasnsaunenssnesskambsnisssinsrsssssnsns s nmniy 246
Fig.120:Average Segment Data ValueS........ccveeeervereerveeeesiueeessinnenens 247
Fig.121:Standard Deviation of Target to Non-target Data...vves isvesssmines 248
Fig.122:Combine SEGMENES....vvveiieeireecrieeeeirieeeeerreesreessseeesreeessneeas 252
Fig.123:RMS Training Error against Testing ErTOr........cceciveerveeirveennnes 265
Fig.124:Final Network ArChitECtUrE.veeveeereieeeeeesieeeeeeeisareeesseeeeeas 269
Fig.125:0ptimised Network RESOIULION......ceeeeeeeeeeeireeeeeeeeeeeeeeeessneienns 271
Fig.126:FEedDacK PrOCESS. . .cccvvveeieriessesieeessiseeessieeesseeeeessseeesssseeas 284
FIg. 127 SEQUENCE DL......uesssrersessmnsssassssnssssmnssssssnussnsmsasssssssansassasonss 286
FiQ.128:SEQUENCE 02....ueeeeeeeeseeeeseeareeeeesseesseneesaaesesessesesesnsesssensens 287
I:i9-129:Sequence 0.3 b s R T YRR T RN £ 1§ AR e Dn 287
Fig.130:SEQUENCE D% ..vvveeeeeeeeeeeeeeeeeee e et e e e e e e e e ee e ereeeeeeeeeeeenn 287
FIg. 131 S EQUENCE 05..uuvvveeeseeeeeeeeeeeeeeeeeeeeeeeeeereeeeseeseseeeesarneeeeseeeess 288
Fig.132:SeqUENCE 06......ccuviiiicriiieiii e 288
FIg.133:SeGUENCE 07....vicveeieeecteieieteete et 289

——

InTELLIGENT OpTicAL Sensor - 11

FIg.134:SeqUENCE 08.....civuiiiiiiiiiiiiiiieeiiiee e e e e et esas e esaeesaaeeeas 289

I3 35 SOOUENER 10D, sesnasnrsrsvsnssimesnsnnrsnssnsss ssdsummamispansindiasesapspanss 289
FIEL . S0 S OOUBATE LD, csmumnmenneramorsamirnsimmsmmmim s i tssie on N oS rons 290
FIg.137:SEQUENCE 11..iiiuniiiiiiiiiieeiee et e e e e et e s e eaa e e s aaa e e e saaans 290
FIg:138:SEGUENCE 12.10esmessssssssusmnnrassssrassnasssnedsesinnsmpnnssnssussssnnisnseses 290
Lo T R 1 Y=Y T T=Y Vol =Y T 291
FIg.140:S@QUENCE 14 .. cenn et r e e e e e e eaaes 291
FIG. 140 i S OQUENCE 15 u ieneeeeee e ettt e et e e e et e e e e e e e eaan s 292
Fig.143:Stabilised Video SEOUBIIGR srvsnsviivinmuismentl Silsm s sy S Bk b 303
Fig.144:Sunlight versus Incandescent Lamp...........ccvvvvvvnnieeerervsnnnnnss 309
FI.145:D0G MESH.....uuuiieeircesirrireesnsesssssssssssssssssssnssssssssassssnnnsasssnsnns 311
Fig.146: Highlighted outline of dog seen in a frontal pose................... 312
Fig.147:Human Shape ANalYSiS..........eeverrrrrrrriiiieesseeeeseeeeeesssesnnneeees 315
Fig.148:Ideal HUMAN SaPE.....ccicveeeieereeeeirrieeiitiieeserveeeeeaeeeeeneeeeenns 515
Fig.149:Note the legs of the targetcccevirrerernsrrrersisunessssessssessans 315
MG, A SOICENEEr ~ 100 CYCIES s vrersssserissmssssesnivesuss rnniasnsssssnsnsnenssnsensss 317
Fig. 151 :CeNter - 150 CYCIES. .uuvreieeeeeeeeeeeeeieeeeeeeeeeseiseeesesreeessiseeens 317
Fig.152:Center - 200 CYCIES....vvieiieeeeeeeieesiiteeeeeeeeesereeeseseresssiaeeeeas 317
Fig.153:Cross - 100 CYCIES. . uveeeiiueeeeeireeeseiieeesieeesssreeesaeeseeeesareeens 318
FIg.154:Cross - 150 CYCIES. . uvrreiieeeeeeiieeeiieteeeeieeeeirieeseeeeseeessneeas 318
Fig.155:Cross - 200 CVEIEE i i somssmsenin® Pynitsiias B km b e s b s o MMM o 318
PG 156: 100 CyCIES. . rurrreeeseeeieee e e eeeeeeeeeeeeeeeeeeeeesereeeea e e saeaeeeas 319
FIG BT 150 CVCIEE. . unsonsneressorasnsoss s smksnssss shemisianisassassinessvaraiineraess 319
Fig.158:200 CWCIEE avicinanss s s 55 samanmnss i hanmmnin i § Ssmsmis s e AR SR 319
PG, 159100 CYCIES. uurreiieeeeeeeeee e e e e e e e eeeeseeeeeeeeseeeeeeeeeesreeeseneees 320
FIG.160: 150 CyClEs.....cviuvieiieeieiieeicieceeietestere et ere s e s resreresaereseenas 320
FIQ.161:200 CyCles.....cuvviviriiierieeeseeiceeeeeees et s 320
FIG.162: 100 CyCles. . ..viuiveerieeeceete ettt 321
FIG.163:150 CyCles...ouvviviieiiirerieereereeseeeeseiseeete e en e, 322
FIG.164:200 CyCles.viuvivieieeiieee et en s 322
FIQ.165:100 CyClES...cveururreeeeririeeeeeeteteeeeessesessessse s s s s s 323
FIg.166:150 CyCles.........ouiuiviriiieereeeceeeeieeesee e 323
FIG.167:200 CyCles.......vvveeieieeeeeeeeeeeeeeeeeeeee oo e ev e, 324
FIG.168:100 CyCleS.vreeeeeeeeeeeeeeeeeeeeeeeeee e e e et es s, 325
e

InTeLLiGenT OpticaL Sensor - 12

FIG.169: 150 CyCleS. . uuniirnireiieitieeiiieiierie e et e e eaieetaaeesanneeesaeeeesnnernns 326

B S e S L Y G R s s smsanasconssn pres pessmorenma Ngiy B csies bl By i 326
o AR T R - NS AU W S S S 327
B L 225160 Tyalan, . cdusrfiersesn s ol kb s e G oREns sl sl i ol 327
L I R el O R YR N [S0 ST C T [B A ML) 328
T B T Lo 0N 1Y TP 329
B LS00 Ctles. . ot s bt S D R e i 329
O N G T Elag L . Sy e i v i s 330
e I A X Tl LNl [T 330
B T8 2 B0 OVOIOR o v ntdttes i i St B e N s s A AN s 331
Lt T B o R AR o 8 Al . AR sl AT W, 331
e~

InTELLIGENT OpTicAL Sensor - 13

REFERENCED PUBLICATIONS

Referenced Publications

[01] - B. Aird, A. Brown, "No Fire without Smoke, CCTV
Breakthrough in Fire Detection” - Journal of Applied Fire Science,
Vol. 11, No. 2, 2002-2003, pp. 183-193.

[02] - Alarm Tech, "AlarmTech - How your Infrared sensors work”,
http://www.alarmtech.org/security/pir.html

[03] - K. Arakawa, "Fuzzy Rule Based Image Processing with
Optimisation”, International Journal of Imaging Systems and
Technology, Vol 8, 1997, pp. 222-247.

[04] - H. Bandemer, "Specifying Fuzzy Data from Grey-Tone
Images for Pattern Recognition”, Pattern Recognition Letters, Vol.
17, No. 6, May 1996, pp. 585-592.

[05] - V.Becanovic, M.Kermit, A.]. Eide, “Feature Extraction from
Photographic Images using a Hybrid Neural Network”, Proc. SPIE
Vol. 3728, 1999, pp. 351-361.

[06] - 1. Bigun, "Pattern Recognition in Images by Symmetries and
Coordinate Transformations”, Computer Vision and Understanding,
Vol 68, No. 3, Dec 1997, pp. 290-307.

[07] - A. Blum, “Neural Networks in C++ an object oriented
framework for building connectionist systems”, John Wiley and
Sons, 1992.

[08] - T. Caelli, C. Dillon, E. Osman, G. Krieger, "IPRS Image
Processing and Pattern Recognition System”, Spatial Vision, Vol 11,
No. 1, 1997, pp. 107-122.

[09] - M.F. Campos, R. A. Mini, “Visual Tracking of Multiple Objects
using Wavelet Transforms”, Proceedings of SPIE, Vol 3723, 1999,
Pp. 341-349,

[10] - A. Caplier, C. Dumontier, F. Luthon, P.Y. Coulon, “Algorithme
de Detection de Mouvement par Modelisation Markovienne, Mise en
Oeuvre sur DSP”, Traitement du Signal, Vol 13, Issue 2, 1996,
PpP.177-190.

InTELLIGENT OpTiCAL SENSOR - 14

ReFerReNCED PuBLICATIONS

[11] - CCTV Today, "Integrated Package System”, - CCTV Today,
Vol 5, number 1, http://www.cctvmags.com/.

[12] - L. M. Chang, Y. A. Razig, D.M. Abraham, M.Chae, “Hybrid
Computerised Decision Support System for Infrastructure
Assessment”, June 2000.

[13] - C.H. Chen, “Neural Networks in Pattern Recognition and their
Applications”, University of Massachusetts, 1992, 168pp.

[14] - H.D. Cheng. M. Miyojim, “Novel System for Automatic
Pavement Distress Detection”, Journal of Computing in Civil
Engineering, Vol. 12, No. 3, July 1998, pp. 145-152.

[15] - Chloride, Chloride Product catalog, VM320 Integrated Camera
— Www.chloridegroup.com.

[16] - K. J. Cios, I. Shin, "Image Recognition Neural Network :
IRNN”, Neurocomputing, Vol 7, No. 2, 1995, pp. 159-185.

[17] - Clecom, “Continuous Wavelet Transform”,
http://www.clecom.co.uk/science/autosignaI/help/Continuous_Wav
elet_Transfor.htm.

[18] - R.T. Collins, A.L. Lipton, T. Kanade, “A System for Video
Surveillance and Monitoring”, Report CMU-RI-TR-00-12, Robotics
Institue, Carnegie Mellon University, May 2000.

[19] - R.T. Collins, Y. Tsin, “Calibration of an Outdoor Active
Camera System”, IEEE Computer Vision and Pattern Recognition,
June 1999, pp. 528-534.

[20] - J. Daugman, "Neural Image Processing Strategies Applied in
Real-Time Pattern Recognition”, Real-Time Imaging, Vol. 3, No. 3,
June 1997, pp. 157-171.

[21] - F.C.C. DeCastro, J.N. Amaral, P.R.G. Franco, "Invariant
Pattern Recognition of 2D Images usign Neural Networks and
Frequency Domain Representation”, , IEEE International Conference
on Neural Networks - Conference Proceedins, Vol. 3, 1997, pp.
1644-1649.

[22] - E.R. Dougherty, "Digital Image Processing Methods”,
Published by Dekker, New York, 1994.

InTeLuiGenT OpticaL Sensor - 15

REeFErReNCED PUBLICATIONS

[23] - N. Drakos, “Kohonen SOM 2D Neural Network”,
http://www.ese-metz.fr/~dedu/docs/kohPaper/node3.html.

[24] - ERA, "ERA Technology”, http://www.era.co.uk.

[25] - ERA, "Neural Computing and Complementary Technologies",
http://www.era.co.uk/div80/bc45/comptec.htm.

[26] - ERA, "Study into Intelligent Alarm Systems”,
http://www.era.co.uk/div80/bc85/alarms.htm.

[27] - R. Fageth, W. Allen, U. Jager, "Fuzzy Logic Classification in
Image Processing”, Fuzzy Sets and Systems, Vol 82, Issue 3, Sept.
1996, pp. 265-278.

[28] - D.A Fay, A.M. Waxman, "Neurodynamics of Real-Time Image
Velocity Extraction”, Neural Networks for Vision and Image, MIT
Press, 1992, pp. 220-246.

[29] - H. Fonga, "Pattern Recognition in Gray-Level Images by
Fourier Analysis”, Pattern Recognition Letters, Vol. 17, No. 14, Dec
1996, pp. 1477-1489.

[30] - G. Franceschetti, A. Iodice, M. Tesauro, “From Image
Processing to Feature Processing”, Signal Processing, Vol 60, No. 1,
1997, pp. 51-63.

[31] - D.M. Gavrila, “The analysis of Human Motion and its
Application for Visual Surveillance”, Proc. of the 2nd IEEE
International Workshop on Visual Surveillance, 1999, pp. 3-5.

[32] - D.M. Gavrila, “The Chamfer System”,
http://www.gavrila.net/Computer_Vision/Chamfer_System/chamfer
—System.html.

[33] - D.M. Gavrila, “"The Visual Analysis of Human Movement, A
Survey”, Computer Vision and Image Understanding, vol.73, No. 1,
1999, pp. 82-98.

[34] - [22]- K. Gay, "Ergonomics-Making Products and Places fit
People”, New York: Enslow Publishers, 1986.

[35] - E. Gelenbe, H. Bakircioglu, T. Kocak, “Image Processing with
the Random Neural Network”, Proc. of the SPIE Conf. on Electronic
Imaging, vol. 3307, 1998, pp. 38-49.

InTELLIGENT OpPTICAL SENSOR - 16

REeFeReNCED PuBLICATIONS

[36] - J. Ghoshal, K.S Ray, “Neuro Fuzzy Approach to Pattern

Recognition”, Neural Networks, Vol.10, No. 1 Jan 1997, pp. 161-
182.

[37] - A. Graps, “An Introduction to Wavelets”, IEEE Computaional
Science & Engineering, Volume 2, Issue 2, 1995, pp.50-61.

[38] - Greenseal, “Choose Green Report - Occupancy Sensors”,
Green Seal, www.greenseal.org, Feb 1997.

[39] - T. Hengl, “Neural Network Fundamentals: A Neural
Computing Primer”, PC Al, Volume 16, Issue 3, 2002, pp.32.

[40] - F. Hoffman, “An Introduction to Fourier Theory”,
httDI//aurora.phys.utk.edu/rvforrest/papers/fourier/index.htmI.

[41] - Home Security Store, *“DSC Bravo 3 Infrared”,
httD1//www.homesecuritystore.com/detail_pages/bravo3.htm.

[42] - P, Johansen, “Adaptive Pattern Recognition”, Johansen P.,
Journal of Mathematical Imaging and Vision, Vol. 7, Oct. 1997,
PpP.325-339.

[43] - A.J. Katz, P.R. Thrift, “Generating Image Filters for Target
Recognition by Genetic Learning”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol 16, No. 9, Sept. 1994, pp.
906-910.

[44] - M. I Khalil, M.M. Bayoumi, “Invariant 2D Object Recognition
using Wavelet Transform and Structured Neural Networks”,
Proceedings of SPIE, Vol 3723, No. 37, 1999.

[45] - KIB Security, "Motion Sensor Camera”,
httD://www.kjbsecurity.com/products/Motion Sensor.asp.

[46] - V. Kober, V. Lashin, L. Moreno, J. Campos, L. Yaroslavsky,
M.J, Yzuel, “Color Component Transformations for Optical Pattern
Recognition", Journal of the Optical Society of America : Optics and

Izngage Science and Vision, Vol 14, Number 10, Oct. 1997, pp.2656-
69.

[47] - H. Konik, V. Lozano, B. Laget, "Color Pyramids for Image
Pl’Ocessing”, The Journal of Imaging Science and Technology, Vol
40, Number 6, 1996, pp. 535-542.

InTeLLiGenT OpricaL Sensor - 17

REFERENCED PUBLICATIONS

[48] - A. Kuehnle, W. Burghout, “Image Based Winter Road
Condition Recognition”, Applications of Advanced Technologies in
Transportation, Sept. 1998, pp. 225-232.

[49] - A.D. Kulkarni, "Artificial Neural Networks for Image
Understanding”, Van Nostrand Reinhold, 1994.

[50] - C.J. Kuo, C.H. Lin, C.H. Yeh, “Noise Reduction of VQ encoded
Images through Anti-Grey Coding”,IEEE Transactons on Image
Processing, Vol.8, Jan. 1993, pp. 30-40.

[51] - D. Lake, "Getting the Picture”, Advanced Imaging, Jan 2000.

[52] - C.S. Lee, Y.H. Kuo, P.T. Yau, "Weighted Fuzzy Mean Filters
for Image Processing”, Fuzzy Sets and Systems, Vol 89, No. 2,
1997, pp. 157-180.

[53] - G. Lin, B. Shi, “A Current-Mode Fuzzy Processor for Pattern
Recognition”, Journal of Circuits and Systems, Vol.4, No.3, 1999.

[54] - D. Liu, Y. Yamashita, H. Ogawa, “Pattern Recognition in the
Presence of Noise”, Pattern Recognition, Vo. 28, No. 7, July 1995,
PP. 989-995,

[55] - D. Marr, "Representing Shapes for Recognition”, W.H.
Freeman & Co Publishers, 1982.

[56] - McMaster University, “Nonlinear Associative Memory
Models”, http://www.psychology.mcmaster.ca/3W03/nlam.html.

[57] - Micro Actuators, sensors and systems group, MASS cameras
technical sheets, http://mass.micro.uiuc.edu/index.html.

(58] - L. Monostori, “From Pattern Recognition Techniques through
Artificial Neural Networks to Hybrid AI Solutions in Manufacturing”,
Pl’Oceedings of the Japan/USA Symposium on Flexible Automation,
Vol. 11, July 1996, pp. 1453-1460.

[59] - L.s. Moreno, V. Kober, V. Lashin, J. Campos, L.P.
Yaroslavsky, M.J. Yzuel, "Whitening Preprocessing of Color

Components for Pattern Recognition”, Proceedings of SPIE, 1996,
Vol 2730.

InTeLLiGenT OpricaL Sensor - 18

RererenceDp PUBLICATIONS

[60] - C.Nakajima, M.Pontil, B.Heiele, T.Poggio, “Full Body Person
Recognition System”, Pattern Recognition, Vol. 36, Jan. 2003,
PpP.1997-2003.

[61] - Neurodynamics, “Witness Security, Affordable & Flexible
Image Surveillance” ,
http://www.neurodynamics.com/Vision/WitnessSecurity.htm.

[62] - 1.K. Paik,].C. Brailean, A.K. Katsaggelos, "An Edge Detection
Algorithm using Multi-State Adalines”, Pattern Recognition, Vol 25,
Number 12, 1992, pp.1495-1504.

[63] - S. Pal, A. Ghosh, “Neuro Fuzzy Computing for Image
Processing and Pattern Recognition”, International Journal of
Systems Science, Vol. 27, No.12, 1996, pp.1179-1193.

[64] - S.C. Pei, C.N. Lin, “Image Normalisation for Pattern
Recognition”, Image and Vision Computing, Vol 13, No. 10, Dec.
1995, pp. 711-723.

[65] - Photonics Spectra, “Surveillance Booms”, Photonics Spectra,
June 2000,
httD!//www.photonics.com/spectra/business/XQ/ASP/businessid.48
8/QX/read.htm.

[66] - Primary Image, "Primary Image Video Tracker”,
http://www.primary-image.com.

[67] - Privacy International, “Security’s New Image : New
TeChnoIogies in Image Processing are paving the Way for the Future
Development of Surveillance”, Communicate, Issue 3, 1997,
httD1//www.privacy.org/pi/issues/cctv/.

[68] - D. de Ridder, “Adaptive Methods of Image Processing”, PhD
Thesis, Delft University, 2001, pp.1-288.

[69] - 3.F. Rivest, R. Fortin, "Detection of Dim Targets in Digital
Infrared Imagery by Morphological Image Processing”, Optical
Engineering, Vol 35, No. 7, July 1996, pp. 1886-1893.

[70] - 1. Russel, C.M. Colebourn, P- Vitiello, “A Comparison of
Backpropagation and ART via Pattern Recognition”, Journal of
Intelligent Systems, Vol. 7, Number 4, 1997.

InTELLIGENT OpTICAL SENSOR - 19

ReFerReNCED PuBLICATIONS

[71] - J.C. Russel, "The Image Processing Handbook”, CRC Press,
1999,

[72] - W.S. Sarle, “Neural Nets FAQ”,
ftp://ftp.sas.com/pub/neural/FAQ.html.

[73] - G. Sebastiani, S. Stramaglia, “A Bayesian Approach for the
Median Filter in Image Processing”, Signal Processing, Vol. 62,
Number 3, 1997, pp. 303-309.

[74] - N.T. Siebel, “People Tracking for Visual Surveillance”,
University of Reading, http://www.siebel-
résearch.de/people_tracking/.

[75] - R. Smits, L. Ten Bosch, “The Single Layer Perceptron as a
Model of Human Categorisation Behaviour”,
httID2//Www.phon.ucI.ac.uk/home/shI9/roe|2a/smit52a.htm.

[76] - 1. Smokelin, "Wavelet Feature Extraction for Image Pattern
ReCOgnition", Proceedings of SPIE, Vol 2751, 1996, pp. 110-121.

[77] - V. Srinivasan, P. Bhatia, S.H. Ong, “Edge Detection using a
Neural Network”, Pattern Recognition Vol 27, No. 12, 1994, pp.
1653-1662.

[78] - A.D. Stoyenko, P.A. Laplante, “"Real-Time Imaging, Theory,
Techniques and Applications”, IEEE Press, Piscataway, 1996.

[79] - T.Sziranyi, "Video Understanding and Indexing for
Surveillance: Image Perception, Quality and Understanding”, ERCIM
News, No. 55, Oct. 2003.

[80] - L. Tarassenko, “A Guide to Neural Computing Applications”,
Arnold Press, 1998.

[81] - S.Tate, Y.Takefuji, "Video Based Human Shape Detection by
Deformable Templates and Neural Networks”, Sixth International
Conference on Knowledge-Based Intelligent Information

Sggineering Systems and Allied Technologies, Sept. 2002, pp. 280-

[82] - G. Tsai, A. Chiang, T. Yang, C. Lai, W. Wang, C. Liu, "Video
Tracking and Recognition System",
httD://www.iii.org.tw/speciaI/article/VideoTracking.htm, 2000.

InTeLLiGenT OpticaL Sensor - 20

REeFERENCED PuBLICATIONS

[83] - M. Van Buren, "Metrics for Architects, Designers and
Builders”, Publisher: van Nostrand Reinhold, 1983.

[84] - P.Viola, M.Jones, D.Snow, "Detecting Pedestrians using
Patterns of Motion and Appearance”, Ninth IEEE International
Conference on Computer Vision, Vol. 2, 2003, pp. 734-741.

[85] - VSAM, “Video Surveillance and Monitoring”, 2000 Carnegie
Mellon University, Robotics Institute , http://www-
2.cs.cmu.edu/~vsam/vsamhome.html.

[86] - B. Walczak, B. Van den Bogaert, D.L. Massart, “Application of
Wavelet Packet Transform in Pattern Recognition of Near-IR Data”,
Analytical Chemistry, Vol 68, May 1996, pp.1742-1747.

[87] - 0. Weissmann, Z. Pollack, “The Perceptron”,
http://www.cs.bgu.ac.il/~omri/Perceptron/.

[88] - L. Weygang, N.C. Dasilva, “Implementation of Parallel Self
Organising Map to the Classification of Image”, Proceedings of SPIE
- The International Society for OpticalEngineering, Vol 3722., 1999.

[89] - R. Winn Harding, "Neural Networks Target Security and
Surveillance”, Image Processing Europe, May/June 2000.

[90] - T. Wogelsong, T. Zarnowski, J. Zarnowski, "Inexpensive
Image Sensors Challenge CCD Supremacy”, Photonics Spectra, May
2000, pp. 188-192.

[93_1] - V. Bockaert, “"The 123 of digital imaging Interactive Learning
Suite”, www.123di.com.

[92] - L.Zhao, C.Thorpe, "Stereo and Neural Network-based
Pedestrian Detection", IEEE Transactions on Intelligent
Transportation Systems, Vol. 1, No. 3, Sept. 2000, pp. 148-154.

[93] - E-Frontier - www.e-frontier.com.

[94] - Adobe - www.adobe.com.

[95] - Creative Labs — www.creative.com.

[96] - Autodesk — www.autodesk.com.

InTeLLIGENT OpTicAL Sensor - 21

Rererencep PusLICATIONS

[97] - G.A. Miller, “The Psychological Review”, Vol.63, 1956, pp.81-
97.

[9_8] - National Communications System Technology and Standards
Division - FED-STD-1037C, August 1996.

[99] - T. Kopert, “CCTV Surveillance System, Technology in
Transition”, White Paper, Array Microsystems Inc., 1997.

InTELLIGENT OpTICAL SENSOR - 22

ABBREVIATIONS

List of Abbreviations

Al
ANN
CCcb

CMos

LED

MLP

LVQ
OCR
PIR

PTZz

RBF
SOoM

Artificial Intelligence
Artificial Neural Network
Charge Coupled Device, a particular form of sensor

used in most digital cameras
Charged Metal Oxide Semiconductor. A newer form of

light sensor, cheaper to produce than CCDs but more

susceptible to noise in moving images
Light Emitting Diode
Multi Layer Perceptron. A popular form of neural

network

Learned Vector Quantisation

Optical Character Recognition

Passive Infra Red. PIR sensors are used to detect the

emission or reflectancy of Infra Red wavelengths

within a certain off off and object or person
Pan Tilt Zoom. This refers mostly to cameras whose

motion is remotely controlled.
Radial Basis Function
Self Organising Map

InTELLIGENT OpTICAL SENSOR - 23

Usep Terms

Used Terms

Cycle When training a network, one cycle is taken as a pass

of one data line through the network.
Epoch When training a neural network, one epoch is taken as

one pass of the entire data set through the network.
False When a classifier defines a valid object as being non-
Negative valid.
False When a classifier defines a non-valid object as being
Positive valid.
Noise Unwanted data in a data set which may lead to

corruption of wanted data by its presence.
Target An object which is being looked for.

InTeELLIGENT OPTICAL SENSOR - 24

INTRODUCTION

1 - Introduction and hypothesis

First say to yourself what you would be; and then do what you have to

do. - Epictetus

Spatial detection and perimeter monitoring have progressed
tremendously over the past two decades. Vibration sensors have
been dramatically improved in their sensitivity and targeted
applications. The PIR (Passive Infra Red) sensor has also matured
and become a cheap yet reliable component of most motion

detection systems.

InTELLIGENT OpTiCAL SENSOR - 25

InTRODUCTION

However, as security and surveillance systems have dropped in
price and become available to the individual home owner, the
shortcomings of these sensors have also been highlighted. Whilst
being rugged items needing little or no maintenance, they can be
highly sensitive as to their mounting location, and specialist
knowledge is still required to provide optimal performance.. False
alarms triggered by PIR’s viewing moving objects behind windows
Or radiator heat emissions have become commonplace. Conversely,
due to their construction in vertical sections, a PIR can be fooled by
staying within one of its detection bands whilst approaching the
System. Intruders have also developed methods to prevent
detection such as wearing heat absorbent materials, or simply

Wearing plastic bin bags over their heads.

Now, with increasingly accurate manufacturing technology, digital
Cameras are starting to take hold of the security market.
Surveillance cameras are being installed on every street corner
(quite literally in certain towns), and the public is becoming used to
this trend as being an inevitable, if not entirely acceptable part, of
Modern urban life. These cameras are not however, being used to
their full capabilities, whether this is due to the limitations of the
Systems they are replacing, or simply to their relative newness.
Most systems indeed still rely on a human operator, using the
Camera purely as a remote eye without any further processing of
any kind. Certain features such as night visibility through limited
infrared illumination are present, but these were already standard

features of PIR sensors.

InTELLIGENT OPTICAL SENSOR - 26

INTRODUCTION

The intention of this study is to develop a camera based
Surveillance system which could be fully autonomous, i.e. no human
Operator would be required without limiting the system capabilities.
The camera unit itself must be able to replace not only the eye but
also the brain of the human operator, and should be able to process
the information which it is gathering, raising an alert when a human
being enters the image frame. This would provide the platform for
an advanced surveillance system which could be used in a number
of situations without having to rely on the less than adequate

human concentration spans which plague all current camera based

Systems.,

Considering the implementation of modern surveillance systems,
their requirements are tending towards an ever increasing
Fésolution, linked to such functional specifications such as
installation tolerant operation, automatic evaluation of the observed

€nvironment and a minimum error output.
These requirements raise a number of questions:

L1Is it possible to develop a system capable of processing the
Output from an industry-standard camera in order to identify the
Presence of a person or multiple persons within the image ?

2.Can such a process be developed to allow for real-time or close to

real-time (i.e.: a few frames per second) analysis ?

——

InTeLLIGENT OpTicAL SENsOR - 27

InTRODUCTION

3.Can such a system be developed in such a manner as to be
independent of the camera installation location and method ?

4. Can such a system be independent of the final system operator ?

These could be combined into the single question:

Can a machine autonomously recognise a person, rapidly,
reliably, regardless of the system environment and image
noise, using the Iowest resources possible whilst

maintaining the highest level of accuracy possible ?

The following chapters are dedicated to providing the framework for
a solution to this question, by employing a combination of analysis

methods.

This thesis shall deal with concept of introducing dynamic elements
into the image analysis process in order to allow for a close to real-
time evaluation of the images streamed from an standard industrial
Camera.

It shall examine the merits of traditional image analysis processes
as compared to the use of “intelligent” neural network-based
Solutions, in an effort to identify the best possible solution to the

Question posed.

This study shall be structured accordingly:

Overview of environmental sensors, concentrating on the use of

InTeLuiGent OpticaL Sensor - 28

INTRODUCTION

Cameras in detection.

Summary of image analysis techniques including the use of
various neural architectures applied to image processing
problems.

Definition of the problem at hand, resulting in a mathematical
desription of the basic requirements.

Initial proposal, based on simplistic methods and evaluating the
potential of the chosen approach.

In depth development of the analysis framework, leading up to a
final system proposal.

Final comments on further developments.

This thesis shall expand on the target of developing an accurate
detection of unidentified persons (i.e.: not taken from a previously
Collected database) using a single camera with minimal resources
and running in close to real-time.

This shall be achieved through the use of a dynamic pre-processing
stage which shall be able to adapt itself to each incoming image
without any need for previous knowledge of either the environment
nor the type of the implementation.

A further stage, based on a neural network or combination of neural
networks shall be employed to output a final decision probabilility of

the image observed.

InTELLIGENT OPTICAL SENSOR - 29

LireraTurRE REVIEW

2 - Literature Review

An undefined problem has an infinite number of solutions - Robert

Humphrey

A study conducted by the ERA has determined that for passive IR
Sensors up to 90% of all the alarms are erroneous and half of these
are due to some kind of operator error, whilst the rest are due to
€nvironmental factors such as ‘stray’ rays of sun or heaters in a

room switching on [38, 41, 45, 85].

Various methods have been suggested to decrease the number of
false alarms but these have mostly been deemed prohibitively
€Xpensive (These normally involve coupling the PIR with a
Multitude of other sensors or arranging for a pure IR environment

Where spurious noise sources are blocked or filtered) [02, 41, 24].

The following is a presentation and discussion of current methods

and industrial trends.

InTeLLIGENT OpTiCcAL Sensor - 30

LiteraTurRE ReviEW

2.1 - Why do we need sensors ?

Sensors are used in so many different applications, it would be
impossible to classify them all. We are, however, primarily
interested in motion sensors and heat sensors, i.e., systems which

Can detect the presence of a human being.

These types of sensors are used in many applications to provide
Purely monitoring information, early warning signals and anti-theft

Or anti-entry protection.

The use of artificial sensors allows the introduction of remote
Surveillance where the manpower required to monitor a site would
be too expensive or might in itself represent a security risk (bank
vaults, jewel display areas...)[26]. There is now also the paradox of
inCOmpatibIe surveillance systems. For example, if a certain area is
Monitored by PIR’s, a human operator could no longer patrol that
area without setting off the alarm, without first having access to
SOme bypass switch for the sensor concerned. This in itself then
F€presents a security risk, as any reasonably well equipped intruder
Could then also bypass the system. This then negates the entire
Point of a non-human monitoring setup, leading to an increasingly
COmplex layout of overlapping sensors, each protecting its
Neighbours from being tampered with, which in turn leads to

SDiralling installation costs and also a reduction in the overall

InTeLLIGENT OpTicAL Sensor - 31

LiTerATURE REVIEW

effectiveness of the system. Placement of individual sensors then
becomes increasingly critical to the correct operation of the entire
System and the sheer level of complexity makes errors and
malfunctions not only more likely but also more disastrous in their

symptoms [02, 24].

In general the currently available commercial intruder detection
Systems rely on three main types of sensors each with its own

advantages and disadvantages given the current implementations.

2.2 - Types of Sensors

The three main sensor types are
PIR, sensors (Passive Infra-Red)
Vibration sensors

Cameras

2.2.1 - PIR Sensors

Up to present, most intruder detection has been carried out using a
Single PIR sensor or an array of sensors, using defined sectors and
Zones to achieve reliable detection of possible intruders and to

Minimize false alarm occurrences.

InTELLIGENT OpTiCcAL Sensor - 32

LiteraTURE REviEW

A PIR sensor is most commonly a single infrared sensitive receiver
with a vertically segmented lens mounted to the front of the unit to
provide a number of vertically defined zones over the entire field of
view of the sensor, which is generally quite wide (approx. 120
degrees)[02, 41]. The overall sensitivity of the sensor is determined
by the number of these vertical segments, as the sensor depends
on identifying a change of state from one segment to another in
order to trigger a successful detection. PIR’s are therefore
intrinsically motion detectors, but this motion must occur within the
low infrared range of the sensor used. This is both a strength and a
weakness for this type of sensor, as they can operate both during
the day and during the night without need for extra illumination,
but will be very sensitive to heat changes such as radiators

activating or gas heating vents [02, 45].

The limitations of such a system are apparent mostly in cold
conditions, where a car might not be detected, but a person will be.
As such systems are often used as courtesy lights in house
€ntrances, this can lead to much waving and jumping around, as a

Person vainly tries to activate the sensor.

Due to the segmented lens design, these sensors can also be
Completely oblivious to a person moving straight towards them
[59].As long as the movement is limited to a single one of the lens
Seégments no motion will be detected, which introduces the tricky

Problem of sensor placement.

—

InTeELLIGENT OpTICAL SENSOR - 33

LiteraTURE REVIEW

Due to the low production cost of these sensors, they are often
offered as home assembly kits for a number of applications ranging
from house alarms to simple light activators . They do however
require a certain amount of knowledge on the placement
techniques, and many false alarms are triggered by sensors being
allowed to ‘look’ through windows and picking up legitimate
movement outside of the intended surveillance zone, sensors
pointing straight at heating elements which obviously create quite
marked infrared signatures when in operation, or sensors being

activated by house pets wandering around [38, 59].

Although modern PIR sensors are becoming more selective and
More adjustable, their intrinsic features make them useful only
when coupled with other types of sensors, or when used in
conjunction with a human operator to actually determine the cause
of activation, and distinguish between real and false alarm
Situations. They are also highly effective when used indoors in areas
normally void of any movement and where discrimination as to the

Source of motion is not required.

The trend in current practice has been to use PIR sensors as a
Primary alarm. This would then activate a camera, whose image is
transmitted back to an operator for further analysis [93, 38, 15,
94]. The advantage of this type of setup is manifold: PIR sensors

are inexpensive, fairly rugged and require minimal maintenance.

InTELLIGENT OpTICAL SENSOR - 34

LireraTurRE REVIEW

Once a sensor is triggered, a PTZ (Pan Tilt Zoom) camera can be
activated by a controller to determine the exact nature of the
alarm. This helps to minimize costs and reduce operator boredom
as the concentration time required is limited to the PIR activation

period only.

Lately, PIR sensors are being assembled into the same housing as a
small camera [15, 11], whereby the PIR sensor, using its wider field
of view acts as a pre-alarm for the camera, switching on the
Camera before anything actually enters the resultant image. This
type of assembly obviously suffers from all the typical PIR faults
and can be tricked in many ways. Intruders have been known to
wear heat absorbent clothing to fool PIR driven systems, or more
simply, to wear black plastic bags over their bodies, which minimise
body heat dissipation and can thus present too low an infrared

signature for successful detection by the PIR sensor [41, 75, 85].

2.2.2 - Vibration Sensors

Vibration sensors are similar to PIR’s in that most of them do not
incorporate any form of intelligent data processing. The units are
Manufactured to be mounted in a number of locations, from
underground to mounted on fence tension wires or on doors and

windows, and have normally a number of adjustable settings such

InTELLIGENT OpticaL Sensor - 35

LireraTurRE REVIEW

as vibration intensity sensitivity and maybe a small time delay
Circuit. Once a certain level of vibration above the user determined
threshold is encountered, the unit activates a switch which could

trigger an alarm or floodlighting.

Obviously, the difficulty with this type of approach is in actually
determining what could represent a ‘valid’ vibration (i.e., burglar
climbing over the fence) or what might simply be a spurious noise
effect (a cat climbing over the fence). Most systems are adjusted to
give a higher incidence of false alarms so as not to miss any
Mmarginal cases. What the psychological effects of this policy on the
human operator are, who will slowly become less responsive as
More and more alerts are deemed non-valid, is not really the topic
of this study, but is worth taking into account when weighing up the

Pros and cons of each approach [38].

Due to their very non-discriminatory nature (vibration sensors will
report motion, not the type or intensity of the motion and its
POssible cause), vibration sensors are rarely used on their own in
industrial applications, normally forming the first line of warning in
On overall surveillance system. They have however been used
reécently in home security applications as primary sensors on doors
and principally on windows to report illicit entry. Any further
Processing of the signals received from such a unit will be
dependent on a high level of adjustability to accommodate for

different mounting positions: an intruder coming in through a door

e S

InTELLIGENT OpTiCcAL SENSOR - 36

LiteraTure REVIEW

and one coming in through a window are likely to give rise to very
different vibration signals, although basically the same target in

each case has been detected.

The consumer intended systems described above are fairly small
and simple to install, minimising the initial costs as well as further
maintenance. The price for this versatility is however a fairly high
risk of false alarms and a very low alarm resolution when one does
occur. This in turn then becomes counter-productive, as emergency
services start putting limits on the acceptable number of alarms
from households, before limiting their response or imposing
financial penalties on the home concerned. Vibration sensors
perform excellently in the context they were created for, but cannot
De relied on to provide accurate information on the presence of

intruders in a property.

2.2.3 - Cameras

In recent years, a sharp increase in demand coupled with
improvements in manufacturing technology have led to a dramatic
drop in prices of conventional CCD (Charged Coupled Device)
Cameras, and their implementations now range across an entire
Spectrum from high quality medical inspection applications through

Consumer camcorders, door entry systems and, of course,

InTELLIGENT OpTICAL SENSOR - 37

LiteraTURE REVIEW

surveillance systems. CCD cameras are fairly small (average board
size including lens and processing electronics is about 50x40mm)
[15, 57], can take a number of different lenses from fish-eye to
telephoto (normally with the now industry standard C-mount) and
require little or no extra support hardware. Apart from a power
supply, most cameras can plug straight into a conventional video
recorder or any television set with a video input.

This trend started around the late 1980’s. Prior to this date, due to
the very high initial cost of hardware, any camera surveillance
Systems were mostly restricted to larger companies or government
projects, where constant surveillance is required. In these cases,
the cameras were operating as a simple backup for the security

pPersonnel already employed.

By their very nature, cameras require higher levels of maintenance
than other, more conventional sensors: lenses need to be kept
clean, dry and free from obstructions. Due to the magnifying
Property of most lenses, cameras are fairly sensitive to vibrations,
which dictate where and how they should be installed. An operator
forced to watch a constantly vibrating image will rapidly develop
€ye strain and cease to monitor the camera in question. Latterly,
vibration compensators have been developed, and although these
Can assist tremendously in this aspect, they are currently, both in
their mechanical (generally gyroscopic) and electronic versions, too
€Xpensive to be incorporated onto every camera in an entire

System. As opposed to PIR’s or vibration sensors, a camera cannot,

e —

InTeLuigenT OpricaL Sensor - 38

LiteraTure REVIEW

on its own, actually raise an alarm when an intruder appears, but
can provide the human operator with very precise information as to
the nature of the situation and the potential level of threat present.
This does however still preserve the requirement for a human
operator [85].

Due to the falling price of hardware, it does become easier to
monitor a large site, as a single operator can manage a number of
Cameras without the need for constant patrols, therefore the
system manager could benefit through lower personnel costs. A
smaller site will probably not have this advantage though, and this
has partially lead to a switch from active surveillance to passive

surveillance.

A further disadvantage linked to the use of cameras is that of sheer
information overload. Whilst PIRs or vibration sensors have a purely
digital mode of operation (either on or off)[41] a camera is more
complex in the data which it feeds back. The operator must be
constantly watching the image to evaluate any potential threats.
The simple fact of having to closely observe an unchanging image
over long periods of time lead to boredom and a loss of
concentration. A number of studies have revealed the maximum
Observation span of a single image to be about 20 minutes, after
which time the operator will not even notice a person walking

through the camera’s field of view [26, 61].

This is obviously not an ideal solution, as the expensive camera

InTeLLIGENT OPTICAL SENSOR - 39

LiTerATURE ReviEW

system becomes in effect counter productive. This can become
particularly acute on larger systems involving a number of cameras
and display units, especially when the cameras used are static. A
number of solutions have been devised to counter this human
weakness. The simplest is to introduce another operator. A slightly
more advanced method is the introduction of the multiplexer, which
will allow the displayed image to cycle through all the cameras on
site, with an adjustable dwell time on each. Whilst this might seem
attractive, it can present the risk of an operator missing vital
information, as not all camera images are visible simultaneously.
This can be countered through the use of a split screen display, for
generally up to 4 separate input sources, which can also be set to

rotate in a number of ways [99].

These methods certainly present ever changing information, but can
also have the undesired effect of actually breaking the operator’s
Concentration span as the image switches from one camera to
another. This leaves the operator unable to correctly process the
information presented as the source of the new image might remain
Unclear for a few seconds, which could easily be the entire dwell
time for that particular camera [45]. Although the actual
Psychological effects of these systems have not received much
attention, they are a factor which we cannot afford to omit when
Considering their suitability for each location, given the degree of

Surveillance required in each case.

——

InTELLIGENT OpTicAL Sensor - 40

LiteraTURE REVIEW

A slightly more suitable solution is the use of operator controlled
PTZ units (Pan Tilt Zoom). Whilst simultaneously reducing the
amount of cameras required for a given site, they also allow the
operator full control over the received image. Thus, the operator
maintains his or her situational awareness while also keeping a
higher and more effective level of concentration as the image
presented is not static . This obviously also allows for more detailed
examination of features through the camera’s zoom feature. The
danger with such a system is however similar to static cameras with
a cycling display, that the operator might miss valuable information
whilst examining a different site location. A PTZ unit also has the
disadvantage of clearly indicating the actual direction of observation
of the camera, a feature which has been reduced through the use of

dome housings or panoramic cameras [15, 57].

These are all purely camera based systems.

What is actually required in all of these situations is for the operator
to be notified only when an incident occurs, and to then have the
Camera available as a purely observational tool. Such a system was
initially devised through a somewhat inelegant but effective
attachment intended to be mounted on the image display unit . This
array of light sensors would monitor the image and sound an alert
When the preset light threshold had been exceeded, indicating that

SOme type of movement had occurred in the observed image.

InTeLLGENT OpricAL Sensor - 41

LiteraTurRE REVIEW

The most recent incarnations of this system consist of a
combination of PIR and camera within a single housing [15, 11, 57,
94]. The PIR, generally having a wider field of view than the camera
can be used to warn of movement, whereupon it will activate the
camera to enable the operator to determine more accurately the
cause of the alarm. Conventional PIR sensors are, however,
notoriously susceptible to false alarms, which can lead to the
operator growing bored of examining invalid alarms and ignoring
valid threats when they do occur - a definite case of cry-wolf. It has
been estimated that the proportion of false alarms for PIR sensors
is often over 90%, of which half can be attributed to operator error
and environmental factors [67, 65, 24, 26]. Obviously, the larger

the system, the more acute the problem becomes.

The unreliability of these systems, linked to the need for cheap
Surveillance for small businesses and home owners has led to an
increase in passive surveillance. This is a corrective solution, as it
Cannot help prevent a crime (except perhaps through the
Psychological deterrent of warning signs) but can help analyse a
Crime once it has happened. Generally, this involves a camera
linked to a time lapse recorder. Such a system will typically operate
24 hours a day, fitting either a full day or half a day onto a single
regular 4 hour VHS cassette. Whilst this allows the system to be
financially available to most people, the unfortunate side effect is
that the resultant images are near to unusable from the amount of

time compression involved, and also through operator laziness in

InTELLIGENT OPTICAL SENSOR - 42

LiteraTurRE REVIEW

not replacing worn tapes [95]. A slightly more advanced system is
to use the PIR driven camera and recorder to only capture actual
incidents, removing the need for time compression at night time
when premises are normally closed to public access. Recent
developments are linking such systems to digital recording methods
allowing for higher resolution images to be stored, in addition to

reduced wear on the actual recording medium.

In addition to the conventional CCD type cameras, recent
developments are also making CMOS (Charged Metal Oxide
Semiconductor) cameras available to the small business and home
market [65] . CMOS type cameras are nearly fully integrated into a
single chip, allowing for yet further reductions in size and power
consumption, whilst retaining image quality. Having a nearly fully
integrated construction, with the actual image sensor itself
delivering the digital image data (a CCD type relies on extra
Circuitry to convert its analogue output), this really is at the point of
an entire camera on a single chip. It also means that the signal
Which is obtained from such a camera is also a lot cleaner as the
POst-processing phase has been minimized, reducing the risk of
signal corruption.

Of more interest however, is the nature of the signal which is
Obtained from a CMOS type camera. Whilst a CCD type will scan the
€ntire image area before transmitting the data as a single group,
CMOS cameras use a line scan principle. Each image line is scanned

and transmitted immediately, resulting in a faster data throughput .

InTeLLIGENT OpTicAL SENsOR - 43

LiteraTUrRE REVIEW

This does however also have the undesirable effect of somewhat
blurring any motion, and thus presenting a distorted image which
can be somewhat misleading if any fine analysis is being carried out
on the images obtained from the sensor [90]. On a more positive
side, due to the more integrated nature of the entire camera, they
are less likely to be susceptible to the effect of blooming. A regular
CCD camera pointing straight at a relatively bright light source such
as a car headlight will output an image with a marked halo effect
around the light source, effectively resulting in what can be a quite
important loss of detail in the area concerned . The only
preventative measure for this is the auto-iris feature now present
On most cameras, which effectively simply lowers the light level in
the entire image. A CMOS camera can automatically reduce or
‘enhance the response of individual sensor cells, resulting in a much
Clearer and sharper image.

Both types of cameras do however, also rely on a number of

COmmon features.

Black and white cameras (which generally output at least 256
shades of grey) offer a very useful low infrared response. Pure IR,
as used in thermal imaging sensors (which are financially beyond
the scope of this study), is located around 800 nanometres. This
type of response would be ideal, as any living object would be
drastically identified in any image [Appendix G]. The IR response of
these small cameras lies between 700nm and 750nm, where

720nm is approximately the range limit for the human eye . This

e

InTELLIGENT OPTICAL SENSOR - 44

LiteraTurRE REVIEW

response can be slightly enhanced through the use of IR
illumination, and many cameras are now shipped with limited IR in
the form of a few IR LED’s mounted around the lens, providing the
camera with a blind range of a few meters. Whilst these have no
benefit whatsoever in a well lit area, they can be very useful at
night. Obviously, this limited IR capacity could be enhanced through
the use of regular IR spotlights, which are now commonly mounted
on the same post as the camera itself. Depending on their power,

these can increase the blind range of the camera to about 10m.

This IR response is however, limited to monochrome cameras. A
colour camera works on the principle of having a number of layers
of sensors, each sensitive to a certain light bandwidth in the ranges
of blue, green and red. To obtain a satisfactory resultant image, a
red filter has to be used (similar to black and white photography
Where a red filter has a sharpening effect, by cutting out a large
amount of the IR haze) [Appendix G] and this obviously is also
most effective at filtering out any IR element in the received image.
We therefore have to decide between a good night response (lying
at minimum values of approx. 1.1lux) but slightly less definition
through the loss of the colour information, or an image very rich in

information but with a very poor night response.

The second common and limiting feature of all cameras is the
choice of lens used. These range from simple pinhole constructions

to full telephoto or fish-eye lenses. The only difference with

InTELLIGENT OPTICAL SENSOR - 45

LiteraTurRE REVIEW

conventional photography being in the absence of zoom lenses, this
operation generally relying on the fact that the displayed image has
a lower resolution than the actual image sensor, allowing a virtual
zoom to be carried out by simply extracting the image information
only from a limited area of the total sensor. A pinhole lens,
admittedly the cheapest type of lens, is simply a glass covered hole
mounted over the sensor. This might be the smallest type of lens
available, lending itself to use in spy applications, but has also a
fairly limited useful range lying between 1m and 3m approx., with
image quality dropping off severely outside of this, and severe

distortions appearing at the image edges.

Regular optical lenses are also available, with f-stop values ranging
between about f2 and f8. The f-stop value directly affects the
Overall sharpness of an image, dictating how much light will enter
the lens in a given time period. High f-stops such as f22 or f30
guarantee an extremely deep sharp focus region, but also severely
limit the amount of light reaching the actual image sensor. A lower
f-stop value such as f3 will let in more light but will also cut down
the actual focus area to a few metres, with the actual focal point
lying about 1/3 of the way into this range. These values however
also have to be considered in conjunction with the actual focal
length of the lens concerned. The focal length represents the
distance travelled by the light internally in the lens from the front
€lement to the rear element, or to the surface of the actual image

Seénsor. The more complex the internal lenses in a single lens

InTELLIGENT OPTICAL SENSOR - 46

LiteraTURE RevIEW

become, the more light they will tend to absorb and dissipate,
thus, a telephoto lens with a focal length of 300mm will be
absorbing about 4 or 5 times the amount of light that a panoramic
lens with a focal length of 35mm would. The net result is that
longer lenses generally tend to be “ slower” lenses, i.e., they
require a longer time period to achieve the same exposure as a
shorter lens would, meaning that their minimum f-stop value is

effectively raised [91].

Whilst a conventional still camera will compensate for this by simply
taking a longer exposure, CCD and CMOS cameras generally do not
have this luxury, as the user will be requiring a frame rate from
anywhere between 10 and 30 frames per second. The only actual
‘Mechanism available to these is to adjust the sensitivity of the
actual sensor, which obviously has its own minimum boundary
Which is governed by the material and the methods of manufacture.
Whilst telephoto lenses thus absorb more light, they also have the
terldency to distort shapes, most noticeable in parallel lines which
Will be viewed as strongly converging or bowed [51]. The closest
lens to matching the way we view objects through the human eye is
one with a focal length between 35mm and 50mm, although for
Practical purposes, a value nearer 100mm is normally preferred to
€nhance the actual surveillance range. Wide area surveillance can
also be carried out with a wide angle lens or a fish-eye lens (from
15mm to 24mm) which can have a field of view of nearly 180

degrees, albeit again at the expense of severe distortions for
\

InTELLIGENT OpTICAL SENSOR - 47

LiTerATURE REVIEW

anything at the edges of the image or too close to the actual lens .

2.3 - Modes of Failure

It is first necessary to define what is going to be understood as a
failure in these conditions. In this study, when a failure is referred
to, it is taken to be indicating either a false alarm (alarm status
given although no intruder is present) or a false negative (no alarm
status raised, although an intruder is present). We will never be
considering actual material or hardware failure in the conventional

sense of something being mechanically ‘broken’.

Listing all possible failure modes for the various types of sensors
would be a lengthy and quite useless exercise. What must be
realised is that each of the above described types of sensors has
been designed for a specific range of applications, in which they
perform very well. Thus, vibration sensors are primarily employed

to be mounted on fences or windows to indicate some type of illicit

entry.

As the demand for security and surveillance methods is growing and
€xpanding from the sphere of large companies to smaller
businesses and private individuals [65], these conventional sensors

are being pushed to their operational limits, and integrated into

InTELLIGENT OpTICAL SENSOR - 48

LiteraTure REVIEW

systems where the scope for incorrect adjustment and
misinterpretation of the return signals is quite large. Thus, a
wrongly adjusted window-mounted vibration sensor could easily be
set off by a bird flying into the window. In a private home system,
this might be the one and only type of sensor used, which could
easily lead to a general alarm being sounded (where in an industrial
context it would simply have lead to an extra patrol by the already
present system operator), leading to inconvenience for the
emergency services and a severe penalty to the concerned home
owner. PIR sensors are, for example, notoriously sensitive to their
mounting location. Most home alarm kits are nowadays based on
some type of PIR system, and whilst a professional company can be
called upon to carry out the installation process, many home
owners will carry out this process themselves out of financial
considerations [38, 15]. Many sensors are thus inconveniently
Placed, resulting in quite a high number of false alarms. Camera
based systems are generally still relying on the presence of an
alarm operator, and are therefore maybe less prone to false alarms,
given their more passive nature as compared to other conventional
Sensor types.
It is therefore quite clear that most system failures have two main
sources:

- System designers making use of inadequate sensor types to

achieve more results at a cheaper overall cost.
- System installers not being aware of the limitations and

operational parameters of the type of sensor they are

InTeLLIGENT OpticaL Sensor - 49

LiteraTurRE REVIEW

dealing with, resulting in inadequate sensor placement and

use.

These two main errors result in two main types of failures, false
positives and false negatives, a false positive being an indicated
alarm state with no apparent reason, and a false negative being an
actual alarm state being ignored and missed. For PIR systems, the
first case amount to over 90% of all alarm states throughout the UK
[26], a staggering value ! No figure is available as to the number of
false negatives, as this is a rather difficult value to assess

accurately.

In human operated systems, (either through patrolling or remote
surveillance with the help of cameras) we see an inverted condition.
Here, false positives are quite rare, but false negatives can be quite
common, less so where an actual patrol system is in place. The
reason for these occurring now falls back onto the human element
and the type of surveillance system in place. Whilst the human
element is very useful at filtering out any false positives, false
Negatives can occur through such simple factors as boredom and
limited concentration spans. As mentioned in the previous section,
Studies have determined the maximum effective concentration time
in front of an unchanging image to be approximately 20 minutes
[95]. Not a great amount when we take into consideration the

€ntire shift period of six to eight hours.

InTeLuGent Optical Sensor - 50

LiteraTURE REVIEW

2.4 - Possible Solutions

The problem which is presented to the modern surveillance system

designer is based on a number of factors:

- Final system cost.
- Ease of installation and operation.

- Overall system performance.

2.4.1 - Final System Cost

This depends very much on the targeted market for the system in
question. This will be less critical for large industrial installations,
where more focus is put on system performance. It is however an
important factor where the end user is intended to be small

businesses or home owners.

2.4.2 - Ease of Installation and Operation

Again, very dependent on the target market. Professional systems
Will be relying on trained personnel as far as the system installation
IS concerned, less so in the day to day operational duties. Home
Systems will be rarely installed by trained personnel, and will
Practically never be operated by anyone other than the property

Owner, who will have little or no training in the system. This lays

InTeLuGenT OpTicaL Sensor - 51

LiteraTURE REVIEW

out the prerequisite for a system with simple and straightforward
installation and running phases. Ease of operation can be quite
easily achieved through satisfactory ergonomical considerations at
the design stage of the product. Features such as visual displays
and organised menu systems can help even a novice to successfully
operate what might initially seem quite a complex setup. The point
Where a system’s actual performance can easily be compromised is
during actual installation. Actual sensor placement, cable routing,
control panel placement, all these are highly critical and can easily
negate any technological advances in sensors and system

integration if not carried out properly [38].

'2.4.3 - Overall System Performance

System performance will be dictated by a number of criteria, such
as correct system installation (see 4.4.2) and correct choice and
Ccombination of sensors for the given situation. For example, a PIR
based system would be quite inadequate in a glass walled house,
Where the PIR would constantly be detecting motion occurring
Outside the actual intended surveillance area. Sensor combinations
Can also be utilised to enhance the overall situational awareness
Provided by a system. For example, a PIR sensor mounted at a
front door would be able to signal the arrival of something moving

Within its surveillance range. A camera on its own would also

InTELLIGENT OpTICAL SENSOR - 52

LiteraTURE REVIEW

provide the same information, but would require the user to be
constantly monitoring the resultant image to actually determine
when the person or object arrived. However, a PIR might be linked
up to only activate the camera when it detects movement, thus
providing not only temporal information, but also allowing the user
to examine the resultant image and determine exactly what was the

cause of the alarm.

This approach of multiple sensor combination has been adopted by
a number of manufacturers [93, 15, 57], and although it might not
directly reduce the number of false positive alarm situations, it can
help in this context: many home alarms are directly linked to the
emergency services, either through a dedicated line or via
conventional telephone connection, to allow a faster response time.
When a camera is linked into the system, we now have an extra
layer of information which can also be forwarded in conjunction with
the alarm signal. This has been implemented using either direct
digital image transfer or by relying on facsimile signals. This then
presents the emergency services with enough information to
determine whether they are dealing with a valid alarm situation or
not [94, 95]. This is certainly an improvement to actually having to

investigate every alarm state on site.

InTELLIGENT OpTicAL Sensor - 53

LiteraTure ReviEw

2.5 - Sensor Summary

The security industry is currently using technologies which were
partially developed over 2 decades ago, with small improvements in
response quality. New sensors in the form of advanced cameras are
for the most part not being used to their full potential, and the
industry as a whole is still struggling with the enormous problem of
false alarm conditions. Whilst electronic sensors can be adjusted to
pick up most potential threats, they do not possess the intrinsic

discriminatory judgement which a human operator has.

To minimise costs and make systems available to as large a market
as possible, sacrifices are being made in the area of alarm
‘resolution. Systems are plagued by installation and operator
errors, and the only really reliable processes involve the expense
and potential security threat of constant operator presence, as a

complement and backup to the various electronic sensors.

InTELLIGENT OpTicAL SENsor - 54

LiteraTurRE REVIEW

2.6 - Analysis Techniques

Any successful signal interpretation relies on having the correct
analysis methods and techniques available, otherwise the data
obtained might as well be ignored. A successful analysis also
depends on having achieved a correct understanding of the data
itself, and the elements of which it is comprised. Many analysis
tools have been developed, which are now regarded as somewhat
of a standard approach, given a certain type of data.

Before even starting with a certain type of analysis, we also have to
be confident as to which features we will be attempting to study.
The various techniques which are available to effectively dissect and
'analyse a data stream could be broadly grouped into two

Categories, which we will designate as Conventional and Smart.

2.6.1 - Conventional Techniques

Conventional analysis techniques involve statistical methods such as
PCA(PrincipIe Component Analysis) and regression analysis. These
tend to be based on mathematical transformations which will
ultimately lead to attempting to match the data to as simple as

POssible a linear function. Non-linear functions, due to their

COmplexity and high level of magnitude, are not normally

InTeLLiGENT OpricaL Sensor - 55

LiteraTURE REVIEW

considered, especially as these go beyond the scope of what is
readily understandable or what can be possibly visualised by the
human brain. Although adept at identifying trends and patterns, the
human brain will rarely cope when more than 5 or 6 interdependent
dimensions are involved[97]. Whilst solutions obtained using
conventional techniques might lead to a certain amount of success,
they do tend to break down as soon as the data presented to them
starts to deviate in any way or form from the development data set.
One of the main drawbacks of conventional analysis however could
be their sheer complexity. These tasks will generally be carried out
by trained statisticians, who will probably not have any concept of
the source of the data and what it really represents. This effectively
splits the analysis phase between the engineer or end user who will
‘be providing the data and the person who will be analysing it,

Creating the possibility for comprehension or communication errors.

2.6.2 - Smart Techniques

The concept of Smart Computing started in the early 1940’s with
the advent of the first digital computer systems and the first
attempts at modelling the abstraction layer (or cognitive abilities) of
the human brain. These were trying to develop generalised models

of the biological synapses and of the overall reasoning methodology
[72].

InTELLIGENT OPTICAL SENSOR - 56

LiteraTURE REVIEW

McCulloch and Pitts (1943) developed the formal concept of MLP
Neurons, which form the basis of most networks today. These initial
networks were quite limited, and in 1949, D.O. Hebb developed the

first learning rule, which increases the adaptability of the network.

Following this quite successful start, many different attempts were
made in different directions and levels of attempted simulation. The
main breakthrough came with Frank Rosenblatt and his proposed
model of the Perceptron for use in classification problems (1958)
[87]. Widrow and Hoff developed the Adaline (Adaptive Linear
Element) model (1960) in an attempt to introduce a level of error
feedback into the system, this was then improved in their later
developed Madaline Complex (Multiple Adalines), which effectively

Overcame the weaknesses of the simple Perceptron.

Development continued until the publication of “Perceptrons” by
Minsky and Pappert, which raised awareness to the inability of the
Perceptron to resolve non-linear problems (i.e., the XOR problem).
This effectively stopped public development of neural models until
the early 1980'’s, although some notable models did still appear in
that time, notably Teuvo Kohonen’s Self Organising Maps[23] and
Stephen Grossberg’s competitive learning models and Adaptive

Resonance Theory, which was widely used and modified in later

Systems.

InTELLIGENT OpTICAL SENSOR - 57

LireraTure ReviEw

Neural computing then experienced a sharp revival, mainly due to
John Hopfield’s contribution in the form of an auto-associative
system for pattern compression and reconstruction. In 1985, David
Rumelhardt and Geoffrey Hinton introduced the concept of the
Generalising Delta-Rule, which overcame the weaknesses of the
Perceptron pointed out by Minsky and Pappert, and boosted
renewed interest and development[80].

A number of factors now contribute to the growing success of
neural computing. Firstly, the available processing power has
dramatically increased in the last decade, allowing more complex
models to be developed. Additionally, the basic ground rules for
neural computing have been laid out and are now recognised
worldwide. This allows for faster development as successful
“methods are improved on. As neural systems prove their
commercial success, the amount of funding in the public domain
has also increased, leading to the development of even more

systems.

Artificial Intelligence has now become a commercial buzzword which
is used, correctly or not, for a multitude of applications.

Whilst theoretically not so distant from standard statistical analysis,
they rely mostly on providing non-linear solutions to a data field,
thus providing a closer match to real world conditions. This issue of
non-linearity is directly related to the problem data complexity:
when considering a classification involving more than two different

Parameters, the mapping of the data to the possible classes is,

————

InTELLIGENT OpTIcAL SENsSOR - 58

LiteraTURE REVIEW

most probably, going to follow a non-linear separation, as each
class might share given parameter ranges of other classes
(i.e.:When classifying animals, all birds have wings, but a
hummingbird has got a smaller wing range than a sparrow). The
level of non-linearity will change according to the problem at hand

and the correct data selection.

Neural Computing has now experienced a shift from an expected
fully intelligent solution for autonomous machines and systems to
practical tools and methods which can assist and complement
existing technologies. These are appearing in everyday life, mostly
as system assistants. One of the most widespread applications
probably being OCR software (Optical Character Recognition) [64,
13]. Other applications are Facial or Iris recognition systems, stock
exchange prediction assistants, machine condition monitoring or

even the intelligent microwave by Sharp.

Modern network systems have a number of common features in
their operational characteristics, which effectively define them.

These are, amongst others:

Robustness: Most networks function on a principle of common
responsibility. Each neuron is contributing only a tiny part to the
overall performance and output. If one neuron fails (through
incorrect data for example), the system should be able to

generalise the approximately expected value and still provide a

InTeLLIGENT OpTicAL Sensor - 59

LiTeraTURE REVIEW

reasonable output. As more and more neurons fail, the system
performance will gradually worsen without a sudden drop in

output. This is referred to as graceful degradation[98].

Parallel Structuring: Each neuron in the network could,
theoretically, be a separate processor for computing processes.
Whilst this is practically impossible due to the sheer number of
interconnections required for such a system, it remains a basis

for rapid and efficient data processing.

Ability to learn from experience of past data. Due to the training
methods, a network will adapt itself and “recognise” past data
combinations or trends, which could be difficult or impossible for

a human to visually recognise in a multidimensional data set.

Generalisation: A networks capacity for generalisation depends
on the training phase of the network and the type of data which it
was presented with. As long as the training data is composed of
an unbiased dataset comprising examples from all known data
conditions which might be encountered in actual use, and as long
as the network training process is stopped to prevent over-fitting,
the network will should be able to classify similar data tendencies
by fitting them to the nearest known similar data pattern
encountered during training. Over-fitting is the direct opposite of
a networks generalisation potential, and occurs when the training

dataset is either too small or when the network is trained for too

———

InTeLLiGenT OpTicAL Sensor - 60

LiTERATURE REVIEW

many cycles on a single dataset. In either of these cases, the
network will become over-optimised by attempting to match itself
perfectly to the training data used. The network will then fail to

classify previously unseen data.

Relative computational efficiency once trained. Whilst requiring a
fair amount of computing power and time during the training or
learning phase, once established, data can be processed by a
network quite rapidly, making them ideal for time-critical

applications.

Non-Linearity. Most networks are trained in a manner which
allows for non-linear data mapping, closely reflecting the actual
state of real data. This becomes increasingly critical as the

number of data dimensions increases.
Ease of use. Given appropriate training and correct output

transformation, little or no knowledge of the actual field of

analysis is required from the potential user.

In general, a network requires a learning phase before data analysis

Can actually occur. The term learning or training can be easily

misunderstood. Contrary to human learning, where specific

concepts and memories are stored, as well as general techniques, a

neural network depends on processing as large as possible a data

InTELLIGENT OPTICAL SENSOR - 61

LiteraTUrRE REVIEW

set with a given number of dimensions to achieve some type of
classification. This learning process can be split into two main

categories:

Supervised learning: In this case, the network is presented not
only with the original input data, but for every data line is also
given an expected result or output function. By adjusting internal
values, the network will attempt, for each line of data, to recreate
this given output value. Excellent in the case where the data
parameters are well defined. This process does require a
sufficient amount of data to prevent the network from simply

learning to replicate the data set with which it has been trained.

Unsupervised learning: The network is simply presented with the
original data, and will attempt to recognise trends and groupings
within the data, and to present these as definable areas within
the data map. These areas will generally maintain the same
dimensionality as the original input data. Once training is
complete, these areas can then be manually labelled to

differentiate the various data subgroupings.

In both cases, the choice of the training data and also the number
of training cycles or epochs (number of times the entire data set
will be passed through the network) are critical values. Insufficient

data or over training will cause the network to effectively replicate

InTELLIGENT OPTICAL SENSOR - 62

LiteraTURE REVIEW

the training data set, losing the ability to generalise when presented

with new data.

Typically of such a data driven system, networks are very good
examples of “Rubbish In - Rubbish Out”. A certain knowledge of the
input data fields and their origins will contribute to more efficiently
developed systems. Correct analysis of a finalised network can also
help prevent quite embarrassing moments (US army tank
recognition - trained to find sunshine, BR rail crossing doesn't like
snow). Certain types of networks are also more resilient to non-

relevant data than others [51, 35, 20, 89].

On the following pages, a number of network architectures which
can be applied to pattern recognition and image processing shall be
discussed, including sample applications based on these
architectures and the advantages and disadvantages of each

approach.

2.6.3 - Types of Networks and Intelligent Processes

The term Intelligent Process can be used to define any system
Capable of reaching a decision, given adequate data and a
reasonable training phase. The nearest analogy which can be found

is that of an expert in a given field. Early networks attempted to

InTeLLiGeNT OpticAL Sensor - 63

LiTerATURE REVIEW

mimic human intelligence by copying the logical thought processes
which assist in the decision making process.

This introduces the concept of network architectures. Although most
neural computing per se can be taken as adaptations of the work
resulting in the first perceptrons, this has resulted in a number of
varying architectures and internal processes which are more or less
suited to different types of applications. Of interest in this case are
those systems which could be used for image recognition or
analysis.

Due to the large number of such architectures, only those most
pertinent to this study shall be reviewed below. This will include
architectures already successfully in use, as well as potential
candidates for the task at hand.

This will not expand on systems used for face recognition or for
database comparison two very common detection approaches which
rely either on the location of a face, or on matching the currently
found object with a previously recorded object placed in a database
to which the detection system has access. These are much more
limited applications, working on very strictly defined parameters

with few degrees of change in their detection processes.

1.Knowledge-based systems, or expert systems:

Although not strictly a neural -based technique, this approach uses
a stored knowledge base to analyse any data with which it is
presented. The actual analysis is similar to a logical progression

through the data, using defined rules and filters which form the

InTeLLIGENT OpTICAL SENSOR - 64

LiteraTure ReviEw

knowledge base of the system. This is an overall attempt to mimic
the thought processes and patterns of a human expert facing a
given problem. The knowledge base can be expanded on, within the
parameters of its current subject without extensive reworking of the
entire network. Additionally, the actual decision making processes
are fully transparent, available to the end user, and not subject to
empirical decisions but purely logically and rule led reasoning.

An expert system’s weakness lies in the actual knowledge base
itself. This must be provided with all possible conditions and rules to
facilitate actual decision making. This is often done by simply
referring to an actual human expert. The problem which presents
itself is in the actual encoding of the thus obtained rules. The
resulting system will also be highly domain specific, able to deal
with its specific data but not able to extrapolate the knowledge to
related fields, or generalise for missing data inputs or noisy data.
The knowledge stored in the system will often be treated in a purely
binary manner, providing a form of yes/no response but without
making any allowance for any response with a more analogue
dimension. This makes expert systems ideal where a pure access to
knowledge is required, but does make them less appropriate for
problem solving applications. Such systems have been successfully
employed on surveillance networks which require a polling from a
number of cameras. The drawback remains in the actual generation
of the rules to be used - these must be sufficiently detailed to
accurately describe the problem, whilst simultaneously remaining

flexible enough to deal with any unexpected artefacts. This makes

InTELLIGENT OpTIcAL SENSOR - 65

LiTeraTURE REVIEW

this type of architecture ideal for a strictly controlled environment,

where all parameters are known.

2.Perceptrons:

Following the discovery of the limitations of the simple perceptron,
efforts were made to develop an architecture which would be
capable of solving multi-dimensional, non-linear problems.

The Perceptron itself, developed in the 1960's by Frank Rosenblatt,
was an attempt to model the structure of the human brain, where
simple stimulations to a given number of nodes result in an output
dependant on the internal state of each node.

The perceptron model is based on a learning process which adapts
the system parameters according to the difference between the
expected and the actual system output. This is repeated until the
lowest possible energy state is reached, at which point the network
may be presented with new data, and can be expected to output
correct results. This state is reached when no further approximation
of the network weights to match the expected output value(s) for

given input data is possible.

Due to the actual architecture, the basic perceptron was rapidly
found to be limited to solving fairly linear problems ("Perceptrons",
Minsky and Pappert, 1969), which led many people to discard

neural approaches entirely.

Due to the process of learning by reducing the output error against

InTeLLIGENT OpTicAL Sensor - 66

LiTerATURE REVIEW

the expected error, the Perceptron is classified as a supervised
learning architecture.

The actual learning function can be summarised as shown in fig. 1.

pLp
i

Aw,=nx

Where A W, is the change to weight w,,

n is the learning rate,

x! is the network input for a given pattern p

and ¢” is the target value for an input data pattern p

Fig.1:Perceptron Learning Function

If the calculated output is correct (i.e.: t=y), no weight adjustment
is made. If the output is incorrect (tzy), the weights w,s are
adjusted such that the output taking the new weights values into
consideration is closer to the expected output t.

The actual network output is calculated as shown in fig.2.

y:fh(z w; X, +w,)

Where y is the neuron output,

x; 1s a particular input pattern,
applied to weight w, of n weights,
w,is a bias weight

and f, is a limiting function.

Fig.2:Perceptron Network output

Where the limiting function f, serves to force the oputput to either

InTeLLIGENT OpTicAL Sensor - 67

LiteraTurE REVIEW

+1 or -1 and the bias is an additional network input which is initially
set to some random value. This simply serves to add a measure of
flexibility to the entire system.

Where the change of weight can also be expressed as in fig. 3.

Aw,=—n——mH
Wi n5w<

1

Where E is the network output error

Fig.3:Output Error Calculation

The algorithm shown in fig.2 will eventually converge to the correct
(expected!) classification if the problem is linearly separable and the
initial learning rate is not too large. It must be noted that the
solution achieved is not unique, and will depend on parameters
such as the selected learning rate value and gradient, the initial
network weight values and the order in which the training data is

Presented to the network.

3. Multilayer Perceptrons:

The concept of creating layers of perceptrons which would be
treated serially for training was rapidly presented, but the difficulty
resided in generating a training algorithm which would be capable
Of distributing the network error throughout the entire structure.

In 1986, Rummelhart, Hinton and Williams presented the

backDropagation training algorithm, which effectively solved this

InTeLLIGENT OpticaL Sensor - 68

LiteraTure ReVIEW

problem.

The network error i now calculated using a sum of squares error

function as shown in fig.4.

P
p=L 3 (s

p=1

Where p is a given data pattern presented to the network,
E is the calculated error,

y" is the network output
and ¢” is the expected output

Fig.4:MLP Error Function

A minimisation of this error will lead to a set of network weights
such that the delta of the expected to the actual output for the
entire training data set is as low as possible.

In order to allow this optimisation to be carried out, with regard to
every weight in the network, it is necessary to introduce a non-
linear factor to the calculations, the most popular of which is the
sigmoid function. This effectively behaves as a linear adjustment for
small inputs but saturates larger values, whether these be positive

or negative.

For the hidden layer to output layer weights, the weight delta is

calculated as before (fig.5).

InTELLIGENT OPTICAL SENSOR - 69

LiteraTurRE REVIEW

OF

AW ,=—n
Jk 6ij

=—n5ky,,'

OF
Where6k=6—=(yk~tk)yk(1_yk)

aj
Where W, refers to the hidden to output layer weights

Fig.5:MLP Hidden to output layer weight update

For the hidden Ilayer(s), the error is propagated somewhat
differently, as an expected output is now not directly available. This
value will instead be extrapolated from the error values of the
previous node(s) (In the backpropagation process) and the weight
value(s) to the given node(s)

The weight update is expressed as in fig.6.

O F
AW ,=—n——=—n6,y,

OF
Where6j=6—=z W 4 y,(1=y))
P

Where W, is the weight between two neurons i and j,
n is the learning rate
and E is the output error

Fig.6:MLP hidden Weight Update

The difference to the hidden to output layer weights delta is that
the §; for the hidden units depends on the &« of all the output units

to which it is connected through its wy weights.

The convergence (how rapidly the network will settle to a global

InteLuiGenT OpricaL Sensor - 70

LiteraTURE REVIEW

minima) of a network can be improved by introducing a momentum

term (). The weights change can then be reconsidered as in fig.7.

For output Weights :
A W_/k:ij(T+ 1)_w_jk(T):_nék y/'"‘x(wjk('r)'"w_/k('r_ 1))

For hidden weights :
AW =wy(t+1)=w;(T)=—né,y,+ax(w,(t)—w;(1—1))

Where is a momentum value between O A 1
(T istheiteration number.

Fig.7:MLP Weights delta with momentum

The main advantages of multilayer perceptrons lie in the rapid
training process, and the massive memorising capacity, where the
number of "memorised" cases is much larger then the number of
internal neurons. From this, the system obtains its excellent
generalisation capabilities: the ability to classify data is has not
previously encountered based on its similarity to data classes
encountered in the training phase.

Its main disadvantage is a direct result of its training process,
requiring it to be presented with a full range of data covering all
possible input conditions in roughly equal amounts. Any distortion in
the data will also be reflected in the performance of the final
network, where data classes encountered in large numbers during
training will be more readily recognised at the expense of those
Classes less well represented in the training data set. This mandates

a careful selection of the training data set, in order to cover all

InTeLLIGENT OpTicAL Sensor - 71

LiteraTurRE REVIEW

known data classes which will be encountered in use.

MLPs also tend to have long training phases (can be a few hundred
thousand iterations) which are a direct consequence of the network
structure itself. Variable parameters such as the learning rate
(which can be dynamic during training, i.e. Can gradually reduce to
a near zero value) and the momentum (which can and normally is
dynamic during training) will also influence the speed and accuracy
of the training phase: large initial learning rate and momentum
values will lead to a very rapid but badly optimised convergence of
the network. An ideal selection for the initial values of both of these
parameters is largely an empirical decision, based on the results
obtained from previous training sequences.

It must be pointed out that the solution achieved (in the form of a
final network) is not a single solution to a given problem, as the
network configuration will mostly offer a number of global minima
(a point where the weight values are optimised to give the lowest
possible error rate throughout the network for a given data set).
Non optimal training can be the result of two other criteria: local
minima, and overtraining.

Local minima occur throughout the network topology, and are
points where no further improvement in the network error rate can
be achieved by the application of the network learning rule,
although a general error rate reduction would be possible had the
weights been adapted in a different pattern. The momentum
parameter helps to reduce the likelyhood of become “trapped” in

such a local minimum, by occasionally adjusting the weights in the

InTELLIGENT OPTICAL SENSOR - 72

LiteraTuRE REVIEW

opposite direction to the normal error reduction and thus allowing
different weight optimisation paths to be found.

Overtraining [70] occurs when a given network is trained for too
long on a given data set. The network weights will then be adjusted
in such a way that they match the training data set as closely as
possible (due to the normal error reduction process). In itself, this
is what we want to achieve, but too large an optimisation in training
will also lead to a reduction in the networks potential for
generalisation: data not previously encountered in the training set
cannot be correctly classified, as the data class boundaries will have
been too tightly defined. This will occur when the network is trained
for too many epochs, or when the training data set is too small.
Overtraining is however relatively easy to avoid, initially through
sufficiently large training data set selection, and during the training
process by a close observation of the network error value for the
training set, as compared to the errror value for a validation data
set.

A validation data set is a data set similar to the training data which
should ideally represent a full data spread. After a set number of
training epochs, the network performance (i.e. Output error) can
then be evaluated using this validation set. It is important that the
network weights are not modified during validation, otherwise this
data set will simply become an extension of the training data.

Once the validation error starts to increase, it can be assumed that

no futher network optimisation is possible without leading to

overtraining, although the phenomenon of local minima must be

InTELLIGENT OpTicAL Sensor - 73

LiteraTURE REVIEW

taken into account as these can lead to temporary but small

reductions in the validation performance.

One last drawback of the MLP architecture is that these types of
networks can also have difficulties when analysing data containing
radically different dimensions to be classified, often requiring a
small network to be used as a condition filter before the actual

decision making process.

4.Self-Organising Maps:

Originally introduced in 1982 by Tuevo Kohonen, a self organising
map using a network structure which is allowed to adapt during the
training phase in such a way as to represent the various energy
levels (effectively classes) of the input data. This is an entirely free
mathematical approach, as no expected outputs are presented as
with the perceptron model.

The actual training process is dependant on a neighbourhood size,
which determines exactly how rapidly the network will adjust its
internal connections.

The first step involves finding the euclidean distance from each
neuron in the network to the input data pattern, where the

euclidean distance is defined as in fig.8.

InTELLIGENT OPTICAL SENSOR - 74

LiteraTure REVIEW

Doulzz (Win—Xi)2

n

Where D is the Euclidean Distance
W, are the connection weights and

X, is the input pattern

Fig.8:SOM Euclidean Distance

The neuron with the smallest distance is considered to be the
winner. The winning neuron and its surrounding neurons are then
adjusted, to bring them closer to the input data, using the method
shown in fig.9.

Wl'n: Wio+n(Xi_ Win)

Where n is the network learning rate

Fig.9:SOM Weight Adjustment

The learning rate thus regulates the network convergence speed.
The larger the value, the faster the network will reach its stable
condition, although the risk then exists that a more valid
optimisation path be effectively skipped over. Generally, the
learning rate is dynamic, and decreases according to the number of
training cycles carried out.

This is in parallel to the topological neighbourhood, initially large to
allow for large changes in the network structure, this should
gradually decrease to zero so that at the end of the training

sequence, only the winning neuron is being modified.

InTeLLIGENT OpTicAL SENSOR - 75

LiteraTurE REVIEW

A trained Self Organising Map thus effectively represents a point
mapping of the input data, convoluted to the number of dimensions
defined not by the number of inputs, but by the network

architecture itself.

As such an architecture does not provide any clearly defined output
groups, it is then often necessary to label the resulting network.
This can be carried out visually, by observing the winning neurons
in different cases and marking the winning node to the class of the

input given.

Due to their structure, Self Organising Maps are suited to solving
problems such as classification and data mapping.

Their particularity is that they can be used to map an n-dimensional
data space into a two dimensional vectorial representation
commonly known as the feature space. This high level of data
compression and vectorialisation provide excellent noise immunity.
Their ability to cope with multidimensional data means that they are
often used as a front end to a backpropagation or RBF type
network. Weygang and Dasilva [88] forwarded procedures to
overcome the mapping classification aspect by using multiple
parallel approaches, which, whilst providing a more accurate
description of the data classes involved, also lead to much higher
processing requirements, depending on the complexity of the data

at hand.

InTeLLiGenT OpTicAL Sensor - 76

LiteraTurRE REVIEW

5.Hybrid Networks:

Although not an architecture per se, combining a number of
“classical” network architectures together in specific manners, so as
to utilise the salient features of each individual network type is
gradually gaining acceptance. Certain aspects of utilising such an
approach are discussed by Monostori [58], although this is not
focused on image analysis applications.

The actual term “hybrid network”, is mostly used to describe any
combination of classical data preparation coupled to a neural
network stage of any architecture, tasked with the final sorting of
the produced data sets.

Throughout this study, the process of data preparation prior to
presentation to a network is considered to be a basic requirement
of successful analysis: unprepared data fed directly into a neural
network of any format is going to result in haphazard output
patterns, especially when the original data ranges are widely
varying. Some type of data preparation is to be considered an
absolute requirement to any successful output.

Considering past and current work in the field of image analysis, the
closest approach to hybrid networks are massively parallel
architectures of similar networks, effectively used either as a polling
set, where each network gives a probability as to the final output
(Zhao and Thorpe [92]), or where each network is contributing a
sub part by searching for a single particular feature, as used by

Chang, Razig, Abraham and Chae [12].

InTELLIGENT OPTICAL SENSOR - 77

LiteraTurRE REVIEW

2.6.4 - Summary of analysis techniques

Whilst a large number of analysis techniques are available, it must
be stressed that the ultimate success of any data analysis is going
to be dependent on the understanding of the data by the analyser
and the integrity of the data to be analysed.

A poor understanding of the data dimensions will probably lead to
important data aspects being omitted, and an incomplete data set
for analysis will simply not offer certain dimensionalities of the data
which might be encountered in later use.

Whether a manual or autonomous data analysis method is selected,
the integrity of the data throughout the process is paramount: any
transformations on the original data can lead to data loss for later
processes, and such operations must therefore be carefully
considered and selected before being applied.

One further important point in any data analysis lies in the the scale
of the data. Whether using a traditional technique or a smart
technique, data sets mostly require some form of scaling in order to
allow the examination of inter-relationships in the data stream -
this affects not only the mathematical scale of the data but also the
order in which a particular data stream is observed.

Smart techniques in data analysis do seem to offer more flexibility,
especially when considering non-linearities, which can then be
mapped into hyperspace and evaluated using various visualisation

methods, but do require more in depth data preparation than a

InTeELLIGENT OPTICAL SENSOR - 78

LiTerATURE REVIEW

more manual approach. The actual process chosen must be
selected to balance the type of data, the integrity of the data(will
interpolation be required in the analysis phase), the availability of
set results for the data (a pre-requisite for any type of perceptron
structure!) and the type of analysis: must this be on online process,
must the analysis methods be flexible at a later date or not.

The advantages of hybrid approaches allow various processes to be
implemented at the most suitable stage of the analysis and on all or
only part of the data. These structures seem to be best suited to

real life data, which will be inherently noisy and inconsistent.

InTELLIGENT OPTICAL SENSOR - 79

Stupy DerInITIONS

3 - Study Definitions

Recognising the need is the primary condition for design - Charles Eames

In order to carry out a thorough study of the case presented, a
certain number of variables must first be defined, in order to refine

the field of study.

3.1 - Study Objective

The aim of this study is to enable a simple fixed lens security
camera as used in common CCTV applications, to detect and react
to the presence of a person within the surveillance area which the

camera has been assigned to.

This detection process must not be impaired by environmental
factors nor by the presence of other mobile or immobile objects

within the camera’s field of view.

Environmental factors include such variables as overall lighting
conditions, surface reflectancies, temperature variations, as well as
Camera setting changes, although the latter are not to occur whilst
the system is in operation.

The detection and reaction processes are to function in realtime,

allowing the system to operate either as a stand-alone unit or using

InTELLIGENT OPTICAL SENSOR - 80

Stupy DEeFINITIONS

operator backup. In either case, false alarm conditions are to be

minimised.

When functioning with operator backup, irrelevant data is to be
filtered out, whilst retaining sufficient information for operator

decision making processes.

The overall system must be simple to install and operate, requiring

little or no knowledge in the field of intruder surveillance.

3.2 - Definition of a Person

Probably the most important item to define is the actual target,
what the system is trying to identify, in this case, a person.

To allow data parameters to be defined, it is necessary to quantify
the term person into mathematical parameters.

These parameters will also largely depend on the type of

camera/lens combination which is to be used.

According to Anthropomorphic data , and considering the population
groups from the 5th to the 95th percentile (Which covers 90% of

the population spread)[34, 83] , the following values can be taken:

InTeLLIGENT OpTicAaL Sensor - 81

Stupy DEeFINITIONS

Measure Adult Male Adult Female
Height 161-185 cm 150-170 cm
Elbow/Elbow breadth [35-50 cm 31-49 cm
‘Mean Shoulder Width |45 cm 40 cm N

This represents, however, only data for adult humans, and this

system will also have to be taking into count threats posed by
children.

It can be assumed that a child under two years need not be
considered as capable of posing a threat, which sets a height limit

of approximately 100cm, when the person is standing.

Target proportions can be derived from the adult proportions as
defined above.

This results in @ minimum target size of 100x24 cm, which would
represent an average child standing. It cannot however be assumed
that the target will always be in an upright stance, behaviours such
as crouching or crawling must also be taken into account. This
would effectively halve the height of the target, resulting in an

object around 50x24 cm.

These given target dimensions are independent of the type of
camera/lens combination to be used in actual system development
and operation. It must also be noted that these values represent
preliminary guidelines, which may well be adapted to cope with

system changes or detection problems which might be encountered

InTELLIGENT OPTICAL SENSOR - 82

Stupy DEeFINITIONS

in further stages. These values thus represent an ideal minimal
object size for detection and analysis within the parameters of the
system to be developed.

Depending on the image sensor and lens combination selected, and
considering the minimum and maximum required detection
distances, the values given above shall be translated into camera
dependent dimensions for defining the minimum sized object which
should be considered for target processing. This has an impact on
the amount of processing each image will undergo, as objects
smaller than the minimum defined can be immediately discarded,

thus speeding up the entire process.

InTELLIGENT OpTICAL SENSOR - 83

Data ExTrACTION

4 - Data Extraction

We need above all to know about changes,; no one wants or needs to be

reminded 16 hours a day that his shoes are on - David Hubel

In all analysis systems, a correct and reliable source of raw data is
of utmost importance to the correct functioning of the system.
It is therefore important to develop rigorous data extraction

techniques, if any type of reliable system is to be developed.

Data extraction considers not only which type of data is to be
extracted, but also which preparation steps are required, and which
actual extraction methods will be employed in order to retain
uncorrupted values.

The inconsiderate application of masks and filters over an image
may well enhance certain aspects, may can also lead to irreversible

loss of what may be important information.

In order to establish a reliable process, it is important to initially
define what type of information is to be extracted and in which form
this information should be presented at the outcome of the

extraction process.

In the system which is being considered, the final details of the

InTELLIGENT OPTICAL SENSOR - 84

Data ExtrAcTION

image information required have not yet been finalised. These can
actually only take on a final aspect once an initial testing phase has
been completed.

In order not to unnecessarily limit this initial testing and
experimentation phase, it would be advisable to provide as large a
spread of data as possible. Whether the entire data range will then
be utilised is not of any concern, but this approach will provide as
wide a starting base as possible, allowing for a structured approach
to the data analysis, which in turn will enable the original data set

to be narrowed down to hold only those required elements.

4.1 - Initial Extraction

For the purpose of initial experimentation, a camera has been
provided in the form of a Creative Labs WebBlaster Webcam[95].
This is a small CCD based device with a fixed focal length and a

relatively cheap plastic lens.

The reason for this choice lies in the setup rapidity, relative cost
and rapid access to initial data which it will provide, as no external
video capture hardware or software is required.
The specifications of this camera are as follow:
(These have been derived from the manufacturer as well as

practical tests)

InTeLLIGENT OpticAL Sensor - 85

Data ExTrACTION

Maximum Effective Range:
10m, for visual object recognition in the size
limitations which are being considered for this study.
Lens:
Horizontal angle: 52 degrees.

Minimum lighting: Could not be obtained.

A feature of this camera which has been noted in low light
conditions is severe image corruption resulting in a marked elliptical
shadow blooming around the borders of the image. This defect is
presumed to be due to the cheap nature of the lens used in the
camera, and effectively means that very low light testing will either
have to be abandoned or will have to take into account the varying

nature of this phenomenon.

As the type of camera for which this system is to be developed has
normally higher quality components, the elimination of this effect

will not be incorporated into the actual analysis algorithms.

The webcam can output images to the harddrive in a number of
format/colour/size combinations.

In order to minimise the loss of data during this initial
transformation stage, it has been decided to save these images in a
bitmap format which provides for easy later processing in 24 bit

colour (16 Million colours) and saved to a 320x240 pixels size. This

InTeLLIGENT OpticAL Sensor - 86

Data ExTrRACTION

provides an acceptable compromise between image dimensions and
level of detail, and also approaches the standard output for
surveillance equipment, thus providing a close match to the
equipment to be using the finalised system.

Using the target definitions provided earlier, it is now possible to
calculate the minimum image size object to be detected, given the
above camera specifications.

Given the Field of view of 52 degrees and a maximum range of
10m, the maximum horizontal spread can be extrapolated as shown

in fig.10.

Distance x o

Fig.10:Camera field of view

Distance x = 20tan 26

(the range is composed of two identical right angled triangles with
an initial angle of 26°)

Distance x = 9.75m

Taking, as specified, a 1m wide object and using a final image of

320x240 pixels, the equivalent image size for his object will be:

InTELLIGENT OPTICAL SENSOR - 87

Data ExTrRACTION

Equivalent size = 1 x 320/ 9.75
= 33 pixels

Therefore, a 1x1m object placed 10 m away from the camera lens
will be represented in the resulting image as a 33x33 pixel sized
square. Obviously, as the object approaches the camera lens, the
relative screen size will be increasing.
Using these values once again for the minimum target size of
100x24cm, this would result in on screen dimensions of 33x8
pixels. This value thus represents the minimum image object size to
be considered as a potential threat and thus to be correctly
analysed.
It is worthwhile noting at this point that the lens currently used
results in images which are proportionally correct as compared to
human vision parameters. Lenses with wider angles will tend to
stretch the edges of an image, whilst narrower angles will result in

slight compression.

InTeELLIGENT OPTICAL SENSOR - 88

Data ExTrRACTION

4.2 - Methods of Analysis

There are a number of analysis methods available when considering
the extraction of image data. Generally, these can be split into two
main categories:

. Searching for known data.

. Searching for unknown data.

Each method has its advantages and disadvantages, which will be

explained in depth.

4.2.1 - Searching for known Data

Searching for known data implicitly implies that all situations of
interest are known to the user and system developer prior to the
product development. The data itself need not be restricted to a
single type but can take the shape of patterns, image trends, light
levels, known positions of certain items, etc [67]. The type of data
is dictated by the intended application. This is corroborated by the
highly targeted nature of such processes, mostly aimed at
recognising a single object type [42].

Due to the nature of such a search, the entire system can be fairly
small and the detection process might be fairly rapid, as only clearly
defined parameters are used in the data search. This aspect of rapid

recognition comes to light in the work of Francesschetti, Iodice and

InTeLLIGENT OpTicAL Sensor - 89

Data ExTrRACTION

Tesauro [30].

The drawback of such a system is however its inflexibility, in a
number of contexts:

Initially, all possible image situations must be known, which implies
a very limited or specialised implementation field. An ideal
application for such a process is, for example, object sorting on a
factory feed belt. In such a condition, the camera is never moved,
lighting remains constant, the area of use is predefined and
restricted with no external noise influences and the objects
appearing in the image have also known profiles and dimensions
[55]. The task of such a system is normally fairly limited, normally
object orientation detection or fault detection by profile matching,
as highlighted by Kuehnle and Burghout [48]. Anything not
matching the predefined object parameters is automatically
discarded and does not undergo any further analysis.

The main drawback of such an approach is directly due to its high
specialisation. The process has been adapted to very strict
implementation rules and generally cannot be adapted to a different
environment without modifying important process parameters[14].

This results in a very reliable but inflexible system.

InTeLLiGenT OpticaL Sensor - 90

Data ExTrACTION

4.2.2 - Searching for unknown Data

Whilst more complex, this is a much more flexible approach to
image analysis.

Instead of attempting to carry out pattern matching or detect other
fixed features within the image, this approach relies on comparing
the actual image with a previously obtained datum image. Changes
within the two sets can then be determined and analysed in any
suitable manner, depending on the type of data and the desired

output.

Whilst this provides much more scope for development, it also
depends on the obtention of a reliable datum image, from which all
further analysis will be derived. If this initial image is in any way
corrupted, any later processing will reflect this corruption and most

likely result in nonsense output.

Such an approach generally offers more system flexibility, as far as
the system environment is concerned. Depending on the data
extraction and analysis algorithms used, modifications such as light
level changes and even emplacement changes can be catered for,

without having to review the analysis processes.

The sheer flexibility of such an approach also calls for a much more

rigorous data extraction and analysis phase, as changing contexts

InTELLIGENT OPTICAL SENSOR - 91

Data ExTrRACTION

need to be taken into account without corrupting or affecting the
output data obtained [89]. It is also very easy to misinterpret
fluctuating values due to environmental factors as targeted data.
Data must not only be correctly extracted but also correctly
interpreted, which in turn will lengthen the process development

phase.

Due to the flexible nature of the targeted data, or rather, the
varying way in which this data will be presented within the image,
the entire image analysis/data extraction phase will tend to be more
complex, and thus also more time intensive, than when using the

known data extraction approach[16].

4.2.3 - Extraction Mode Balance

In the situation which is being considered for this study, it would be
impossible to predict the total number of variables which might at
any stage come into play and would then have to be analysed or at
least filtered by the system. Indeed, a condition of the hypothesis is
that no prior knowledge of the surveillance environment be needed

prior to running the detection process.

Possible environmental effects can additionally be split into two

groups:

InTELLIGENT OPTICAL SENSOR - 92

Data ExTrRACTION

1. Effects on the overall image.

2. Effects on the target data within the image.

Of course, the two groups are closely linked, as, for example,
shadows within the image will most probably cause shadows on or
around the target as well, but for processing purposes, the two can

be considered separately.

Effects on the overall image will be affecting the target acquisition
and extraction phase, whilst effects on the target will be affecting
the target analysis stage.

Separating these two processes has a number of advantages.
Initially, overall processing is speedier: If the target detection stage
is negative (i.e., no detected target), the target analysis phase can
be discarded, thus reducing redundant processing.

Secondly, this results in a modular structure where each module
has a dedicated task. This is quite an elegant solution, as the
processes from each module can be called up as and when they are
required.

The modular approach also facilitates the actual system
development stage, as each task can be developed separately.
Modifying or adjusting a given process is both easier and quicker,
and the various modules can easily be fine tuned to one another’s

input/output requirements.

InTeLLGENT OpTicAL SENSOR - 93

Data ExTRACTION

The processing methods for each stage must thus be considered as

totally separate sequences operating under different conditions.

4.2.4 - How Many Stages ?

Before the actual number of stages required for the
processing/preprocessing functions can be accurately defined, it is
important to understand the operational conditions of the entire

system.

Intended as a security system, it is likely to be used all year round
in both night-time and daytime conditions. As yet, the system has
not been restricted to purely indoor or outdoor use, which has
implications on the lighting conditions which will have to be taken
into consideration.

Indeed, whilst indoor conditions can be described as fairly stable,
with little or no change to overall environmental parameters such as
lighting levels or spacial occupation (distribution of objects around
the area to be surveyed), an outdoor environment is much more

dynamic, with changes occurring on all levels.

1.0verall Light Changes:
These will occur as a result of the natural day/night cycle. It
cannot be assumed that the system will only be in used at night

time or only in bright sunlight. Light changes will also occur as a

InTeLLiGenT OpricaL Sensor - 94

Data ExTrRACTION

result of weather influences, clouds, mist and rain will all affect

overall light levels.

2.Point Light Changes:

These are light changes due to direct or indirect shadows.

Thus, as the sun crosses the sky, the shadows cast by objects will
seem to be rotating around their source. Shadows will also vary in

size and intensity.

3.Camera Movement:

Camera movement will occur as the result of improperly mounted
cameras, or due to wind vibration. In an extreme case, this can also
occur through human or other interference with the camera itself,
i.e., an attempt to destroy or rotate the camera mounting. As
camera vibration, even on a small scale, is nearly impossible to
prevent, some form of image stabiliser would be highly

recommendable.

4.0bject Movement:

As opposed to target movement, other objects might also move
within the surveyed scene. This might be the result of wind (Moving
clouds, trees, floating plastic bags or papers) or through some other
mechanical influence (ventilation systems opening, cars passing

by...) as shown in fig.11 and fig.12.

InTeLuGent OpticaL Sensor - 95

Data ExTrAcTION

Fig.11:Carpark Datum Fig.12:Carpark with changes

These figures actually illustrate a complex situation with both an
additive and a subtractive change: Fig.12 features the blue car
~appearing in the scene as well as a red car having vacated its
parking spot behind the former.

Examining the image difference analysis more closely also shows

motion changes in the trees in the background (highlighted in

yellow, fig.13.)

s Motion Analyser

ig.13:Fu/I scene change

Whereas the retained areas of change for further analysis are

InteLLIGENT OpTicAL Sensor - 96

Data ExTrRACTION

shown in fig.14 (highlighted in magenta).

g.1 :Rind areas of change

The resultant object recognition, correctly identifying both changes,

is shown in fig.15.

Motion Analyser

Fig.1 Car ffence anas:s

InTeLLIGENT OpTicAL SENsOR - 97

Data ExrracTion

4.2.5 - Target Area Recognition

This is but an incomplete list of factors which have to be considered
for a system with such a wide application range. Most of the thus
resulting noise should ideally be filtered out prior or simultaneously
to target detection, thus reducing the number of objects to be
examined during the target recognition stage of the detection
process. A number of systems using neural approaches have been
developed with the sole purpose of noise reduction, prior to analysis
[50, 05], although these tend to be complex systems which often

require a certain knowledge of the operating environment.

The entire aim of the preprocessing stage thus can be summed up
as a process of reducing the image data to such an extent that only
possible targets and their associated uncorrupted data remain, to
be fed into the next processing level of the detection system. This
initial phase could be designated as noise filtration.

Depending on this first stage, and indeed running parallel to it is a
process of potential target area extraction.

Once this is complete, the data which remains holds possible areas
of interest for target recognition or identification. The various target

areas do however first have to be recognised within this overall

presentation.

Although this might initially seem to be a doubling of the target

InTeLLiGent OpricaL Sensor - 98

Data ExTrACTION

extraction process, the difference is illustrated with the images

below (Fig.16, Fig.17, Fig.18, Fig.19):

Fig.16:Datum Image Fig.17:Camera Image

Fig.18:Difference image, showing Fig.19:Target Image, showing identified
potential targets potential target areas

NB: The above image sequence has been obtained by the use of
custom filters within Adobe Photoshop, purely as an illustrative

measure showing possible analysis processes.

As can be quite clearly seen, the potential target detection and
potential target area detection produce two quite different results,

the output resolution being refined during each stage of the

InteLLient OpricaL Sensor - 99

Data ExTrRACTION

detection process.

The steps described above result purely in an accurate definition of
the potential target position within the given camera image, which
completes the first main stage of the detection process: Evaluation
of the presence of potential targets.

Depending on whether the output from the first main stage is
positive (i.e., a potential target has been identified), the second
main phase can be initialised: Potential Target data extraction and

preparation.

Given that the target areas have been identified correctly, the
image data must now be extracted from the image itself and
prepared for further analysis. Ideally, this stage will incur as little
data distortion or loss as possible, so as to present the data to the
Target classification stage in as pure a form as possible. This will

help to ensure a high level of positive (correct) target classification.
4.2.6 - Analysis Sequence

It is initially impossible to specify the amount and type of data
which the classifier will be requiring. This will not only depend on
the architecture of the classifying stage itself, but also on the
desired output from this stage of the overall system. The actual

type of data required , will however not have much effect on the

InTeLuGent Oerical Sensor - 100

Data ExTrAcTION

overall process distribution as such, but will only affect which types
of filters and algorithms are employed for the actual potential target
data extraction phase. The overall system sequence can already at
this early stage be roughly defined. Minor changes to this
arrangement are bound to occur as the system development
progresses, but this will assist in laying out an experimental

development order.

An initial summary of possible processing modules, as defined

above, results in the following breakdown:

1 - Image comparator.

2 - Image Noise Filter.

3 - Image Potential Target Detection.

4 - Potential Target Separation.

5 - Potential Target Data Extraction.

6 - Potential Target Data Preparation.

7 - Potential Target Analysis.

8 - Target Recognition and Classification.

9 - System Output Decision.

InTeLLigent Opticat Sensor - 101

Dara ExTrRACTION

1 Image Comparator

Due to the intended dynamic nature of the system, its ability to be
used in varying contexts without the need for a system rewrite, this

stage is a necessity to the correct functioning of the target detector.

As we are bound to one of the primary definitions of the problem
(point 3: Can such a system be developed in such a manner as to
be independent of the camera installation location and method?), it
_is difficult to employ a method of scene mapping or prediction, such
as that described by Collins and Tsin [19], as this calls for multiple
differing views of the environment in order to generate an accurate

mapping of the surroundings.

As the environment cannot be predicted, and would be too complex
-to be mathematically defined by the operator every time a change
occurred, a process which would anyway compromise the aspect of
autonomous operation as laid down in the basic requirements, it is
faster and more reliable to rely on the system itself to define its
normal operating conditions.

The obtention of a datum image would in such a case be highly
appropriate. The role of the datum image is to store the state of the
surveyed area in a non-alarm situation. To deal with changing
environments, this datum image would ideally be obtained

immediately when the surveillance system is activated. As the

InTeLUGENT OpTicAL SeEnsor - 102

Data ExTRACTION

system then operates, each new incoming image will be compared
to this datum to determine whether any changes occurred within

the surveyed area.

Although an elegant solution, such an approach does also have its

potential problem areas:

I. Accidental Environmental Changes:

These could be the result of doors or windows being opened without
_realising that a surveillance system was in operation. For example,
the person enabling the system might have entered the room and
left the door open whilst arming the system, but then closed the
door as they went out, resulting in a constant discrepancy between
the datum image and the incoming camera images, even though no
valid target was present. Such setup errors are a major source of
-malfunctions in basic surveillance systems using any types of

sensors [95,26].

I1.Lighting Changes:

Especially relevant if the system is operational overnight, where a
brightly illuminated datum image might have to be compared to
camera images in low light conditions. Although essentially

identical, the comparison algorithm could easily be fooled by the

InTeLucent OpricaL Sensor - 103

Data ExTrRACTION

absence of shadows in the camera image, resulting in negative

potential targets.

These problems can however be overcome by the introduction of a
historical component. This might enable the automatic update of the
datum images as overall conditions change without ensuing positive

alarm states.

The role of the image comparator is critical in providing the ensuing
processes with the correct balance of information. Overestimated
‘tolerances will result in a surplus of redundant information being
passed on for analysis, whilst underestimated tolerances would

result in actual targets being overseen.

In order to provide an ideal flow of information, this process should
‘have a certain level of dynamic response towards the system’s

environment.

2 Image Noise Filter

This stage follows on the image comparator. Due to the very nature
of the image comparison process, the resulting data will not only be
representing potential target areas but also various types of image

noise, whether these be due to camera vibration, local light changes

InteLuicent OrticaL Sensor - 104

Data ExTRACTION

or background variations.

In order not to overload the target identification process with
unnecessary data, resulting in longer and unnecessary process
times and the need for more system resources, it would be
advisable to employ this stage as a means of filtering out as much
obvious noise as possible from the image.

By the term “obvious noise”, is meant data which cannot in any way
be representing a potential target within the detection parameters
which have been set for this system. The most direct example of
such data would be areas of noise which are smaller than the

| minimum specified identifiable target.

Whilst such areas may well be representing real targets which are
beyond the actual search or surveillance range, as long as they do
not enter into the strictly defined search parameters they are of no
[interest to the system in general. As soon as such a target enters
the actual defined range, the system will change its classification
from that of unwanted noise to that of a potential target, and the

target identification process will be carried out as intended.

Intecuicent OpticaL Sensor - 105

Data ExTracTION

Fig.20:Point Noise

The example shown in Fig.20 clearly illustrates a condition of point

noise, i.e., noise which is restricted to a certain area of the image.

The second type of noise which must be considered is distributed
noise, a typical result of camera vibration, where the noise is purely
a result of image origin shift in any direction. A similar effect can be
obtained from tree branch movement, as illustrated below in

Fig.21, Flg.22 and Fig.23:

Fig.21:Datum Image Fig.22:Camera mage

InTeLuiGent OrpticaL Sensor - 106

Data ExTrRACTION

4
Fig.23:Differenceof Camera Image(fig.21) to Datum Image(fig.22)

It can be observed that the effects of the noise patterns are fairly

similar, varying only in their spacial distribution.

- Whereas in the first case (point noise), noise elimination is possibly
carried out by masking or ignoring the affected area until the
displayed noise gains sufficient significance to be considered a
potential target, the second condition (distributed noise) cannot be
treated in the same way, as we could not afford to even
momentarily mask the entire image without even considering the
. source of the noise in the first place.

As mentioned earlier, this type of noise is most commonly due to
wind-induced camera vibration or background vibration/motion.
This generally represents a fairly regular type of displacement,
either in the nature of the motion or in the area affected by the
motion. Although such motion is difficult, even impossible, to
predict in any accurate way without detailed knowledge of the
operating environment, there is a proven method of compensating
such noise, as can be seen in high-end camcorders. The solution,

commonly known as “jitter-correction”, is occasionally based on

InTerigent OpricaL Sensor - 107

Data ExtrRACTION

mechanical stabilising devices based on gyroscopic platforms
[Appendix E], but is mainly carried out by full electronic
counterparts which function on the principle of image frame

comparison:

Consecutive images are analysed for generic motion patterns. Large
motion levels, such as those caused by a person walking across the
image, are immediately discarded or ignored, whilst minimal image-
wide motion is compensated for by shifting the entire image in the

appropriate direction.

Such a process could be refined by applying the filter not only to
the entire image, but to individual pixels within the images, thus
resulting in a point by point level of jitter-correction. This can be
further fine tuned by specifying a correction range, implying that
~pixel-wide motion below a given threshold could be automatically

compensated for.

The following images illustrate a few cases displaying various forms
of distributed noise and the effect such occurrences have on a

motion detection process.

InTeLuigent Optical Sensor - 108

Data ExTrRACTION

3 Image Potential Target Detection

Following the process outlined previously, this phase represents a
crucial stage for the successful operation of the entire system.

This phase for detecting potential targets within the presented
image will ideally be relying on obtaining highly optimised data with
as low a loss of resolution from the original image as possible, in
other words, the original image must be optimised but in no way
corrupted to be losing potentially important data to this stage of the

. detection process.

Such data requirements stress the need for entirely optimised data
preparation, as any modification to the original data may well lead

to a drop in performance of the potential target identification stage.

- The actual mode of detection is as yet open. A number of different
techniques exist which may be considered for this purpose, but all
re|y'on some way or other on some form of template matching,
whether this be in a purely mathematical or purely graphical

(nearly empirical) manner.

Template Matching:

A stylised template of a perceived threat is created and modelled in

a mathematical manner, in such a way that it may be applied as a

InteLuient OpticaL Sensor - 109

Dara ExTRACTION

comparative filter to the incoming image. This template may have a
number of deformation axes which allow for a certain degree of
flexibility whilst retaining the general attributes of the template. If a
match occurs, this is then first analysed for the degree of
deformation necessary to obtain the overlay with the template, and
can then be given a relative degree of importance for further

processing, see target identification.

The main problem linked with such an approach is the requirement

for well defined and separated potential targets. If the image has a
| high noise level, or if a potential target is partially hidden or
overlapping with another target, this can cause the template
matching function to fail, as the deformations required to retain
actual matching are then too large to fall within the limited
deformation constraints of the given template. To allow for such
~situations by increasing the template’s degree of deformation will
only lead to a higher number of negative targets being identified by
the template matching process, thus reducing the system efficiency.
This difficulty introduces the need for a stage of quite rough
potential target evaluation, which might be able to distinguish such
noisy target images. This has been implemented in a number of
studies by using much more generalised templates which only when
combined can be evaluated to be presenting a target match or not,
as shown in the work of Viola, Jones and Snow [84] amongst others

[42, 30, 43, 64, 54]. The problem which this raises is a direct result

InTeLLIGENT OpTicaL Sensor - 110

Data ExtracTiON

of the multitude of filters employed: when is the filter combination
defined as valid or invalid ? This again returns to the basic
assumption that not all but most object features are already defined

and recorded in a template format.

Another quite straightforward way of countering detection failure
through target corruption is to introduce a historical feature into the
detection process. Once a target has been positively identified, the
system will then track this object, biasing the detection process by

reverting to historical data on the object. Thus, the longer a target
is present within the image, the more certain the system becomes
of its validity and the less likely the system is of loosing the object if
the latter becomes corrupted in any way during a few surveillance

cycles. [89, 78, 31, 09]

. Introducing a historical feature however also calls for increased
system storage, as data on the target must be stored and updated,
frame by frame, until the examined target definitely exits the
surveillance area, a feature which must be treated -carefully,
depending on the parameters which are to be stored, especially in
the system at hand, intended to be integrated into a portable

autonomous and yet still discrete unit.

This approach has been used extensively in systems relying on

Multiple camera arrays to overcome environment clutter and thus

InTeLLIGenT OpTicaL Sensor - 111

Data ExtracTion

enhance tracking efficiency (Collins, Lipton and Kanade[18] -
Collins and Tsin[19]). These do however rely heavily on accurate
calibration of all cameras involved and a fixed installation location,

which does not fall within the specifications of this study.

Such a feature also calls for a certain degree of motion tracking
and prediction, which is not entirely necessary in the system
being considered. This might however become a necessary addition
to the processing system if difficulties do arise in target detection
and identification.

See figures 19 and 20 for examples of borderline cases, where the
(valid) target is in some way corrupted out of normal template

deformation parameters.

Fig.24:Target features partially cut off Fig.25:Target only partially in the
by other objects image frame

All these methods are describing some type of target separation

InTeLLiGent OepticaL Sensor - 112

Data ExTrACTION

4 Potential Target Separation

What this process describes is the act of separating the identified
potential target from not only the image background, but also from
other intrusive effects such as shadows or objects in front of the

identified target.

It is also the act of identifying not only the fact that the image has
changed, but also of identifying exactly which and exactly how
- many separately identifiable regions of the image have undergone
this change.

In actual processing, this step cannot be separated from that of
potential target identification, as one relies on the other, and indeed
the processes are not carried out in a purely linear manner, but are
called in as and when necessary depending on the image observed.
© The theory of the process however can be explained in a separate

step.

Target area identification for simple cases (one target in image) is
fairly straightforward. The boundaries of the image change will also
be defining the boundaries of the potential target, meaning that the
affected image area can be rapidly extracted and analysed. This is

shown in Fig.26.

InveLiGent OpTIcAL Sensor - 113

Data ExtrACTION

0 - Single Object

- -

-

Fig.26:Single Object

We cannot however, rely on always encountering such a simple
ideal case. Whether due to noise interference or any other inputs, a

more complex situation should be expected.

01 - Objects Separated

Fig.27:Separated Objects

Two separate potential targets, as seen in Fig.27, present a step in
this direction. Here the total area of change within the image is
much larger and some slightly more advanced processing is
required to separate the two target components and extract their
data for analysis. This approach can be used for increasing the

Number of potential targets in a single image.

InTeLLIGENT OpTICAL SENSOR - 114

Data ExtrAcCTION

A more complex situation will occur when potential targets encroach
on one another’s image space, without achieving apparent 2
dimensional contact. If we simply use the target extent boundaries
for image data extraction and analysis, each target will contain a
certain amount of information on its neighbour target, thus leading
to corrupted data for further analysis.

This can be rectified by refining the identification process in such a
way that a potential target can be checked for entity continuity.
Thus only a group of pixels which are joined together on the image
plane will be considered as forming a single object. In this case, a
certain leeway can be incorporated, giving a possible gap range of a
few pixels in order to allow for possible lighting effects within the

image. This is illustrated in Fig.28:

02 - Object's Bounding areas overlapping

Fig.28:Boundary overlapping objects

The most complex situation however, will occur when potential
targets are either partially or entirely overlapping in their image
areas. Here, as far as the image change area is concerned, the
Multiple overlapping potential targets will simply appear as a single

fluctuating shape, which might or might not meet the parameters

InTeLuiGent OpricAL Sensor - 115

Data ExTrACTION

for a valid target identification. This is illustrated in Fig.29.

03 - Objects overlapping

Fig.29:0verlapping objects

Such a situation is difficult to interpret without having recourse
either to historical data, or to a second image from a different
angle.

As the system considered is intended solely for a single camera
setup, the second option is not available, and the only solution
would be to consider incorporating some form of historical data, and

thus a given object tracking element as explained earlier.

5 Potential Target Data Extraction

Up to this point, we have been concerned with aspects of overall
image analysis. Once the actual potential target areas have been
tightly identified and defined, the system can move onto the stage
of analysing each potential target for possible positive target match.

This requires a certain number of parameters to be extracted from

InTeLLiGenT OpTicAL Sensor - 116

Data ExTrACTION

the identified potential target regions.

Such information might take the form of vectorial measurements
leading to an overall shape contour definition, or might contain such
elements as object Centroid, object height, width, placement within

the overall image, object area, variation measurements etc.

During the development stage, it would be highly advisable to
ensure that as many different parameters as possible are extracted
from the image for further analysis. Whilst this might lead to more
intensive data processing algorithms, it is the only way to ensure
that important parameters are not omitted. As further
investigations are carried out, these important parameters will
become known, and less useful measurements can then be omitted
entirely from the data extraction process. Care must be taken to
ensure that the parameters extracted are also universal to every
_ image in a surveillance sequence. Obviously, if no potential target is
present, this is not a problem, but we cannot rely on empirical
values such as “distance of target 1 from target 2", as there is no
way of guaranteeing that two potential targets will always be
present in the image, thus leading to a lack of data for the following
analysis stage.
Care must also be taken not to provide data which might be locally
affected. This will include features of physical location (terrain
layout, angle of inclination, lighting source variations) and weather

phenomena.

InteLuiGent OpricaL Sensor - 117

Dara ExtrACTION

6 Potential Target Data Preparation

Once the data has been extracted from the image, it will have to
be prepared before being presented to the detection algorithms.
This is a necessary step, mainly to ensure that the various data
streams are using standardised ranges. Whilst data from varying
sources can be simultaneously analysed, this process becomes
easier if the said data is restricted to common minima and maxima.
For use with a neural network, it is customary to use a data range
of either -1/+1 or 0/+1. Such ranges not only provide a certain
clarity in the data set, but are also optimal for much of the range
checking within certain networks. It is also well suited to being
processed by algorithms utilising angular relationships (many neural
networks are based on sigmoid functions at some stage of their
~ processing, thus providing a matching 0/+1 output range
corresponding to the input).

The actual data transformation processes required to achieve this
standardised range must be determined as best matching or
representing the available data. Such processes might contain linear
or logarithmical scaling, empirical stepping, sigmoid based
functions, square root based transforms and many more. [68, 22,
30]

Selecting the process which will provide the most accurate

representation of the data required is important, as many functions,

—

InTeLLGENT OpticaL Sensor - 118

Data ExtrAcCTION

such as logarithmic transforms can seriously distort the original
data, enhancing certain ranges and reducing others. It is therefore
important to maintain an accurate knowledge of the original data,
the data which is required to be fed into the analysis network and
the associated data transform required to achieve this without

corrupting possibly important ranges of the original data stream.

Once the selected data streams have been optimised, using
appropriate transform processes, the actual detection/classification
network can be applied on these to achieve at least an initial stage

of target classification.

One of the main difficulties in the entire data preparation phase, is
that of unintentional data distortion or corruption.

Depending on the application, certain data windows of a given
_ input’s data range might need to be enhanced, whether to
accentuate the given range , or due to sensor responses leading to
the need for input amplification. Whilst carrying out this range
amplification process, outlying data which may initially have not
been considered as crucial can be severely distorted, which in turn
may lead to unexpected network behaviour.

t is thus important, before carrying out a data transformation, to
evaluate the entire data range and assess the importance of the
entire data range using statistical or heuristic methods, whichever

Suit the application under development. One of the main statistical

Intecucent OpticaL Sensor - 119

Data Extraction

analysis methods available is PCA, Principal Component Analysis,
which can give a useful insight into the structure of the data stream

and its variations.

Whilst considering each data stream for its individual characteristics
is important, it must not be forgotten that, within a functioning
network, each input stream (where a stream consists of a data set
for a single object) is considered as a function of its accompanying
inputs. Thus, the network is attempting to define a relationship
between the as yet totally separate inputs, which will then allow a
spatial separation to be defined. This is an intrinsic quality of a
network, as it is composed of a defined number of highly interlinked
nodes defined by linking functions which are data variable, i.e.,
whose values are defined by the incoming data streams, at least

during the dynamic learning phase of the network.

Obtaining a good understanding of possible data relationships prior
to any network development work is therefore crucial to the
development of an optimised system. If redundant or repetitive
data can be filtered out of the network input streams, this will
ultimately lead to a more robust system, as the network will be able
to establish simpler internal nodal correlations which will be
optimised to representing the wanted output patterns, and not
wasting processing resources in carrying out internal data noise

filtering.

InTELLIGENT OPTicAL Sensor - 120

Data ExtracTiON

The more optimised a network is in this aspect (dealing with pure
data instead of declassifying noisy or unnecessary data), the higher
the expected network’s performance can be. We must also take into
account the networks potential for data generalisation and
operational noise filtering. If the network has been able to train with
optimised data, less of the internal resources will have been
“wasted” in data cleaning, and the network should thus be able to

use these resources for operational noise filtering.

7 Target Recognition and Classification

The phase of target recognition, whilst less crucial than the actual
data preparation, is much more spectacular in its results, as this is
" the stage where a single network, or a conglomeration of networks,
will be utilised to analyse the prepared data and output a target

directed decision based on this data.

The simplest method would be to feed the previously prepared data
straight into a classification network which would then output one of

two possible results: " Target" or " No Target".

Due to the probable high complexity of the data to be analysed, as

well as the sometimes fairly ambiguous separation lines between

—

InTeLuigent Opricar Sensor - 121

Dara ExTrRACTION

valid and invalid targets, we might well have to refine this structure

somewhat.

Consider for example the case where a person crawling on all fours
is detected by the camera:

The system might be indicating a borderline condition between a
person and a dog. Here, a simple ON/OFF decision type might not
be able to provide sufficient definition to enable a satisfactory

output.

In such a condition, it might be preferable to first utilise a general
sorter which then feeds its results into a final classifier. Such an
approach would provide a much increased response certainty, or
simply a better system reliability, as each network type will be used
in its optimal area.

- The actual linking method and internal network types depend very
much on the type of data to be analysed, as well as the type of

response expected from the system.

8 System Output Decision

In this study, we are expecting the system to output a decisive YES
or NO when a data stream to be analysed is provided.

When an uncertain condition occurs, it is debatable in a security

—

InteLucent OpTicAL Sensor - 122

Dara ExtracTiOn

application whether a bias should then be applied to the output.

Using such a bias can easily lead to a large increase in false alarms,
which in turns reduces the effectiveness of the entire system as
operator trust decreases. It might be more appropriate to give a
“Probable” warning, maybe accompanied by a percentage
probability. Such an approach would then leave the ultimate

decision to the system operator’s own discretion.

In the case of a fully autonomous system, it can be left up to the
system installer to induce a positive or negative bias up to a
predetermined maximum. Thus the system can be fine tuned to its
given operation location.

The actual type of expected output is going to have an effect on the

final classification method to be used.

InteLucent OpticaL Sensor - 123

FeasieiLity Stupy

5 - Proof of Concept

A computer cannot turn bad data into good data - John R. Pierce

5.1 - Introduction

This chapter serves not to develop processes or theories, but rather
to prove the viability of a certain level of processing, thus ensuring
that the entire hypothesis regarding the extraction and validation of
image data has further perspective. It also serves to evaluate
various existing processing techniques against the type of data
likely to be encountered, were the system considered to be

developed further.

5.2 - Feasibility Framework

The main aim of this study is to create a system which will be able
to correctly determine whether a shape in an image is a human or
not. For the purpose of feasibility evaluation, it should therefore be
sufficient to develop a framework system capable of proving certain

features:

1. Emulation of camera image input.
2. Ability to apply image filters in such a manner as to preserve

intended analysis contours whilst eliminating image aberrations

InTeLLiGENT OPTicAL Sensor - 124

Feasisirmy Stuoy

due to changing light conditions between image frames.

3. Ability to filter images in order to eliminate image differences due
to minor effects such as camera vibration and image background
motion.

4. Ability to distinguish one or multiple target areas within a
processed image.

5. Ability to extract relevant data from the aforementioned target
area(s).

6. Correct analysis of resulting data.

This represents a rough breakdown of the entire detection process,
and not all of these steps need to be emulated to obtain a
confirmation of the studys feasibility. The main concerns are initially
covered within the first 3 stages, as these represent the actual data
gathering stage. If this initial task is not possible, it would be

. Useless to develop any of the later analysis stages.

For the purposes of this initial feasibility study, it is not necessary to
obtain real data, a rough evaluation or simulation of possible
conditions is sufficient, as the aim is not to evaluate the success

ratio, but purely the probability of success.

Considering the system parameters, there are two main aspects

which have to be considered:

InTeELLIGENT OPTICAL SENSOR - 125

Feasisimy Stupy

Changing light levels in an image.

Moving objects within an image.

These parameters can be combined in a number of ways, and for
the purpose of these initial tests, the following combinations will be

used:

1 - Constant light levels, changing scene

2 - Changing light levels, constant scene

If these prove to be solvable cases, it can be assumed that more
complex combinations of the conditions should also be solvable

using adapted algorithms.

5.3 - Methods of Testing

The initial system proposal calls for the object detection process to
be functioning by using an image comparison: When the system is
initially enabled, a datum image will be taken. This might or might
not be updated during the surveillance period, depending on final

system architecture and whether the need for this arises or not.

When the system is in surveillance mode, each incoming image (the
exact image refresh rate has yet to be determined) will then be

Compared to the initial datum image.

InvecLiGenT OpTICAL Sensor - 126

FeasiBiLmy Stupy

To simulate this operating condition, we have then to generate an
initial datum image as well as a series of surveillance images. The
advantage of this process is the amount of control which is available
over the images. Parameters may be modified in a supervised

manner to observe the system reactions to these changes.

The initial testing process will be limited to observing how well the
image comparison process can function, without going into the
actual target identification and analysis. It is therefore not of
extreme importance if these initial testing images are quite noisy,

as long as they fulfil the test parameters:

1 - Constant scene, changing light levels

2 - Changing scene, constant light levels.

The ideal result from this initial test would be the development of a
comparison algorithm which could, with little adaptation, cope
equally well with both conditions outlined above, that is, a process
which could cancel out overall image light changes whilst being able

to identify point changes within the image.

Considering condition 1:

InteLuGent OpricaL Sensor - 127

FeasmiLmy Stupy

5.3.1 - Constant Scene with Lighting Changes

The aim of this test is to develop a comparison process which will
ideally report a “no change” condition between the datum image
and the camera image, thereby cancelling out all changes purely
due to fluctuating light levels.

It is important to consider one point: The light levels in question
must be overall light levels. It must be noted that a fluctuating spot
light within an image actually represents a change in scene and not
a change in light levels.

Whereas the human eye is able to distinguish between these two
seemingly obvious condition, this effect may be best explained by

using an image threshold example.

The following two images (Fig.30 and Fig.31)have exactly the same
scenic elements, apart from the fact that in the left hand image, the

small desk lamp is switched on:

Fig.30:Lamp on Fig.31:Lamp off

To enhance this comparison, both images have been grayscaled and

then thresholded to the same value.

InTeLLIGENT OpTicAL Sensor - 128

FeasmsiLty Stupy

Carrying out a direct difference comparison of the two images yields

the result seen in Fig.32:

Fig.32:Lamp Difference Image
Which would then be interpreted mathematically as the object

shown in Fig.33.

Fig.33:Lamp Difference Object

As can be seen, once the reference image of the lamp (which has
not been altered between the two images, apart from an overall
lighting change on the entire object) has been removed, it is even
visually difficult to define the change in the image as being purely a
local lighting effect. From a purely objective point of view, the
resultant image change which has been identified can be classified
as being due to a scene change and not a lighting change.
Obviously this type of condition will have to be considered at some

stage during the development of the detection algorithms.

InTeLLIGENT OpTicAL SEnsoR - 129

FeasieiLity Stupy

For the purpose of the lighting change test, a short sequence of
images was taken using the WebBlaster Webcam[95]. These are
images of a desk under varying room lighting conditions, as seen in

Fig.34, Fig.35 and Fig. 36.

Fig.34:Light Room Fig.35: Medium lit Room

Fig.36:Dark Room

It is important to note that the actual scene in this image sequence

has not been altered, only the overall light level is varying.

Fig.36 however highlights one of the main problems which occur in
low-light conditions: image graininess, effectively a drop in image
resolution, resulting in an apparently noisier image. This effect and
its severity is very much dependant upon the camera/lens

combination used. In this case, this low-light aberration is quite

InTeLLIGENT OpTIcAL Sensor - 130

FeasmiLmy Stupy

severe and can be tracked back to the low quality plastic lens used
on the Webcam. If IR illumination was provided for such low-light

conditions, these effects would also be greatly reduced. [69]

Considering the sequence of three images, the aim of this process is
to try and obtain a zero or near to zero result from a subtraction
between two images. By zero must be understood a blank output,

thus showing no detectable change between the images compared.

Theoretically, it should be sufficient to simply compare the images
using a direct comparison, however, this will not be able to
compensate for the overall light change, and objects which are
simply less illuminated will be marked as representing a change in
scene. In practice, the unit might well be in use over long periods of
time, where overall light-level changes would be commonplace.

When considering image light level, or, as represented in a captured
image, image colour levels, as general light conditions are reduced,
the actual colour range in the image itself is also reduced, i.e., the
entire colour distribution gets shifted into darker tones.
Accompanying this, the mean light value also dramatically reduces,
as can be seen in the following histograms (Fig.37, Fig.38, Fig.39).
These represent the unmodified colour level distributions for the

previous three images.

InTeLLiGENT OpTicAL SeENsOR - 131

FeasisiLry Stupy

% Mean: 9556 %= 255
Std Dev: 35.98 x: Luminance Level
Median: 93 y: Number of pixels

Fig.37:Light Room Histogram

yEmax

% Mean: 64.17 = 255
Std Dev: 2855 x: Luminance Level
Median: 67 y: Number of pixels

Fig.38:Medium lit room histogram

y=max

% Mean: 16.12 x= 255

Std Dev: 15.89 X Luminance Le:f.
Median: 13 y: Number of pixels

Fig.39:Dark room histogram

from a possible maximum of 255.

The median light level value drops from 93 in the first well

illuminated image (Fig.37) to 13 in the last darker image (Fig.39),

If we are in any way to compare these images, the overall light

InTeLLIGENT OpTICAL SeEnsOR - 132

FeasieILry Stupy

level change must in some way be compensated for. A fairly rapid
way of achieving this would be to equalise the mean lighting values

between the different images.

Considering the first two images Fig.34 and Fig.35. If the first
image (Fig.34) represents the camera’s datum image, and the
second image (Fig.35) represents the currently captured
surveillance snapshot, this equalisation can be carried out in a

number of manners:

1. Equalise both images to a given fixed value.
. Equalise to datum: the snapshot image will be modified.

. Equalise to Snapshot: The datum image will be modified.

A W N

.Equalise to brightest/darkest: Depending on current light
conditions, the lightest (or darkest) image will be modified to
match the other.

5. Equalise both images to a mean value determined by both the

datum and the snapshot image values.

There are a number of points which must be considered when

selecting the appropriate process:

When the overall light level of an image is reduced, there follows
‘Wwith it a proportionate loss in image detail. Depending on the actual

level of correction, this could severely impede the object detection

InveLLiGenT Oerical Sensor - 133

FeasieiLiry Stupy

process.

The use of a fixed threshold can limit the system effectiveness in
extreme level changes, such as are bound to occur over a longer
surveillance period. The act of artificially attempting to standardise
the current light levels can lead to image corruption with

subsequent loss of data for further processing.

What is required for maximum flexibility is an adaptation level

which will be dependant on each image to be processed.

Comparing fig.38 and fig.41, representing the same image, fig.38
shows the light level distribution severely biased towards the lower
levels (left hand side of graph), with the top third luminance levels
effectively missing or only poorly represented. This is an inefficient
use of the available luminance bandwidth, leading to a potential loss
or restriction of data in certain regions of the image (contrast
between different objects is too low to enable efficient detection).
Enhancing the right hand side of the histogram, as is the case in
this example, has the net effect of lightening the image but
simultaneously preserving previously dark areas and actually
enhancing the contrast between image components, hence the term
luminance stretch, as each component is handled separately.

As shown in fig.41, the histogram contour is largely unmodified, but
in comparison to fig.38 makes much better use of the available

range.

IntewLicent OpricaL Sensor - 134

FeasieiLry Stuoy

As is clearly shown in fig.43, this is however not a magical method
which can somehow fill in missing image detail. Although the full
luminance range is now used, the actual data density (i.e. image
detail) within the image remains constant, and is actually reduced
within a given luminance range (due to the scaling effect). This can
also be a source of potential image aberrations, as small errors are
also enhanced, and become more significant in a sparser data
population then they might previously have been. This is however
not critical as an overall detail enhancement has been carried out, it
is simply the contrast of data feature to data error which has been
increased.

Considering the new useful luminance range, the detail density is

actually calculated as shown in Fig.40:

where
D :density over the full range

D ,density over the partial range
R :full range
R . partial range

Fig.40:Luminance Range

Fig.42 shows the same image, but with the luminance levels now
hormalised, i.e. stretched to occupy the full available range. The
actual transform is fairly simple, and involves identifying the near
zero luminance level range within the histograms (i.e. finding which

brightness levels within the image are missing), then scaling the

InTeELLIGENT OpTicAL SeEnsOR - 135

Feasmiary Stupy

remaining values by a dependent factor. Enhancing the right hand

side of the histogram.

The following histograms represent the same three images, albeit
now processed in such a way that absent light levels have been
chopped off, and the entire image then re-stretched to cover the

entire available range, effectively a level stretch.

y=max

% Mean: 134.90 = 255
Std Dev: 52.91 x: Luminance Lefvel
Median: 131 y: Number of pixels

Fig.41:Medium Histogram Stretched

y=max

Mean: 76.21 x= 256

d
Std Dev: 32.29 X Lwninang'e ltezgl
Median: 66 y: Number of pix

Fig.42:Dark Histogram Stretched

The most interesting result can be observed between figures 37 and
38. Apart from a few spikes in the lower ranges, the resulting

distribution trends over the histograms are very similar, thus

InTeLLIGENT OpTICAL SENsOR - 136

FeasmiLmy Stupy

showing that the overall images must also be very similar. Figure
28 displays the obvious signs of a highly corrected image, with very
little density over the entire histogram.

The actual images in their corrected form are shown in Figures 43,

44 and 45:

Fig.45: Correctedvk.éorh Dark

Comparing this sequence to the original sequence, the resulting
images are now much easier to compare both visually and
mathematically. Image 3 (fig.45) is still quite dark, due to the
extreme example which was used, a situation unlikely to ever occur
if the final system is operating with IR illumination in any form.

One effect which can be noted from the above images is the quite

strong haloing effect (in this case a darker circular border to the

InTELLIGENT OPTICAL SENSOR - 137

Feasmsimy Stupy

image), specifically in image 2 (fig.44). This dark image edging is
largely due to the poor quality lens used for these sequences which
has a relatively high light loss, and would be dramatically reduced
were a decent lens used.

These resulting images can now be thresholded to their local
median values, resulting in the following sequence (Fig.46 and

Fig.47):

Y »"’ ;'"— i
':.-'... i - :"-‘.:;.‘ .:.:l ° "-
HRE 1..;4&%.»] pited
Fig.46:Light Room Threshold F/g 47:Medium Room Threshold

These may now easily be compared or subtracted from each other

to identify the resulting image changes:

Fig.48:Difference of Fi.44 to Fig.43 Fig.49: D/fference of Fig.45 to Fig.43

Fig.48 shows a simple subtraction of fig.44 to fig.43.
Fig.49 shows a simple subtraction of fig.45 to fig.43

InteLsGent OpticaL Sensor - 138

FeasisiLry Stupy

These reveal the differences in the images once the luminance level
corrections have been carried out. As can be noted, the lens
aberration causes quite a striking effect in the final comparison
images.

Although the results could be used, they are not very refined, with
lots of extraneous noise still present.

Another solution, which leads to less interference in the final
difference images, is to compare the grayscale images instead of
the thresholded images. Doing this would result in more information
being compared, thus supposedly giving a more accurate resultant
image.

Carrying out such a process provides the results shown in Fig.50

and Fig.51:
] T 3
! !
., ..‘
» - e) ---a"—-.,.wﬁ.u*; b A “ - I, »
; i‘ﬁ\ G~ 22N .al ¥ ; \!J ,_’.__. 1o SRR |
Fig.50:Grayscale Fig.44-Fig-.43 Fig.51:Grayscale Fig.45-Fig.43

These images provide more information by giving the actual
difference value between the compared images, instead of simply a
state of change.

A more accurate result can now be obtained by thresholding the

entire image. The threshold value is once again dynamic, depending

InTeLLiGenT OpticAL Sensor - 139

FeasieiLmy Stupy

this time on the values of both initial images.

Where in figs.48 & 49 the thresholds for the images were taken
prior to the subtraction process, thus providing results based on
images with different reference levels, performing a grayscale
subtraction results in a more accurate and balanced outcome, as
the threshold value is now calculated on the final subtraction image
and not on the two subtraction components, allowing the
subtraction process itself to be taken into account and subtraction
errors to be partially compensated. This calculation is shown in

Fig.52:

if (V,—=V,)>T then V,=1 else V,=0

where
V,:image 1 value
V,:image 2 value
V ,:resultant value

T : threshold
n:number of points considered

Fig.52:Threshold Value Calculation

Thus , for the (2-1) (fig.53)comparison, the original medians where
131 and 141, giving a mean of both means of 136. Applying this to
the comparison image results in the following, the same for

comparison (3-1(fig.54)):

InteLucent OpricaL Sensor - 140

FeasiBiLmy Stupy

N

0 S

i

Fig.53:Threshold of img2-img1

ke IO 3
Fig.54:Threshold of img3-img1

This approach displays a much improved response, at least in the

field of overall light change compensation, which was the aim of this

initial experiment.

It might be advisable to shift the final

thresholding function to represent the maximum available value, in

this case 141, so as to not risk losing too much detail in the final

resultant image.

The resultant from this operation may be seen in Fig.55 below:

N j

|

Fig.55:Maximum Threshold

Given the small difference between the two images, using even the

Maximum threshold value does dot affect the result very much.

InTewLiGenT OpricAL Sensor - 141

FeasisiLTy Stupy

5.3.2 - Constant Lighting, Changing Scene

For the purpose of this test, the following two images Fig.56 and

Fig.57 were used:

Fig.56:Datum Image Fig.57:Camera Image

By providing a situation with mainly back lighting, the problem of
object cast shadows has been largely eliminated in the above
sequence. Whilst this is an ideal condition which we assume to
encounter very much in actual live situations, it is ideal to carry out
this change of scene test, as some of the possibly disturbing

parameters have been cancelled.

As for the first test condition, exactly the same calculation process
will be applied to the above images. If the results are satisfactory,
this will represent an ideal condition: a single preparation algorithm
able to deal simultaneously with general light level changes whilst

Correctly highlighting scene changes.

The first stage, image levels correction using clipping and

stretching, outputs the following two images (Fig.58 and Fig.59):

InTeLLIGENT OpTIcAL SEnsOR - 142

FeasiBiLITY StupY

Fig.58:Datum Stretched Fig.59:Camera Stretched

As can be seen, the images have not changed very much, simply a
general lightening effect.
The second stage, grayscale image subtraction, gives the result

shown in Fig.60:

Fig.60:Differenceof Camera to Datum image

This shows nicely how the profile of the person has been correctly
identified, as well as a few object edges, which is probably
attributable to both shadow effects and camera wobble. Generally
these other image artefacts are light enough to be easily filtered out
at some stage. Note the vertical light stripe running through the
person’s profile, due to the already shadowed area in the datum

image from the space between door and doorpost.

InTeLLiGenT OpricaL Sensor - 143

FeasieiLty Stupy

The final step, image thresholding to the current maximum value,

results in the output shown in Fig.61:

Fig.61:Thresholded Difference Image of Camera to Datum

As predicted, the surrounding noise has been cleanly eliminated. It
is however interesting to note that the person’s legs have also been
eliminated.

Whilst this indicates that the comparison algorithm will need to be
fine tuned, it must be noted that exactly the same process as for
the light level correction has been applied, with quite satisfactory
results when the outputs of the process are visually evaluated

against expected outcomes [Appendix A].

InTeLLGENT OpTicAL SENSOR - 144

FeasisiLITy Stupy

5.3.3 - Conclusion

Through simple experimentation using Adobe Photoshop, an image
comparison process has been developed which, whilst still requiring
refining in a number of stages, provides a satisfactory level of
performance.

These results show that the same algorithm can be used to deal
with both equalising general lighting changes and detecting local
image changes, whilst retaining a maximum amount of information
for later processing.

The basic steps of the developed algorithm are detailed here:

1.Image level correction. Unused levels, or levels only present
below a certain value (this value must still be defined somehow,
whether as a static value or as a dynamic image dependant
value) are cancelled out, and the entire image histogram is then
stretched to cover the entire available range (0-255 for
grayscale), resulting in a general light level correction.

2.The histogram median values of light level for each image are
recorded for further reference. The maximum median alue is
stored.

3.The two images (camera datum and camera snapshot) are then
subtracted one from another to obtain a grayscale difference

image.

InTeLuGent OpTICAL Sensor -~ 145

FeastsiLITy Stupy

4.The resulting grayscale difference image is then thresholded to
the previously recorded maximum histogram value, resulting in a
monotone difference image which can then be used for further

processing stages.

It must be noted that the entire process considers each image
separately, thus providing a system with a very dynamic response
to varying environmental conditions and which retains maximum

image information throughout.

The fact that only grayscale images are being used is due to the
fact that many surveillance systems currently on the market rely on
grayscale (Black and White) cameras for reasons of cost, but also
due to the fact that a camera with any degree of IR sensitivity, thus
ideal for low light level use, will provide colour images with a strong
red component. As explained in the product study, colour cameras
come equipped with a red filter to provide more natural images,

which would however cancel out any IR sensitivity.

Using grayscale images also allows for a considerable reduction in
image size, thus requiring both less storage and less processing
power to correctly process. These advantages result in more rapid
processing, which must remain a major consideration in an online

detection system.

InTELLIGENT OPpTICAL SENSOR ~ 146

Feasieiry Stupy

5.4 - Application

Now that a rough outline of a possible functioning preprocessing
procedure has been proposed and found to be performing to a
suitable degree, the entire process must now be refined and fine

tuned to the application at hand.

It is important to always consider the fact that this system is
intended for real time application with a limited hardware resource,
so any algorithms should be kept as simple as possible, whilst still
retaining a correct volume of data for correct image analysis.

Additionally, as the system is intended to be embedded onto
standard hardware, any coding must take into account the fact that
many of the advanced graphics handling routines currently available
within the PC environment, whether due to programming API’s or
hardware advances in graphics handling will most probably not be

available in the final system.

InTELLIGENT OpTICAL SENSOR - 147

FeastsiLty Stupy

5.4.1 - VosDemo

Before any further experimentation can be carried out in the area of
initial image comparisons and processing, the processing stages
which have previously been roughly defined using Adobe
Photoshop must be converted into custom code, which will provide
more flexibility with regards to fine tuning the system and applying

it to better customised analysis processes.

The result of this initial coding is VosDemo, a program which is
designed to interface with the Creative Labs WebBlaster.

This allows the user to first select a datum or reference image, then
either manually select an incoming camera image, or set the
incoming image update onto a preset timing sequence, thus
allowing “hands-free” operation.

When the camera image has been selected, both images are
processed and compared, to obtain a resulting difference image,
which is then overlaid over the currently selected camera image.

The full sequence is as shown in Fig.62:

InTeLLiGENT OpTicaL Sensor - 148

FeasiBiLTy Stupy

Image Source
Selection

Update Camera Image
in Temp Storage

Grab as
Datum Image

Image stored as

|

Datum.tmp

Set Timing
Interval

Image Pixels grabbed

Set Manual or
Automatic Mode

Simultaneous Image
inversion and local
thresholds calculation

Start

Thresholded Image
stored in semi-

permanent array A

Timer Run out

Specified Image File
opened

Image stored as
Camera.tmp

Timer Reset

Image Pixels grabbed

In Automatic Mode

Simultaneous Image
inversion and local
thresholds calculation

Thresholded Image
stored In
temporary array B

Arrays A and B
compared (subtracted)

Difference saved In

temporary array
Cc

Datum.tmp,
Camera.tmp and Array
C saved in new folder
as bitmaps and a text

file,

Array C overlald in
yellow over the Camera

image

Fig.62:VosDemo Operation Sequence

InTeLLiGent OpTicaL Sensor - 149

Feasteirmy Stupy

As can be seen on the flow diagram, no image correction processes
are currently included into the VosDemo sequences. The only
process which is as yet adaptive to the image is the dynamic
threshold calculation, which is in any case necessary for the correct
colour to grayscale transformation.

Whilst Vosdemo can import full colour images, these are
immediately converted to Grayscale, the reason being an enormous
savings in required storage space as well as subsequent processing
time.

As this initial image comparison process is only using the
thresholded Datum and Camera images, with neither of these
stages being affected by the other image, this is simply a matter of

reducing the actual processing code.

Should it be determined that the colour or grayscale images
themselves need to be dynamically adapted to one another, this
approach will obviously have to be modified to allow for a full

grayscale or colour image storage area within the detection system.

The output of this version of VosDemo is a simple text formatted
file which stores the values of the set pixels resulting from the
image comparison process. This can then be easily analysed or

processed at a later date.

Fig.63 and Fig.64 are a couple of screenshots showing VosDemo in

InteLGent OpTicaL Sensor - 150

FeasieiLty Stupy

action:

The selected datum image is displayed to the left, and the incoming camera

image to the right

Vi D

Fig.64:VosDemo

Here can be seen the resulting difference image overlaid on the Camera image

Considering the individual stages of the transformation algorithm:
When the initial image pixels are grabbed, these are stored as RGB

values in a set of 3 dedicated 320x240 arrays, one for each colour

InTeLLIGENT OpTICAL Sensor - 151

FeasiBILITY STupY

band. These three arrays are then used to calculated the grayscale
threshold of the image. Simultaneously, the pixel parameters are

inverted to obtain an inverted image matrix as shown in Fig.65:

T_Z(zss—(aR+bG+cB))d
B 3204240

where T=Threshold
and where the parameters a, b and ¢ are defined in RGB to grayscale conversion

Fig.65:Threshold Calculation

According to this threshold value, the calculated pixel will be set to
black or to white, and stored in a temporary array.

The multiplication factors a, b and ¢ are generic values for
transformation from colour reference to a grayscale mode,
calculated to represent the normal human perception of colour
distribution in light. They are, respectively for Red, Green and Blue:

0.3 -0.58 - 0.12 (See Fig.66)[47]

G=03r+0.58g+0.125

where

G : grayscale value

r . red component value

g - green component value
b : blue component value

Fig.66:Grayscale Transformation

This calculation is carried out once for each new image. When a

datum image is grabbed, this info will simply be passed over to a

—

InTeLuGent OpticaL Sensor - 152

Feastsimy Stupy

new array.

When an image comparison calculation is carried out, we are simply
doing a straightforward subtraction of temporary arrays A and B, so
as to speed up the code execution cycle. There are a number of
factors slowing down the detection process, which would otherwise
not be present on a dedicated system:

Firstly, the image is being grabbed pixel per pixel by the camera
interface software, and this is being translated into a jpeg format.
Once this is completed, Vosdemo then grabs this composited image
and decomposes the image once more into its original pixel
structure. Obviously the larger the image, the longer this process
will take. Once these pixels are grabbed and the total image
threshold calculated (executed in a single cycle, one cycle being
320x240, i.e. 76800 groups of calculations), the threshold then has
to be applied (second cycle) and stored (third cycle). The actual
image comparison is also carried out in a single cycle, and saving
the difference image will be a cut down cycle, as only those pixels
showing an actual difference are saved. This represents a total of

384 000 groups of calculations per active comparison.

If the entire system were task dedicated (i.e. hard-coded), the
initial transformation into a valid image format , and the subsequent
re-transformation into separate pixel structure would be obsolete.

We would not be needing each input to be displayed, and thus only

Interuicent OericaL Sensor - 153

FeasisiLrmy Stupy

the difference image would be calculated and stored temporarily to

be fed into the detecting network.

One factor which is going to affect both systems is the size of the
image and the type of camera used. If we opt to carry out detection
using a monochrome camera or one with IR capability, we will be
losing the entire set of colour information, which represents twice
the entire image size, i.e. 2x320x240 or 153,600 chunks of data,
where each chunk could vary from being a single bit, to 8 bits of
data (considering images varying from purely monochrome data to

256 colour distribution).

Considering the advantage which can be obtained through using IR
capability cameras as far as detection is concerned , we can also
appreciate the substantial amount of data compression or reduction

which can be brought about by their use.

If the thresholding function, whose output is a monochrome array
defined purely by the image dimensions and not the camera colour
definition, is hard-wired (i.e., implemented through an electronic
Circuit rather than through computing emulations), then we are
considering a situation where the software will be dealing with
anything from one third to one twenty-fourth of the amount of data
as compared to what it is currently having to cope with. The

software will then purely be dealing with the image comparison

InveLLiGent OpricaL Sensor - 154

FeasigiLmy Stupy

cycles.

5.4.2 - VosReader

VosDemo is designed to carry out only the initial image comparison,
but none of the subsequent processing steps.
This very structured approach is intentional in order to facilitate the

performance analysis of the various stages in the entire system.

VosReader is a stand-alone application which uses the data created
by VosDemo. VosReader displays the datum and the camera images
in two small side windows for purposes of clarity. The main central

window is used to display the saved change image, in full size.

The user is then able to manipulate this main file through the use of
pre-coded or custom designed filters (which can be stored). The
final output can be saved when the user is satisfied about the type
of filtering achieved. Currently, the user is limited to filters with an
aspect of 3x3 or 5x5, although the range could be increased to

include 9x9 pixel filtering.

As can be seen, VosReader is concerned solely with the image post-
processing aspect - This is the stage at which we can determine

exactly what type of data is going to be fed into a network for

InTeLuent OpTicaL Sensor - 155

FeasisiLTy Stupy

further analysis.

That this analysis is not occurring in real-time here is not a problem
- We are at the stage of defining various types and sequences of
filtering. VosReader is simply presenting a highly visual
experimentation platform, allowing filter effects to be displayed
immediately, or corrected if not adequate.

In the initial stages of recognition network development, we will not
be running in real-time. The actual network training stage will be
requiring large quantities of variable data to be available, and once
an adequate filtering algorithm has been decided upon, it would be
quite a simple matter to write a separate program capable of
dealing with a few hundred or thousand files in a batch manner,
without any visual clues, so as to speed up processing time and

avoid any unnecessary programming clutter.
Fig.67 shows VosReader in action:

Fig.67:VosReader

InTeLLiGenT OpTicaL Sensor - 156

FeasieiLity Stupy

Fitet E g 0g ~mmmmmmmmemoemeee e ~ Fitet Selection

-

Let us now observe the operations sequence of VosReader (Fig.68).

InTeLLiGenT OpricAL Sensor - 157

Feasisiry Stupy

User selects Change.vos file
to be opened, Change.vos
copied to a temp. storage

array

Program tries to open
Datum.bmp and Camera.bmp
relating to Change.vos

If not avaliable, appropriate
maessage output on screen

Display Change.vos in main
window in full size

If available, images displayed
in small preview windows

l

Select Filter to be applied to
image from available
fliter list

User selects filter creation
tool

I

Vosreader checks for filter
valldity. (checks for VR3 or
VRS file header)

User prompted to enter up to
a maximum of a 5x5 matrix
filter

User selects Apply

User prompted for name.
Filter chacked for validity and
saved In fitters folder.

Popup window dosed. Main
program filter list updated.

Filter applied to image,
change immediately displayed
and stored in temp array,

User selects Save.
Temp array is written to a
text file listing both the
original image and the
transformed image,
mentioning which filter was
used, All data is saved in a
sub-folder and named
incrementaliy.

User selects Restore, Temp
array is delated and original
image (-1 transform) is
restored on screen.

Fig.68:VosReader Operational Sequence

-Due to the fact that VosReader can immediately display the results

InTeLucent OpticaL Sensor - 158

Feasieiumy Stupy

of user-made filters, it becomes quite a powerful tool for this initial
development stage.
The actual filtering process in itself causes a number of issues,

which are considered here:

When Change.vos (the output of VosDemo) is opened, the contents
of the file are copied to a temporary storage array. This array will
be used for all further transforms, leaving the original file

uncorrupted.

When applying a filter to an image, we face the problem of edge

filtering. There are a number of ways to go about this task:

Apply the full filter on the entire image, accepting slight filter
degradation at the image edges due to only partial filter activation,

as illustrated in Fig.69:

2o e I
il NS
| LA
I [0 3
W

5x5 filter

Affected
Pixel

Non-filtered—
area of image

Filtered Area

Fig.69:Filter Application

This shows a 5x5 filter being applied to the image, but leaving a 2

InTeLLIGENT OpTICAL SENSOR - 159

FeasisiLmy Stupy

pixel wide border around the entire image which will not be affected

by the selected filter.

Whilst this might not be readily noticeable to the human eye, such

an approach could lead to quite serious data loss or data corruption,

and is therefore not suitable to the application at hand.

A more appropriate approach would be to use an adaptive filter

which is modified when applied to the edges of the image.

Fig.70 shows how the filter itself is split and adapted to be applied

to the various image edge segments.

Filter segment
for lower edge
Filter segment =——fm e Filter segment
for lower right for lower left
Original
Filter
Filter segment
Fil
R o - for image left
Pixel belng
considered
Filter segment Filter segment
for upper right =™ i upper left

Filter segment
for upper edge

Fig.70:Adaptive Filtering

InTeLLiGent OpticaL Sensor - 160

FeasisiLmy Stupy

The illustration above is not strictly accurate, as the filter segments
shown would only be applicable for actual image edge pixels. The
second row of image pixels would require yet a further level of filter
segments where the considered pixel would be inset into the filter

segment by a single pixel filter column.

As can be observed, the above method, whilst very accurate as far
as filter application is concerned, involves some rather convoluted
and extensive filter adaptations, which become ridiculous when

larger filter sizes are considered.

A third method, the one which was eventually adopted for
VosReader, is also available.

The approach is to first consider the size of the filter being used,
and to then add an appropriately sized buffer of blank pixels to the
image. The actual filter is not changed in any way, as the added
image buffer pixels enable the full original image area to be

correctly filtered.

Fig.71 illustrates such a buffer condition for a 5x5 filter size.

Fig.71:Image Buffer

InteLLGENT OPTICAL SENSOR - 161

FeasieiLity Stupy

AEMTLERETT T NE

Actual image
pixels

ARCNNNEN

Buffer
pixels

In the case of a 3x3 filter, the image buffer size need only be one
pixel wide. These buffer adaptations can easily be carried out at
runtime, although the option chosen in VosReader was to set a
maximum filter size of 5x5, with a fixed image buffer width of 2
pixels. Any smaller filters are automatically resized using null
values.

The input to VosReader is a .vos type file, which is purely a text
listing of all activated pixels within a given difference image.
VosReader transforms this listing into an image matrix with values
from -1 to +1. The initial default matrix is set to -1 (all deactivated)
and any set pixels within the image map receive a value of +1. This
representation allows for the buffer zone to added on using null
values. As explained later, the value 0 allows all filter calculations to
be cleanly cancelled out, thus not biasing the final filter output for

the actual considered image.

All filters in VosReader may have real values, varying between -1

InTeLLIGENT OpTicAL Sensor - 162

Feastiury Stupy

and +1 inclusive, and are stored in a temporary filter array, F

[1..25].

When a filter is applied to the image, the calculation shown in

Fig.72 is carried out:

Sum=2; Z: (F[n]I[a][n-5a])

Fig.72:Filter Application

where the image is stored in an array I[height][width].
As the filter is always applied as a multiplication with the image
pixel values, the previously set null value buffer zone has effectively

no outcome on the actual image filtering process.

The resultant value of Sum is then considered.
If Sum > 0, the pixel considered by the calculation (I[2][n-3]) will
be set to +1 (activated), otherwise it will be set to -1

(deactivated).

To prevent distortions in the filter application, the actual filtered
image output is kept separate from the original data. The filter itself
is only applied to the original image data, thus preventing
cumulative filter effects during a single filter application. Once the
filtering process is complete, the original data is completely

‘replaced by the filtered output for use with further filter

InTeLLIGENT OpTicAL SeEnsor - 163

FeastsiLrmy Stuoy

applications.

Once a filter has been applied, the user has the option of saving the
new resultant image, in which case it will be written, along with the
original image data, into a tab delimited text file (allowing for easy
editing in a spreadsheet application), listing the name of the original

file as well as any filters applied.

VosReader features an undo function to restore one filter step, in
case the results are not as expected.

Filters will however work in a cumulative fashion, allowing the user
to apply the same filter to an image a number of times in

succession to obtain enhanced effects.

InTeLuGenT OpricaL Sensor - 164

Feasisirry Stupy

5.5 - Artificial Data

5.5.1 - General Considerations

At this point, there now exists the possibility to process images in a
fairly rapid and flexible way using a combination of both VosDemo
and VosReader.

These enable us to distinguish and isolate the differences arising
within two separate images, once the said images have been

processed for features such as background noise reduction.

We know from experimentation, that the visible image difference
can be correctly extracted. It remains to be determined whether the
next step can also be successfully carried out: analysing and

classifying the resulting image difference.

A number of questions arise when considering the implementation
of a neural network as a classifier in this context:
Can a network correctly define and determine a person, given
only variable 2 dimensional data ?
Will a network be able to consider and compensate for scaling
effects and distance factors and be able to distinguish these from
pure size differences ?
How can the most appropriate data for the network be

determined?

InTeLuGent OpticaL Sensor - 165

FeasisiLrty Stupy

In order to answer these questions, it is initially necessary to
examine which data can, regardless of the final application, be
extracted from the resulting difference image at all. It is however
important to note that this extracted data must be data which is

common to all difference images to be examined.

Due to the way a network functions, we must ensure a certain
consistency in the data types. A network cannot be expected to
know that the first line of data for one image represents the height
of an object, but in the second image this same data line
represents, for example, the object surface area. This would simply
lead to absolutely unreliable and nonsensical network outputs as
the system would attempt to compare totally mismatched lines of

data to each other.

5.5.2 - Data Parameters

The data which is to be used as network inputs must satisfy the

following conditions:

- The quantity of data must be constant.
Each image must provide the network with the same amount of
data, thus providing a constant and previously defined set of
inputs. This ensures that data interdependent relationships

remain uncorrupted.

InTeLucent OpricaL Sensor - 166

Feasiaimy Stupy

- The type of data must be constant for each input.
For each input, the type of data must remain constant, as the
data will most probably be undergoing a preliminary preparation
stage. This will be a specialised process for each line of data, thus

precluding the option of swapping or mixing data input lines.

- The data range must be definable for each input.
As it is unlikely that the data extracted from the image will
immediately be available in a usable range for a network
(-1/+1), each input line will, during its preprocessing phase, have
to be scaled down by a certain amount. In order for this to be
constantly successful, the maxima and minima of the considered
line of data must be previously known for all possible situations.
A dynamic process might be used, where data is balanced
relatively within a single set, but this would be a much more
complex and sensitive approach, as each incoming data line
would have to feed both its minimum and maximum values in
order for correct analysis to take place. The danger in such an
approach is that the otherwise existing link between different
data sets is now lost, which could easily lead to data corruption,
as the actual internal structure of the analysing network would

have to be individually adapted to each new data line.

Although the parameters of this experiment have been broadly laid

out, given the known camera specifications, the first sequence of

InTeLuiGent OpTicaL Sensor - 167

FeasieiLTy Stupy

testing (proving the concept through the use of a classifying neural
network) should not be run using pure live data, i.e., images taken
directly from a live capture sequence.

The reason for this lies purely in the sheer complexity of such data.
An uncontrolled environment provides too many unknown image
parameters which might ultimately unknowingly affect the outcome

of any testing.

For this primary network testing phase, it will be necessary to
generate a set of strictly controlled images where all variables are
known. The complexity of this set can then be gradually increased
as the system is developed to eventually represent and/or include
actual live data.

A broad set of controllable features can then be defined and
manipulated according to the level of complexity which can be
accepted by the network at any one time.

These features are:

- Type and Colour of Background.
Controls the background lightness and reflectancy.
Number of objects present.
Where an object defines anything not directly linked to the scene
background.
- Type of objects present.

The type of an object is primarily divided into two main classes:

InTeLLiGENT Opticat Sensor - 168

Feasieirmy Stuoy

Animate and Inanimate. A rougher classification may also be
achieved with the definition: Target or Non-Target.

Colour of objects.

The colour of an object as related to the scene background. This
will directly affect the ability of the system to accurately locate
the said object.

Object Positions.

Positions relative to the camera. This is effectively the point of
view of the object. This is to be considered mainly for the vertical
offset between object and camera, which will lead to more or less
severe proportional distortions.

Pose(s) of person(s) present.

Especially important during the initial development stage, this is a
controllable factor when considering comparisons between for
example a crouching or crawling human and an animal such as a
large dog.

Illumination.

Both overall and point illumination which will affect the scene
through direct or indirect shadowing.

Presence and quantity of noise.

Purely for artificial data. A controlled quantity of randomly
distributed noise can be applied to the image in order to simulate

effects such as camera vibration or interference.

- Type of Noise.

This will determine the distribution type of the noise (even or

InTeLLIGENT OPTICAL SENSOR - 169

FeasisiLmy Stupy

random) as well as other items such as colour variations which

are more likely to cause image distortion.

The initial experiment which is to be carried out is to evaluate the
response of a simple network when presented with simple target
and non-target images. The aim is not to determine the noise-
resistance of the network by introducing many variable parameters,
but rather to simply observe the feasibility of using such an
approach.

As a source of data, we could use images from live captures under
strictly controlled conditions, but this is likely to introduce a number
of uncontrolled variations in positions, lighting and image noise,
even were the data to be initially manually “cleaned”. A much
preferable source of data would be from fully artificially generated
images: a scene can be set up digitally with a fixed number of
parameters which may then be exactly controlled according to the
test requirements.

Metacreations Poser[93] was used in‘ this task, as it allows
anatomically accurate human modelling whereby the age and sex of
the person being modelled can be accurately controlled. Such
parameters are important as the profiles of males and females in
various age ranges present quite marked differences.

Although it is not necessary at this early stage to model all possible
combinations, it is important to evaluate the flexibility of even a

simple test network in the way it can adapt to such shape variations

InTeLLigent OpricaL Sensor - 170

FeasmsiLiry Stupy

whilst presenting a constant alarm output.
The models produced by Poser[93] were then introduced into a
controlled scene create in 3D Studio[96], which allowed for an

exact background and lighting setup.

5.6 - Validity Testing

This initial test or series of tests has the aim of confirming the initial
observations made on the processes of image comparison and data
extraction using the simple algorithms developed with the initial
help of Adobe Photoshop filters.

In order to do this, a tightly defined environment must first be
defined, thus allowing ensuing test results to be objectively

evaluated.

5.6.1 - Test Environment

This initial test relies on observing purely the actual shape or profile
of a human as opposed to an assortment of other objects.

The images are presented as inverted shadows, where the
background is completely black and the object to be considered is
entirely white. This format was selected as it is part of the default

-settings for the human modelling software Poser.

InTeLuiGent OpTicaL Sensor - 171

FeasmeiLiTy Stuoy

All external light sources were cancelled out, resulting in a perfectly
flat or 2D image with no information on the object distance to
camera nor on the scene light source, as shadows are simply not
being modelled in order to reduce possible image aberrations to a
minimal level.

As the prime task was not to evaluate the accuracy of the
separation process, only a model of an adult male was used for this
test phase. This human figure was presented in an variety of
standing poses, seen from two distinct camera angles representing
realistic camera mounting heights (between 2.5 and 3.5 m
depending on the actual target aspect).

Negative targets were provided by various modelled objects such as
lampposts, chairs, letters of the alphabet as well as simple
geometrical shapes in a number of combinations. Care was taken to
present negative targets in a variety of positions and with varying

area densities within the object limits.

5.6.2 - Test Data Set

The final data set for this initial test was comprised of slightly over
2000 images stored in non-compressed monotone bitmap format
and using a standard size of 320x240 pixels at 72dpi. This reflects
one of the available formats from the Webcam being used for live
data capture. This also represents an industry-standard format ,

- representing a CCD element of 230Kpixels.

InTeLuGent OpricaL Sensor - 172

FeasteiLiry Stupy

The storage format of this initial data set will also allow for easy
modifications to the original images in order to generate
subsequent more complex image sets without running the entire

scene generation process again.

With the current data set, the need for an initial image comparison
process is avoided, as the object to be observed is already
presented in its “pure” form, and we can progress directly to the
various phases of target detection, separation and target data

extraction and analysis.

5.6.3 - Image Evaluation Methods

We have now a valid set of controlled sample data, but as yet no
way of analysing the data within these images. A number of
approaches can be considered, which may be split into two main

groupings:

1.Image pixel analysis.

2. Data feature analysis.

1.Image Pixel Analysis

~ Whilst the overall concept of image pixel analysis is very simple,

InteLuiGent OpticaL Sensor - 173

FeasiBiLTy Stupy

requiring little or no data preparation prior to network presentation,

it does also have its own intrinsic problems and limitations.

Image pixel analysis roughly involves analysing every single pixel of

each image via a dedicated network.

The first and major undesirable feature of such an approach lies in
the sheer volume of information to be processed. Considering the
image format adopted for this experiment, a 320x240 pixel image
results in a total of 76800 individual pixels.

Every single one of these would then require its own input node
within an analysis network. This is not only ridiculous in that much
non-valid data will be processed, but would also be placing highly
exaggerated hardware requirements on the final system. Were such
a network to use only a single hidden layer of 10 neurons with a
single output flagged to high or low, this would result in @ minimum
of 76800 *10 + 10 = 768010 multiplication processes per image,

assuming ideal conditions.

Quite apart from the pure dimensions of such a network, other
problems would also arise within the aspect of data presentation.
Unless the target were to cover most of the total image area, the
effect of overall scaling would contribute to reducing the final effect

of the object on the overall image.

InTeLuicent OpTicaL Sensor - 174

FeasiBiLITY StupyY

,_ ;DotaﬁErnhoctolv

ig. 73:Boug Box area of a human figure

Fig.73 shows the bounding box around an average human figure.

It has been determined through experimentation (analysis of a few
thousand images), that the area actually occupied within this
bounding box by the human shape normally varies between 40 and
50%. Thus, even in the unlikely event of a targeted object covering
the entire image, the number of affected pixels (for a human figure)
would lie roughly at 50%.

This also means that 50% of the data to be evaluated would be
unnecessary clutter, reducing the effectiveness of the affected
pixels.

Along similar lines, were an image to contain a high level of
distributed noise, this could effectively drown-out the influence of a

potential target, especially if the latter was to be relatively small as

InTELLIGENT OPTICAL SENSOR - 175

FeasmBIiLITY STUuDY

compared to the overall image area.

2.Data Feature Analysis

Data Feature Analysis is a slightly more complex but also more
thorough approach to evaluating the image data, and basically
involves deconstructing the image to be analysed into a set of
predefined data variables which can then be processed using
appropriate mathematical transforms.

The main difficulty with such an approach lies in the correct choice
of data to be extracted and appropriate data processing algorithms.
Referring back to a discussion with Dr. P. Rosin [Appendix F], the
simplest types of data (those extracted directly from the image
relationships without any attempts at mapping or interpretation)
are often the most reliable, regarding their consistency over a set of
images with varying parameters.

In this situation, the types of targets which are processed are
constant neither in their aspect to the camera nor in their overall
shape properties. This makes it difficult to use a recognition system
based on algorithms dependant on vectorial matching, as each
object will have to be described using a varying quantity of vectors
to perform a satisfactory object description, unless a highly
deformable vector template is used. This approach has been
discussed earlier, and although it is adopted in many systems, its

- disadvantages are deemed too high, requiring increased analysis of

InTeLLGenT OpricaL Sensor - 176

FeasieiLiry Stupy

the resultant output, whilst the aim of this study is to restrict the

processing stages to an acceptable minimum.

Examples of such a vectorial approach can be seen in Fig.74, which
both present an adult male facing the camera. It can be observed
that the slight change in position causes a dramatic increase in the
number of vectors required to accurately describe the already much
simplified profile given. If we then consider that such poses as
crawling or crouching must also be taken into consideration, it
becomes obvious why an analysis based on a fully vectorial
description of the image becomes unsuitable. Vectorial
measurements might still become useful for conditions such as
describing the overall direction of an object within the image, but
these will then be used in conjunction with other standard

measurements.

15 Vectors 22 Vectors

InTeLLIGENT OpTICAL SENSOR - 177

Feasieiry Stuoy

Fig.74:Two human profiles showing possible vectorial descriptions. Note that the
vectors shown here are for illustration purposes only and have been greatly
exaggerated to facilitate viewing

The use of defined templates, such as those used by Tate and
Takefuji [81], is a further derivation of the vector based approach.
This does have the advantage of offering a fixed number of points
off each image from which the final vectors can be derived, but also
has the disadvantage of having to select a grid with a resolution
fine enough to allow an accurate description of the object being
studied, and the necessity to provide matching templates to
evaluate the actual parameters obtained from these objects. This
does seem to be a fairly lengthy approach, finally relying on a fixed
and artificially created parameter set (the actual templates) which
will be the actual point of failure if a given data set has not been

sufficiently described.

It is proposed to use a combination of these approaches by
employing a subset of the deformable represented by variable

measurements within a dynamic, object derived grid.

It is hoped that this will provide a set of parameters which are
tailored to each object, given that the basis for the measurements
will remain relatively identical for each analysed object, but also

- scaled independently for each. This eliminates eventually redundant

InTELLIGENT OPTICAL SENSOR - 178

FeasmiLty Stupy

data created by many measurement points on a large object,
ensuring that the same number of measurement parameters are

used, regardless of the observed object dimensions.

An added advantage to considering standard dimensional data is
also the relative ease of obtaining such data, which will speed up
the entire data extraction phase, an advantage for a system

working online.

5.6.4 - Image Data Extraction

In order to extract the intended data, it was necessary to develop a
number of custom software packages, which will be explained in the
following section. The software development process has been
intentionally split up into a number of modules which make the
entire process much easier to modify, even if the final result is quite
far from operating in real-time. These processes are however
designed in such a way that they can ultimately be joined up into a
single faster and more concise application which will then be able to

fulfil the primary requirements of this study.

Let us now consider a rough overview of the entire data extraction

process for this initial experimentation series:

Obtention of bitmap image file, single target object per image.

IntewLiGent OpticaL Sensor - 179

FeasiBiry Stupy

- Transformation of image to proprietary .VOS format, effectively
describing the image in a monotone fashion editable in
spreadsheet applications and other custom software.

VOS file then fed through VosDataExtractor to obtain a maximum
number of lines of data from the image’s target object. This
results in the creation of a .VDF file, which is an annotated text
file containing all the extracted data in a standardised but as yet
unmodified format.

VDF files can then be compiled by a custom batch processing
utility to be collated into a usable table of data for further

analysis.

The first two steps in this process have already been described in
detail, and the operation of VosDataExtractor will now be explained.

The process is as follows:

5.7 - Vos Data Extractor- VDE

For a given image (using the afore mentioned test conditions
specifying images containing a single target and no background
noise), the target must first be located. This is done by simply
finding the first set pixel within the image by scanning from the top
left corner and progressing from left to right and top to bottom.

Each pixel thus found is defined as a new object. Objects which are

- touching or within a certain distance of each other are then grouped

InteruiGent OeticaL Sensor - 180

Feasmiury Stupy

into a single object.

Once this has been achieved, the furthest extremities of the target
object are defined (by scanning each line of the object and
determining the minimum and maximum extension values) and
placed within a bounding box. All further processing is now carried
out only on the set pixels within this newly defined object-

dependent boundary.

Within the obtained bounding rectangle, we can then extract a
number of measurements on the actual object or the box, such as
total box area, area of box set by target, box height and width and
object Centroid position. From the Centroid, 6 radial measurements
are taken at 60 degrees to one another, specifying the maximum
length to the edge of the target. Additionally to this, the bounding
box itself is split into an array of 6x4 smaller segments and from
each of these segments is extracted an extra set of measurements

specifying the segment area and percentage area set by the target.

In this manner, a total of 41 independent lines of data are obtained
from each image, the last value being a manually controlled
boolean value specifying whether the currently considered target is
human or not. This final value is necessary as a reference for later
network development work, in order to provide a basic set of

training data with known output values.

InTELLIGENT OPricat Sensor - 181

FeasiBiLITY Stupy

Fig.75 illustrates VDE in operation, with certain of the extracted

data values overlaid on the actual image target:

e ——

;. [Data Eat_:tqt 7

Fig. 75:The main bounding box '
split into its 6x4 grid and the 6 vectors emerging from

the Centroid can be clearly seen.
The actual sequence of operations is as follows:

1 - VOS format file opened and stored in a 320x240 array, ranging

variables are initialised.

2- Entire image is scanned until a set pixel is encountered. Current
coordinates stored in a temp value. Once the entire image has been
scanned, the overall object bounding box limits have been defined
and stored. Simultaneously, the percentage area of the bounding

box occupied by set pixels is evaluated. (this current version is

InTELLIGENT OPTICAL SENSOR - 182

FeasieiLty Stupy

limited to a single object per image without any form of background

noise).

3 - The centroid of the object is now determined in both the X and Y
directions. This value can help to determine the orientation of the
object within the frame. It is also useful in determining the relative

importance of surrounding sections.(see next point)[100].

4 - 6 lines are extended from the centroid, arranged radially at 60
degrees to one another, and their last point of contact to the target
object is measured. These measurements give a fairly good idea of
the overall mass distribution of the object within the bounding box.
A similar approach, depending on an object centroid and ensuing
radial measurements has been outlined by Tamas Sziranyi [79]
within the context of motion tracking. These values are used to
provide object specific information which can easily be used to

distinguish one object from another within a noisy environment.

5 - The entire bounding box is split up into a 4x6 grid of equally
sized elements, and for each element a measurement of percentage
area set calculation is carried out. This provides a more detailed
view of the contents of the total object box. The actual grid size
provides a good detail resolution without providing too many
different measurements which have to be individually evaluated.

- This grid, dependent on the actual object dimensions, ensures a

InTELLIGENT OPTICAL SEnsor - 183

FeasiBiLITY StupY

consistent level of measures detail for all objects irrespective of
their dimensions, and guarantees the consistency of the extracted
data over a full image set, regardless of the position or size of the

object to be analysed.

6 - For each image, a final value is manually set, defining whether
the target currently considered is to be finally classified as human
or not. This value is required during the training stage of a simple
network as a final check value, but will not be used as part of the

network inputs.

Below is a complete listing of the data taken from each image and

the ranges considered for each line of data:

Data Value | Data Range
Bounding Box X min 0-319
Bounding Box Ymin 0-239
Box Width 1-320
Box Height 1-240
Box Area 1-76800
Centroid Xpos 0-319
Centroid Ypos 0-219
Weighting 1-3
Segment Area 1-3200
Segment 1-1 0-100%
Segment 4-6 0-100%
Radial 0 degree 0-320

InTELLIGENT OpTicAL SEnsor - 184

FeasigiLITy Stupy

Data Value ' Data Range

Radial 60 degree 0-271
Radial 120 degree 0-271
Radial 180 degree 0-320
Radial 240 degree 0-271
Radial 300 degree 0-271

It must be noted that these are the pure capture values, which will
most probably require some form of preprocessing prior to being
used to develop or run a classification network.

The centroid Xpos and centroid Ypos value cover the maximum
available data range, as it is entirely possible to detect an object
which will be aligned to the edge of the captured image. Although
this is unlikely to be representing a target, the data range still

needs to be considered as part of the object processing sequences.

5.8 - Initial Network Creation and Evaluation

5.8.1 - Data Considerations

Given the previously laid out conditions for a set of artificial images,
and the above described data set, we are now at the stage where
an initial network might be developed in order to prove the ability
to classify human and non-human forms within this scope.

The data which we now have available through VDE is however

InTeLLIGENT OpTiCAL SENsOR - 185

FeasieiLimy Stupy

unsorted and presented in a raw form, where certain parameters
are doubly described and where other parameters might not be
using all too obvious scaling and range values.

If a simple network were to be developed using the raw data, it is
highly likely that some form of distortion would occur within the
network’s internal data representations, as certain values with high
maxima would be drowning out other more sensitive (and maybe
more important) data lines. Simply because 40 odd lines of data
have been extracted from each image, does not necessarily signify
that all these data lines are going to be crucial to the development

of a successful network.

We need to first attempt to map the relationships between the
various data lines, determining not only which lines might safely be
left out, but also in which manner the remaining data inputs will
need to be scaled and transformed in order to present an ideal and
balanced set of data to the network. The more we can optimise this
initial input data, the more powerfu‘l or reliable the resulting
network can become, as it will have more internal resources
available to actually describing and classifying the data instead of

just preparing the raw data to be in a usable form.

5.8.2 - Data Preparation

Illustrated in Fig.76 and Fig.77 are two plots of raw data extracted

InteLucent OpticaL Sensor - 186

FeasieiLimy Stupy

from two different images, the first containing “noise” (i.e., an
invalid target), the second containing a valid target (i.e., a human
shape). The horizontal axis represents the entire data set as
described in the previous chapter, the vertical axis illustrates the
current value of each data input.

At this stage, there are very few differences to be seen visually in
the data which might be differentiating a valid and an invalid target,
Both graphs seems to follow a similar pattern, albeit with widely

varying maxima in certain ranges.

[Raw Noise Raw Target
8000 20000
6500 - 18000 4
5000 - 16000]
4500
8 4000 14000 -
% 3500 120004
> 000 > 10000
; 2500 8000
2000 - 6000+
1500
1000 4 ::z.
500 -
o = - - o J N W P W [— —
A NP R RN e AR A At R L L E L R Y
Samples Samples
Fig.76:Raw Noise Fig.77:Raw Target

To be able to effectively compare the trends of these two different
data classes, it is necessary to first establish some common
reference value. This can be achieved through a number of scaling
techniques. These will be considered in more depth, but in order to
gain a quick overview of possible results, the two data sets shown
above will now be entirely scaled by converting all measurements
into percentages of their possible representation range. Doing this

results in a fairly neutral presentation of the data, where each input

InTeigent OpticaL Sensor - 187

FeasisiLiry Stupy

line has a chance of exerting a fair share (in this case, 1 partin 40
as the 41* data member is an artificial parameter which was added
manually giving the expected network classification, and is used
only for validating a training or trained network) of influence on the

resulting network.

Normalised Noise Normalised Target
100 100
%0 04 A
w- w- i
70 4 704
% 604 % ey I\\ ’I
> s > g
L . F o ! A
K WA o T I
AR VT AR
o 4 y | o R'AWN
R A AR o N R N Y XY N N XX Y XY
Samples Samples

Fig.78:Percentage Normalised Noise Fig.79:Percentage Normalised Target

As seen in Fig.78 and Fig.79, even such a simple data transform
results in a greatly enhanced overview of the actual data variations,
and the differences between the two data sets can be much better

considered.

Whilst this particular approach might not be the best suited to the
data currently being considered, it does very well illustrate the
general effect of data normalisation, which tends to enhance
smaller data values whilst reducing the range of larger more
dominant features in the raw data set. Naturally, each input line
must be carefully evaluated to determine whether an enhancement

or reduction is actually necessary.

InTeLuGenT OpticaL Sensor - 188

FeasiBiLTy Stuby

For the purpose of this example, only two images are being
considered. In order to obtain a realistic impression of the general
data trends, it will be necessary to consider, if possible, the entire
data set (some 2000 samples currently), splitting the valid and
invalid target components to allow for independent analysis
processes. Obviously, whichever transforms are eventually decided
on, they will have to be taken in a general form which may be
applied to either valid or invalid target, as this particular
classification is only known during the testing phase. The actual
goal of this preprocessing phase is to actually enhance any features
signalling a possible valid target , whilst simultaneously reducing
the presence of non-valid data.

It is also important to remember at this stage, that the ideal
network inputs lie between -1 and + 1, or 0 and +1, depending on
the approach taken. This allows for an easy combination of both
digital and analogue type inputs using a standardised range with

balanced scaling.

For this simple test, it is not necessary to develop any extremely
sensitive adaptations, as these will most likely have to be quite
heavily modified for the more realistic data sets. It would however
be useful to develop a single transform which could be applied to all

lines of data.

A generic transform which can be applied in order to enhance small

Interucent OpricaL Sensor - 189

FeasieiLity Stupy

values whilst hardly modifying larger ones is the logarithmic

transform, as illustrated in Fig.80:

2 -
18 : , S
16 ' / 2
14 2 / el
12 ,/Y"ﬂ!!’, —

1 i A
08 // e
06 i b,
04 i
02

P A P A L e e

1 9 17 25 33 41 49 57 65 73 81 89 97

Fig.80:Logarithmic Transform

This shows a plot of a logarithmic transform on a constant series
between 1 and 100. A similar effect can be achieved using a square
root transform, although the final result is a much milder data
adaptation. Obviously, a pure logarithmic transform cannot be used

on the raw data on hand, as the range includes 0 values.

Having tested a number of approaches using the built-in data
preparation tools of Neural Works Pro II, as well as conventional
data analysis in MS Excel, a final fairly simple process was arrived
at.

The actual equation is shown in Fig.81.

InTeELLIGENT OpTICAL SENSOR - 190

Feasieiuty Stupy

X
ax

Ig (1/100—=2—+1)

y= lg11
Fig.81:Data Transformation Equation

where:

X - raw data input

Max - maximum range value for current input

y -resultant processed data

the graph in Fig.82 illustrates the effect of this transform.
The raw data is illustrated between the values of 0 and 12, whilst

the other two plots show the full 0-100 range.

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
Input Value

Fig.82:Data Transforms

As can be seen the final output is now limited to the 0-1 range
The final transform is actually a combination of 3 different

operations: [Appendix D]

InTeLLIGENT OPTICAL SENSOR - 191

FeasmsiLry Stupy

1.Range normalisation. This transforms the raw data into a
percentage value based on each input’s current range.

2.Square root transform. This simply cleans up the data by
providing a limited degree of smoothing. The +1 feature is to
always guarantee a positive value as an outcome to the following
logarithmic transform.

3. Log transform. Dramatically enhances low values as compared to
larger dominant data lines. The associated Ig(11) divide is simply
a maximum range divisor which scales the data to lie between

the desired 0-1 values.

5.8.3 - Test Networks

Using the transform described above to generate the input sets for
a simple MLP type network (note that this is still in the range of a
feasibility study and we are not requiring a 100% correct resolution
to the problem, but rather an indication as to what is possible and
whether the data currently extracted from each image object is
sufficient to meet our requirements), a number of test networks

were generated, which gave highly satisfactory results.

For the purpose of these tests, the full available data range was
utilised.

The best results were obtained on a 39-2-3-3-1 network, giving an

InTeLLiGent OpticaL Sensor - 192

FeasisiLry Stupy

RMS error of 0.0852 and a classification rate of 0.9847, although
similar results (in the 0.98 range) were also achieved using less
complex arrangements such as 39-5-3-1, thus with only two hidden
layers. These being MLP’s, the notation “39-5-3-1" describes a
network using 39 input nodes, a first hidden layer of 5 nodes, a
second hidden layer of 3 nodes and a final output of 1 node,

providing a 0-1 output.

The training, testing and validation data sets were obtained by
splitting the available generated data (over 2000 images) into 3
groups collated from randomly mixed data in such a way as to
ensure an even distribution of all data ranges within each set. This
was done in order to ensure an ideal representative training set.

Fig.83 illustrates the logical arrangement of the successful 39-2-3-

3-1 network:

NETWORK
() ourpur

INPUT LAYER

Fig.83:Network Architecture

InTELLIGENT OPTICAL SENSOR - 193

FeasiBiLty Stupy

For clarity, not all input nodes have been included. At this stage in
the process, the actual values of the weights within the network are

not extremely important.

The result which has been provided shows that a 98% correct
classification rate can be achieved on relatively unprocessed
artificial data and using a relatively simple network architecture,
which is sufficient to justify further development on the entire

system.

This configuration still represents a very unoptimised network
layout, as there has been as yet no attempt to map possible input
node commonalities. During the initial (and rapid) data overviews,
no real relationships appeared within the dataset, apart from the
tendency of the “% area set” of valid targets to lie between 20%

and 40%, whilst noise generally had a higher area density.

Neural Works Predict provides a handy tool for gaining a general
overview of a data set and thus of optimising this dataset for the
development of a specific type of network model. In this initial test,
Neural Works Predict was presented with the full, unaltered, data
range, thus allowing the software full freedom of choice in the way
it would adapt and segregate the data. This was run with the

intention of developing a simple MLP network model. Although the

InTELLIGENT OpPTiCAL SENSOR - 194

FeasisiLTy Stupy

initial test did seem very promising, achieving an initial classification
rate of 98%, with most errors lying in over-classification (false
positives), it did also raise some concern as to the data members
selected by Predict to represent the full data set. Given the total
data set of 40 members, Predict chose to omit all but five, retaining

the following members:

1 - Box Height

2 - % of Total Area Set
3 - Segment Area

4 - Segment 2-6

5 - Segment 3-6

Obviously, certain members such as Box Width, Area etc. can be
interpolated using the selected members, but the last two elements
are very strongly dependent on the angle at which the object is
being viewed, as well as the stage of mbvement which the object is
currently carrying out. Data members such as centroid or radial

measures would have seemed to contain more relevant information.

Given a particular object’s bounding box, the two relevant segments

causing concern are highlighted in Fig.84:

Fig.84:Selected Segments

InTeLLIGENT OPTICAL Sensor - 195

FeasieiLty Stupy

On the entirely artificial image shown above, the relevant segments
are highlighted in red. Although this is only a sample illustration, it
is easy to see that not every single object held within the bounding
box must necessarily be occupying either of these segments. The
fact that Predict has selected these for this particular network might
well be a reflection of the type of data available in the full training
data set, which might be characterised by humans occupying these

two segments, and noise generally not occupying them.

For the time being, it is sufficient to be aware of the fact that this
selection might not be totally unbiased and is not necessarily

representative of a larger data set.

Let us now observe the actual mathematical transforms which

Predict selected to carry out on each selected input:

InTeLLIGENT OpTicAL SENnsor - 196

FeasieiLiTy Stupy

Parameter ~ Transformation

Line 1 (Box Height) Square Transform

Line 2 (% Area Set) Square Transform

Line 3 (Segment Area) Tanh Transform

Line 4 (Seg 2-6) Natural Logarithm (Base 10)
Line 5 (Seg 3-6) Natural Logarithm (Base 10)

In Fig.85 and Fig.86 are shown two examples of data prepared

using these transforms

Noise Target
0 siasizn | ! et
s ‘ ; ; 0.2 - e
] A o e o
§D: \ i : ?-0.2 3 \‘ /L~
02 . T ¥ : A ' 5 Ho4 : \ Sy
7 Ik — A
06 : i ’ IR AV
Input Data Lines Input Data Lines

Fig.85:Noise Fig.86:Target

It is interesting to note that, at least for these two examples,
Predict has established a transformation algorithm which nearly
mirrors the trends of the noise data to that of the target data along
the vertical axis.

As can be seen, the data transforms selected by Predict are overall
relatively simple. This does not imply that the problem being
considered is in itself simple, but rather that the raw data as
obtained from the image is fairly well aligned to the type of
optimisation required by a simple MLP at this stage of the process.

As the final system is intended to be running in real-time, the

InTeLLIGenT OpTicAL Sensor - 197

FeasieiLry Stupy

simplicity of the final data transforms cannot be disregarded.
Considering the results achieved using both Neural Works Predict
and more conventional manual analysis methods, we can say that
the principle of the entire process has been shown to work, at least
for this initial set of data. More time could be spent refining the
actual data transformation algorithms and network architectures to
try and achieve 100% problem resolution, but this would largely be
a waste of time, as the data set now needs to be expanded in such
a way that the realism of the data will be increased, and a system
trained to operate perfectly on the current ideal data set is unlikely
to perform very well when such variable factors as image noise are
introduced.

Purely as a visual demonstrator, the best performing network from
those developed using Predict has been coded into a simple

software package.

This program allows any simple VOS format file (one satisfying the
initial test conditions of a single object with no surrounding noise)
to be rapidly evaluated and classified. This displays the unfiltered

network output as a classification percentage.

Fig.87 shows this demonstrator in use.

Fig.87:Person Detection

InTeLuGenT OpticaL Sensor - 198

FeasisiLTy Stupy

] @WDS Neusal De:tlor

s ek s i

b

- “ - —

It can be quite clearly seen how the object detection process has
located the person and placed a bounding box around this possible
target. The network result can be seen via the graduated
classification bar as well as via the pure percentage output, in this

case 99%.

It is interesting to note that the currently used network has
difficulties in classifying valid targets when the object’s total area
within the entire image falls below a certain value

(approx.<(Image Height/4)). This behaviour could well be a result
of the way in which the training, testing and validation data sets
were generated from the total data set, possibly with less smaller
targets within the validation set, as this was the set used by Predict
to train the network. This validation set was selected to be only

10% of the total available data, with Predict left free to select which

InTeLLIGENT OpTICAL SENSOR - 199

FeasieiLITY Stupy

lines it would actually use in the validation process.

A number of tests remain to be carried out, especially in the
evaluation of the behaviour of differing network architectures, but
the results obtained so far prove that the concept in itself is

feasible, thus justifying further research in this study.

InTeLLGENT OpTicAL Sensor - 200

Svstem DeveLOPMENT

6 - System Development

If you torture data sufficiently, it will confess to almost anything - Fred

Menger

6.1 - Enhanced Data Complexity

Considering the results obtained from the tests based on the
artificially generated data, these do confirm the validity of this
study.

The data used for these initial tests was however, very strictly
controlled and highly simplified, when compared to real live data,

which a final system would have to be working with.

The next development phase for this study is therefore going to be
a gradual and controlled increase in the complexity of the data
used, whether this be generated artificially or captured from a live
source. Each added level of complexity may then be correctly
analysed, and incremental improvements to the various data
processing algorithms may be introduced to cope with the added

system requirements.

InTeLucent Oprical Sensor - 201

Svystem DeveLopmenT

6.2 - Multiple Targets and Noise

The original set of artificial data used in the system feasibility study
featured a single object per image.

In a real life situation, such a situation would be quite rare, as light
sources, shadow effects and even spurious background movements
could all contribute to presenting the effect of multiple moving
“objects” within a single frame, even if only one person were
actually present. Additionally, we cannot ignore the situation where
more than one person might be in the actual surveillance area, thus

creating a multiple target situation.

This is raised in point 1 of the main hypothesis: Is it possible to
develop a system capable of processing the output from an
industry-standard camera in order to identify the presence of a

person or multiple persons within the image ?

As mentioned above, spurious backgrdund movements, depending
on the surveillance location, might also be present in the image.
Such movements might be the results of wind blowing through tree
branches, broken light reflections on various surfaces, or any type
of background movement, small enough not to be classified as a
potential target but still large enough to be identified in the
surveillance image. These effects are classified as noise, as they do

not assist in any way in the actual task of target identification but

InTeLLiGenT OpricaL Sensor - 202

Svstem DeveLopmenT

rather distort the overall image by possibly masking parts of valid
targets or by modifying areas of the image and forcing a then
wasteful - to the overall system performance - analysis of the

given area.

The difference between the two phenomena, potential target and
noise, lies purely in the size and distribution of the effect, but the
result in either case is the same: The creation of an area of
movement within the image which will have to be correctly
identified and subsequently analysed.

Whilst noise can be discarded without further considerations, a
potential target will need to be correctly processed. The actual
difference lies purely in the definition of the object’s relative size in
the image, and thus, in this situation using a single uncalibrated
camera, in the definition of the overall system’s effective

surveillance range.

The inclusion of these two items into the general data set involves
certain modifications to the overall detection process, as will now be

discussed.

InTeLLIGENT OpTicaL Sensor - 203

Svstem DeveLopMent

6.2.1 - Multiple Targets

The inclusion of multiple targets into the data set actually
introduces two separate conditions into the detection process.
These conditions arise purely from the relative positions of the

objects within the image.

When multiple objects are in an image, they can be placed as

follows (considering two objects):

1. Objects separated from each other, clearly distinguishable as two
objects.

2. Objects not overlapping, but sharing common areas on their
bounding boxes.

3. Objects overlapping, thus not easily distinguishable from a single
object.

4,

These conditions are illustratedin Fig.88, Fig.89 and Fig.90.

InteLucent OpricaL Sensor - 204

SysteM DevELOPMENT

01 - Objects Separated 02 - Object's Bounding areas overlapping

e

Fig.88:0bjects Separated Fig.89:Bounding Areas Overlapping

03 - Objects overlapping

Fig.90:0bjects Overlapping

Conditions 1(fig.88) and 3(fig.90) do not present any particular
problems to the current detection process, other than having to be
adapted to accept more than a single target. Condition 2(fig.89)
however, needs extra consideration.

Given the current method for identifying an object in the image, an
object is defined by finding the first set pixel in each direction, and
by these, defining the outer extremities of the object’s bounding

box.

This system will however always define only a single bounding box
(and thus a single object), no matter how many objects are actually

present in the image. In order to detect multiple objects, the

InTeLLIGENT OpTicaL Sensor - 205

Svstem DeveLopMENT

recognition process must be modified to take into account gaps
around objects.

As image scanning is carried out line by line, this requires the
process to record each object’s position and extents throughout the
process, declaring the object as “closed”, i.e. completely identified,
once a consistent gap has been found surrounding the entire object

from its surroundings.

Initially, this might seem to be a fairly simple process, which it
would be if the minimum object separation distance could be
precisely defined. Such a definition is however difficult to set, as the
following factors can affect the actual object separation:

Distributed Image noise, Noise suppression algorithm, Image
shadow artefacts, object’s position within the image.

These various factors can also lead to a single object being
effectively separated into a number of sub-objects, which must

however still be treated as a single potential target.

In order to provide an accurate way of identifying separate objects
within the image, a dynamic system should be considered. As the
actual object identification is a sequential operation to the image
noise reduction, a value might be obtained from the actual average
image noise level (which can be easily extrapolated from these
Calculations) , which can then be used to derive @ minimum specific

Object separation distance. The advantage of using such an

InTeLLiGent OpricaL Sensor - 206

System DevELOPMENT

approach resides in the fact that each image is now considered for

its own specific conditions.

As explained above, the actual process of identifying and separating
multiple objects is very much reliant on the method used to carry
out the noise-reduction process on the overall image. Whilst still
separated processes, these must be tuned to one another in order
to be presenting valid and unbiased or uncorrupted data to the next

processing level.

6.2.2 - Noise Reduction

There are two types of noise which can occur within an image:
distributed noise and local noise.
In the current application, local noise is essentially treated as a

potentially valid target and is thus processed and eliminated.

Distributed noise, as mentioned earlier, is a natural occurrence
depending on the active surveillance environment, and can be
observed in two main forms: distributed movement within an
image, such as background tree branch movement, and distributed
movement of the entire image, such as that caused by actual

camera vibration.

Local noise, while requiring a full detection cycle to be considered

InteLLiGent OpticaL Sensor - 207

SvsteM DeveELOPMENT

and cancelled, does not generally affect the validity of an image. A
high level of distributed noise however, can result in severely
corrupted image data, making potential targets difficult to
accurately locate and analyse. Due to the type of approach
currently being considered, it is necessary, as far as possible, to
eliminate image distributed noise whilst retaining the relevant

image data.

1.0Overall Image Movement

Caused by camera vibration, for example.

Overall image movement is relatively simple to compensate. Using
a frame by frame image analysis process, pixel-wise movement
within an image can be located and the entire image can then be
shifted in the appropriate direction and by the appropriate amount

to result in a zero difference image comparison outcome.

2.Movement within the Image

As caused by wind-induced branch movement.
This is slightly more complex to eliminate, as the movement
generally cannot be reduced to a single definable vector. In this

case, each detected area of movement (pixel-wide) must be

InteLuGent Oprical Sensor - 208

SysTEM DEVELOPMENT

separately analysed in order to determine the magnitude and
direction of the now local movement.

This effectively results in a pixel by pixel analysis of the entire
image difference area.

Each difference pixel is shifted by a distance of one pixel in one of 8
directions until either a zero difference is obtained of the pixel-shift
directions are exhausted. In the second case, the result then
remains as an identified difference at the original position.

Fig.91 illustrates the pixel-shift directions:

| Image pixel heing processed

e PiE-ghift range

Fig.91:Pixel Shift Range

As can be observed, the process for identifying and eliminating
movement within the image is essentially a superset of the process
utilised to process image-wide movement.

It does however result in a slightly lower resolution output image,
as areas within the image that have registered movement can be
effectively over processed - hence the necessity to limit this
processing to purely areas of image change, and to constrain the
pixel’s mobility in the compensation range in such a way as to
enable correct motion correction whilst preventing the elimination of

valid image changes due to potential target motion.

InTeLuiGent OpricaL Sensor - 209

Svstem Devetopment

The pixel compensation range must therefore be matched to the
current image noise level (which is determined via the immediate
image comparison process), in order to provide an accurate noise
compensation process. This necessity to dynamically adapt to each
individual image was previously mentioned in the process for
separating potential targets which have overlapping boundary

areas.

6.3 - Multiple Data Extractor

6.3.1 - Multiple Object Parameters

In order to test the processes suggested, the code for the original
Data Extractor was modified to include the various stages of noise
control and multiple object capability.

The exact relationship between the average image distributed
noise level and the accordingly adjusted minimum object spacing
values has not yet been established and is thus still adjusted
manually, as a balance value must be obtained which, whilst
eliminating a maximum of distributed noise will also introduce the

least possible object corruption into the image.

Fig.92 show the new code in action:

InTeLLigent OpTical Sensor - 210

SysteM DeveLOPMENT

™Multi Data Extractor

] St Taaget I

Fig. 92:Ba§gimage, showing distinct noise distribution areas.

In this image, the slider controlling the noise-reduction level can be
clearly seen below all the other control buttons.(value currently set
to 0).

At this stage, the image has simply been opened but not yet
processed, which explains the number of objects located as being

Zero.

In Fig.93, Fig.94 and Fig.95 is shown the effect of increasing the
minimum object spacing on the actual noise reduction process. The
larger squares show areas of the image which will be retained once

the noise removal is completed.

InTeLLIGENT OpTICAL SENSOR - 211

SvsteM DeveLoPMENT

. Multi Data Extractor

| Sel Tauge! '

Fig.94:Noise level reduction set to8

Multi Data Extractor

lllllvlllﬁs

| Set Tesge! I

Fig.95:Noise level reduction set to 15

InTeLLIGENT OpTICAL SENSOR - 212

SvsTEM DevELOPMENT

The effect of modifying the noise correction level can be clearly
seen in the image series above. The original underlying image is
shown in blue, whilst the retained pixels of the image have been

highlighted as bright magenta blocks.

It can be observed how the noise reduction component actually
affects the image integrity.

In the first case (Fig.93), no correction is being applied, and too
much noise is being included in the final image. This leads to visible
object deformation where possible targets are effectively blended
into the noise background.

In the second case (Fig.94), a middle correction value is applied.
This effectively eliminates a lot of the minor noise occurrences,
whilst still retaining the potential target as a relatively unmodified
object. Larger noise occurrences are somewhat minimised but still
appear as distinct potential objects in the filtered image. From a
visual assessment, the optimal filterihg value has not yet been
reached, and the actual noise filtering factor could still be increased
without introducing damaging corruptions into the image.

In the third image (Fig.95), the maximum correction value is
applied. We can see how most noise occurrences have been
eliminated from the final image, but a cursory glance also reveals
the high degree of image corruption which is evident by the much

reduced area of the potential target which has been marked as

InTeLLiGent OpticaL Sensor - 213

System DEevELOPMENT

worthy of further analysis.

This is an obvious case of overcorrection which could easily result in
potential targets being either totally ignored, or corrupted to such a
degree that they are no longer recognisable as such.

The same series is now shown with the object detection and
separation code in place. Each identified object is shown within its

bounding box (Fig.96, Fig.97, Fig.98):

Mults Daka Extractor

Fig.97:8 Noise Reduction

InTeLLIGENT OpTICAL SENSOR - 214

Svystem DeveLopmenT

g ™Multi Data Extractor

| Set Tauget I

Fig.98:15 Noise Reduction

The actual processing values are exactly the same as in the noise-
reduction series, thus illustrating the relationship between the level
of nose correction and the accuracy of the individual object

recognition.

As can be seen, the actual object detection accuracy increases
throughout the series, even though the actual object erosion can be
clearly seen. This is actually to be expected, as when the noise
correction level is increased, more outlying pixels are cancelled out,
thus leaving much better defined and separated objects within the

image, objects which can then be rapidly detected and separated.

The first image however, (Fig.96) clearly illustrates the condition of
objects with overlapping boundary areas, or in one case of one
object located entirely within the boundary of another object but
still correctly identified as an independent object, which would then

be further analysed on its own merit.

InTeLLIGENT OpTICAL SENSOR - 215

SysteM DEVELOPMENT

Fig.99 and Fig.100 illustrate a rather extreme case with a fully
saturated image due to a combination of poor lighting and cheap
camera lens, which shows the effectiveness of the object detection

process:

i Multi Dab s Extractor

i
| Set Tanpel |

Fig.100:Saturated Objects Detected

6.3.2 - Deriving the Dynamic Noise Correction Level

InTeLLIGENT OpTICAL SENSOR - 216

Svstem DeveLopMENT

The setting to adjust the noise level in each image will have to be
based on a dynamic function in order to provide optimal image

results.

The actual noise correction process is based on a subsampling
technique. Using this, clumps of 4x4 pixels of the original image are
considered. If the total number of set pixels within this area is
larger than the value set on the noise-correction slider, the area is
marked as valid and its pixels are considered to be set and
representing potential objects, otherwise, the entire area is judged
to be noise and all set pixels are cleared.

As the entire process is dependant on the effective average image
saturation, it is necessary to establish the link between the said
saturation and the required correction level in order to provide a
clean but also usable image.

Measurements have been taken on a number of datasets, both
artificial and from live image capture sessions. Although these
always only present a single target within the image, they also have
either artificially generated or naturally present noise, depending on
the data set.

Fig.101 and Fig.102 show the noise density over two separate data

sets:

InTeLLIGENT OPTICAL SENsOR - 217

Svstem DeveLopMENT

8

g 8 8

8

3

% Noise Density

B 88

=

o

0 500 1500 2000

1000
Data Samples

Fig.101:Artificial Data

8

% Noise Density
B 8888388

5
=

0 200 400 B0 800 1000 1200 1400 1600

Data Samples

Fig.102:Live-capture Data

As can be clearly seen, the average noise density in both cases

remains lower than expected.

The average value for the artificial data set (Fig.101) is at 8.3%
with a minimum at 5% and a maximum value of 14%.

As would be expected, the dataset from the live capture sequence
(Fig.102) is much less regular, but still follows a similar trend. The
average noise density is here at 15.2% with a minimum of 0% and

a maximum of 84%, the median value, probably a more telling

InTeLLGenT OpricAL Sensor - 218

System DeveLopment

measurement in this case where noise spikes distort the overall
trend, lies at 9%.

This difference in the overall distribution is due to the much less
controlled capture conditions for the live data. Although the
environment was fairly strictly regulated as to how many objects
could be presented within the image, the use of natural light and
the effects of cast shadows are bound to create a less precise data
set, which does not however mean that it is a less accurate data
set. The final system which is to be developed must be able to cope
with such noise spikes within the overall data set in order to
function correctly.

Many of the extreme values are due to a combination of factors
which do often result in unusually highly saturated images, which
are however still usable given a correct noise-level correction
adjustment.

In the case of the artificial data set, the number of images analysed
was over 1700, and over 1300 for the live-capture sequence.

As could be expected, there is not nﬁuch difference between the
distribution patterns for images with or without valid targets. This is

illustrated in Fig.103 and Fig.104:

Fig.103:No Valid Target

InteLLiGenT OpTicaL Sensor - 219

SystemM DevELOPMENT

&
% 50
Z40
X3

20

10

0 s =S E YRR S S L -
1] 100 200 300 400 500
Input Samples

1] 200 400 600 800
Input Samples

Fig.104:Valid Target

(In both cases, taken from the artificial data set)

Such a density variation cannot be expected, due to the image
capturing process, as objects will change their image space
occupation as they vary their distance to the surveillance camera..
This is not the same factor as the object’s set area within its own
bounding box, which does reflect the nature of the objects currently

being examined.

A short evaluation of the noise correction level necessary for
various noise density conditions was carried out. As this process has

to be carried out manually in order to determine the best point

InTeLLIGENT OpTicAL SeEnsor - 220

System DEeveELOPMENT

offering a balance between noise reduction and object corruption,
the overall data set size was fairly limited, but has been selected
from a fairly wide source of live capture sequences presenting the

camera with a variety of conditions [Appendix A - 9.1].

The result can be seen in Fig.105:

1 " 21 n 4 51 61 7 81 91 1m0

Image Noise

% Set —— Error Correction Saturation

Fig.105:Required Correction Level

%set curve(blue) uses the left hand vertical axis 0-100

Error Correction curve(yellow) uses the right hand vertical axis 0-15

The dark blue line (Cleaner diagonal curve) shows the percentage
of image pixels set for each image (i.e., the average noise
distribution). This is shown on a logarithmic scale from 0 to 100.
The yellow line shows the corresponding minimum noise correction

level required to provide a usably defined object using the current

InTeLLiGenT OpticaL Sensor - 221

SvsTem DeveLopMent

detection process.
Although irregularities are present in this second setting, the trend

is to roughly follow the distributed noise level.

Obviously, this presents a calculated value which follows
experimentation to obtain the best noise correction value. Such an
approach would not be feasible in the final autonomous system, and

must therefore be optimised via a dedicated function.

The noise correction level is generally following a linear mapping of
the distributed noise level, with local variations due to particular
image conditions. In the condition being considered, a slight
overcorrection is more acceptable than not enough correction, as at
most, an object’s classification level might be slightly reduced,

instead of not being identified at all due to saturated noise effects.

The graph below shows a linear correction level, as well as a
logarithmical ratio. The logarithmic v‘alue generally provides too
high a correction level, thus reducing the amount of image
information available. The ideal solution would follow a middle value
between these two paths, not over correcting images with low noise
levels, whilst providing an adequate level of filtering for highly

saturated images. A suggested curve is illustrated in Fig.106:

InTeLLGeNT OpTicaL SENSOR - 222

System DeveLopMENT

100

Y]

T
il

1 i S Ell 41 51 61 71 81 9N
Image Noise Saturation

Fig.106:Potential Error Correction marked in yellow

-
o

Correction Percentage

@

Correction Value

=

Where the Ideal Correction Level curve(yellow) uses the left hand axis (0-15)
and the Logarithmic Correction Level is based on the right hand vertical axis

(1-100)
The function actually applied in this case is shown in Fig.107:

((IOO—X)
5

Y=0.15X+)sin (0.011T)

Where Y is the noise correction level (0 to 15)
and X is the Distributed Noise Level (as a percentage)

Fig.107:Error Correction Function

As can be seen on the plot (Fig.106), this function serves to
enhance the correction response in the lower level range, whilst not
becoming quite as extreme as a pure logarithmical function (shown
in dark blue), in order to preserve the final object integrity. Initially,
the noise distribution level is simply scaled down to between 0 and

15 (the total correction range available).This results in a very linear

InteLLient Optical Sensor - 223

System DeveLopMENT

adaptation, which is , in this case, not satisfactory, as many images
require slightly enhanced correction levels, especially in the low
noise density ranges. The sigmoid part of the calculation serves to
place a sigmoid curve over the linear response, which is then offset
towards the origin and enhanced to provide the final desired effect.

A second test run using the above dynamic error correction on 100
randomly picked live-capture images has served to confirm the

accuracy and reliability of the process.

The final adjustment curve is shown in Fig.108. This reflects the fact
that the noise correction value is an accurate integer, thus the

correction value is modified in steps of 1:

41 A (_ . 71 .- 1
Noise Saturation
Fig.108:Final Noise Adjustment

I O N

Applying this function to the overall image results in a dynamically
adaptive object detection process for each image, providing an ideal

level of noise filtering depending on the image being considered.

InteLLiGenT OpricaL SEnsor - 224

Svstem DeveLopMENT

6.3.3 - "Intelligent” Noise Reduction

As the system being developed is eventually based on the use of a
form of neural network, the question can be raised, as to why the
noise reduction process is not treated in the same way.

Indeed, work has been carried out using bottleneck architectures
for noise reduction in images [49, 35, 16]:

A bottleneck architecture is based mostly on an MLP type of
network, where the system offers the same number of inputs as
outputs. This allows the input pattern to be properly reconstituted
at the output stage. However, the middle hidden layer of the
network presents a much smaller interface, thus creating the
bottleneck, hence the name of the network.

This bottleneck feature is effectively used to compress the incoming
data stream, and thus remove impurities (in this case noise). The
output layer is then capable, in a properly trained system, of
outputting a cleaned and smoothed version of the image. The

network architecture is illustrated in Fig.109:

InTeLLIGENT OpricaL SENsor - 225

System DeveLopment

Fig.109:Bottleneck Network

The size of the actual input layer is not really dependant on the
image size, as the total image will be presented in portions to the
network, but must simply be sufficient for the type of noise levels to

be encountered.

The advantage of such a system is its great simplicity, and
reliability once trained. It does however present a fairly rigid
structure, which will be incapable of taking into consideration
overall image noise levels and varying image noise levels - the data
will always be considered within the network’s local area, but not as

a factor of a larger image-wide noise distribution ratio.

The system proposed and evaluated using Multiple Data Extractor,
whilst considering smaller image sections, does take the overall
varying parameters into consideration and accordingly adjusts the
actual level of correction to be carried out. This thus preserves the
data purity in detailed areas of the image when the overall noise
level is fairly low, and only applies a maximum corrective level in

cases of total or near total image noise saturation.

6.3.4 - Processing Times

InTELLIGENT OPTICAL SENSOR - 226

SysTeM DevELOPMENT

The process described above for identifying objects within the
image, whilst functioning reliably, is not necessarily the best
process for the application being considered. The problems

associated with it are:

Necessity to process the entire image area

This can be fairly time consuming.

Object detection depends on suitable noise filtering, thus
presenting one extraneous abstraction layer into the entire

process.

This has led to the development of a further approach which is less

destructive when considering the resulting image data:

6.4 - Image Feature Analysis

In order to evaluate the efficiency of the object detection and noise

reduction algorithms,, the following process was developed:

Instead of analysing each image pixel by pixel and measuring an
average image saturation level which in turn leads to a noise
correction value, the actual area tb be considered can be limited by
carrying out a linear analysis of the image light variations, as shown

in Fig.110:

InveLLiGent OpTicat Sensor - 227

System DeveLoPMENT

This shows the two images being compared. To the left, the datum
image, to the right, the incoming camera image. The actual light
curves for each image are shown below (overlaid on the left hand
image). The eventual image differences (illustrated by the green
line at the bottom of the black window) can be very rapidly located
using a simple line analysis of the final difference curve as well as a
certain level of momentum, used to gap small areas of no change
which might otherwise interrupt a continuous object. It must be
noted that the curves displayed here are in their raw format,
without any form of optimising, which could otherwise be used to

enhance the areas of difference.

As with the initial processes used to compare the datum and

incoming images, there does remain the risk of missing areas of

InTeLLIGENT OpTicAL Sensor - 228

SysTeM DEVELOPMENT

movement due to similar colour tones in the changed areas,
although this process does appear to be quite resistant to this type

of noise, as can be seen in Fig.111:

Fig.111:Noise Resilience
To test the process capabilities, the images were rotated 90
degrees clockwise before being analysed, in order to remove the
fairly large influence of the dark trousers against the otherwise light
image, and thus focus the difference detection process on the area
where the white shirt is against the white wall. As can be seen,
even though the actual difference curve exhibits only minor (visible)
changes, the full area of change was correctly identified as shown in

Fig.112:

Fig.112:Change Identification

InTeLLIGENT OPTICAL SENSOR - 229

System DeveLopMENT

This analysis approach is valid for images with well defined areas of
change and shows the efficiency of the object separation process,
even when the differences are hardly visible to the human eye.
Actually identifying the object limits will require the standard edge
detection as described in the previous sections. For images with few
areas of change, this process can be used to rapidly identify and
isolate these parts of the image for further processing. If the image
is however saturated with change areas, the entire image will have

to be analysed anyway as is currently the case.

6.5 - Data Selection

InteLLIGENT OpTicAL Sensor - 230

SysTeM DevELOPMENT

The actual image analysis processes allowing data to be extracted
have been well covered, and the system currently developed has
been shown to cope well with a variety of real world factors such as
image noise (point and distributed) and multiple objects in a single

image.

6.5.1 - Network Architecture

Throughout the system testing and development phase, use has
been made of a fairly simple MLP network, developed on the various
sets of artificial images and their resulting data. In a real world
situation, this is not the ideal network configuration to use
considering the system working conditions.

Due to the structure and training process of an MLP network, it is
important to generate a very complete training data set, containing
examples of all possible input types and classes, linked to clearly
defined output patterns.

In the system at hand, although the number of inputs and the
range of each is well known (the input data is from a rigid data
extraction procedure guaranteeing a certain consistency), the actual
data source is more difficult to control: There is no prerequisite
other than a given threshold diménsion for the type of object from

which data will be extracted and analysed.

InTeLLGent OpticaL Sensor - 231

SvsteM DeveLopmenT

The network is thus presented with the data via at least one layer
of abstraction (the data extraction and preparation stages), thereby
increasing the data complexity by a variable factor depending on a
number of dynamic settings used in the processing sequences
within this abstraction layer (notably the dynamic noise correction

level).

Due to these factors, it is necessary to introduce a fairly loose form

of classifier prior to the final decision making step.

The role of such a classifier would, in this case, be a form of data
segregation or grouping, depending on the relationships within the
object data set. Its role is thus less that of determining the validity
of a potential target, but more that of labelling the current dataset
according to fairly rough parameters, and thus allowing a following
process to actually classify the object considered with more ease, as
the initially seemingly random input pattern would have been not
only transformed into a more standardised format but will also have
received a further set of parameters (the exact number is set by
the exact form of this classifier) affirming the probability of the

object belonging to a given input class.

6.5.2 - Data Pre-Classifier

InTeLtGent OpticaL Sensor - 232

Svstem DeveLopMENT

The actual format of this pre-classifier is yet to be determined, but
it must be considered that the data classes to date are highly
dynamic. The aim of such a pre-classifier is not to issue a strict
boolean type output, but to support the current data set with a

certain probability measure as to the data origin.

It is obvious that the full range of potential input sequences is
nearly impossible to collect during this development stage. It is
however possible to collect and present the development sequences
with a fairly wide range of these potential inputs, which should
enable the establishment of a dynamic process capable of a certain

level of data interpretation and extrapolation.

A SOM (Self Organising Map) type of network offers exactly these
advantages. As explained earlier, a SOM is quintessentially a data
mapping device. The system is created with a number of default
values. As the entire available data set is presented to this network,
the various nodes and weights are adjusted in such a way as to
create a multidimensional map (the number of dimensions depend
on the relationships within the data as well as on the actual
architecture of the SOM itself) of the data presented. Values which
have not been seen during this quite open training process can
easily be analysed to observe their clustering behaviour, and the
actual multidimensional position of this data within the network can

then be analysed as a probability of belonging to a specific class of

InteLuient OpTicaL Sensor - 233

SvysTeM DeveLopMENT

the input dataset.

Whilst this might appear to provide a one step solution to the
problem at hand, the actual output from such a network still
requires a certain level of interpretation.

As the training process is totally unsupervised (limits to certain
dimensional values can be set, but no errors as such occur as the
training network is not provided with expected response patterns),
the actual data ordering can be following quite a complex curve,
depending on the dimensionality of the data to be analysed. This is
however predictable to a certain extent, given that the data

dimensionality is previously known.

6.5.3 - Hybrid Architecture

Using such a front end for rough data separation, the general data
patterns can be observed, and the valid areas within the thus
created multidimensional space can be categorised.

When an element is then analysed dLlring run-time, the position of
this element inside this previously established multidimensional
space is taken into consideration to allow a form of classifying,
which is however still dependant on a number of interrelated
features, i.e. the actual network weights defining the enclosing
space. The complexity of these relationships is thus directly linked
not only to the network’s physical grid size, but also on the

dimensionality of the actual input data.

InteLLiGent OpricaL Sensor - 234

Svstem DeveLopment

Due to the network structure. These dimensions are however
known to reside within certain predefined boundaries, which were
used to establish the network training patterns. Due to the training
process (and dependant on the volume and distribution of the data
actually used for the network training process), the boundaries to
the various input classes can be more or less precisely labelled,
which then enables the extraction of precisely defined and
controlled data parameters as a resultant of this original sorting

step.

The data thus extracted is actually very well suited to be directly
fed into an MLP type network for a final classification stage. (It must
be noted that an MLP is not a necessary final stage, this could very
well be replaced by a form of fuzzy classifier, which does however
carry the risk of being less adaptive to such a dynamic data set, and
also requiring a very complete rule set to be defined, based on
historical data inputs which might not be fully representative of the

system inputs under real life runtime conditions.)

InTELLIGENT OPTICAL SENSOR - 235

Svstem DeveLopment

SOM Layer

Input Layer

Compiax Network Architecture
Fig.113:Complex Network Architecture

Such a hybrid system offers the advantage of not resulting in any
form of data loss between the various stages, as all outputs from
the first layer (Processed input values as well as extrapolated data
relationships) are passed directly on to the second layer. The data
analysis and condensing (reducing the multidimensional values to a
single probability output statement) occur within the system, and
More complex data input arrangements are also possible, therefore
the secondary layer could be provided with the original raw (or only

Optimised) data as well as receiving the first layers inputs.

InTeLuGent OpricaL Sensor - 236

Svstem DeveLoPMENT

%&&%&&

i

SOM Layer

W%OO

Compiax Network Architecture
Fig.114:Complex Network Architecture 2

Using a similar architecture, it is of course entirely possible to
provide the second classifier with entirely different data sets, albeit
originating from the same object to be analysed. This is a valid
solution when the data preparation required for the different
network architectures needs to consider different data relationships

for optimal network performance.

In the system currently considered, there is a fairly large pool of
data from which ideal inputs can be selected. This does however
then present the problem of actual data selection in order to

Maximise the data relevance to problem solving and minimise

InTeLLIGENT OpTicAL Sensor - 237

SvsteM DeveLopMenT

object corruption through an insufficiently descriptive data set.

In the data studies previously carried out on the simulated data
sets, certain features appeared to achieve importance levels which
were contrary to the data consistency: Rapidly and easily changing
data values were selected for final consideration, which led to
unnecessary bloating of the final system, as additional network
inputs were made available to compensate for the relatively poor

quality of these specific data lines.

Using the complex system architecture described above, less
important data values can still be considered in the initial network
sorting layer, whilst more critical values could be fed directly into
the second classifier stage, maybe using a special weighting
component to accentuate the relevance of the individual network

inputs.

More specifically, the data set which is currently extracted from
each potential target has a large section of mapping components,
the segment area components. These 24 entries serve to describe
the actual spatial distribution of the object within its own
boundaries, thus giving a rough evaluation of the real object shape.
This subset of the image data is highly sensitive to object aspect
changes, whilst still carrying ;nformation as to the object class. Due
to this highly dynamic component, this subset has so far been

Partially avoided, even though the principal component analysis of

InTeLLIGENT OpTicAL Sensor - 238

Svstem DeveLOPMENT

the entire range of artificial data sets revealed certain of these
elements as being of not inconsiderable importance to the overall
object description. The system described here presents an ideal way
of including this data subset into the final analysis without
distracting the final classifier network from more consistent but
maybe less dominant data values. To achieve this, the segment
area subset can be fed directly into the initial sorting network (this
subset is ideally suited to a SOM architecture due to its dimensional

components).

6.6 - Data Optimisation

6.6.1 - Data Mapping

The data used to date has been fairly generic, optimised for use

mainly with MLP type networks.

When considering the initial classifier stage of the system (the SOM
layer), the data to be fed into it is already in a relatively well
prepared form, as the values are all percentage representations of
the area occupied within each zone. A weighting component is not
needed, as all the zones have an equal importance, depending on
the position of the target within the bounding box, and the value

variance is, in all cases, between 0 and 100 (or between 0 and 1 for

InteLLicent OpricaL Sensor - 239

Svstem DeveLopMent

an ideally scaled data set).

When examining a number of cases, a general distribution map can
be recognised within the segment area pattern, where the central
values tend to be highly set, regardless of the condition, simply due

to the average object mass distribution.

It is then questionable as to whether all these values are actually
necessary to carry out a correct object analysis (leading to a very

large and slow network system).

A rapid analysis of the segments data through rapid network
generation did to confirm this assumption to a given degree.
In order to test this assumption, a number of small SOM networks

were generated.

6.6.2 - SOM Generation

The SOM architecture has been selected for its ability to map
undefined data into rough data sets following a mathematical
process which effectively results in a spatial/mathematical mapping
of the data representation areas within the network as defined by

the network nodes, based on data feature similarities.

InTeLLIGENT OpTicAL Sensor - 240

Svstem DeveLopment

The SOM architecture is ideal for this type of study, as it allows a
fairly rapid visualisation of the actual data pattern distribution and
representation, without having to actually modify the data in any
way (other than a simple log-based optimisation for the SOM

structure), and thus risk corrupting the integrated data signals.

The data mapping feature of a SOM network is, however, very
sensitive to varying input vector sizes, making some form of data
normalisation, necessary, especially in the case of input data

vectors with widely varying values.

Due to the training process of a SOM, such an architecture is less
suited to generalisation, considering the relationship between the
number of data inputs and the width and height of the mapping grid
itself - this means that a SOM network can rapidly reach a
saturation point where the presented data will no longer be mapped
correctly, as map features have been allocated to different input
sequences[80].

Considering the Segment data available, the range for all the values
is between 0 and 100, which can be reduced to a pure percentual
representation. The problem with such a normalisation remains
however in the comparatively large influence of higher value inputs,
which can lead to a distortion of the actual mapping representation.
To counter this effect, the data is treated uniformly through a

logarithmical optimiser. This serves the purpose of enhancing the

InTeLLiGent OpricaL Sensor - 241

SysTem DeVELOPMENT

lower data range relative to the larger values, but also of enhancing
the difference to very small values. The actual process used is given

n fig.115.

(lg(X))

=g 1(100))

WhereY isthe prepared data
and X is the original data

Fig.115:Data Normalisation

For the purpose of this test, the segment arrangements shown in

Fig.116, Fig.117, Fig.118 and Fig.119 were used:

I Centres | | Extremes |

Fig.116:Centres Segments Fig.117:DoArames Segiueats

InTeLLIGENT OPTICAL SENSOR - 242

Svystem DeveELOPMENT

M
H N
I 0 U
J P
K a
L R
[Mid | | Cross |
Fig.118:Middles Segments Fig.119:Cross Segments

The actual patterns represent the main areas of interest on the

segments.

Centres(Fig.116)

shows the expected head position, as well as
feet positions for a standing human and hand

positions

Extremes(Fig.117)

This takes a representative area from the
central body portion, as well as possible

extreme positions for the hands and feet.

Middles (Fig.118)

Only takes into account the middle body

position. Extremities are ignored

Cross (Fig.119)

Represents the main areas for hands and feet

in given conditions

In all the patterns, the number of data classes was intentionally

limited to 8, for two reasons:

InTeLLIGENT OpTicaL SEnsor - 243

SysteM DEVELOPMENT

Firstly, this provides quite a good range of possible input patterns,
whilst giving a good coverage percentage of the total possible

selection (33% of the total data is used).

Secondly, the number of inputs is kept fairly low so as not to
saturate the SOM and thus prevent a proper mapping of the

dataset.

This combination allows the actual SOM structure to be kept
relatively small, which is advantageous to both processing speed

and hardware requirements.

In Fig.120 are shown the variations present within the segment

data sets, when comparing target to non-target data.

Average SegmentArea Values

Noise

—— Target

e [O . R - R R TR L v) s P

Fig.120:Average Segment Data Values

This already shows differences in the data trends for both

conditions. To accurately judge this, it is more useful to refer to the

InTELLIGENT OPTICAL SENSOR - 244

SvysteM DevELOPMENT

standard deviation measures, as shown in Fig.121:

TARéET
Fig.121:Standard Deviation of Target to Non-target Data

The graph above (Fig.121) can be seen to confirm the assumption
that the most extreme values (the four corners of the bounding box
grid) offer the least variation between noise and target. These

points are marked by the two large dips in the graph above.

A sequence of networks was trained for each condition, using 1400
lines of mixed data, and presenting this dataset 100, 150 and 200

times for the network training phase.

Given the fairly small size of the network and the comprehensive
size of the training dataset, limiting the training cycles to fairly low
values prevents the networks from overtraining and thus simply
learning the training dataset. For testing purposes, a separate

testing dataset of 610 lines of mixed data was reserved.

InTeLLIGENT OPTICAL SENSOR - 245

SvsteM DeveLopMenT

The results of these networks [Appendix J - 10x10 SOM Network
Tests] show that the various models did indeed succeed in creating
a representation of the data. This can be evaluated visually via the

ordering and clustering of the various weight patterns.

When the test data set was used however, the actual level of
sorting was found to be very poor throughout, with noise and target
data lines achieving little separation as regards to the winning

network node:

When the trained network is presented a line of yet unseen data, a
calculation is carried out to obtain the vectorial position of this data
within the network’s hyperspace. The winning node is that closest
to this position, and the actual distance between the input and the
winning node is taken as a confidence level to the association with
this node’s previously defined data class or label.

In most of the cases considered here, the winning node and
distance for both target and noise data lines was often the same,
highlighting the inability of the networks to distinguish between
these two data classes, even though the data sorting process had

appeared to run successfully.

InTELLIGENT OPTICAL SENSOR - 246

Svstem DeveLoPMENT

The situation thus presented is now twofold:

1 - The data used has no relevant information permitting a clear

class definition between noise and target to be made.

2 - The data used is too complex to fully model on this type of
network, indicating a need for more degrees of movement within
the network to allow an accurate segregation between the data
classes to be carried out. The modelling done to date was involved
mainly in matching the data complexities of a single class.

Effectively a case of network saturation.

Given that the segments data being studied here is directly linked
to the object geometry and mass distribution, it is unlikely that the
separation between noise and target not be represented in the final
data set. This is corroborated by the standard deviation curves of
the two data sets, which show visible separations.

In order to provide a more accurate mapping model, the size of the
SOM network was increased fourfold to 20x20 architecture. The
mathematical degrees of freedom within the network are now:
20x20x8 = 3200 (This is a direct measure, without taking into

account the relational links between each node in the system).

The same process was now carried out as described previously,

training three networks for each condition with learning times of

InTeLLIGENT OpTicAL Sensor - 247

SvysTeM DEevELOPMENT

100, 150 and 200 cycles and random weight initialisation.

Once again, visually, a good degree of data sorting occurred,
although now a certain level of clustering could also be observed
[Appendix J - 20x20 SOM Network Tests]. When observing the
actual results using the test data set, a much better data separation
was also achieved, showing the network’s increased mapping
capacity.

On all models except the “Middles” data set, a clear clustering
pattern is apparent within the network weights: indeed, the
“middles” trained networks also showed the worst separation when
using the test data set. This shows that the dataset used does
indeed contain the information necessary to providing a good

separation between the two classes: target and noise.

When considering the actual results, the best class separations
where achieved by the Centres and Extremes Data sets using

slightly higher training cycles [Appendix J - Results].

Out of this, a new data set was generated, combining certain
features of both original sets. The actual layout of this combination

set is as shown in Fig.122:

InTELLIGENT OpTiCAL Sensor - 248

System DeveLopMENT

| Combine |

Fig.122:Combine Segments

The features selected in this set represent general areas containing

the body, head and feet in extreme conditions.

A selection of networks was trained to evaluate the mapping
capacities according to various starting parameters. This approach
iS necessary to obtain the best possible network, as all the initial
weight values are randomly set, leading to different minimisation
possibilities each time. In addition to this, depending on the actual
network topology (Weights distributions within the network space),
a local minima can lead a training process to optimise in an
incorrect direction, thus blocking any further optimisations which
might otherwise have been achieved.

As can be seen [Appendix J - Network Mapping], various separation
models have been achieved. These charts show the firing rates
achieved for the test data sets, expressed as a percentage of the

total dataset size.

InTeLLIGENT OpTICAL SENSOR - 249

Svstem DeveLopMENT

Although this might be an encouraging sign, it is necessary to
evaluate whether this separation is indeed representative of the
data classes or not. If this is not the case, the use of this pre-
sorting network, working with the current datasets, cannot be
justified, as the mapping output would provide no further
information as to the object’s classifying likelihood - This would
simply result in unnecessary information being fed into the next
classifying stage, thus tying up a number of resources and

compromising the final system performance.

At the very least, this would represent a waste of processing time,
which cannot be justified on a realtime system, where the system

effectiveness is measured by its update interval.

The actual percentage of target to noise data in the various data

sets is as follows:

Centres: 63.80 % of Target conditions.
Combine: 64.43% of Target conditions.

Extremes: 63.80 % of Target conditions.

The most accurate data splitting was generally achieved by the
"Extremes” dataset, with a clear separation between the two main
classes, and an effective mapping separation of 64% mapped target

to 36% mapped noise.

InTeLLiGent OpTical Sensor - 250

Svstem DeveLopMent

This is close enough to the dataset separation of 63.8% - 36.2% to
be considered a valid mapping separation. The incorrectly mapped
0.2% of the cases are due to a number of factors which are
essentially due to conditions where the target and noise data
present no clear separation, thus necessitating a further
classification stage assisted by further data parameters for the

condition considered.

The effect achieved through the use of this type of SOM network is

effectively a form of data compression via a mapping mechanism:

Starting from a set of 8 unsorted data inputs, the SOM net has
optimised these and converted them into a probability measure as
to their belonging to a certain class within the data. This particular
class in itself is not specified, but using the expected results against
the test data set, the classification areas can be roughly estimated.

As the output of the SOM network is not intended to be directly
interpreted, but will in turn be fed into a further classifying stage
using a supervised learning process, it is at this stage not actually
necessary to carry out the labelling process, apart from the
information it would give as to the reliability of the SOM sorting

process.

This probability measure is dependant not only on the actual

Intecicent Oprica Sensor - 251

Svstem DevELOPMENT

winning node coordinates, but also on the vectorial distance to this
node, and the associated metric (although these values are indeed

related):

The chance of an input data set of belonging to a certain data class
decreases as the vectorial (Euclidean) distance to the winning node
representing this data class increases. Conversely, the smaller the
vectorial distance, the greater the likelihood of the dataset actually

belonging to the described class.

There are thus a number of outputs from the SOM network to be

considered. These are:

- Winning node x coordinate.
- Winning node y coordinate.
- Vectorial distance from dataset to winning node.

- Metric measure.

In this case, the use of a SOM actually results in a net data
compression ratio of 50%, coupled with the advantage of a form of
preparatory data mining as to the classification of the data.

This effectively completes the initial development of the preliminary

Mapping stage.

InveLuicent OpTicaL Sensor - 252

Svstem DeveLopment

6.6.3 - Classifier

The development of the classifier module is, in a way, a lot easier
than the initial data mapper, as the process to be used follows a
supervised training method: The system is presented with a set of
data inputs and simultaneously with the expected output values.

This makes it very easy to measure the actual performance of the
network, the main difficulties lying in the steps of data selection,

data preparation and network optimisation.

During the system evaluation phase, the main validation tool used
was a series of small backpropagation networks. Indeed, the entire
data preparation carried out was to optimise the obtained data for

exactly this type of network.

The choice of input data is also partially dependant on the data
output by the original mapping layer. Data available from here is:

- Winning X Node.

- Winning Y Node.

- Euclidean Distance to input data.

- Maximum Boundary Measure.

- Metric (Relative measure of Sum of input data to the

boundary size).

Data used in previous small classifier nets was:

- Box Width.

InteLucent OpticaL Sensor - 253

System DeveLopMENT

- Box Height.
- Centroid X Position.
- Centroid Y Position.

- % of total boundary area set by object.

Also available as possible inputs are the various radial measures,
which could be treated in the same way as the individual segment

measurements, by processing them through a separate mapper.

The other measurements currently available are either irrelevant
(Box X Pos, Box Y Pos), or are represented by other measurements
(Box Area, can be calculated using Box Width and Box Height).

Whether the classifier will be able to deduce these relationships is
not clear, and it might be worth considering some form of

preparation.

Considering the values Box Width, Box Height and Box Area, these
could be represented as:

1 - Box Height, Box Width.

2 - Box Area.

3 - Box Area, (Box Width/Box Height).

Considering the various methods:

1: Provides the full information, although the link between Height

Inteuacent OpricaL Sensor - 254

System DeveLoPMENT

and Width will not necessarily be recognised. Original data can be

reconstructed.

2: Provides the most condensed form of data, however, the object
dimensions are lost in the data. Does not allow a full reconstruction
of the original data. Original data can be reconstructed, although a

scaling problem might arise.

3: This approach provides a comprehensive coverage of the actual

data space, giving a condensed form of the object relationships

For the data to be fed into a classifier network, it should ideally be
within the range of 0/1 or -1/+1.
If a simple ration is taken of Box Width/Box Height, this will not
necessarily be below 1, as for given objects the width might be
greater than the height.
Inverting the result in such a case is not acceptable, as the network
input order must always remain consistent.
One solution would be to present the data in vectorial form:

Max = Max(Width, Height)

Vv, = Width/ Max

Wwid

= Height/Max

Height

although this does result in two output values, it does still represent

an improvement in the description of the data, and provides a

InreLLGent OpticaL Sensor - 255

SvstemM DEvELOPMENT

simultaneous normalising effect. Coupled with the normalised Box
Area value, a full reconstruction of the original data is still possible,
showing that data loss has not occurred.

This does not however solve the problem of providing a single value
which will consistently be in the 0-1 range without inverting the
presentation order for given circumstances.

The next step would thus be to create an artificial data split at 0.5,
where values below this would indicate a normally low ratio (less
than 1), and values above a high ratio (over 1) although the
techniques used to execute such a transform always lead to a loss
of the original data, which is contrary to the entire principle of data

optimisation.

6.6.4 - Classifier Training

The initial training dataset for the final classifier will then consist of
the following input vectors:

- SOM Winning Node X Pos

- SOM Winning Y Node

- SOM Euclidean Distance

- SOM Metric

- Centroid X Pos

- Centroid Y Pos

- Box Area

- Box Width

InTeLLiGenT OpTicaL Sensor - 256

Svstem DeveLopMENT

- Box Height
although none of these will be presented in their raw extraction
form.

The types of optimisations are shown below:

SOM Winning X Node:

1 in n encoding. n taken as maximum SOM network width.

D, = Som Winning X Node / 20.

This form of 1/n encoding is generally not recommended, due to the
artificial ranking which it creates within the data ranges represented
for the particular vector. In this case however, a geometrical
relationship already exists due to the topography of the network. It
is therefore entirely correct to create this implied ordering which

gives an idea as to the actual position within the total grid

SOM Winning Y Node:
1 in n encoding. n taken as maximum SOM network height.

D, = Som Winning Y Node / 20.

SOM Euclidean Distance to winning node:

D, = Distance / Number of SOM inputs

D, = Distance / 8.

SOM Metric:
Metric = Sum of SOM inputs/Max Boundary

InTeLLiGent OpricaL Sensor - 257

SvsTEM DEVELOPMENT

Where Max Boundary = 8.

Metric_ =0
Metric =1
D, = Metric.

Centroid X Position:

The data extracted represents the absolute position from the image
edge. This must be processed to result in a measure relative to the
current object’s position.

D, = (CXPos - X_)/Width

Centroid Y Position:
This is similar to the X Position.
D, = (CYPos - Y _)/Height

Which results in a relative percentual measure between 0 and 1.

Box Width:
D =Width/Max(Width,Height)
where Max(Width,Height) relates only to the current input vector,

not the entire dataset.

InTeLuGent Opricat Sensor - 258

SysTem DeveLopment

Box Height:
D, = Height/Max(Width,Height)
where Max(Width,Height) relates only to the current input vector,

not the entire dataset.

Box Area:
D, = BoxArea/(320x240)
No dynamic scaling is used here, as smaller values are intentionally

suppressed in favour of larger objects.

A number of networks were trained [Appendix A - 9.3], based on
these inputs and a poll of the best performing SOM networks
developed previously.

The necessity to develop a number of different models, even when
using the same setup parameters, arises from two main factors:
Initially, a networks weights are randomly initialised. This random
starting pattern effectively changes the energy states within the
network, leading to a unique internal structure for every run.

The second factor which will affect the network development is the
type of data used to train it, as well as the order in which the data

is presented to the network.

An MLP network is also very flexible in its actual internal structure.
As mentioned by L. Tarassenko in “A Guide to Neural Computing

applications” [16], a three layer architecture is capable of solving

InTeLLIGENT OpricaL Sensor - 259

Svstem DeveLopMeENT

most non-linear problems, the difficulty remains only in selecting

the correct number of nodes on each of these layers.

For the network considered here, the input layer has nine neurons,
and the output has a single neuron.

As yet, no theory has been developed as to the exact relationship
between the network architecture, training data and layer sizes.
This process is thus, initially at least, fairly empirical.

Initially, this was set to a guessed value.

The available known data set was split into two randomly selected
non-equal sections:

Training (approx. 2/3 of the data).

Validation (approx. 1/3 of the data).

The sets were selected using a random sorting process, in order to
obtain representative samples for all conditions in both data sets.

This ensures that all three data sets (training, testing and
validation) all have variety of data samples, leading to a balanced
network training process and thus optimising the generalisation
potential of the final network. This would not be the case if the
training data had been severely biased towards a particular type of
condition, for example only crouching humans, which would reduce
the networks ability to correctly classify conditions it had not

encountered during the training phase.

InterLicent OpticaL Sensor - 260

Svstem DeveLopMeNnT

A further Testing set was created using the original noisy data, in
order to evaluate the actual generalisation potential of the final

networks.

6.6.5 - MLP Considerations

The process of training an MLP network involves carefully watching
the output error reduction to select the best point to interrupt
training, at the stage where the output error is the lowest, however
without having the network simply learn the training data and loose
its ability to generalise to yet unseen data, a process known as

overtraining, or overfitting.

The method used is to present the network with the separate
testing data set after a preset number of training epochs. This will
be shown to the network in a pure analysis and not training mode,
and the output compared to the expected value. This effectively
generates a second error plot, which can be monitored in paraliel
with the first.

The lowest point on the second curve can indicate the ideal training
point of the network, as after this the network weights will gradually

start to overfit to the training data (Fig.123).

InteLuGent OpricaL Sensor - 261

System DEeveLOPMENT

Training Set Error

Ideally
Trained
Network

RMS Error

Validation Set
! Error

Number of Training Cycles

Fig.123:RMS Training Error against Testing Error

The simple evaluation of these curves is, however, not really
sufficient to determine the best training breaking point. Even
though a network might be giving a satisfactory classification rate,
the system itself might well be processing redundancy: The actual

size of the network might still be optimisable.

The number of neurons on each layer will closely determine the
effectiveness of the network.

Too few neurons will cause the network to perform poorly where
many different data classes are to be evaluated, as well as causing
a poor network performance on new data. Such a fault is however
normally to be recognised during the training phase, as the network
training error is then unlikely to converge to 0, but will generally
retain a fairly high value, depending on the complexity of the

training data.

e ——

InTeLLiGent OpTicaL Sensor - 262

System DevELOPMENT

Too many neurons however are unlikely to adversely affect the
classification rate of a given network. Due however to the number
of calculations involved in a complex network structure, the sheer
excess of neurons will lead to waste of processing power and time.
It is also eventually to be considered that the network internal data
groupings will be spread out more widely throughout the network
structure, leading to poorer performance in the case of the

introduction of new features during the testing phase.

A network can be gradually pruned, either on an empirical basis,
where a limited number of neurons are disabled and the network
performance then evaluated, or by considering the firing rates and
values of specific neurons. A neuron with a low firing rate (i.e.
rarely activated) and low output values (near to zero), can be
evaluated as participating little in the network performance. Such a
neuron can then be disabled to test its actual contribution to the
classification process.

If no deterioration in the network performance is observed on a
representative data set (it is important that all data cases be tested,
as a given neuron might only fire for a given situation), the selected

neuron could be completely erased from the network structure.

Many of the available neural software packages are capable of
dealing with the evaluation of such neurons, either automatically, or

via user prompts for confirmation.

InteLLiGenT Opticat Sensor - 263

Svstem DEVELOPMENT

In network optimisation, the actual ordering of the data inputs can
also be of importance [16]. If logical or mathematical relationships
exist within the input data set, it can assist the network

classification to present this data to the network in a sorted fashion.

In this example, the Box Area, Box Height and Box Width values are
all linked, and are thus to be presented to the network at adjacent

inputs. This also applies to the Centroid X and Y positions.

6.6.6 - MLP Training

Using the values presented earlier (SOM_X, SOM_Y, Euclidean
Distance, Metric, Centroid_X, Centroid_Y, Box Width, Box Height,
Box Area), a number of networks have been developed, based on a
three layer structure (2 hidden layers and 1 output layer) and using

a sequential training process.

The number of neurons per layer was varied between 4 and 7 for
layer 1, and 2 and 5 for layer 2. The output layer was kept
consistent with a single output.

A single output is, in this case, sufficient, as the data is being
classified into one of two classes (person, or no person). A
possibility would be to enlarge the output layer to two neurons,

thus dedicating one neuron to each data class, but tests carried out

InTELLIGENT OpTICAL SENSOR - 264

Svstem DeveLopmeNnT

during the initial SOM tests (linked to small MLP’s for performance
evaluation) showed no improvement between the two structures. In
a number of cases with different MLP structures and a variety of
mapping SOM networks, the output error varied only between a
few decimal positions, with no consistent trend justifying the

increased network complexity.

It must not be forgotten that the final structure is to be kept to the
absolute minimum size, in order to enable a rapid translation to a
hardware model. The final network size and input data vector size
will be instrumental in determining the processing power required in
the final system, in this case, a system to be integrated into the
actual camera module, thus critical in determining the cost of the

entire system.

The networks developed are based on two particular SOM models
using the Extremes data set. The best performing SOM networks
with training cycles of 200 and 400 epochs, initial learning rates of
0.4 and momentum rates of 0.1. The learning rate and momentum
rate values are dynamically updated during the training process in
order to optimise the results obtained: Whilst these parameters
initially start with quite high values which allow for larger adaptation
within the network, their values are gradually reduced to near-zero

following an exponential curve.

InTeLuGent OeticaL Sensor - 265

Svstem DeveLopment

Network
Output

!

7

MLP
Layer

SOM

Output \\\\\
(5] Qe

e ® O

(¢ NG © @

0 0 ¢ 10 e

O 68 10 &

® 0 16 ©

Q0 1© @

e Q D O

© O © O

o0 e

ll lllbooooo

Input Layer
Fig.124:Final Network Architecture

(Note: Not all connections in the networks are shown)

The complete network structure is shown in Fig.124.

The diagram above illustrates the most successful form of network
which was developed, using a 20x20 SOM network to process the
Extremes segment measurements, the results of this mapper and 6
other inputs from the raw data being in turn fed into an MLP

network with the following structure:

Input Layer: 9 Neurons.
Hidden Layer 1: 7 Neurons.

Hidden Layer 2: 4 Neurons.

InteLuGENT OpticaL Sensor - 266

SysteM DEVELOPMENT

Output Layer: 1 Neuron

(As the input layer does not contain any adjustment weights, taking
the data values directly, this is not considered as an actual

adjustment layer of the network).

A number of sequential training sessions were carried out with the
said architecture in order to obtain the best starting point, an
important feature considering the network weights random

initialisation process.

The training interruption parameters were set as follow:
Interruption via testing results or on reaching a minimum RMS error

of 0.01 on the training data.

The effectively reached interruption point eventually retained the

following values:

Training Data RMS error: 0.087258.
Testing Data error: 0.065488.

overall training period: 97 Epochs.

Even though the target RMS error value had not been reached, the
training process was stopped at this stage as further training cycles

were only leading to a worsening of the network resolution when

InTeLuGent OpTicaL Sensor - 267

SvsteM DEVELOPMENT

considering the performance of the network on unseen data, thus
implying that further training was only Ieadihg to an overfitting of
the training data set.

The network training was then repeated using the same
initialisation point, as the data presentation order had been
randomised.

This process was repeated, using variations to the network
momentum and learning rate values, in order to optimise the
particular set of starting weight values.

The entire process was repeated over a selection of new weight
initialisations, which provide not only new parameters to optimise
the training run, but an entirely different topology offering different

minimisation possibilities.

Carrying out these optimisations over approximately 10 new weight
initialisations reduced the final error level by a value 0.007, thus
providing nearly a 1% improvement in the network resolution.

This can be seen in Fig.125:

Fig.125:0ptimised Network Resolution

InTeLLIGENT OpTiCAL SENSOR - 268

Svystem DeveLoPMENT

[osm prsmna ey
ERimes e

110348 -1 i [A W s i o e TG Tes! Ennor [Natvaail
Hozm f-ee-iefen E"'""' _____ :‘"“‘3 _____ ‘;"""E _____ Fe i | [IR083T14)
R
e e

0.074 NN IO RSSO O BT

| D 42 85 127 169 22 X4 2% I\ W

Epach

Where the testing data error represents the performance of the
network on a random selection of novel data, representative of the
full data-range.

As can be seen on the graph above, the crossing point of the two
error lines occurs, in this case, on approximately the 310th training
epoch, after which point the testing error starts to increase whilst
the training error continues to decrease, indicating that the network
is now purely learning the training dataset instead of generalising it,
and is thus losing its ability to classify novel data sequences.

The graph in Fig.125 showsn that this is not the first crossing point
of the training and validation error lines, which is due to the
overcoming of a local minima in the network topology. This is
shown by the slight rise in the training error value, followed by a
relatively sharp drop from 0.118 to 0.074. Such a local minima is a
common feature in most networks which, if not taken into

consideration, can provide sub-optimal performance. The

InTeLLIGENT OPTICAL SENSOR - 269

Svstem DeveLopmenT

momentum factor in the training sequence is used to overcome this
particuliarity, by modifying (normally increasing) the calculated

weight change factor.

This effect was observed on all networks of this size, suggesting a
limitation has been reached for the representation of the data, and
that a further reduction in size of either of the hidden layers would
lead to a decrease in problem resolution. This was confirmed when
smaller networks were trained but failed to achieve RMS error

values lower than 1.2.

Examining the weights of the most successful network also revealed
no values close enough to zero to justify cutting a particular

connection out of the network structure.

Considering the other option, i.e., enlarging the network structure,
a few experiments were carried out using structures varying

between 2 and 3 hidden layers, with up to 15 nodes per layer.

Unlike a more restricted network, where the network topology does
not allow the network to map the data accurately enough, thus
leading to poor problem resolution, the larger a network becomes,
the greater the danger of the network overtraining and simply
learning the training data set, thus not developing any

generalisation rules for unknown data.

InTeLLiGeENT OpticaL Sensor - 270

Svystem DeveLopmenT

This effect was observed on the larger network tests, with the RMS
error value dropping down below 0.03, but coupled to an ever
increasing value for the test data set error.

This factor seemed to occur immediately when a third hidden layer
was introduced, and for a two layer structure, was apparent when

the first hidden layer size surpassed the size of the input vector.

Experiments in inverting the layer distributions (first hidden layer
smaller than the second hidden layer) were briefly tested, but the
problem being considered is not one of data compression or noise
suppression, but one of accurate classification. This type of
structure is therefore not suited to the type of data analysis

expected of the network.

6.7 - Conclusion

Using the current approaches in the stages of data extraction,
preparation and analysis, a valid system has been established which

permits a satisfactory resolution of the problem at hand.

The addition of a second supportive SOM mapper using the radial
object measures might be worth considering, to obtain a yet higher

accurate final classification rate, although this would be at the

InTeLLIGENT OPTICAL SENSOR - 271

Svstem DeveLopment

expense of a slower system response, due to both the data

extraction and analysis through the network.

With an overall error rate of 0.0654 on data not seen in the training

stage, the final network is pleasantly compact:

7%9 connections on level 1 : 63
7x4 connections on level 2 : 28

4 connections on level 3 : 4

Total MLP connections of 95.
The heavier part of the processing is embodied in the SOM data
mapper, with a 20x20 structure and 8 inputs, which results in 3200

connections.

The advantage however remains in the fact that the dynamic
adaptations are taking place in the initial image analysis stage, thus
not requiring any further training on the part of the networks

presented here.

InTeLLiGenT OpTicaL Sensor - 272

ConcLusion

7 - Conclusion

There comes a time in the history of any project when it becomes

necessary to shoot the engineers and begin production - MacUser,1990

The initial reason for starting the development of the Intelligent
Optical System was in response to the extremely high rates of false
alarms of unattended surveillance systems, and as a way of
promoting the use of optical surveillance methods within the home
security segment, doing away with the need for trained personnel in

both the system setup and the system operation phases.

Initially, the study was to cover the fields of both fire detection and
intruder detection. After a period of initial research, the fire
detection aspect was dropped as extending the scope of the project
too much, and it was decided to concentrate on the field of intruder

detection.

Although, due to unforeseen circumstances (Weyrad Ltd. filed for
bankruptcy in late 1999 and was subsequently split up and sold to
a number of different companies), the product itself was never
developed to the stage of a commercial prototype, the system

development can be considered to be a success.

InteLLIGENT OpTicAL Sensor - 273

ConcLusion

From a failure rate (False alarms and mis-classifications) in
commercial systems approaching 97%, the I0S system has reached
a correct classification rate of 94%, with the largest proportion of
the remaining 6% being due to false negatives, using an approach
which can be mounted in any type of environment without having to
retrain the entire system.
This dynamic adaptation to the system’s environment represents a
huge advantage for a commercial application, meaning that
successful detection can be carried out within a changing
environment without any detrimental effects to the actual detection
rate, a problem which is commonplace in many automated
surveillance processes.
Given the initial conditions, these have been satisfied:
The final system is capable of operating with no prior knowledge
of its environment.
The system camera installation does not require any special
training, any location will do.
The system is capable of analysing multiple objects in each
image, even if these are partially obstructed or affected by other
noise.
The system can operate entirely without operator intervention
(even though it is currently in the form of modules, created for
ease of development and testing, these can easily be integrated
into a single streamlined package, as each module only needs to

be started - all calculations are carried out autonomously of

InteLLiGent OpricaL Sensor - 274

ConcLusion

operator intervention.)

- The system has been kept compact to allow for easy integration
into a stand-alone product.
Running on a Pentium II-300Mhz computer running Windows NT,
the system is able to run a complete image analysis sequence
within 0.0625 seconds. This does depend on the image
complexity and the number of objects detected, and is a
combined value taken from timing the various separated
processes. Once these are integrated into a single streamlined
package, running on dedicated hardware, it is assumed that this
time would drop approximately by half, thus allowing for a close-
enough match to real-time performance for a regular surveillance
system.

The final network structure can be observed in Appendix K.

InTeLucent OpricaL Sensor - 275

FurTHER STUDIES

8 - Further Studies

Now that we have all this useful information, it would be nice to be able

to do something with it - Unix manual

The system developed so far, although it uses many dynamic

features within the image processing stages, is essentially a static

system which analyses one image at a time, and does this

completely separately of previous images within a single

surveillance sequence.

On the current system, there are two main areas which would

benefit of an entirely dynamic, time-based approach:

8.1 - Datum Image Setting

The datum image is currently set at the beginning of a detection
sequence, and is then used throughout the surveillance period,
using various methods to optimise it in regards to the incoming

Camera images.

If however, the surveillance conditions are subject to larger
changes, the datum image will no longer be presenting an optimal

Measurement base. In such a situation, it would be advisable to

InteLLIGenT OPTicAL SensOR - 276

FurTHER STUDIES

capture a new datum image, obviously only if no actual object

movement is detected in the surveillance area !

Such a new datum image capture could be triggered by one of two
types of changes:
Dramatic overall light level change.
On each image, the median colour level is measured. If this
median level on the camera image is consistently higher or lower
by a factor of 10%, a new datum image should be generated.
The actual time frame on which to base such a decision should be
sufficient to take into account normal variations due to:
- Cloud Movement.

- Objects temporarily covering the entire camera lens.

A suggested value would be set to approximately 10 minutes,
thus avoiding too many updates from occurring due to changing
weather conditions.

It would thus be sufficient to plot the average median light level
difference over the selected time frame to provide an update
decision. This is therefore based on an already existing

calculation, thus avoiding an excessive extra calculation load from

being put on the overall system.

Constant image difference detection over a given time period.

Such a condition is likely to occur on an outdoors based

InTeLLGenT OpTicAL SENSOR - 277

FurRTHER STUDIES

surveillance system, where the actual surveillance area might not
be completely controlled. This would apply if the surveillance area
was covering an area such as a storage area, where a change in
the actual environmental geometry might occur:

- A box might be added to or removed from the surveillance area.
Once such an event has been registered by the detection process,

as long as it remains present, it need not be repeatedly analysed.

Using the current system, each area of change within the image
is initially stored within its own matrix, providing a number of
definitions relating to the geometry of the object.

It would be possible to store at least a subset of this information,
allowing the system to memorise or compare the position of non-

target objects within an image.

Over a predefined time frame, the constant detection of a given
object could then lead to a system datum image update, thus
removing a source of system slowdown (each object detected
leads to a system response penalty, as the object must first be

analysed then classified).

The two methods considered essentially lead to the type of effect
within the image. One will be an overall light level change, whilst
the other will lead to a local effect. In order to combine the

processing of these parameters, one method would be to split the

InTeugent OpticaL Sensor - 278

FURTHER STUDIES

overall image into a number of sub-grids, which can then be
analysed for light level differences. This would effectively remove
the need to memorise all detected object parameters, depending on
the size of the defined grid, as a constant difference within one or

more of the subzones would lead to an overall datum image update.

8.2 - The Object Classification Process

The object classification process, although dependant on a number
of dynamic features, it itself also basically a static process,

analysing each image entirely independently of the previous ones.

For a surveillance system, this is however a disadvantage, as
objects within a scene follow dynamic paths: A person might walk
behind a car, thus being partially or entirely hidden for a few

seconds.

Not only this, but the recognition ratio of an object is likely to
change over time as different aspects and thus geometries are

Presented to the camera.

It is important to note that the final classifier does not output a
simple YES/NO condition, but results in a classifier percentage level

of confidence, in this case a six-digit precision value, which will

InTELLIGENT OpTICAL SENSOR - 279

FurTHER STUDIES

fluctuate for each frame of an image, depending on the object
position and geometry as well as the image noise level (The noise
correction algorithm does affect the final data extracted for a given

object within the image).

It is therefore advisable to provide a confidence level tracking value
for each identified object within the image [66, 61]. Using such a
function, the previous classifier output, or an average value of the
previous classifier outputs over a given number of frames, can be
provided as an extra input to the final classifying stage, thus
providing a form of bias which can help in situations where an
object is temporarily lost of partially hidden. Such a process could
also assist in eliminating obvious non-target objects before these
are processed by the classifier, although such an approach is
slightly more dangerous, as a valid target could well initially be
classified as 0% valid if it is not within the actual detection range.
This would then provide an artificial bias to a non-target output,
which would then require a number of successful target
classifications to reach a non-biased situation, unless the actual
nétwork output were considered on a logarithmical basis, thereby
leading to a much larger contribution by valid targets as compared

to non-valid objects.

The overall mechanism of such a process can be seen in Fig.126:

IntewLicent OpticaL Sensor - 280

FurtHer Stupies

Incoming
Object
Data

Classifier

Feedback
Woeighting

.‘..__

Fig.126:Feedback Process

Network
Output

Such an approach would then open the way to additional features |

such as object trajectory prediction, which would provide extra

information as to the nature of the object detected. [17].

InTELLIGENT OPTICAL SeEnsor - 281

AppENDIX A

9 - Appendix A

apture0580.vos
apture0588.vos
Ure0586.vos
ic009.vos
ic017.vos
1c025 vos
1c033.vos
lc64T.vos
}c049.vos
\cO57 vos
lcO65 vos
tc073 vos
icO83.vos
ic093.vos
ic103.vos
icT113.vos
Ic123 . vos
Ic133 Vos
lc143.vos
lc153 vos
ic167.vos
Ic169.vos
ic177.vos
Ic185.vos
ic193.vos
ic201.vos
c208.vos
ic217.vos
ic237.vos
1c237 vos
ic247 . vos
Ic257 vos
Ic2687 vos
Ic277 vos
1c287 vos
15297 vos
1c305.vos
ic313.vos
ic321.vos
1c323 vos
1c337 .vos
1c346 vos 2
1c353 vos
1c387.vos
lc371 vos
ic387T.vos
ie391.vos

: 13
: 5 2
"\ 2 133
5 2|
0 2) 3|
: 2| 3|
2 3|
2 3|
8|
4 4
o 3 3
& | 3
a 77
= q _
ca T 19
2 2
2|
= 1 5 13
2 15|
8| k£ 2
2 S
ca, s
O
c: gl g
5 72| 15]
18] . g
a) 20| >
a 1 z
3 2
4 B z
capture0412.vos 7I =
capture0420.vos 8 2
capture0428.vos 17 2
apture0436.vos 12
apture0444.vos] 5
apture0452.vos 8| &
ure0460.vos 1 5
apture0470.vos 3
apture0480.vos 14&] 5
apture0480.vos =
ure0500.vos 2 2
apture0510.vos 2] 2
capture0520.vos =
ture0530.vos 18] :
capture0540.vos 35
apture0548.vos 10| B
apture0656.vos 53 2
apture0564.vos 78|
ure0572 vos | 5
3 -
O
[5)
[5]

|
CINE

W[OT@F&M)N-I ﬂg‘-l:
2]
O

o] <]} |
ggmnmw %wrd

o)

-l-‘ﬂ@r(nmﬂhbﬂo

YN
)| Q| BIOT~NI NI~ o] o] o] »] W] 3] Ol tn] O G O] RINEN] DYl On

)

=

4
21(”0”0

o

QrOFAWGN-l(DA

alal |afal
o] =] {&) 1 (5 (] 1 (e} [&)

InteLLIGENT OpTICAL SensOR - 282

AprpENDIX A

9.2 - Image Subtraction Results

The following images illustrate a few cases of image substraction
using the developed object detectionand noise reduction algorithms,
as well as a classification using the first test MLP network. Although
fully trained on artificial data, these images show a satisfactory
performance on real data.

The sequences show the datum image, the incoming camera image
to be analysed and the final object recognition with initial network
classification, where the classification range is a percentage of

certainty from 0 to 100 that the target considered is valid.

Datum Image Camera Image

Fig.127:Sequence 01

Fig.127 shows a fairly clean capture, where the resultant difference

is very clean and a high classification is reached.

InTeLLIGENT OpTICAL SENSOR - 283

AppPENDIX A

Datum Image Camera Image

Fig.128:Sequence 02
Fig.128 shows a slightly more difficult condition with ground

shadows and similar colour bands.

Fie Calcubsions Seltngs Help

Datum Image Camera Image

Fig.129:Sequence 03
Fig.129 shows a situation with a high level of distributed noise due
to light casting. Note how the noise reduction algorithm serves to

correctly isolate the valid target.

Datum Image Camera Image

Fig.130:Sequence 04
Fig.130 shows a more difficult situation where the target has

identical colour shades to the background, creating local loss of

InTeLLIGENT OPTICAL SENSOR - 284

AppEnDIX A

difference. The noise correction algortihm helps to counteract this

effect, succesfully identifying the final object.

Datum Image Camera Image

Fig.131:Sequence 05
Fig.131 illustrates a difficult environment with many reflections and
shadows. Partial loss of difference due to ground shadows on the

target legs.

Camera Image

Fig.132:Sequence 06

Fig.132 shows a similar situation to fig.131, however with more

distributed noise on the right and lower edges of the image.

InTeLLIGENT OPTICAL SEnsOr - 285

AppENDIX A

Datum Image Camera Image

Fig.133:Sequence 07
Fig.133 illustrates a condition with multiple targets, two valid and
one non valid, as correctly classified by the initial network. Note the
loss of the first targets' torso due to colour similarieties with the

background, and the ensueing lower classification value.

e Fio cmmmb

Datum Image Camera Image

Fig.134:Sequence 08
Fig.134 shows a fairly straightforward target analysis with multiple

occlusions in the torso area due to background patterns.

Datum Image Camera Image

Fig.135:Sequence 09

Fig.135 is again a fairly straightforward analysis on a smaller

object.

InTELLIGENT OPTICAL SENSOR - 286

ArpPENDIX A

Flo Cokustions Setings Hebp

Datum Image Camera Image

Fig.136:Sequence 10
Fig.136 illustrates a condition with severe shadowing, which is
combined with the actual target into a single object with partial

noise cleaning - Classification is still correct.

Datum Image Camera Image

Fig.137:Sequence 11
Fig.137 illustrates a condition with quite a high noise level due to
light and shadow casting. The single valid target in the frame is

correctly classified.

Datum Image Camera Image

Fig.138:Sequence 12

InTeLLIGENT OPTICAL SENSOR - 287

AppenDIx A

Fig.138 illustrates a case of an invalid target with a high local

noise value due to surface reflections.

Datum Image Camera Image

Fig.139:Sequence 13
Fig.139 illustrates the case of an invalid moving target, couple with
noise artifacts due to light/shadow casting. It is interesting to note
that the noise artifact is not classified as well as the actual invalid

target(the dog).

Datum Image Camera Image

Fig.140:Sequence 14
Fig.140 shows a valid and an invalid target in the same frame, with

correct detection and classification for both.

InTeLLiGent OpTicAL Sensor - 288

AppEnDIX A

Datum Image Camera Image

Fig.141:Sequence 15
Fig.141 shows two correctly identified and classified valid targets in
a single frame.Note that shadows have been eliminated via the

noise correction procedure.

InteLLIGENT OpTicAL Sensor - 289

AppENDIX A

9.3 - MLP Network Evaluations example

The exampe below shows an evaluation of a number of MLP-type

networks on a same data set but with different architectures and

weight initialisations.

Results

False Positives

_Linear | RMS Norma ecture Cycles Train Mode
ot 1 equential Random Replace
01-1 87,24 87,24 10-6-3-2 30000 X
01- 87,24 87,24 10-6-3-2 25000 X X
0
et 2
01
0 92,19 87,88 85,71 55,26 10-6-2 20000 X
et 3
01-1 76,71 77,35 0,68 10-5-3-2 20000 X X
01- 76,71 77,35 0,7 10-5-3-2 30000 X
'02-1 72,89 73,68 94,11 96,97 10-8-2 24400 X X
'02- 78,79 78,15 3 2,9 10-8-2 20000, X X
02-
et 4
01
02-1 78,47 78,47 0,74 0,74 10-6-4-2 30000 X
02-
02- 78,31 78,31 0,73 0,73 10-6-4-2 60000 X X
03-1]
03- 82,62 N/A 10-6-4-1 60000 X X
04-1 82,93 N/A 10-5-1 50000 X X
04-.
04- 85,33 N/A 9-5-1 20000-Isn|
04 73,68 N/A 10-5-1 30000, X
04- 49,6 N/A 10-5-1 12100} X
et 5
01-1
01- 83,25 80,7 5,71 4,95 10-6-3-2 30001 X
02-1 81,02 81,02 98,3 98,3 10-7-4-2 29500 X
02- 87,56 87,56 6,41 6,41 10-7-4-2 30000 X
02- 86,76 86,76 12,05 12,05 10-7-4-2 30001 X X
02
02- 88,68 88,68 8,45 8,45 10-7-4-2 50000 X
03-1 83,57 83,57 2,94 291 10-8-5-2 30000} X
03-; 83,09 83,09 5,66 5,66 10-8-5-2 30001 X X
03-.
et 6
01-1 48,01 48,01 100,00 100,00 10-4-3-2 20000[X
01- 95,06 95,06 19,35 19,35 10-4-3-2 30000}X
01- 67,94 67,94 95,52 95,52 10-4-3-2 20001|X X
01 95,37 95,37 37,93 37,93 10-4-3-2 30001X X
01- 14,81 14,81
01- 95,22 95,22 36,67 36,67 10-4-3-2 40002 X
01- 95,69 95,53 40,74 39,29 10-4-3-2 20003 X X
01 94,74 94,74 15,15 15,15 10-4-3-2 60003 X X
02-1 48,01 48,01 100,00 100,00 10-3-2-2 20000fX
02- 25,00 2500 10-3-2-2
0 9 g 0 000
02 51,99 51,99 0,00 0,00 10-3-2-2 30000
0 g 8 9 8 6 0 000
02 94,74 94,74 18,18 18,18 10-3-2-2 30002 X X

InTeLLiGENT OPTICAL Sensor - 290

Arpenpix B — ReLevant BRriTisH STANDARDS

10 - Appendix B - Relevant British Standards

BS 5839: Fire Detection and Alarm System§ for Buildings
BS 7230: Theft Detection Systems

BS 7807: Fire and Security Integrated Systems

BS 820: Anti-Burglar measures in Buildings

BS 5446: Components of Automatic Fire Alarm Systems for

Residential Premises
BS 4737: Intruder Alarm Systems
BS 5979: Code of Practice for Remote Centres for Alarm Systems

BS 6799: Code of Practice for Wire-free Intruder Alarm Systems

InTeLucent OpricaL Sensor - 291

Appenpix C — SPECIALISED SOFTWARE

11 - Appendix C - Specialised Software
Packages Used

11.1 - Neural Modelling

- Neural Works Pro 11
- Neusciences Neuframe
- TLearn v 1.03

11.2 - Data Analysis

- Neural Works Predict
- SPSS

11.3 - Artificial Data Modelling
- Macromedia Poser I

- 3D Studio Max
- Adobe Photoshop

11.4 - Code Generation

- Microsoft Visual C++ v5

InTeLLIGENT OPTicAL Sensor - 292

Arpenpix C ~ SPECIALISED SOFTWARE

11.5 - Main Self-written Packages

- Bitmap Wave Comparator
Analyses the colour waves of two bitmaps for rapid change
detection.

Includes auto adjustment to varying light levelsover the images

- Cheat Office
Image analysis deomonstrator showing the process of image
feature extraction as an executive toy, allowing an office

background to be cancelled and replaced by any specified image.

- Data Extractor

Extracts required data parameters from a VOS format file

- Multiple Data Extractor
Extracts required data parameters from a VOS format file. Can deal

with image noise and multiple objects

~ Neural Demo
Small demontrator of a simple MLP network for human

Classification. Works directly on VOS format files.

- Results Filter

Package for adjusting the varying data formats from the TLearn

package, for further use in Excel.

InTeLLGent OpricAL Sensor - 293

ArpenpDIX C — SPECIALISED SOFTWARE

- SOM Trainer
Self Organising Map generation and training software with visual

display of resulting network structures.

- VIOS Neural Demonstrator
More advanced neural demonstrator including image processing

algorithms for object detection and noise cancellation.

- VosDemo
Simple demonstrator package for grabbing and comparing camera

images. Also capable of saving the direct difference.

- VosReader

VOS manipulating package, allows user defined filters to be applied

to a VOS format file.

~ VosViewer

Rapid viewer for VOS format files.

- Weyrad Demo
Active demonstrator of image processing algorithms. offers
sequential timed or manual activation, saves the resulting VOS files.

Used for mass data generation.

InTeLuGenT OpticaL Sensor - 294

Arpenpix D — Data Pre-Processing TecHNIQuEs

12 - Appendix D - Data Pre-processing
techniques, a Summary

12.1 - Scaling / Normalising

The resulting value Y from an input X is calculated by:
Y = (X-Xmin)/Xrange

This type of scaling is used for continuous variables, where each
variable has its own separate dynamic range, and where the

distribution of the values within the variable’s range is fairly even.

12.2 - Angular Transforms

Each input is transformed into an angular representation in radians,
and a sin or cosine of the resulting angle is taken. This is then
combined with the vector length to give a two component

representation of complex data pattern.

Well suited to periodic variables, or for frequency analysis within

determined ranges.

InTeLLIGENT OpTicAL Sensor - 295

Arpenoix D — Data Pre-ProcessING TecHNIQUES

12.3 - Zero-Mean Unit Variance
Used for continuous data, this method is applied to a complete data
set and be applied either by row or by column (either by input set

or by variable set).

The actual transform is as follows:

Y = (X-mean)/Standard Deviation

12.4 - Binary Coding

This techniques is useful for categorical variables where a scaling
transform would artificially accentuate certain items.

The input can be coded using various methods, some of which are:
1inn: 100, 010, 001

Gray Scaling: 000, 001, 011, 010, 110...

hermometer: 100, 110, 111

Continuous: 1/n, 2/n, 3/n....n/n

Invericent OpTicaL Sensor - 296

Arpenpix D — Data Pre-Processing TecHNIQuEs

This does generally imply that a single data line becomes
represented by a number of lines, defined by the encoding method

chosen.
12.5 - Vector Augmentation

This method can be applied to multidimensional data vectors, and is

used to extract either the size or the direction of the data,

depending on the method chosen.

12.5.1 - Method 1, used when the vector size is
critical

Given an input vector E'=(e e e...e)

E’ is calculated for all input vectors, where
[IE']] = V(Ze?)=1

A value N is then chosen such that N>E’ (N=1.1E’) and a new

entry d to the input vector is calculated such that
d =V(N-|[|E']]")

This results in a new vector E”"=(d,e e e..e)

The final data vector is then considered as

Intewigent OpticaL Sensor - 297

Arpenpix D — Dara Pre-Processing TecHNIQUES

E=E"'/N

12.5.2 - Method 2, used when the direction of the
vector is critical

E’ is calculated as above, but the final data vector is obtained by :

E=FE/I|IE]]

InTELLIGENT OPTICAL SENSOR - 298

Arpenpix E — IMAGE StaBILISING METHODS

13 - Appendix E - Image Stabilising Methods

Two main methods exist for image vibration supression :

1 - Mechanical, using stabilisors or compensators.

2 - Software, by calcuting image movement and introducing a

corrective vector.

In Fig.142 is shown a modern mechanical system, as built in

professional digital cameras.

Fig.142:Image Stabiliser, Courtesy of “Digital Photography Review”,

source Konika Minolta.

In such a system, a motion sensor is used to capture the type of
Motion, and the entire lens and capture device is then moved
accordingly to compensate for the movement. This approach is

rapid and effective, but also highly expensive, and dependent on a

InTeLLiGent OpTICAL Sensor - 299

Appenpix E — IMace StasiLisING MeTHODS

combination of mechanical components which are subject to normal

wear.

Software compensation depends on comparing successive image
frames to determine the size and direction of movement. Many
systems limit themselves to comparing a specific area of the image
(i.e. The center) in order to speed up the process, and then attempt
to lock onto a recogniseable feature of an appropriate size.
Although this method is computationally more expensive, it is
cheaper to implement and does not really on any mechanical
systems which are prone to failure.

In Fig.143 is shown a sequence of images illustrating the software
correction process (courtesy of Stable Eyes, Ovation Systems Ltd.

http://www.ovation.co.uk)

Stabilised video sequence
Fig.143:Stabilised Video Sequence

InteLLigent OpticaL Sensor - 300

Arpenpix F ~ MeeTing SumMary

14 - Appendix F — A Meeting with Dr. Paul
Rosin, 19.11.98

Dr. Paul Rosin from Uxbridge was approached to lend some expert
opinion, having many years of experience in image feature
extraction. This is the stage which effectively converts the filtered

image data into a data set useable in a neural architecture.

Throughout the meeting, he outlined a number of different methods
for image feature extraction and matching, which will be reviewed

below:

14.1 - Line matching

This approach consists of trying to describe the data as accurately
as possible using lines and polylines. Obviously, the more accurately
the image is described, the more lines this will entail to be
calculated.

The problems related to such processing are:

14.1.1 - Fairly intensive processing

We cannot predetermine how many line segments will be required
to accurately define a shape, thus making the following network
architecture more difficult to establish.

If the number of line segments is limited to the major segments

only, there might and probably will, be a loss of important

InTeLLIGENT OeTicaL Sensor - 301

Arpenpix F — Meeting Summary

description data.
As the shape is described more accurately, the calculations become
more and more unreliable and prone to error, as each line is

calculated with reference to its successor.

14.1.2 - Shape Properties

We are here considering calculating a fixed number of relationships
within the image. These could be features such as max height and
width, positioning of Centroid, area calculation, perimeter
measurement, generic displacement vectors and global image
positioning.

Certain of these properties are unreliable as a basis for object
recognition, for example, perimeter measurements can very easily
be influenced by noise in the shape, in this case, area measurement
is much more relevant and reliable. Obviously, many of these
measurements will be scale dependent, but will be interlinked. The
use of a graduated camera would make measurements easier,
giving full scalar information, but distance can be compiled from the
data interaction.

Certain shape properties will also be heavily influenced by image
resolution, thus requiring a standardised set of image input
Parameters.

Generally, the first processing algorithm must be the best and most

reliable, as any errors occurring at this stage will be fed right

Intetticent OpticaL Sensor - 302

Appenpix F — MeeTING SummaRy

through any further processing and be exaggerated at every single
stage. The final cumulative error and data loss can become quite

large for complex algorithms.

InTeLLIGENT OpticaL Sensor - 303

Appenpix G — INFRA Rep IMaGgING

15 - Appendix G - Infra-Red Imaging

As mentioned in the previous section, an experimental capture was
also run using a small board camera with limited IR response.

A number of different situations were examined, with various
lighting set ups, including no lighting at all apart from the onboard

IR LED's.

Generally, the quality of the images obtained was quite high, with
accurate and sharp object outlines and little or no blurring over the
focal range (.5m -> 10m). The effects of the IR response were very
interesting. All following comments are valid within the range of the

IR illuminance only:

Under purely artificial lighting conditions, most shadows cast from
objects were altogether cancelled out. Although clearly visible to the
naked eye under the trial conditions, they did not appear either on
the monitor used at the time, nor on the final saved film. Objects in

the cast shadow suffered from no loss of definition in any way.

Under natural light conditions, this shadow cancellation was very
Much reduced, to the point of being practically non existent,
however, the sharper images more than compensated for the loss

of this ‘feature’.

InTewLiGent OpTicaL Sensor - 304

Appenpix G ~ INFrA Rep IMAGING

Under no light or low light conditions, the effect of the IR
illumination and response was most marked. Although objects
tended to lose any tonal information, their general outlines were
enhanced. At this stage, it is not the colour of the object which is
affecting its visibility, but the material it is made of, and also its
heat absorbance capacity. For example, polished black leather

shoes appeared as near white when within the IR range.

To explain the marked difference in shadow elimination between
natural and artificial lighting conditions, our assumption is that the
wavelength of the artificial lights (regular white fluorescent tubes)
have a much lower red component. Indeed, these types of lights
are normally balanced nearer towards the blue end of the spectrum,
due to the process of phosphorus excitation which they employ. Any
shadows created under these conditions will therefore be colder
than the same shadows cast by natural light. If we were to use
regular incandescent bulbs as our light source, we might very well
find this shadow elimination property much reduced, as such bulbs

have a higher red response.

InTeLLIGENT OpTicAL Sensor - 305

Arpenpix G — InFrRA Rep IMaGING

SUNLIGHT

INCANDESCENT LIGHT

Fig.144:Sunlight versus Incandescent Lamp

Fig.144 shows the spectrum for sunlight and an incandescent light.
The higher intensity of the IR component for the light bulb can be
clearly observed. The values on the scale are in Nm (Nanometers),
with human vision ranging from about 320 to just over 700, IR

being at the higher end of the scale.

InTeLLiGenT OpticaL Sensor - 306

Appenpix H — ExperiMENTS IN ARTIFICIAL DaTA

16 - Appendix H - Experiments in Artificial
Data

Wihtin this context of target analysis, we need only analyse moving
objects which are large enough to classify as being a possible
intruder. This precludes the possibility of having to analyse
inanimate objects or random movements. Natural motion due to
leaves moving etc are delt with in the preprocessing stage. The only

possible targets which then remain are human and large animal.

Having developed the system with human training sets, we know
that performance in that respect is adequate fro this first network.

We have however not presented it with any animal data.

For the sake of ease of use, the room modelled in 3DStudio in the
previous sections was used, with a mesh of a large sized dog, and a

number of scenes were thus created, as can be seen in Fig.145:

InverLiGent OpricaL Sensor - 307

Arpenpix H — ExperIMENTS IN ARTIFICIAL DATA

Fig.145:Dog Mesh

The final analysis of the data showed certain interesting

characteristics:

When presented side on, the dog was generally classified as being
between 40% and 60% positive target. However, presenting the
dog in a frontal view caused a dramatic rise in the recognition level,

with the final output lying between 70% and 85%.

Although the classification never rose above 90%, it is still
sufficiently high to raise concerns as to the current network validity.
If we observe the front profile of the dog (Fig.146), we can see that
it very closely resembles the ideal human profile, although

Obviously smaller. Within this system, we are however never taking

InteLLiGeNT OpticaL Sensor - 308

Arpenpix H — ExperiMENTS IN ARTIFICIAL DATA

account of scale, only of the direct screen size of objects.

Fig.146: Highlighted outline of dog seen in a frontal pose

This aspect of changing target resolution as the object moves
relative to the camera also highlights the benefits which could be
obtained in using some form of history, or time tracking. If each
frame’s target resolution were recorded, and each object tracked
(parameters such as Centroid displacement and relative size could
be used) the final recognition output would not be a straight
network calculation but would be a summation of past responses.
This final result could also be calculated using an intelligent system,

or might just be a straight averaging calculation.

InTeLLIGENT OpTicAL SEnsor - 309

Arpenpix I = ConTour ANaLYsis CONSIDERATIONS

17 - Appendix I - Contour Analysis
Considerations

Whilst the experimentation sequences described in the previous
sections have proved most successful, we are starting to investigate

a different technique for identifying an intruder.

The current approach of identifying every moving object within the
image, and analysing each of these separately can be quite a
lengthy process. In addition to this, non-human objects could be
Misclassified, leading to false alarm conditions. We could however
analyse the entire difference image as a set of fixed contours, which
we would then attempt to map onto objects in the image. If we
have generic contour maps for a standing human and a crouching
human, and maybe also for similar objects, such as a dog walking,
we could present each of these to the image and compare the
resulting correlation values to determine wether or not the target is

human.

This approach requires only a number of adjustable templates to be

stored in memory. These can then be deformed within set limits to

Map onto the image.

Similar work has been carried out by the Universities of Leeds and

Reading, with their Vehicle Tracker and People Tracker. When

InTeigent Oericat Sensor - 310

Aprpenpix I — ConTour Anavysis CONSIDERATIONS

observing their work, the only detection flaw resided in the fact that
the person had to be completely visible before the system could
carry out a positive identification. Once the person had been picked
up, they could then be partially obscured whilst still being tracked,
due to the use of incremental time information in the accuracy of
the mapping. Whilst this work made use of extensive calculations
which could not be used in a real time system, the approach was
interesting, and could be adapted to a neural system with a SOM

network.

Using this approach, a direct analysis could be made of the
incoming camera image, without going through the stage of image
comparison. If the image is reduced to tonal value contours, we can
then apply the templates directly to this. This might be a much
faster way of analysing an image, with a corresponding lower loss

of detail.

An analysis was carried out on the capture sequences, to determine
a generic standing human shape, and a generic crouching human
shape. The results can be seen in Fig.147 and Fig.148. As we can
see, the human form can fairly easily be reduced to a number of
simple geometric shapes, with variable mathematical relationships
within and around these shapes varying according to the aspect of

the target to the camera and the pose of the target.

InteLuigent OpricaL Sensor - 311

Arpenpix I — ConTour AnALYSIS CONSIDERATIONS

|deal Human shape. |deal Human shape.
Black lines rapresent possible Black lines represent possible
adjustmant vactors adjustrent vactors

Fig.147:Human Shape Analysis Fig.148:Ideal Human Shape
Further experimentation with Adobe Photoshop has shown that pure
image tonal level analysis might be insufficient to extract suitable
contours without the need for extensive reconstruction through data

extrapolation . This can be seen in Fig.149:

Fig.149:Note the legs of the target which have been lost to the contours

InTeLLGENT OpTiCAL Sensor - 312

Appenpix I — ConTour AnaLysis CONSIDERATIONS

In our discussion with Dr Paul Rosin , pure contour analysis via line
matching generally results in computationally expensive but not

highly efficient or reliable recognition systems.

A better approach to this problem would be to keep the existing
working preprocessing stages, and replace the network section only
with a SOM architecture. This can be trained to the stylised
templates we have just discussed. The input to the network remains
the same data as we are already using, whilst the output is some
type of confidence measure, or the correlation between each
existing template and the image object being analysed. In this way,
we can use a type of voting structure, and can also plot the varying
likelihood of the target being human over a certain time span. Such
a feature could assist in the constant detection of a target being
partially obscured and deformed through spurious shadow effects or
through the target being momentarily obscured by other objects in

the image.

InTeELLIGENT OPTicAL Sensor - 313

Arpenpix J — DeveLopment IMAGES

18 - Appendix J - Development Images

18.1 - 10x10 SOM Network Tests

The following images show the final network node mapping and

weight distributions for a 10x10 SOM network after the given

number of training cycles.

18.1.1 - Center Data Set

Ve

IT:ﬁww
.rn
M

B
.
Al
11T
N
T
Tl
Tmn
MM
'l

| M

i
EH
_:’ f

CFPECR=RE
A= A1

CEEErEam N
SEEE=SESREN
=EEE s eER
=EEFER-E R
=3 3 Y |
BEEES e |
=EEwEFS=Es=) O
e EEREETER ¢

Fig.152:Center - 200 Cycles

A]

A] |
~agaa==sazgf
SEEEELCEE RN

Fig.151:Center - 150 Cycles

|

o I = i e
FrEEEESEEE]
=k R e e
EEEEE= =

InTeLLiGenT OpTicaL Sensor - 314

Aerpenpix J — DeveLopment IMAGES

18.1.2 - Cross Data Set

"EEFFEEFEEEF
,NﬂNMNTMﬂﬂﬁ
EEEEEFEEFC
L EEFETT
*HHMMMﬂWMWW
~
‘

EeEErTE
mkEFFEEEEE
i EEEFEFFEEE |
wﬂﬂnﬂmmﬂﬂmm

ELEEEEMFRE

Jaud

Fig.154:Cross - 150 Cycles

Fig.153:Cross - 100 Cycles

EEFE T EE
EEEEEEEE

.I[r»?.ll!il‘lIl«.(flI,

g.155:Cross - 200 Cycles

Fii

InTeLLIGENT OpTicAL Sensor - 315

Appenpix J — DeveLopMENT IMAGES

18.1.3 - Extremes Data Set

=y
mnnnﬂﬂﬂﬂ
rl

L EEE

E-EFEE T

Fig.157:150 Cycles

Fig.156:100 Cycles

£
A,m
w

{FEEFEmRE

_|:I||ll.l e 2

I”‘ITI”I'TI TAY

Fig.158:200 Cycles

InTeLLIGENT OpTIcAL SENSOR - 316

Arpenpix J — DeveLopment IMAGES

18.1.4 - Middle Data Set

“EmEssEs===
EEEEENgE=A
SAREEEENS==
ImEEeER== =
SZESRNN=I 3

FECEECErrE
Pt EbEr

| .ﬂm_“u-ﬂ.wlﬂn..ﬂﬂ

' EEaASNAdE=
EESAEUEII=
TESNSEI A
ESEENEE NE
T FLLE b EFE

NeENE= =g
SEAMEESEE
| mamm ey ==
e rEEEED
IECCECEEEEE |

Fig.160:150 Cycles

Fig.159:100 Cycles

NCEr e
 ZZINumaaas
ST EEENEEE

 I=3asessma’

e EssEENw

=R

ﬁlnlwljulﬂ =

Fig.161:200 Cycles

InTeLLiGenT OpTicAL Sensor - 317

Arpenpix J — DeveLopmenT IMaGes

18.2 - 20x20 SOM Network Tests

The following images show the final network node mapping and

weight distributions for a 20x20 SOM network after the given

number of training cycles, showing a much better data space

resolution.

18.2.1 - Centres Data Set

e e

1111111111111 E WWMM

FEFEF Tmu.uTr!l!T.l.‘m.HMMmm

SR EEEEEET
II-IT.FT-.ITFFIT.IW-1‘II1 =

— e, e e T W

e e — e —

1 III.I-I.I

wﬁwﬁm--rn mmwwmwwwww
- CrEEeRESECLL.
=: == Irmﬂmmmmmmmll

[rEEr-rEECERmER

EEEFEErEEr Rl

== ,.HWHrl‘H..II.mlﬂm“ﬂm'lIl
(A==

Fig.162: 100 Cycles

IntecLigent Oprical Sensor - 318

Appenpix J — DeveLopMENT IMAGES

unnmmmmmmmmmmmmw
L anrreRREEEERE

Fig.163:150 Cycles

CEEEEFE
n-l‘l"“'r T
o

Hmmmﬂﬂﬂﬂmmmﬂmwvﬂ

mMMmmmﬂrm

wwmmmmnn|1m|mnmmnunmnn

——=ErE-FrPEs-=-FEEF
HHrﬂW.n{WﬂﬂﬁWlﬂ1mﬂmm

rrrrrwrrvnrrrrmnnwmw

T banrrERREEEEEES"E
S e ammemEE—EEEEC

WWWWWTTTWM"“"“”WTTTW
EEFEEEEREECEE EEEFEF
WWWWWHFT“NMWWIWWWH]]

EREELL ! Cr = CRmpE—

A D e T ey

e e e s e

- H‘WW”T“'TTT‘Inl_‘l ﬁlT“ﬂl

(o e ——

 EEE e e

| EEFEpECSmE=FErp-=——me—

——— 7 ————

InTeLLIGENT OpTICAL SeEnsor - 319

Fig.164:200 Cycles

Arpenpix J — DeveLopMeNT IMAGES

18.2.2 - Cross Data Set

TAININ
| L
1 Al
il

Ll

Fig.165:100 Cycles

Fig.166:150 Cycles

InTeLLIGENT OpTICAL SENSOR - 320

Arpenpix J — DeveLopMenT IMAGES

Fig.167:200 Cycles

InTeLLIGENT OPTICAL SENSOR - 321

Arpenpix J — DeveLopmenT IMAGES

18.2.3 - Extremes Data Set

(.’II;“.‘\]‘I",'II!.III:"

rrrrrrrr —=r rW|

—ll.ﬂﬂ"“““n

— e e e e

.I.Irlrr.lrrn.n = IT]rTrI'I

Fig.168:100 Cycles

InTeLLIGENT OPTICAL SENSOR - 322

Appenpix J — DeveLopment IMAGES

ﬂﬂ“TTTTﬂWFFTIIfIﬂFFF
THNTTF1WWIIFFIII!IT

— e e e e s o i e e e

- 1I.1|-I|'..[I.r Ilrl,r e
Arlrr.lr1ln.l1|]1 g ‘]l‘

r.-r-'lT o -.Illrurrrrllfl —

A e =

e mmmree o

Tﬂﬂﬂﬂ‘!llf???\liT!lr

: lrlrlerI

““"ITI'.'ITI r rl.l_-l —a

T re rlnlmunﬂ_lw ==
mmmwﬂlerTﬂl; E
EE R ===t
e o o o = = == ==
=== - ﬂmnmnmnl|[nswln.. e
rrummm Wﬂr1
=A== 2 = == =
IIHNHIHNF]H11III1111

B e o,

" Fig.169:150 Cycles
Fig.170:200 Cycles

1ﬂ1ﬂlﬂﬂTTTTm

- ".'“F“"“H"-lﬂllll]u-l —

e g » e e o S Ml Y |

WWHHTMM""W“Iﬂ‘WWWNﬂm

T s g g | St Pt G Vot

1I|II.T =sEE==

InTeLLIGENT OPTICAL SENSOR - 323

Appenpix J — DeveLopMent IMaces

18.2.4 - Middles Data Set

I-I..'I.n"...-.dli-lfﬂﬂ#uﬂ-f:T =

— e —— =

_1|n~||||l|

e e g

e

S SRR O KOs B URES SONPIC IO e e e —— e e e £

; Fg.71 :100 Cycles
" Fig.172:150 Cycles

\\\\\\\\\\\\\\\\\\\

InTeLLGenT OpticAaL Sensor - 324

Arpenpix J — DeveLopment IMaGes

... ey gy g = e

W

= ..|.b||.||||l|ll.]|||a||||-|.||wl.

Fig.173:200 Cycles

InteLLIGENT OPTICAL SENSOR - 325

Arpenpix J — DeveLormenT IMAGES

18.3 - Network Mapping

The following images illustrate tha data mapping of trained
networks for a single data instance, illustrating the acheived data
separations within the network structure.

The highlighted entries illustrate the number of data classes
mapped within the network, with the actual values being the levels

of confidence of class attachment of the input data presented.

18.3.1 - Centres Data Set

00 000 000 0CO 000 000 000 000 000 003 000 000 000 000 0.
000 00J 00O 000 000 000 000 0CO OO0 000 000 000 0.0 000 000 000 000 000 00O
002 003 000 000 000 000 000 000 OCO 000 000 000 000 002 000 000 000 00O QOO
000 000 000 000 000 000 000 000 0CO 000 000 000 001 000 000 000 000 000 00O
000 000 000 000 000 000 000 0CO QCO 000 000 003 003 0.00 000 000 000 0Q0 QOO0
000 000 000 000 000 000 000 0CO QOO 000 000 000 000 D00 000 000 000 000 OCO
000 000 000 000 000 000 000 000 OGO/ 000 000 003 000 000 0.00 000 000 000 0CO
000 000 000 000 000 000 000 000 0CO 00O 000 000 000 000 000 000 000 000 0CO
000 000 007 000 000 000 000 000 0CO 000 000 000 000 000 DOO 000 00O 000 0CO
000 002 000 000 000 000 000 OCO OO0 OO0 0.00[_0. 000 00D 000 000 000 00O OO0
000 000 00J 000 000 000 000 0CO 0OCO 000 000 000 000 000 000 000 000 000 QOO
000 000 000 000 000 000 000 0CO 0G0 D00 000 000 000 000[083] 000 000 000 0O
000 001 000 000 000 000 000 000 0C0 000 000 002 00J 000 000 000 000 000 00O
003 002 000 000 000 000 0.00 0C0 000 000 000 002 000 000 000 000 000 000 000
000 000 000 000 000 000 000 00O COO 000 000 003 000 000 000 000 000 000 0OCO
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00O
000 000 000 000 000 000 000 000 0CO 00 00O 0D 000 000 000 000 000 000 0CO
000 000 000 000 000 000 000 000 0CO 000 000 000 000 000 000 000 000 000 0CO
oo

W NN -

o LN A WN -

InTeLLIGenT OpticalL Sensor - 326

Arpenpix J — DeveLopMENT IMAGES

18.3.2 - Combined Data Set

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
000
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.co
000
0.00
0.00
000

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

000
oooL_cij 0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
000
0.00
0.00
0.00
000
0.00
0.00
0.00
0.00
0.00
0.00
0.co
0.co

0co
0.00

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
uoo

0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
000

0.00

0.4z

0.00
0.00
0.00
0,00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00

0.00
0.00

6co
000
000
oo
000
0.00
000
000
000
060
0co
0.00
000
000
000
000
0co
000
000
000

5.00 10.00 11.00 12.00

(1]
0o
00
000
0.00
00
000
0.00
0o
oo
0ca
000
000
0.00
.00
00!
000
000
oo
oo

000 000 003 0.

0o
00
0

000

am

oo

000
oo

00
000

oo

0.00/
0.00/
0.00

00
(elei]

000

000
000

003
Q.00
0.00!
0.00
0.00|
0.00
0.00
0.00|
00
0.00)
0.00
0.00
0.00
0.0
000
0.00
0.00!
0.00|
000

Fig.176:300 Cycles

000
oco
0co
000

000

0.00
0o
0.00
0.00
| 000
0.00

0.00|
0.00!
4 o'm
0ca|
| 000
000

| ocol
000!
000

000
0co
000
000!
000
000
000
ac
000
000
000
000
000
000
0o
0co
000
000
000
000

9.00 10.00 11.00

000
000
6oa)
oca
OCO
000
000

000
0co

| 000
| 0.00]
| 000]
oo

000

| 000
0
00
| 00

000

0o
000

000!

0o/
oo
000
00|

oo

oo
000,
oo
000
000
000

000!

0.00|
000

wl
000/
000/
00|

Oml
o.on'
Om'
Omx
o)

000
000!

Fig.177:400 Cycles

009
om
0.0a
0.00)
0.00
0.0
0.0
000
000
000
00
0.0
0.00
0.00
0.00
0.00|
0.00
0003
000

0o
oo
000!
oo
0m
om
000

000
000
000
000
00
om
OCO‘
000
aom
o000
000l

13.00' 14.000 15,00 16.00 17.00 18.00 19.00

0w
0m
000
000
om
0m
00
000

| 000

000/
om;
Q00!
000
000
000
om,
000/
00|
0|
o0l

0w
000
000
oo
o
000
000!
000
om/
O.m
00|
000
00
Om
Om
0|

000

000

oo

000/

o
om

000 0

Q00!
000
000
0.00
0.00
0.00|
00
0.00
0.00|
0.0
al m;

000! «

o

000,

000/
0.m|

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

000

000

00
00
om

000

| 000
|_0.00!
0w

0.00
00

| 0.00|
| 0.00!

0m

| 0.00
' om
| 000
000

0.00

| 000
| 0.00]
om\

0.0/
0.00!

0.00
000
000
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00

(ehsi]
000
0.00
0.00
000
0.00
o0
000
000
0c0
0co
0co
0.00
0.00
QCD

0.00] 0.1

0.co
0.00
000

0.00
000
0co

0,02
0.0
| 003
0.00
0.00
0.00
0.02
0.03
0.02

0.0

000

0.00

| 000

Q.00 0.00! om

0.00
0.00

InTeLLIGENT OPTICAL SENSOR - 327

Appenpix J — DeveLopMenT IMaGES

18.3.3 - Extremes Data Set

500 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 13.00
000 000 0CO 00 000 000 000 000 000 000 000 000 000
000 000 0CO 000 000 000/ 000/ DO 000 000 000 000 0.00
000 000 0CO 0CO 000 000 000/ 000 000 000 002 000 000
000 0C0 0CO 000 000/ 000 000/ 000 000 000 000 000 000
000 000 000 000 0C0/ 000 000 000 000 000 000 000 003
000 000 0C0 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000/ 000 000 000 000 000 000 002 0.00
000 000 000 000 000 000 000/ 000 000 000 000 000 0.00
000 000 000 000 000 000 000 000 000 002 000 002 003
000 000 000 000 000 000 000 000 000 000 000 00) 0.00
000 000 000 000 000 000 000 000 000 000 000 000 0.00
000 000 000 000 000 000 000 000 000 000 000 000 0.00
000 000 000 000 000 000 000 000 000 000 003 000 0.0
000 000 000 000 000 000 000 000 000 000 000 002 0.36)
000 000 000 000 000 000 000 000 000 000 000 003 0.00
000 000 000 000 00| 000 000 000 000 000 000 000 D00
000 000 000 000 000 000 000 000 000 000 000 000 0.00
000 000 000 000 000 000 000 000 000 000 000 000 0.0
000 000 000 000 000 000 000 000 000 000 000 000 0.0
000 000 000 000 000/ 000 000 000 000 000 000 000 0.00

Fig.178:200 Cycles

i | J .00 9.00 1000 11.00 12.00 13.
| 000, 000 0. 00 000 000 000 000 0.00 000 000 0CO 00O 0CO 00O 000 000 0.00
000 003 000 000 002 00D 000 000 000 000 000 DCO 0CO OCO OCO OO0 000 003 003
000 000 000 007 00O DDO 00D D00 000 000 0CO 000 0CO 000 000 000 OO 000 009
000 000 003 00) 00) 00D D00 00D 000 000 000 0C0 OCO 0CO OCO 000 000 000 000
000 000 000 000 000 00D 000 000 000 000 000 000 OCO 0CO OOC0 OO0 000 000 000
| 000 000 000 00J 000 000 000 000 000 000 000 000 0CO 0C0 000/ Q00 000 000 0.3
000 003 000 001 DO) 000 000 00D 000 000 000 000 OCO OO0 OCO0 OO0 001 000 000
000 00 000 00 DO) 00D 000 000 000 000 000 000 OCO OO0 0C0 000 000 003 0.03
000 000 000 00) 00J 000 000 000 000 000 000 000 000 000 000 000 000 OO 003
000 000 000 000 000 003 000 000 000 000 000 000 0CO GO0 QOO0 OO0 000 000 0.00
| 000 000 000 000 000 000 000 000 000 000 000 000 0CO 000 000 000 000 000 000
000 000 000 00 00) 000 000 000 000 000 000 00O OCO OO0 000 OO0 000 003 0.00
| 000 000 000 003 003 000 000 000 000 000 000 0CO 0CO 0OO0 000 000 000 OO 000
000 000 000 000 000 000 000 000 000 000 000 000 0CO CCO 000 Q00| 000 000 000
| 000 000 000 000 000 000 000 000 000 000 000 0CO 000 GO0 0CO| 000 000 000 0.00
000 000 000 000 001 000 000 000 000 000 000 000 0C0 0CO 000 000 000 000 000
000 000 000 000 003 000 000 000 000 000 000 000 0CO GCO 000) 000 000 000 0.00
000 000 000 D00 000 000 000 000 000 000 000 000 000 0CO 000/ 000/ 000 000 000
000 000 000 000 000 000 D00 000 000 000 D00 000 000 000 00| D00 000 000 009
‘

300 4.00

| 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00 000 0.0
Fig.179:400 Cycles

InrecLicent Opricat Sensor - 328

Appendix K - Final System Structure

19 - Appendix K - Final System Structure

Below is a listing of the final network weights for the selected

architecture .

19.1 - SOM Layer

SOMNET

Number of inputs: 8

SOM map size:20x20

Learning Rate Max (initial) value: 0.4
Learning rate Min value: 0.01
Minimum Neighborhood: 0

Number of training epochs: 200

Weight Values:
Row 0

0.742983 0.809236 0.829152 0.782873 0.755458 0.664619
0.663736 0.647426 0.80132 0.974913 0.956669 0.929929
0.964242 0.880896 0.952623 0.953795 0.977781 1
0.958066 0.956557

0.724673 0.908545 0.782919 0.897536 0.794244 0.660787
0.700337 0.767314 0.77855 0.949909 0.94846 0.91471
0.900149 0.95155 0.995684 0.942028 0.960366 0.987284
0.983374 0.980562

0.889565 0.998207 0.962176 0.96495 0.837316 0.674574
0.718395 0.885702 0.931431 0.917144 0.921331 0.916599
0.839779 0.992556 0.992069 0.948128 0.969409 0.993051
0.996107 0.953173

0.900831 0.992445 0.932285 0.913082 0.545246 O
0.0315898 0.119517 4.36351e-005 0 0.18445
0.539591 0.789764 0.933946 0.965259 0.981593 0.956445
0.919925 1 0.952105

0.994801 0.980288 0.658888 0.278495 0.537529 0.690643
0.743922 0.859326 0.826908 0.880834 0.90153 0.893127
0.818834 0.934781 0.896473 0.960657 0.925879 0.89282
0.954752 0.96648

0.970825 0.911677 0.790883 0.793988 0.770213 0.767493

InTeLLIGeNT Optical Sensor - 329

Appendix K - Final System Structure

0.817974 0.912238 0.913098 0.935301 0.523414 0.529922
0.523678 0.581866 0.479821 0.982723 0.953821 0.919925
0.924608 0.998196

0.921702 0.895987 0.962827 0.940526 0.896549 0.873726
0.902742 0.950376 0.999908 0.919067 0.910365 0.9926
0.97887 0.889695 0.614608 0.602774 0.734451 0.87037
0.956537 0.992053

0.106051 0.0485273 0.00119537 0.142474 0.285244
0.557698 0.696085 0.952879 0.937552 0.879641 0.944501
0.974052 0.999349 0.876683 0.99819 0.935636 0.951999
0.987747 0.954223 0.997037

Row 1

0.750437 0.887746 0.881645 0.908422 0.78605 0.687292
0.690106 0.666212 0.865606 0.961826 0.966529 0.921067
0.996645 0.965412 0.93334 0.956935 0.979016 0.987181
0.864925 0.955033

0.782133 0.904879 0.93295 0.904713 0.835354 0.693511
0.69897 0.707464 0.85963 0.906578 0.934849 0.957166
0.998837 0.930364 0.993605 0.957616 0.860325 0.863271
0.904361 0.991723

0.939337 0.998547 0.993582 0.952606 0.796585 0.663158
0.615224 0.706035 0.866096 0.86443 0.927909 0.871592
0.914966 0.887409 0.976479 0.958299 0.965697 0.978478
0.895336 0.999995

0.941099 0.99449 0.946083 0.948587 0.781705 0.0875249 0
0.00521966 0.01989 0.000330516

0.240472 0.502841 0.722048 0.801672 0.852412 0.925796

0.946277 0.978993 0.974297 0.981267

0.954595 0.957756 0.814906 0.605185 0.636634 0.711096
0.731199 0.683329 0.806941 0.809529 0.733137 0.844344
0.799582 0.688329 0.765881 0.861715 0.950649 0.856771
0.999748 0.893465

0.848206 0.830267 0.811311 0.654478 0.830384 0.761148
0.789892 0.977914 0.889823 0.723786 0.650995 0.721013
0.714181 0.66746 0.899684 0.930871 0.979097 1
0.990943 0.973971

0.513817 0.702729 0.93401 0.666631 0.928136 0.875331
0.896196 0.991348 0.975143 0.99911 0.825372 0.880629
0.935304 0.77922 0.727198 0.702119 0.884464 1
0.95408 0.974598

0.0741963 0.000974041 0.0279821 0.0010605 0.239649
0.549138 0.690106 0.976405 0.945818 0.998344 0.945171
0.978329 0.961312 0.895119 0.907349 0.943447 0.966558
0.999435 0.899106 0.858373

Row 2

0.762596 0.927543 0.969389 0.797226 0.708148 0.911609
0.73259 0.934628 0.995402 0.953144 0.880334 0.935961
0.991411 0.906262 0.981837 0.952773 0.961046 0.984027

InteLuicent OpricaL Sensor - 330

Appendix K - Final System Structure

0.962424

0.749172
0.850598
0.957995
0.858779

0.809385
0.451692
0.934766
0.973466

0.813318

0.116407
0.815083

0.888747
0.73449
0.423828
0.96104

0.436081
0.820348
0.761317
0.967738

0.43437

0.871385
0.951257
0.976871

0

0.156836
0.959208
0.961633

Row 3

0.936043
0.938766
0.987681
0.923402

0.896688
0.943172
0.980724
0.838157

0.996546
0.157207
0.892203
0.966166

0.944134
0.0123401
0.692525
0.957588

0.911337
0.684486

0.974955

0.83878

0.721957
0.984149
0.997071

0.997081
0.604479
0.960482
0.99024

0.989903

0.00381984

0.336091
0.90449

0.930137
0.730369
0.611788
0.930185

0.539579
0.871185
0.808215
0.857186

0.794517
0.982815
0.761699
0.735893

0.917886
0.941254
0.95065

0.859508
0.777572
0.911502

0.903695

0.532513
0.955936

0.90357
0.585396
0.627497

0.414679
1
0.923221

0.932254
1
0.655738

0.000901167

0.559278
0.992285
0.979034

0.917144
0.961244
0.822503
0.926957

0.722952
0.918772
0.963938
0.939491

0.96807

0.322104
0.947143
0.965687

0.956059
0.1154

0.890311
0.957904

0.743754
0.689374

0.841262
0.941549
0.871887

0.775097
0.962163
0.941779

0.767003
0.886221
0.971214

0.655012
0.532745
0.907019

0.668492
0.035495
0.938767

0.86629
0.532821

0.783656
0.963123
0.972832

0.826783
0.830949
0.929838

0.791094

0.709346
0.914786
0.884243

0.692282
0.940828
0.915667

0.662492

0.000102088

0.816974
0.965131

0.882643
0.591631
0.811839

0.721289
0.846445
0.914292

0.954452
0.998852
0.806989

0.0636823
0.931335
0.907715
0.746737

0.896062
0.973232
0.949104

0.869318
0.982476
0.968133

0.5212
0.712121
0.73736

0.339149
0.0181068
0.818411

0.788997
0.445397

0.936834
0.957709

0.870505
0.398297
0.904898

0.42787
0.61192
0.99469

0.755078
0.969075
0.992903

0.00259277

0.99977
0.966217

0.8523
0.850589
0.937129

0.807564
0.956062
0.863523

0.365503
0.580598
0.804107

0.520208
0.376942
0.862664

0.726465
0.28632

0.85384
0.963349
0.774856

0.667434
0.892933
0.967862

0.00647031
0
0.908572

0.696368
0.582641
0.999027

0.7679
0.754701
0.995025

0.884452
0.972817
0.999592

0.967013
0.988593

0.95159
0.983455
0.916941

0.945437
0.987449
0.807136

0.151614
0.921593
0.930004

0.0438943
0.412081
0.913867

0.69534
0.0375876

InTeLLIGENT OpTicaL Sensor - 331

Appendix K - Final System Structure

0.250167
0.97785

0.113866
0.841155
0.677637
0.95113

0.612847
0.88371
0.861056
0.95861

0.401899
0.943361

0.0804849
0.973472
0.733669
0.923189

0.903626
0.934225
0.874684
0.96651

7.83605e-005

0.89013
0.997593

Row 4

0.94001

0.849777
0.640668
0.635247

0.926748
0.782168
0.690153
0.998522

0.95464

0.264946
0.945294
0.94632

0.9362

0.962329
0.889587
0.855632

0.926746
0.899226
0.772776
0.815318

0.944917

0.000596269
0.353227
0.712421 0.828769

0.895559 0.89832
6.57931e-006
0.050488 0.54407
0.594292 0.820375

0.94395 0.868434
0.775642 0.598193

3.0861e-005

0.697997

0.0207014
0.0086166
0.759013
0.959304

0.946801
0.939778
0.748749
0.789775

0.834976

0.00612785

0.541436
0.763861
0.995928

0.935191
0.983954
0.86581

0.768259

7.25048e-006

0.414225
0.855528
0.973425

Row 5

0.976561
0.991845
0.973985

0.588094 0.732648 0.903797 0.964851
0.153148 0.0118031 0.292478 0.657851
0.899777 0.643303 0.948457 0.71046
0.952454 0.925815 0.889075 0.971443
0.910581 0.936234 0.880691 0.696541
0.953877 0.943974 0.982064 0.880721
0.941452 0.931291 0.990643 0.966221
0.000309194 0.0113453 0.00698481
0.684521 0.855251 0.958475 0.965073
0.965814 0.867205 0.688298 0.843198
0.95986 0.854999 0.491454
0.915471 0.810865 0.868304 0.93947
0.896239 0.977943 0.966892 0.905855
0.949611 0.775443 0.77408 0.734897
0.883382 0.817906 0.791811 0.644785
0.719167 0.920715 0.909548 0.904888
0.761305 0.691168 0.830273 0.807714
0.656328 0.000343663 0.0061447
0 1.29811e-005 0.000774757
0.774312 0.741052 0.672458 0.765212
0.770697 0.834546 0.991999 0.999618
0.713928 0.47311 0.637823 0.355064
0.0365681 0.000267175 0.188415
0.661473 0.793286 0.925438 0.760433
0.968977 0.991586
0.794409 0.514778 0.751324 0.742577
0.0395431 0.00394424 0.0189213
3.10741e-006 0.270457 0.665103
0.942599 0.953336 0.93706

0.115964 2.51167e-005
0.816786 0.983327 0.860988 0.824862
0.695248 0.865802 0.909582 0.975498
0.906255 0.892546
0.916115 0.858008 0.813834 0.939416
0.80862 0.757004 0.837583 0.883922
0.941007 0.925893 0.918522 0.901786
0.152644 0.124157 0.000758961
0.970631 0.985986 0.93766 0.98993
0.890598 0.895756 0.947195 0.955675
0.846122 0.708113

Intercent OeticaL Sensor - 332

Appendix K - Final System Structure

0.920271 0.963853 0.869767 0.80416
0.916267 0.884615 0.964809 0.79412
0.94947 0.785295 0.796679 0.956471
0.255639 0.25356
0.943 0.923755 0.887062 0.870434
0.842121 0.797635 0.671162 0.522883
0.546428 0.593926 0.617831 0.555305
0.777286 0.878024
0.969519 0.886316 0.61517 0.305864
0.0874239 0 1.39026e-005
0.854878 0.591824 0.580278
0.930053 0.881844 0.937137
0.893983 0.927108 0.750877 0.670799
0.271947 1.22935e-005 0.058464
6.76604e-005 0.506977 0.781016
0.544996 0.714595 0.843009 0.983015
0.907558 0.895027 0.799817 0.744597
0.649927 0.325255 0.0698491 0.0748718
1.43339e-005 0.0803574
0.921806 0.903015 0.90928 0.959215
1.2686e-005 0.536559 0.25613
0.615869 0.668479 0.892702 0.769599
0.854471 0.955222 0.908125 0.866596
0.956087 0.473537 0.909072
0.905655 0.935682 0.803194 0.721393
0.793493 0.939968 0.40028 0.970253
0.928672 0.745063 0.964015 0.954264
0.800324 0.806666
0.429446 0.493484 0.434479 0.623745
0.968646 0.975599 0.924368 0.947822
0.978548 0.901406 0.749189 0.890215
0.920027 0.819492
Row 6
0.968724 0.926589 0.920745 0.748319
0.949199 0.895931 0.823202 0.859556
0.897716 0.877977 0.838177 0.639704
5.18936e-005 5.81189e-005
0.955136 0.942849 0.899061 0.873746
0.756424 0.739878 0.569419 0.441068
0.0395849 0.217029 0.23229 0.429839
0.753913 0.989731
0.987336 0.883578 0.713722 0.477035
0.0499345 0.067381 0.334608 0.564104
0.636543 0.771739 0.761813 0.809557
0.88874 0.980452
0.96804 0.809981 0.702584 0.702442
0.355838 0.0381338 0.0160283 0.0311371
0.733546 0.80705 0.805553 0.70873

|

0.895576
0.916187
0.720685

0.906506
0.53228
0.706689

0.0824473
0.246322
0.789804

0.813467

0.896468
0.913808
0.538532

0.882687
0.603386
0.897203

0.0245414

0.914259 0.791

0.89277

0.604303

0.00122278
0.847128 0.93295
0.963691

0.881623 0.666056
4.47103e-006
0.693456 0.892809

0.30322 0.103849
0.912269 0.867277
0.973787 0.834098
0.842164 0.67337

0.851633 0.856275
0.95859 0.955454
0.865074 0.896656
0.966854 0.96126

0.89715 0.961181
0.872137 0.937745
0.843906 0.983055
0.672801 0.464627
0.887125 0.879095
0.288064 0.183395
0.658259 0.665874
0.328404 0.307262
0.829491 0.937117
0.696812 0.784005
0.71094 0.689263
0.0994819 0.461207
0.776131 0.886367

InteLucent Oprical Sensor - 333

Appendix K - Final System Structure

0.942853 0.952179

0.926577 0.900256 0.784578 0.784604 0.698456 0.591364
0.726775 0.4035 0.51783 0.408734 0.501091 0.052407
0.000897236 0.56011 0.828309 0.971142 0.885076
0.98386 0.924953 0.955991

1.32527e-005

0.000262547

0.47567 0.466763

0.327854 0.238561 0.0411949 0.468916 0.589366 0.813514
0.832661 0.980537 0.938848 0.930137 0.923386 0.920259
0.828247 0.975799 0.994026 0.812085

0.783514 0.774412 0.632084 0.634222 0.54765 0.430599
0.884423 0.808252 0.87792 0.862491 0.934371 0.861849
0.884777 0.854372 0.862937 0.932056 0.796068 0.954529
0.942919 0.50829

0.740051 0.74648 0.732805 0.735819 0.87286 0.943921
0.880361 0.923337 0.937403 0.946445 0.950855 0.965991
0.983732 0.916938 0.874753 0.663141 0.916561 0.720609
0.913978 0.73799

Row 7

0.934896 0.772798 0.429449 0.792228 0.934525 0.963256

0.955122 0.835641 0.777273 0.715023 0.940432 0.813865

0.93625 0.952204 0.868314 0.698523 0.343038 0.00185278
0.00189838 0.0197544

0.960976 0.560181 0.871686 0.897716 0.933388 0.92686
0.911367 0.693939 0.476472 0.355848 0.00179162

0.000489541 0.000504343 0.000391338 0
0.180192 0.783634 0.817607 0.862388 0.726869
0.997746 0.983818 0.82003 0.616595 0.701 0.627997

0.555034 0.0637632 0.525349 0.858786 0.842656 0.839199
0.82941 0.875617 0.606381 0.73358 0.558365 0.586716
0.712403 0.905318

0.962773 0.962958 0.870657 0.6901 0.631357 0.265385
0.238046 7.9607e-005 0.0198979 7.63551e-006
0.160551 0.530429 0.786263 0.789589 0.903414 0.80816
0.665758 0.935862 0.867435 0.924792

0.939236 0.896805 0.707899 0.822298 0.561894 0.777353
0.752672 0.763708 0.742744 0.77102 0.777632 0.750674
0.510347 0.979131 0.994034 0.977708 0.970363 0.916891
0.888488 0.946342

2.69919e-005 0.00196564 0.282488 0.288415
0.148298 0.0224374 0.0150122 0 0.407163 0.704171
0.879286 0.849201 0.872916 0.929036 0.992041 0.942923
0.871126 0.837033 0.806486 0.974843

0.439681 0.71425 0.746165 0.744766 0.599121 0.740941
0.737899 0.940221 0.959858 0.973926 0.990364 0.876386
0.948274 0.764059 0.976095 0.844279 0.900958 0.806334
0.814409 0.870328

0.75106 0.766779 0.945775 0.817836 0.921764 0.817569
0.83452 0.934284 0.909323 0.965915 0.965546 0.893773

e T R Rl eerrtiiiiiinioiiipr il
e ———————————————————————————e ettt

InteLuGent OpticaL Sensor -~ 334

Appendix K - Final System Structure

0.94832 0.917114 0.916775 0.893293 0.889335 0.942447
0.699582 0.607758
Row 8
0.946215 0.978938 0.832793 0.991639 0.867847 0.961585
0.977196 0.890051 0.703006 0.866814 0.821325 0.909694
0.888902 0.690091 0.672797 0.557806 0.0139085 0.0751958
0.00157948 0.0609335
0.99738 0.991249 0.975838 0.950729 0.931191 0.949307
0.971909 0.759477 0.370335 0.216718 0.00482776
3.60326e-006 0.000334715 0.000125219
2.65568e-006 0.0188618 0.532981 0.85773 0.812709
0.720021
0.999676 0.974375 0.922548 0.845528 0.86706 0.923779
0.777796 0.370385 0.787218 0.661557 0.75382 0.917774
0.673642 0.836647 0.89345 0.587557 0.0739206 0.204087
0.671734 0.946278 :
0.950725 0.945776 0.804884 0.720854 0.399759 0.0259235
0.00425821 0.00786877 0.00334694
0.00956786 0.00807414 0.39586 0.659659
0.768838 0.83011 0.961706 0.726842 0.876951 0.996373
0.986427
0.892345 0.653702 0.639016 0.798426 0.947093 0.882441
0.524166 0.731105 0.851181 0.743814 0.982615 0.976021
0.909547 0.932893 0.971316 0.966458 0.869512 0.891631
0.972364 0.948118
0.0349388 0.00119253 0.249418 3.88476e-005 0
2.13233e-006 0.00663955 0.0155036
0.0982184 0.774033 0.961296 0.861323 0.890863 0.945585
0.939688 0.990519 0.980664 0.972892 0.866578 0.805439
0.632581 0.748348 0.814619 0.968199 0.820606 0.927333
0.704494 0.941333 0.929675 0.892704 0.930634 0.830005
0.850251 0.978138 0.718097 0.969733 0.898371 0.922256
0.79651 0.842946
0.9871 0.952976 0.97127 0.940064 0.783306 0.800625
0.751486 0.947706 0.651195 0.718478 0.891476 0.756433
0.538633 0.846183 0.928572 0.914134 0.890703 0.720344
0.407672 0.0618451
Row 9
0.967468 0.905302 0.9448 0.93259 0.915028 0.990616
0.955139 0.973371 0.776632 0.690106 0.716676 0.882177
0.961506 0.57381 0.000141461 0.0352523 9.69822e-006
0.00785306 0.010077 0.056103
0.947143 0.848969 0.923674 0.807603 0.96107 0.987952
0.95442 0.8109 0.457999 O 0 0.00117685
0.0830806 0.0178848 0.0309448 0.00813594
0.0305919 0.434348 0.731934 0.0878512
0.973854 0.939931 0.886055 0.848469 0.917048 0.967426
0.855021 0.854268 0.795137 0.778151 0.779921 0.885042

e ————————————————————————es ettt —— T ——————————————
]

InteLucent Oprtical Sensor - 335

Appendix K - Final System Structure

0.804487 0.796816 0.733938 0.428092 0.201719 0.031055
0.0168783 0.744761
0.909068 0.896725 0.952793 0.758286 0.499805 0.0855554
0.00305541 0.00421644 0.0234857 0
0.00189148 0.601018 0.744732 0.766709 0.883903
0.826794 0.87951 0.937928 0.97152 0.834237
0.598585 0.455275 0.571984 0.404345 0.478435 0.394564
0.862985 0.780684 0.772854 0.680865 0.967577 0.91998
0.996316 0.985138 0.970144 0.800389 0.2626 0.858293
0.991807 0.961862
0.388713 0.215879 0.0526075 0.00910445 0
0.0118976 0.225755 0.433482 0.524225 0.66111 0.944322
0.958377 0.938594 0.962381 0.980372 0.972624 0.977571
0.936273 0.935971 0.815616
0.52422 0.782289 0.856268 0.848038 0.830902 0.97702
0.796441 0.762292 0.665117 0.639378 0.9721 0.361648
0.891215 0.893026 0.936049 0.969781 0.966547 0.183462
0.646981 0.829296
0.941345 0.929577 0.931948 0.945963 0.697869 0.974831
0.905783 0.914391 0.803249 0.650515 0.606203 0.512145
5.22785e-005 0.607481 0.832448 0.972958 0.800775
0.801706 0.0115412 0.0168976
Row 10
0.976445 0.959139 0.826051 0.958976 0.981505 0.968443
0.905371 0.836092 0.754415 0.772224 0.74471 0.891268
0.553474 0.331905 0.000259981 0.102686 0.0505553
0.00139313 0.468687 0.516395
0.968301 0.96211 0.941119 0.945484 0.928991 0.95167
0.972828 0.897346 0.67692 0.43017 0.312164 0.0197363
0.0368704 0.0710305 0.000224959 0.0909371 0.00118344
0.00229014 0.0692255 0.0736205
0.798432 0.829173 0.96927 0.878332 0.76923 0.849157
0.898725 0.725153 0.811407 0.840628 0.839128 0.928905
0.824539 0.751806 0.660424 0.332352 0.00192269
0.000943107 0.253626 0.0521408
0.886351 0.907538 0.929716 0.862702 0.852048 0.566221
0.119878 0.000796413 0.279443 0.0273152 0.0571988
0.0720801 0.385041 0.540932 0.662133 0.735921 0.81402
0.739465 0.846243 0.523914
0.173538 0.165592 0.321266 0.179735 0 0.309481
0.775252 0.848718 0.84825 0.783694 0.835183 0.958987
0.959013 0.961184 0.954738 0.715838 0.71052 0.801516
0.838372 0.911644
0.386458 0.353476 0.310211 0.127217 0 0.122549
0.432541 0.53915 0.616014 0.786111 0.858366 0.985199
0.960014 0.952448 0.934206 0.949994 0.945811 0.879673 0.8777
0.77371
0.90611 0.894916 0.758183 0.873278 0.991135 0.873339

InteLuiGent Opticat Sensor - 336

Appendix K - Final System Structure

0.807646
0.855311
0.166897

0.986235
0.994009
0.413941
0.0354399

Row 11

0.995164
0.932909
0.121205
0.847608

0.974099
0.951824

0.465386

0.73262
0.858619
0.790568
0.0379553

0.885669
0.326586

0.716372

0
0.023168
0.97912
0.814446

0.422549
0.412719
0.954637
0.825734

0.995613
0.356218
0.899503
0.883107

0.993386
0.735773
0.758204
0.467699

Row 12

0.877382
0.945074
0.988348

0.927541
0.866895

e —
—

0.555479
0.924504
0.876844

0.985237
0.996427
0.609311
0

0.965013
0.917131
0.0769973
0.936119

0.97378
0.882155
0.0233641
0.65011

0.802035
0.733928
0.839445

0.00128605

0.912253
0.0487002
0.084521
0.832392

0.0287945
0.377674
0.926062
0.804623

0.437417
0.642088
0.946615
0.85838

0.909372
0.214324
0.889561
0.839967

0.960465
0.929026
0.850354
0.0288322

0.944729
0.946807
0.0233486
0.927768

0.969377
0.919135
0.010337

0.525168
0.884201

0.985301
0.956984
0.822582

1
0.91566
0.259167

0.999447
0.867896
0.0757652
0.68786

0.981946
0.771755
0.544222

0.959068
0.0318139
0.300777
0.914449

0.0117881
0.268194
0.933873
0.729314

0.358959
0.744651
0.90939

0.726857
0.218123
0.94898

1
0.873842
0.743125

0.871969
0.934941
0.409101

0.990053
0.898481

0.0451504 0.0952756 0.00337171

0.551028
0.954066

0.959465
0.683858
0.837121

0.956812
0.934057
0.0656044

0.968094
0.934404
0.148894

0.894382
0.894791
0.0598326

0.910699
0.117555
0.357334

0.0207035
0.407682
0.942964

0.21152
0.876107
0.925219

0.813407
0.490997
0.927397

0.955167
0.765396
0.880358

0.858784
0.917312
0.617772

0.999141
0.932146

0.61843
0.966949

0.964709
0.580324
0.989067

0.992539
0.689482
0.572608

0.990478
0.772073
0.0301173

0.969085
0.962356
0.21474

0.966154

0.00772872

0.500998

0.00119392

0.768544
0.92745

0.0344505
0.974954
0.890452

0.712401
0.593902
0.97057

0.993441
0.520871
0.710725

0.888293
0.713487
0.77703

0.992421
0.73894

0.736145
0.754954

0.930314
0.0672747
0.600298

0.99089
0.237669
0.598617

0.94513
0.00701746
0.500635

0.963331
0.704298
0.201342

0.704377

0.603475

0.957141
0.963371

0.272444
0.982195
0.834159

0.789329
0.952172
0.77237

0.929622
0.419353
0.800535

0.930249
0.114622 O
0.78152

0.938641
0.180027 O

InTeLLiGent OpricaL Sensor - 337

Appendix K - Final System Structure

0.975733
0.927711
0.0981411
0.0296609

0.939143
0.0171538
0.129109

0.0188775
0.90787
0.790779

0.367534
0.899037
0.822771

0.599959
0.223429
0.955113

0.99995
0.818485
0.748329

0.957517
0.926871
0.648029

0.984337
0.94618
0.0640642
0.965724

0.889242
0.948572
0

0.908419
0.115549

0.00280631

0.869765

0.842962
0.650815

0.52605

0.637535 0.986554 0.956988
0.530055 0.827678 0.980954
0.696509 0.683802 0.83724
0.76386 0.643963 0.352014
0.266495 0.00220791
0.878798 0.944727 0.937195
0.212269 O 0.0671856
0 0.0276614
0.698359 0.822356 0.887869
0 0 0.00025515
0.00193582
0.563247 0.751251 0.928466
0.868125 0.880416 0.943675
0.741481 0.683125 0.473397
0.696554 0.70798 0.823706
0.946252 0.858555 0.785411
0.821295 0.976345
0.80382 0.804409 0.845964
0.0671634 0.0309985 0.0910972
0.867938 0.983165 0.951335
0.786817 0.958679
0.902946 0.949476 0.721885
0.920108 0.923401 0.899666
0.832715 0.945355 0.816639
0.888322 0.744794
Row 13
0.957316 0.968903 0.96719
0.978719 0.98724 0.876914
0 0.0572788
0.915404 0.956015 0.87271
0.940832 0.989535 0.964375
0.933349 0.573203 0.847942
0.00302046
0.533256 0.939409
0.643544 0.987113 0.945281
0.652106 0.608922 0.8131
0.768433 0.672594 0.0147762
0.190971 O
0.865279 0.913357 0.8052
0.445071 0.0813209 0.0171415
0.000489164 0.0103707
0.505181 0.836442 0.900864
0 0.0182457 0.000167387
0.0292516 0.000310515
0.551751 0.847829 0.837887
0.811635 0.850183 0.814767
0.926809 0.84451 0.657176
0.769075 0.858004 0.484896

0.867386

0.984006 0.924092

0.890938 0.786929
0.00140254
0.891156 0.634407

0.000887448

0.17556

0.511559

0.0305126 0.00276362

0.00842628

0.92134
0.841013

0.39187
0.828448
0.92991

0.357434
0.309639
0.927237

0.945404
0.709708
0.911309

0.939559
0.711001
0.734594

0.974453
0.780336

0.00299649

0.880481

0.991332
0.902987
0.244071

0.965909

0.815608
0.723411

0.459679
0.896177
0.78228

0.0431185
0.723398
0.725027

0.900607
0.760717
0.858408

0.826075

0.000282851

0.835027

0.827462
0.00104383

0.776163
0.740994
0.442526

0.712509

0.0723882 0

0

0.000453558
0.000541416

0.869173
0.923205

0.496634
0.837164

0.147492
0.858485
0.877173

0.589762
0.828282

Interuicent Optical Sensor - 338

Appendix K — Final System Structure

0.664945 0.631605 0.495374 0.850342 0.826761 0.739179
0.970298 0.986629

0.938195 0.84685 0.658708 0.453347 0.000100434
0.000302321 0.000146685 0.000793905
0.00531168 0 0.134478 0.456983 0.906167
0.901555 0.889913 0.982208 0.885168 0.842611 0.989562
0.987168

0.85426 0.895866 0.666097 0.678337 0.914923 0.89498
0.936207 0.892106 0.982749 0.951431 0.902456 0.787438
0.905304 0.888801 0.936074 0.674322 0.871365 0.994939
0.932813 0.963585

Row 14

0.965027 0.983572 0.938241 0.728597 0.983279 0.920132
0.727599 0.923135 0.797013 0.581254 0.106642 O
0.162764 0.00391511 0.515898 0.645825 0.817918
0.990757 0.913433 0.898755

0.84774 0.887586 0.992442 0.995665 0.996323 0.876325
0.726116 0.931062 0.857537 0.739506 0.85899 0.387357
0.34383 0.288925 0.103429 0.126219 0.484869 0.966544
0.88627 0.788892

0.908021 0.833155 0.975374 0.95247 0.980748 0.850473
0.703843 0.896252 0.801941 0.869451 0.819628 0.790065
0.732967 0.669848 0.219927 O 0.212853 0.44744
0.137222 O

0.938411 0.972868 0.92637 0.97517 0.955085 0.819359
0.852377 0.629838 0.468292 0.319996 0.082734 0.502486

0.235651 0.0488863 0.00671232 0 0.381185

0.771129 0.77869 0.629785

8.77704e-005 0.000390185 0 0.000108833
0 0.000120388 0.229233 0.365501

0.778907 0.806336 0.638043 0.570383 0.489793 0.744506
0.620918 0.724869 0.694938 0.91409 0.82799 0.958058

0.978977 0.95552 0.86931 0.743279 0.917327 0.797366
0.677764 0.735687 0.800711 0.698513 0.623005 0.623239

0.390701 0.00207056 0.598819 0.799435 0.82686

0.932328 0.947999 0.996038

0.957097 0.810784 0.462483 0.22337 2.78439e-006 0
0 0 0.00187503 0.0344075

0.129258 0.189381 0.463588 0.866228 0.861708 0.84434
0.899145 0.97059 0.962954 0.99331

0.750777 0.831371 0.807775 0.805185 0.864266 0.955428
0.985852 0.799515 0.871138 0.85959 0.882248 0.236876
0.576892 0.888507 0.722867 0.758369 0.808843 0.998669
0.978906 0.984456

Row 15
0.835431 0.887506 0.962064 0.964107 0.844264 0.910624
0.959267 0.974712 0.532326 O 3.98018e-005 0

0.290986 0.680753 0.542466 0.627636 0.839291

InteLLicent OpricaL Sensor - 339

Appendix K - Final System Structure

0.824126 0.910485 0.99285

0.881862 0.986791 0.908995 0.968146 0.963047 0.936532
0.907793 0.99724 0.714459 0.680821 0.000549417
0.437198 0.522439 0.499999 0.285172 0.150515 0.533426
0.649493 0.843288 0.95778

0.8332 0.948003 0.792128 0.916705 0.942351 0.927266
0.949767 0.945981 0.858249 0.63939 0.841062 0.794981
0.703172 0.661093 0.25139 0 0.212773 0.284124
0.0390796 0.0607946

0.946269 0.962118 0.734252 0.951426 0.875238 0.913175
0.912673 0.794946 0.785304 0.639391 0.874486 0.659631

0.347918 5.35387e-005 0.0346699 0 0.518911

0.644613 0.741733 0.442923

0.0795829 0.00396779 3.4173e-005 0.000397895
6.11499e-006 0.191355 0.373156 0.561867

0.670589 0.671229 0.948736 0.368831 0.329831 0.000126657
0.117819 O 0.468751 0.521507 0.634426

0.566421

0.941168 0.965582 0.889418 0.957823 0.973398 0.830054
0.659598 0.55583 0.50929 0.738529 0.111786 0.627644
0.264334 0 0.471457 0.784101 0.832311 0.90393
0.888091 0.999365

0.741891 0.550742 0.438608 0.151228 2.62754e-006 0

0 0 0.0145153 4.139e-006 0.165362
1.8519e-005 0.31202 0.438203 0.6631 0.715682
0.872215 0.955515 0.920613 0.999591

0.953177 0.922396 0.986657 0.779927 0.933228 0.916026
0.905481 0.993686 0.828112 0.738562 0.624117 O
0.455309 0.84621 0.570218 0.389076 0.821665 0.995089
0.973529 0.999268

Row 16

0.428903 0.870806 0.934191 0.922072 0.956497 0.89685
0.913776 0.86754 0.703442 0.598604 0.482463 0.52649
0.588699 0.804128 0.720372 0.882054 0.776755 0.810266
0.795732 0.964775

0.984773 0.864709 0.912027 0.972461 0.998256 0.855615
0.985108 0.921669 0.955869 0.656768 0.555677 0.778633
0.621349 0.641259 0.232167 0.0235128 0.121855 0.167269
0.867787 0.903958

0.971971 0.916855 0.941486 0.950169 0.976908 0.908437

0.944647 0.946025 0.962403 0.86075 0.813871 0.64679

0.614503 0.499264 0.225784 0.0272932 0.0622384 0.00120888
0.000518342 0.101247

0.822277 0.93312 0.921782 0.913334 0.801084 0.92595
0.975446 0.915664 0.699248 0.641222 0.563697 0.359369
0.495186 0.585245 0.0193013 0.0512663 0.410562 0.81979
0.692237 0.855158

0.0143444 0.300771 0.300986 0.251476 0.322424 0.370916

ety ————————————————————————————————r—etee s ————pAei et ——
e ———————————————————— ettt et e ——

InteLugent Oprical Sensor - 340

Appendix K - Final System Structure

0.522158 0.598236 0.776669 (0.823604 0.805698 0.630974

0.130685 0.00503741 0.0246785 0.00409707

0.104769 0.414067 0.396338 0.266277

0.908499 0.832596 0.899034 0.901371 0.873159 0.862985

0.749047 0.471207 0.433889 0.13986 0.103978 0.00290895
0.137984 0.0455656 0.615922 0.843382 0.843511

0.817757 0.830996 0.930376

0.64804 0.547984 0.386992 0.174825 0.00149981 0
0 7.87842e-006 0.00631615

0.047024 0.0430437 0.00165895 0.149012 0.333235

0.463282 0.797354 0.789924 0.929837 0.895307 0.944828

0.915784 0.791486 0.839319 0.892344 0.965436 0.908678

0.896708 0.815426 0.78758 0.698409 0.617678 0.278211

0.437707 0.772114 0.624624 0.915496 0.734394 0.927091

0.999616 0.969648

Row 17

0.560032 0.774724 0.902236 0.893907 0.88462 0.837166

0.886884 0.901555 0.738047 0.734079 0.683226 0.829529

0.79929 0.831788 0.872921 0.883784 0.899671 0.86182

0.906956 0.957271

0.879413 0.85205 0.999898 0.997798 0.909566 0.989998

0.990118 0.916787 0.998849 0.807875 0.675893 0.823326

0.683698 0.530695 0.00253291 0.107541 0.000163838
0.342256 0.833892 0.945416

0.88163 0.976832 0.955085 0.947093 0.95195 0.946416

0.96069 0.91917 0.996764 0.879858 0.801147 0.872343

0.475005 0.442119 0.46893 0.165786 0.0766972 0.0603441

7.75411e-005 0.000816793

0.93094 0.89816 0.937143 0.900049 0.874377 0.945805

0.962391 0.930185 0.975713 0.644614 0.579728 0.0059929

0.674136 0.469869 0.00332156 0.465617 0.689244

0.681682 0.842049 0.602367

0.455661 0.443317 0.46773 0.469529 0.486743 0.593255

0.69553 0.875277 0.888752 0.813796 0.818306 0.751631 O
0.0258322 0.115638 0.0192837 0.000181241

0.162604 0.000562188 0.00395561

0.885852 0.680078 0.867391 0.771576 0.956681 0.931574 0.7367
0.568264 0.291156 0.132134 O 0.0496621 0
0.233759 0.721963 0.831849 0.914839 0.891938

0.96074 0.706293

0.557075 0.412259 0.377182 0.19526 3.37119e-005

1.65335e-006 0.0008443 2.17797e-006 0.00109715
0.0512152 0.00580124 8.58378e-005 0
0.0389195 0.000905185 0.394094 0.72367

0.774964 0.881857 0.841173

0.936956 0.873736 0.885695 0.827527 0.786342 0.941993

0.874075 0.849195 0.711203 0.678979 0.675802 0.829882

0.399225 0.56989 0.865231 0.925754 0.916156 0.946409

ettt ————— A ———
e et ————————— ettt

InTeLuGent OpricaL Sensor - 341

Appendix K ~ Final System Structure

0.964538 0.94087
Row 18

0.829264 0.835922 0.84616 0.94825 0.921175 0.936111
0.685558 0.664221 0.555898 0.76815 0.880943 0.976588
0.939887 0.915694 0.922126 0.823478 0.873642 0.840451
0.86182 0.749311

0.94746 0.956619 0.990494 0.992811 0.990106 0.973097
0.91422 0.99941 0.991727 0.843294 0.887588 0.952292
0.535505 0.384693 0.252388 0.0793095 0.332349 0.517415
0.901822 0.926159

0.945165 0.943124 0.927992 0.989218 0.954801 0.98881
0.943355 0.995831 0.997601 0.910249 0.910008 0.701132
0.605427 0.445481 0.394916 0.00331333 0.266579
0.446079 9.13963e-005 0

0.96501 0.906072 0.926978 0.895214 0.7843 0.977389
0.975257 0.980062 0.967313 0.743171 0.684645 0.586925
0.731201 0.611049 0.619888 0.69497 0.739333 0.7749
0.938152 0.614431

0.58735 0.63726 0.66148 0.693353 0.787103 0.89756
0.940895 0.990553 0.86807 0.827462 0.826858 0.819528 0.596
0.403259 0.393175 0.000150132 0 0
0 0

0.753661 0.79603 0.811121 0.885913 0.79704 0.925209
0.895021 0.938934 0.389308 0.230519 0.0475383 0.000118924

0.553752 0.68968 0.858757 0.739162 0.854297
0.942204 0.944528 0.568847

0.618603 0.426553 0.289674 0.179949 1.36622e-005

4.13062e-006 0.0214942 0.000478044 0.331976
0.0791712 0.0773675 0.00154219 0.106947 0.0877716
0.0965148 0.00332852 0.295521 0.464947 0.498249
0.879594

0.750962 0.818506 0.856373 0.946854 0.920258 0.865503
0.819289 0.449776 0.470556 0.52397 0.773583 0.670728
0.880226 0.817688 0.937999 0.969894 0.929402 0.83911
0.963866 0.950218

Row 19

0.937104 0.797958 0.837057 0.76941 0.777791 0.931619
0.145596 0.178606 0.664011 0.901289 0.941531 0.992615
0.962738 0.959322 0.919561 0.791199 0.869857 0.901596
0.733528 0.577128

0.903537 0.903363 0.925444 0.940816 0.799013 0.944855
0.962061 0.940417 0.752603 0.924417 0.973991 0.990481
0.514923 0.31182 0.243571 0.000664393 0.564191
0.87411 0.797198 0.718178

0.988708 0.972282 0.884463 0.926532 0.759774 0.998597
0.925311 0.933846 0.948686 0.939898 0.98067 0.970405
0.62243 0.472948 0.433852 0.596479 0.502497 0.0594165
0.0451007 O -

InTeLLIGENT OpTicaL Sensor - 342

Appendix K - Final System Structure

0.957325 0.986518 0.760391 0.637386 0.792052 0.999212
0.988192 0.958589 0.908788 0.956352 0.968571 0.765185
0.737725 0.719547 0.730921 0.718641 0.826801 0.689597
0.74663 0.753645

0.871294 0.985675 0.835355 0.777096 0.821619 0.944582

0.934859 0.930139 0.932142 0.744833 0.786226 0.874756

0.682502 0.593622 0.448535 O 0 0 0
0

0.643583 0.92713 0.914394 0.883278 0.866106 0.88004
0.910839 0.880648 0.608584 0.241225 0.0763791 0.0235763
0.628654 0.8932 0.873923 0.892901 0.889935 0.722969
0.718021 0.669542

0.465663 0.42956 0.340458 1.45699e-005 0.00036217
0.0490995 8.05294e-005 0.0570215 0.09342
0.131067 0.000282264 0.1254 0.122962 0.12967

0.101538 0.118305 0.109273 0.0894796 0.462799 0.661592

0.649126 0.696708 0.829593 0.840561 0.924965 0.576054
0.721598 0.116841 0.0594525 0.131157 0.679131 0.990157
0.956128 0.952822 0.94319 0.925347 0.898803 0.973106
0.804733 0.647698

ettt e ———_tttetiite————————eee ettt A ————re
]

InteLucent OpricaL Sensor - 343

Appendix K - Final System Structure

19.2 - MLP Layer

NumberOflnputs = 9;
NumberOfOutputs = 1;
NumberOfLayers = 4;

Layer sizes:

Input Layer: 9
Hidden Layer 1: 7 + Bias
Hidden Layer 2: 3 + Bias

Output Layer: 1

Transfer Function : Sigmoid

Training Method: Sequential

Initial Learning Rate: 0.2

Initial Momentum: 0.8

Triained for 97 epochs

Weights per layer per node:

Weights:
Layer 2
Node 1
Node 1
Node 1
Node 1
Node 1
Node 1
Node 1
Node 1
Node 1
Node 1
Node 2
Node 2
Node 2
Node 2

Bias is -1.16695377441978

Weight from 1 is
Weight from 2 is
Weight from 3 is
Weight from 4 is
Weight from 5 is
Weight from 6 is
Weight from 7 is
Weight from 8 is
Weight from 9 is

0.287749382606513
6.68779653502263
2.12380318025296
-2.99195778125491
-2.79258647191585
-0.813940272990039
-0.9933645895901
-0.993318215932311
0.833333455198896

Bias is 0.490869824141896

Weight from 1 is
Weight from 2 is
Weight from 3 is

-0.400118053183008
-3.79257307516019
-0.92824726602038

InTeLLIGENT OpTicaL Sensor - 344

Appendix K - Final System Structure

Node 2
Node 2
Node 2
Node 2
Node 2
Node 2
Node 3
Node 3
Node 3
Node 3
Node 3
Node 3
Node 3
Node 3
Node 3
Node 3
Node 4
Node 4
Node 4
Node 4
Node 4
Node 4
Node 4
Node 4
Node 4
Node 4
Node 5
Node 5
Node 5
Node 5
Node 5
Node 5
Node 5
Node 5
Node 5
Node 5

Weight from 4 is
Weight from 5 is
Weight from 6 is
Weight from 7 is
Weight from 8 is
Weight from 9 is

1.38639761223755
2.32751524737333
-0.518193799649914
-0.167100691183909
0.283150766230358
-0.919194069687385

Bias is 0.462423248578962

Weight from 1 is
Weight from 2 is
Weight from 3 is
Weight from 4 is
Weight from 5 is
Weight from 6 is
Weight from 7 is
Weight from 8 is
Weight from 9 is

-1.02146462143204
-4.85562040553977
-0.634953235901165
1.81905614370662
2.99874088792403
-0.514936487972874
0.165035939614431
0.734926667956098
-0.349716852733153

Bias is -0.251549161583715

Weight from 1 is
Weight from 2 is
Weight from 3 is
Weight from 4 is
Weight from 5 is
Weight from 6 is
Weight from 7 is
Weight from 8 is
Weight from 9 is

-0.20429322142147
-1.8120072178301
-0.428959914282485
0.437774619554934
0.667978125317098
-0.608167141256914
-0.410622260324976
0.421968397606879
-0.510107005826963

Bias is 0.260565806085845

Weight from 1 is
Weight from 2 is
Weight from 3 is
Weight from 4 is
Weight from 5 is
Weight from 6 is
Weight from 7 is
Weight from 8 is
Weight from 9 is

0.13882193385232
-1.99748635878574
-0.755544646206114
0.0575742524314847
1.2838943241021
-0.35320445650789
-0.19338942524826
-0.077286083531646
-0.457640242412167

InTeLLIGENT OpricaL Sensor - 345

Appendix K - Final System Structure

Node 6 Bias is 0.672870926034741

Node 6 Weight from 1 is -0.620512114843159
Node 6 Weight from 2 is -3.93227024052153
Node 6 Weight from 3 is -0.43580820259583
Node 6 Weight from 4 is 1.1964255424759
Node 6 Weight from 5 is 2.14471444777331
Node 6 Weight from 6 is -0.486088569238042
Node 6 Weight from 7 is -0.35192936109598
Node 6 Weight from 8 is -0.160725731350153
Node 6 Weight from 9 is -0.271990436990789
Node 7 Bias is -0.855929725364306

Node 7 Weight from 1 is 0.913092592130773
Node 7 Weight from 2 is 5.22940063718065
Node 7 Weight from 3 is 0.978445705530449
Node 7 Weight from 4 is -2.73469503393611
Node 7 Weight from 5 is -3.1816814868644
Node 7 Weight from 6 is 0.274046120320427
Node 7 Weight from 7 is -0.54343677253497
Node 7 Weight from 8 is -0.873690620372073
Node 7 Weight from 9 is 1.15417676137488
Layer 3

Node 1 Bias is -0.37972958555123

Node 1 Weight from 1 is -0.48781192969308
Node 1 Weight from 2 is 0.3245452147136
Node 1 Weight from 3 is -0.202350774731255
Node 1 Weight from 4 is -0.123909787703083
Node 1 Weight from 5 is 0.119192312507584
Node 1 Weight from 6 is 0.278067920189425
Node 1 Weight from 7 is -1.0262302778878
Node 2 Bias is -0.502822254680326

Node 2 Weight from 1 is 4.4655146412411
Node 2 Weight from 2 is -2.46537370502533
Node 2 Weight from 3 is -3.08536094836032
Node 2 Weight from 4 is -1.47204977253768
Node 2 Weight from 5 is -1.43296850744446
Node 2 Weight from 6 is -2.40489109847024

InTELLIGENT OpPTICAL SENSOR - 346

Appendix K - Final System Structure

Node 2
Node 3
Node 3
Node 3
Node 3
Node 3
Node 3
Node 3
Node 3
Layer 4
Node 1
Node 1
Node 1
Node 1

o R R RERERERERERE I R R R R R BRSBTS,
e —————————

Weight from 7 is

3.41765232849167

Bias is -0.239005008952351

Weight from 1 is
Weight from 2 is
Weight from 3 is
Weight from 4 is
Weight from 5 is
Weight from 6 is
Weight from 7 is

-3.58265830122547
2.19699217640588
2.94417315657475
0.972994265465855
1.19805491826407
2.42635076476544
-2.75230672757084

Bias is -1.49952950899378

Weight from 1 is
Weight from 2 is
Weight from 3 is

0.464671423180393
-8.71082800308455
6.30597300806232

InteLucent OpticaL Sensor - 347

Appenpix L — Sorrware Source Cooe

20 - Appendix L - Software Source Code

20.1 - Som Trainer

// Som TrainerDlg.cpp : implementation file
/

#include "stdafx.h"

#include "Som Trainer.h"
#include "Som TrainerDlg.h"
#include "DIgProxy.h"
#include "ViewWeightsDIg.h"
#include "SomHeader.h"
#include <iomanip.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE_ ;
#endif

i
// CAboutDIg dialog used for App About

class CAboutDlg : public CDialog
{

public:
CAboutDig();

// Dialog Data
J/{{AFX_DATA(CAboutDIg)
enum { IDD = IDD_ABOUTBOX };
//}}YAFX_DATA
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDIg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
[/} YAFX_VIRTUAL

// Implementation

protected:
//{{AFX_MSG(CAboutDlg)
/3 YAFX_MSG
DECLARE_MESSAGE_MAP()
5

CAboutDlg: :CAboutDIg() : CDialog(CAboutDIg::1DD)
{
//{{AFX_DATA_INIT(CAboutDlg)
//YYAFX_DATA_INIT
void CAboutDIg::DoDataExchange(CDataExchange* pDX)
{
CDialog: : DoDataExchange(pDX);

//{{AFX_DATA_MAP(CAboutDIg)
//}}YAFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
/1{{AFX_MSG_MAP(CAboutDIig) ”

InteLucent OpticaL Sensor - 348

Arpenpix L ~ SoFrware Source Cope

// No message handlers
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

i
// CSomTrainerDlg dialog

IMPLEMENT_DYNAMIC(CSomTrainerDlg, CDialog);

CSomTrainerDlg: :CSomTrainerDIg(CWnd* pParent /*=NULL*/)
: CDialog(CSomTrainerDlg::IDD, pParent)

//{{AFX_DATA_INIT(CSomTrainerDlg)
m_FileName = _T("");
m_FileSize = 0;
m_MapHeight = 0;
m_MapWidth = 0;
m_MaxTrain = 0;
m_MinNeighbour = 0;
m_NumInputs = 0;
m_MaxLearn = 0.0;
m_MinLearn = 0.0;
m_SaveName = _T("");
//}YAFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hlIcon = AfxGetApp()->LoadIlcon(IDR_MAINFRAME);
m_pAutoProxy = NULL;
}

//***

/! Declaring Instance of SOM
SOM SomNet;

int Checkall = 0;

//**

CSomTrainerDIg: : ~CSomTrainerDIg()

// If there is an automation proxy for this dialog, set
// its back pointer to this dialog to NULL, so it knows
// the dialog has been deleted.
if (m_pAutoProxy != NULL)
m_pAutoProxy->m_pDialog = NULL;
}

void CSomTrainerDlg: : DoDataExchange(CDataExchange* pDX)

{
CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CSomTrainerDIg)
DDX_Text(pDX, IDC_FILE_EDIT, m_FileName);
DDX_Text(pDX, IDC_FILESIZE_EDIT, m_FileSize);
DDX_Text(pDX, IDC_MAPHEIGHT_EDIT, m_MapHeight);
DDX_Text(pDX, IDC_MAPWIDTH_EDIT, m_MapWidth);
DDX_Text(pDX, IDC_MAXTRAIN_EDIT, m_MaxTrain);
DDX_Text(pDX, IDC_MINNEIGH_EDIT, m_MinNeighbour);
DDX_Text(pDX, IDC_NUMINPUTS_EDIT, m_NumInputs);
DDX_Text(pDX, IDC_MAXLEARN_EDIT, m_MaxLearn);
DDX_Text(pDX, IDC_MINLEARN_EDIT, m_MinLearn);
DDX_Text(pDX, IDC_SAVE_EDIT, m_SaveName);

, //}}YAFX_DATA_MAP

BEGIN_MESSAGE_MAP(CSomTrainerDig, CDialog)
/1{{AFX_MSG_MAP(CSomTrainerDlg)

InTeLLGenT Oprical Sensor - 349

Appenpix L — SorFrware Source Cope

ON_WM_SYSCOMMAND()
ON_WM_DESTROY()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_WM_CLOSE()
ON_BN_CLICKED(IDC_FILESELECT_BUTTON, OnFileselectButton)
ON_BN_CLICKED(IDC_TRAIN_BUTTON, OnTrainButton)
ON_BN_CLICKED(IDC_CHECK_BUTTON, OnCheckButton)
ON_COMMAND(ID_FILE_EXIT, OnFileExit)
ON_COMMAND(ID_FILE_LOADNETWORK, OnFileLoadnetwork)
ON_COMMAND(ID_FILE_SAVENATWORK, OnFileSavenatwork)
ON_COMMAND(ID_NETWOK_SAVEWEIGHTS, OnNetwokSaveweights)
ON_COMMAND(ID_NETWOK_VIEWWEIGHTS, OnNetwokViewweights)
ON_COMMAND(ID_TEST_SAVERESULTS, OnTestSaveresults)
ON_COMMAND(ID_TEST_TESTNETWORK, OnTestTestnetwork)
ON_COMMAND(ID_TEST_VIEWRESULTS, OnTestViewresults)
ON_EN_CHANGE(IDC_FILE_EDIT, OnChangeFileEdit)
ON_EN_CHANGE(IDC_FILESIZE_EDIT, OnChangeFilesizeEdit)
ON_EN_CHANGE(IDC_MAXLEARN_EDIT, OnChangeMaxlearnEdit)
ON_EN_CHANGE(IDC_MAXTRAIN_EDIT, OnChangeMaxtrainEdit)
ON_EN_CHANGE(IDC_MINLEARN_EDIT, OnChangeMinlearnEdit)
ON_EN_CHANGE(IDC_MINNEIGH_EDIT, OnChangeMinneighEdit)
ON_BN_CLICKED(IDC_TESTSET_BUTTON, OnTestsetButton)
ON_BN_CLICKED(IDC_TESTSAVE_BUTTON, OnTestsaveButton)
//}IAFX_MSG_MAP

END_MESSAGE_MAP()

i
// CSomTrainerDlg message handlers

BOOL CSomTrainerDlg: :OnInitDialog()

{
CDialog: :OnlnitDialog();
// Add "About..." menu item to system menu.
// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFQ) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (IstrAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu{MF_STRING, IDM_ABOUTBOX, strAboutMenu);

¥

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon
Setlcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here
m_MapHeight = 10;

m_MapWidth = 10;

m_Numinputs = SOM_NUMBER_INPUTS;
m_MaxLearn = 0.4;

m_MinLearn = 0.01;

m_MinNeighbour = 0;

m_MaxTrain = 4000;

UpdateData(FALSE);
return TRUE; // return TRUE unless you set the focus to a control

InteLucent OericaL Sensor - 350

Appenpix L — Sorrware Source Cobe

void CSomTrainerDlg: :0nSysCommand(UINT nID, LPARAM |Param)
{
if ((nID & OxFFFQ) == IDM_ABOUTBOX)

CAboutDlg digAbout;
digAbout.DoModal();

else
CDialog: :0nSysCommand(nID, |Param);

3
void CSomTrainerDlg: :OnDestroy()

WinHelp(OL, HELP_QUIT);
CDialog::OnDestroy();
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CSomTrainerDig: :OnPaint()
if (IsIconic())
{

CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - cxIcon + 1)/ 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.DrawIcon(x, y, m_hlIcon);

¥

else

CDialog: :OnPaint();
¥
>

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CSomTrainerDlg: :OnQueryDraglIcon()
{
return (HCURSOR) m_hIcon;
>

// Automation servers should not exit when a user closes the UI
// if a controller still holds on to one of its objects. These

// message handlers make sure that if the proxy is still in use,
// then the Ul is hidden but the dialog remains around if it

// is dismissed.

void CSomTrainerDlg: :OnClose()
if (CanExit())
CDialog: :0OnClose();
}

void CSomTrainerDlg: :OnOK()
{

InTeLLiGenT OpTicaL Sensor - 351

Arpenpix L ~ Sorrware Source Cope

if (CanExit())
CDialog::0nOK();
3
void CSomTrainerDlg: :OnCancel()
if (CanExit())
CbDialog::OnCancel();
>
BOOL CSomTrainerDlg: :CanExit()
{

// If the proxy object is still around, then the automation
// controller is still holding on to this application. Leave
// the dialog around, but hide its UL

if (m_pAutoProxy != NULL)

{

ShowWindow(SW_HIDE);
return FALSE;
>

return TRUE;
}

void CSomTrainerDIg: :OnFileselectButton()

{
// TODO: Add your control notification handter code here
CFileDialog dIg(TRUE,"*.txt","*.txt",NULL);
dig.DoModal();
m_FileName = dig.GetPathName();
m_TestFile = m_FileName;
UpdateData(FALSE);

if(1SomNet.SetFileName(m_FileName))
{
MessageBox("File doesn't exist, or is being used. Please reselect”,"File Selection
Error",MB_ICONERROR);
m_FileName = "";
UpdateData(FALSE);
}
}

void CSomTrainerDIg: : OnQuitButton()

// TODO: Add your control notification handler code here
OnOK();

void CSomTrainerDIg: :OnTrainButton()

// TODO: Add your control notification handler code here
if(CheckAlil=1)
{

MessageBox("Please initialise all parameters","Initialisation Error",MB_ICONWARNING);
return;

Y

BeginWaitCursor();

CProgressCtri* ProgControl;

ProgControl= (CProgressCtri*) GetDIgitem(IDC_TRAIN_PROGRESS);

ProgControl->SetRange(0,m_MaxTrain);

for(int loop = 0; loop< m_MaxTrain; loop++)

if(!SomNet.RunNet())
{

loop = m_MaxTrain;
EndWaitCursor(); .

InTeLLient OpticaL Sensor - 352

Aprpenpix L — Sortware Source Cope

MessageBox("Network training Failed","Network Error",MB_ICONERRORY);
return;

>
SomNet.IncCycle();
ProgControl->SetPos(loop);

}
EndWaitCursor();
MessageBox("Training Completed”,"Network Training",MB_ICONINFORMATION);
ProgControl->SetPos(0);
}

void CSomTrainerDIg: :OnCheckButton()
{
// TODO: Add your control notification handler code here
UpdateData(TRUE);
SomNet.InitCurCycle();
if(m_FileName=="")
{
MessageBox("You must select a training file","Initialisation Error", MB_ICONERROR);
return;

}
if(1SomNet.SetDatalines(m_FileSize))

MessageBox("Training File Size must be a positive value","Initialisation Error",MB_ICONERROR);
//m_FileSize= 0;

//UpdateData(FALSE);

return;

b
if(!SomNet.CheckFileSize())
{

MessageBox("Training file size does not match actual file","Initialisation Error",MB_ICONERRORY);
//m_FileSize = 0;

//UpdateData(FALSE);

return;

}
SomNet.SetNumInputs();
SomNet.SetMapSize();
if(!1SomNet.SetRates(m_MinLearn, m_MaxLearn))
{

MessageBox("Learning Rates must be positive,\nMax Learning rate must be larger value","Initialisation

Error",MB_ICONERROR);

m_MaxLearn = 0.4;

m_MinLearn = 0.01;

UpdateData(FALSE);

return;

}
if(1SomNet.SetMinNeighbour(m_MinNeighbour))
{
MessageBox("Min Neighbourhood must be positive","Initialisation Error",MB_ICONERROR);
m_MinNeighbour = 0; ‘
UpdateData(FALSE);
return;

}
if(!SomNet.SetMaxCycles(m_MaxTrain))

MessageBox("MaxTraining Cycles must be a positive Integer”,"Initialisation Error",MB_ICONERROR});
m_MaxTrain = 2000;
UpdateData(FALSE);
return;
}
SomNet.CalcMaxNeighbour();
SomNet.CaicCurNeighbour();
SomNet.CalcCurRate();
SomNet.RandomWeights();
SomNet.InitFilePos();

MessageBox("All parameters initialised, ready for training”,"Network Ready",MB_ICONINFORMATION);
CheckAll = 1; -

InteLuicent OpricaL Sensor - 353

Aprpenpix L — Sorrware Source Cope

}
void CSomTrainerDlg: :OnFileExit()

// TODO: Add your command handler code here
OnOK();

void CSomTrainerDIg: :OnFileLoadnetwork()

{
// TODO: Add your command handler code here
CString LoadFileName;

CFileDialog dIg(TRUE,"vsf","*.vsf",OFN_OVERWRITEPROMPT,"Vios SOM File *.vsf||Text File *.txt",NULL);

dig.DoModal();

LoadFileName = dlg.GetPathName();
m_NetFile = LoadFileName;

ifstream LoadFile(LoadFileName,ios: :nocreate);

char *Header = "SOMNET";
char *Temp="";
LoadFile>>Temp;

if (strcmp(Header,Temp)!=0)
{

MessageBox("File Header Mismatch");
return;

LoadFile >> m_NumlInputs;
LoadFile >> m_MapWidth;
LoadFile >> m_MapHeight;
LoadFile >> m_MaxLearn;
LoadFile >> m_MinLearn;
LoadFile >> m_MinNeighbour;
LoadFile >> m_MaxTrain;

char *Temp1="";

int Temp2;

double Temp3;

int loop1, loop2, loop3;

for (loop2 = 0; loop2<m_MapHeight; loop2++)

LoadFile >> Templ;
LoadFile >> Temp2;

for (loop3 = 0; loop3<m_Numinputs; loop3++)
for (loopl = 0; loopl<m_MapWidth; loopl++)

LoadFile >>Temp3;
SomNet.SetWeight(loopl, loop2, loop3, Temp3);
>
}

}
LoadFile.close();

SomNet.SetMapSize();
SomNet.SetNumInputs();
SomNet.SetMaxCycles(m_MaxTrain);
SomNet.SetRates(m_MinLearn, m_MaxLearn);
SomNet.SetMinNeighbour(m_MinNeighbour);
MessageBox("Network Loaded");
UpdateData(FALSE);

}

void CSomTrainerDlg: :OnFileSavenatwork()

// TODO: Add your command handler code here
int loop1l, loop2, loop3;

InteLuGent Optical Sensor - 354

Arpenpix L — Sorrware Source Cooe

CString SaveFileName;

CFileDialog dig(FALSE,"vsf","*.vsf",OFN_OVERWRITEPROMPT,"Vios SOM File *.vsf||Text File *.txt",NULL);
dig.DoModal();

SaveFileName = dig.GetPathName();

ofstream SaveFile(SaveFileName);

SaveFile << "SOMNET\n";

SaveFile << m_NumlInputs << endl;

SaveFile << m_MapWidth << "\t" << m_MapHeight << end!;
SaveFile << m_MaxLearn << "\t" << m_MinLearn << endt;
SaveFile << m_MinNeighbour << endl;

SaveFile << m_MaxTrain << endl;

for (loop2 = 0; loop2<m_MapHeight; loop2++)

{

SaveFile << "Row " << loop2<<endl;
for (loop3 = 0; loop3<m_NumInputs; loop3++)

for (loopl = 0; loopl<m_MapWidth; loopl++)
SaveFile << SomNet.GiveWeight(loop1,loop2,loop3) << "\t";

SaveFile << endl;

}
SaveFile.close();
}
\{/oid CSomTrainerDig: : OnNetwokSaveweights()

// TODO: Add your command handler code here
int loop1, loop2, loop3;

CFileDialog dig(FALSE,"vwf","* .vwf",OFN_OVERWRITEPROMPT,"Vios Weights File *.vwf||Text File
*.xt",NULL);

dig.DoModal();

CString SaveFileName;

SaveFileName = dIg.GetPathName(),;

ofstream SaveFile(SaveFileName);

for (loop2 = 0; loop2<m_MapHeight; loop2++)

SaveFile << "Row " << loop2<<end!;
for (loop3 = 0; loop3<m_Numlnputs; ioop3++)

for (loopl = 0; loopl<m_MapWidth; loopl++)

SaveFile << SomNet.GiveWeight(loop1,loop2,loop3) << "\t";
}
SaveFile << endl;

3

SaveFile.close();

void CSomTrainerDlg: :OnNetwokViewweights()

{
// TODO: Add your command handler code here
ViewWeightsDIg m_dlig;
int loop1, loop2, loop3;

m_dlg.MaxCycles = m_MaxTrain;
m_dlg.MaxLines = m_FileSize;

for(loopl = 0Q; loop1<10; loopi++)
{

InTeLLiGenT Opricat Sensor - 355

Arpenpix L ~ Sorrware Source Cope

for(loop2 = 0; loop2<10; loop2++)
for (loop3 = 0; loop3<5; loop3++)
m_dlg.WeightVals[loop2][loop1]{loop3] = SomNet.GiveWeight(loop2, loop1, loop3);

m_dig.FireRates[loop2][loopl] = SomNet.GiveFire(loop2, loopl);
}

}
for(loopl= 0; loop1<5; loopl++)
m_dlg.Inputs[loopl] = SomNet.GiveData(loop1);

}

m_dlg.Test = 0;

m_d!g.DoModal();
}

void CSomTrainerDlg: :OnTestSaveresults()
// TODO: Add your command handler code here

}

void CSomTrainerDlg: :OnTestTestnetwork()

{
// TODO: Add your command handler code here
ViewWeightsDig m_dlg;
int loop1, loop2, loop3;

if(m_FileName=="")

MessageBox("You must select a training file","Initialisation Error", MB_ICONERRORY);
return;

SomNet.SetDataLines(1);

m_FileSize = 1;

UpdateData(FALSE);

SomNet.InitFilePos();

SomNet.ReadDataLine();
// MessageBox(m_FileName);

char Text[500];

sprintf(Text,"Values are : %f - %f - %f - %f - %f",SomNet.GiveData(0),SomNet.GiveData(1),
SomNet.GiveData(2),SomNet.GiveData(3),SomNet.GiveData(4));

MessageBox(Text);

SomNet.CalcWinner();

m_dig.Test = 1;

m_dlg.WinX = SomNet.GiveWinnerX();
m_dlg.WinY = SomNet.GiveWinnerY();
m_dlg.MaxCycles = m_MaxTrain;
m_dlg.MaxLines = m_FileSize;

double Max = 0;

double Min = 100;

for(loopl = 0; loop1<10; loopl++)

for(loop2 = 0; loop2<10; loop2++)
{
for (loop3 = 0; loop3<5; loop3++)
{

m_dlg.WeightVals[loop2][loop1][loop3] = SomNet.GiveWeight(loop2, loopl, loop3);
if(m_dig. WeightVals[loop2][loop1][loop3]>Max) Max = m_dlg.WeightVais[loop2][loop1i][lcop3];
if(m_dig.WeightVals[loop2][loop1][loop3]<Min) Min = m_dig.WeightVals[loop2]{loop1][loop3];

}
m_dlg.FireRates[loop2]floopl] = SomNet.GiveFire(loop2, loopl);
}

}
m_dlg.MaxWeight = Max;
m

dig.MinWeight = Min;

InTeLLIGenT OpricaL Sensor - 356

Appenpix L — Sorrware Source Cope

Max = 0;

Min = 100;

for(loopl= 0; loop1<5; loopl++)

{
m_dlg.Inputs[loopl] = SomNet.GiveData(loop1);
if(m_dlg.Inputs[ioop1]>Max) Max = m_dig.Inputs[loop1];
if(m_dlg.Inputs[loop1]<Min) Min = m_dig.Inputs{ioop1];

m_dlg.MaxIn = Max;
m_dlg.MinIn = Min;

m_dig.Test = 1;
m_dlg.DoModal();
m_dlg.Test = 0;
m_FileName =" ";
UpdateData(FALSE);
3
void CSomTrainerDIg: :OnTestViewresults()
// TODO: Add your command handler code here
}
void CSomTrainerDIg: :OnChangeFileEdit()
{

CheckAll = 0;
}

void CSomTrainerDlg: :OnChangeFilesizeEdit()
{
CheckAll = 0;

void CSomTrainerDlg: :OnChangeMaxlearnEdit()
CheckAll = 0;

void CSomTrainerDig: :OnChangeMaxtrainEdit()
{

CheckAll = 0;
}

void CSomTrainerDIg: :OnChangeMinlearnEdit()
{

CheckAll = 0;

void CSomTrainerDIg: :OnChangeMinneighEdit()
{

CheckAll = 0;

void CSomTrainerDIg: :OnSavetestButton()

¢ // TODO: Add your control notification handler code here

}

void CSomTrainerDig: :OnTestsetButton()

¢ // TODO: Add your control notification handler code here
int loop,loopl;

BeginWaitCursor();
UpdateData(TRUE);

InteLucent OpricaL Sensor - 357

Arpenpix L — Sorrware Source Cope

char store;

int count=1;

ifstream TestFile(m_FileName,ios: :nocreate);
while(TestFile)

{

TestFile.get(store);
if(store=="\n")
count++;

}
TestFile.close();
m_FileSize = count;

SomNet.SetDatalines(m_FileSize);
UpdateData(FALSE);
SomNet.InitFilePos();

ofstream OutFile(m_SaveName);

OutFile << "Results from "<< m_NetFile << endl;

OutFile << "Tested using "<< m_TestFile << end! << endi;

OutFile << "WinX\tWinY\tVectorial Distance\tBoundary Size\tMetric\n\n";
CProgressCtrli* ProgControl;

ProgControl= (CProgressCtri*) GetDIgIltem(IDC_TRAIN_PROGRESS);

ProgControl->SetRange(0,m_FileSize);
ProgControl->SetPos(0);
for(loop = 0; loop<m_FileSize; loop++)

SomNet.ReadDataline();

/! char Text[500];
// sprintf(Text,"Values are : %f - %f - %f - %f - %f",SomNet.GiveData(0), SomNet.GiveData(1),
SomNet.GiveData(2),SomNet.GiveData(3),SomNet.GiveData(4));
// MessageBox(Text);
SomNet.CalcWinner();
double Temp = 0;
double Distance = 0;
//calc distance from input to winning node
double InputsSum = 0;
for(loopl= 0; loopl<SOM_NUMBER_INPUTS; loopl++)

Temp = SomNet.GiveWeight(SomNet.GiveWinnerX(), SomNet.GiveWinnerY(),loopl) - SomNet.GiveData
(loop1);
Distance += sqrt(pow(Temp,2));
Temp = 0;

}

for(loopl = 0; loopl<SOM_NUMBER_INPUTS; loopl++)
InputsSum += SomNet.GiveData(loopl);

//calc wining node's boundary distance

double Boundary = 0;

double d[8];

for(int loop=0; loop<8; loop++)
d[loop] = 0;

int Tot = 8;

if(SomNet.GiveWinnerY()!=0)

{
if(SomNet.GiveWinnerX()!=0) d[0] = CalcDistance(SomNet.GiveWinnerX()-1, SomNet.GiveWinnerY()-1);
else Tot--;
d[1] = CalcDistance(SomNet.GiveWinnerX(), SomNet.GiveWinnerY()-1);

if(SomNet.GiveWinnerX()!=9) d[2] = CalcDistance(SomNet.GiveWinnerX()+1, SomNet.GiveWinnerY()-1);
else Tot--;

else Tot -= 3;
if(SomNet.GiveWinnerX()!=0) d[3] = CalcDistance(SomNet.GiveWinnerX()-1, SomNet.GiveWinnerY());
else Tot--; i
if(SomNet.GiveWinnerX()!=9) d[4] = CalcDistance(SomNet.GiveWinnerX()+1, SomNet.GiveWinnerY());

else Tot--;
if(SomNet.GiveWinnerY()!=9) -

InteLuiGent Oprical Sensor - 358

Apepenpix L. — SorFtware Source Cope

{
if(SomNet.GiveWinnerX()!=0) d[0] = CaicDistance(SomNet.GiveWinnerX()-1, SomNet.GiveWinnerY()+1);
else Tot--;
d[1] = CalcDistance(SomNet.GiveWinnerX(), SomNet.GiveWinnerY()+1);
if(SomNet.GiveWinnerX()!=9) d[2] = CalcDistance(SomNet.GiveWinnerX()+1, SomNet.GiveWinnerY()+1);
else Tot--;

else Tot -=3;

//find average distance, and take half !
double Avge = 0;

//for(ioop = 0; loop <8; loop++)
//Avge += dlloop];

//Avge = 0.5*(double){Avge/Tot);
Avge = 0;

for(loop = 0; loop<8; loop++)

if(d[loop]>Avge) Avge = d[loop];

//Calc Metric
double Metric = InputsSum/Avge;

//now save the data
OutFile << SomNet.GiveWinnerX() <<"\t"<<SomNet.GiveWinnerY()
<<"\t"<<Distance<<"\t"< <Avge<<"\t"<<Metricc<endl;
ProgControl->SetPos(loop);

}

OutFile.close();

EndWaitCursor();

MessageBox("Testing Completed"”,"SOM Trainer",MB_OK);

void CSomTrainerDIg: :OnTestsaveButton()
{

// TODO: Add your control notification handler code here

CFileDialog Saver(FALSE,"txt","*.txt",OFN_OVERWRITEPROMPT, "Results File}*.txt]|",NULL);
if(Saver.DoModal()==IDOK)

{

m_SaveName = Saver.GetPathName();
UpdateData(FALSE);
}
}

double CSomTrainerDlg: : CalcDistance(int X, int Y)
{

double Vals[5];
double Weightl, Weight2;
for(int loop = 0; loop<5; loop++)

Weightl = SomNet.GiveWeight(SomNet.GiveWinnerX(),SomNet.GiveWinnerY(),loop);
Weight2 = SomNet.GiveWeight(X,Y,loop);
Vals[loop] = sqrt(pow(Weight2-Weight1,2});

b4

double retval = 0;

for(loop = 0; loop <5; loop++)
retval += Vais[loop];

return(retval);

// Som TrainerDlg.h : header file)

InTeLLIGENT OpricaL Sensor - 359

Arpenpix L — Sorrware Source Cope

/

#if \defined(AFX_SOMTRAINERDLG_H__952466AB_ACC2_11D3_B160_8BFB919D1E24_ INCLUDED_)
#define AFX_SOMTRAINERDLG_H__952466AB_ACC2_11D3_B160_8BFB919D1E24___INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CSomTrainerDIgAutoProxy;

i
// CSomTrainerDlg dialog

class CSomTrainerDlg : public CDialog
{

DECLARE_DYNAMIC(CSomTrainerDIig);
friend class CSomTrainerDIgAutoProxy;

// Construction
public:
double CalcDistance(int X,int Y);
CString m_TestFile;
CString m_NetFile;
CSomTrainerDIg(CWnd* pParent = NULL); // standard constructor
virtual ~CSomTrainerDIg();

// Dialog Data
J/{{AFX_DATA(CSomTrainerDlg)
enum { IDD = IDD_SOMTRAINER_DIALOG };
CString m_FileName;
int m_FileSize;
int m_MapHeight;
int m_MapWidth;
int m_MaxTrain;
int m_MinNeighbour;
int m_Numlnputs;
doublem_MaxLearn;
doublem_MinlLearn;
CString m_SaveName;
1/} YAFX_DATA
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CSomTrainerDIg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}YAFX_VIRTUAL '

// Implementation

protected:
CSomTrainerDIgAutoProxy* m_pAutoProxy;
HICON m_hicon;

BOOL CankExit();

// Generated message map functions
J/{{AFX_MSG(CSomTrainerDIg)

virtual BOOL OnInitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM |Param);
afx_msg void OnDestroy();

afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon();

afx_msg void OnClose();

virtual void OnOK();

virtual void OnCancel();

InTeLucent Oprical Sensor - 360

Arpenpix L = SorFtware Source Cope

afx_msg void OnFileselectButton();
afx_msg void OnLoadButton();
afx_msg void OnQuitButton();
afx_msg void OnSaveButton();
afx_msg void OnTrainButton();
afx_msg void OnCheckButton();
afx_msg void OnFileExit();
afx_msg void OnFileLoadnetwork();
afx_msg void OnFileSavenatwork();
afx_msg void OnNetwokSaveweights();
afx_msg void OnNetwokViewweights();
afx_msg void OnTestSaveresults();
afx_msg void OnTestTestnetwork();
afx_msg void OnTestViewresults();
afx_msg void OnChangeFileEdit();
afx_msg void OnChangeFilesizeEdit();
afx_msg void OnChangeMaxlearnEdit();
afx_msg void OnChangeMaxtrainEdit();
afx_msg void OnChangeMiniearnEdit();
afx_msg void OnChangeMinneighEdit();
afx_msg void OnSavetestButton();
afx_msg void OnTestsetButton();
afx_msg void OnTestsaveButton();
1/ }YYAFX_MSG
DECLARE_MESSAGE_MAP()

1)

//{{AFX_INSERT_LOCATION}}

// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // Idefined

(AFX_SOMTRAINERDLG_H__952466AB_ACC2_11D3_B160_8BFB919D1E24__INCLUDED_)

// ViewWeightsDig.cpp : implementation file
//

#include "stdafx.h"

#include "Som Trainer.h"
#include "ViewWeightsDIg.h"
#include "Som TrainerDig.h"
#include <math.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __ FILE__;
#endif

i
// ViewWeightsDlg dialog

ViewWeightsDIg: : ViewWeightsDIg(CWnd* pParent /*=NULL*/)
: CDialog(ViewWeightsDig::IDD, pParent)
{

//{{AFX_DATA_INIT(ViewWeightsD!g)
// NOTE: the ClassWizard will add member initialization here
// Y YAFX_DATA_INIT
}

void ViewWeightsDIg: : DoDataExchange(CDataExchange* pDX)
{ -

InteLuGent Oepticat Sensor - 361

Appenpix L — SoFrware Source Cobpe

CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(ViewWeightsDIg)
// NOTE: the ClassWizard will add DDX and DDV calls here
// }YYAFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(ViewWeightsDlg, CDialog)
J/{{AFX_MSG_MAP(ViewWeightsDig)
ON_BN_CLICKED(IDC_PLOT_BUTTON, OnPlotButton)
ON_BN_CLICKED(IDC_SUM_BUTTON, OnSumButton)
ON_BN_CLICKED(IDC_BARS_BUTTON, OnBarsButton)
ON_WM_MOUSEMOVE()
ON_BN_CLICKED(IDC_FIRING_BUTTON, OnFiringButton)
/1 }YYAFX_MSG_MAP

END_MESSAGE_MAP()

i
// ViewWeightsDlg message handlers

BOOL ViewWeightsDIg: :OnInitDialog()
{
CDialog: :OnInitDialog();
// TODO: Add extra initialization here
OnPlotButton();
Invalidate();

return TRUE; // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE

void ViewWeightsDIg: :0nOK()
{

// TODO: Add extra validation here
CDialog::0OnOK();
}

void ViewWeightsDig: :0nPaint()
{

// Do not call CDialog::OnPaint() for painting messages
}

void ViewWeightsDlg: :OnPlotButton()
{

// TODO: Add your control notification handler code here
CClientDC dc(this);
int StartX;
int Starty;

CPen RectPen;
RectPen.CreatePen(PS_SOLID,1,RGB(255,255,255));
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&RectPen);
for(StartY = 10; StartY<360; StartY+=35)
{

for (StartX = 10; StartX<360; StartX+=35)

{
Rectangle(dc, StartX, StartY,StartX+30,StartY+30);

InTeLLIGENT OpTicaL Sensor - 362

Appenpix L — SorFrware Source Cope

}
}
if (Test==1)
{
CPen WinPen;

WinPen.CreatePen(PS_SOLID,4,RGB(255,100,0));
pOriginalPen = dc.SelectObject(&WinPen);

StartX = 10 + (35 * WinX);

StartY = 10 + (35 * WinY);

Rectangle(dc,StartX, StartY, StartX + 30, StartY + 30);

CPen PlotPen;
PiotPen.CreatePen(PS_SOLID,1,RGB(255,0,0));
pOriginalPen = dc.SelectObject(&PlotPen);

int Posx, Posy;

for(StartY = 10; StartY<360; StartY+=35)

{
for (StartX = 10; StartX<360; StartX+=35)
{

Posx = StartX;
Posy = StartY + 29;
MoveToEx(dc,Posx,Posy,NULL);

for (int loop3 = 0; loop3<Numins; loop3++)

Posy = StartY + 30 - (int)(30*WeightVals[(StartX-10)/35][(StartY-10)/35][loop3]);
LineTo(dc,Posx,Posy);
Posx += int(35/NumIns);
>
}
}

}
void ViewWeightsDlg: :OnSumButton()
{

// TODO: Add your control notification handler code here
CClientDC dc(this);

int StartX;

int StartY;

int loop3;

double Sum;

int loop1;

int loop2;

for(StartY = 10; StartY<360; StartY+=35)
{

for (StartX = 10; StartX<360; StartX+=35)
{

Sum = 0;

double Dist = 0;

for(loop3 = 0; loop3<Numlns; loop3++)

{

double Temp = WeightVals[(StartX-10)/35][(StartY-10)/35][loop3];

Sum += sqrt{pow(Temp,2));

//Dist += WeightVals[(StartX-10)/35][(StartY-10)/35][loop3] - Inputs[loop3];

b4

//Sum = (int)(Dist*51);

int Mult = 255/(NumIns*MaxWeight);
for (loopl = 0; loop1<30; loopl++)
{ .

InTeLiiGenT OpricaL Sensor - 363

Arpenpix L — Sortware Source Cope

for (loop2 = 0; loop2<30; loop2++)
{

SetPixel(dc,StartX + loop1, StartY+loop2,RGB(0,(int)(Mult*Sum), (int)(Mult*Sum)));
}
¥
¥

}
if (Test==1)
{

CPen WinPen;
WinPen.CreatePen(PS_SOLID,4,RGB(255,100,0));
CPen* pOriginalPen;

pOriginalPen = dc.SelectObject(&WinPen);

StartX = 10 + (35 * WinX);

StartY = 10 + (35 * WinY);
MoveToEx(dc, StartX, StartY, NULL);
LineTo(dc, StartX+30, StartY);
LineTo(dc, StartX+30, StartY+30);
LineTo(dc, StartX, StartY + 30);
LineTo(dc, StartX, StartY);

¥

void ViewWeightsDlg: :OnBarsButton()
{
// TODO: Add your control notification handler code here
CClientDC dc(this);
int StartX;
int Starty;
int loop3;
int loop1;
int loop2;

CPen RectPen;
RectPen.CreatePen(PS_SOLID,1,RGB(255,255,255));
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&RectPen);
for(StartY = 10; StartY<360; StartY+=35)
{

for (StartX = 10; StartX<360; StartX+=35)

{

Rectangle(dc, StartX,StartY,StartX+30,StartY+30);

for(StartY = 10; StartY<360; StartY+=35)
{ for (StartX = 10; StartX<360; StartX+=35)
for(loop3 = 0; loop3<Numlns; loop3++)
for(loopl = 0; loopl<Numins+1;loopl++)
for (loop2 = 0; loop2<(int)(30*WeightVals[(StartX-10)/35]((StartY-10)/35][loop3]); loop2++)

SetPixel(dc,StartX + (NumIns+1)*loop3 + loopl, StartY + 30 - loop2,RGB(0,50,(int)
(255*WeightVals[(StartX-10)/35][(StartY-10)/351[loop3])));
}

3
}
3
e

InTeLGent OpticaL Sensor - 364

Apeenpix L = SorFtware Source Cope

if (Test==1)
{

CPen WinPen;
WinPen.CreatePen(PS_SOLID,4,RGB(255,100,0));
CPen* pOriginalPen;

pOriginalPen = dc.SelectObject(&WinPen);
StartX = 10 + (35 * WinX);

StartY = 10 + (35 * WinY);

MoveToEx(dc, StartX, StartY, NULL);
LineTo(dc, StartX+30, StartY);

LineTo(dc, StartX+30, StartY+30);
LineTo(dc, StartX, StartY + 30);

LineTo(dc, StartX, StartY);

void ViewWeightsDIg: : OnFiringButton() //distances
{

// TODO: Add your control notification handler code here

int StartX;

ClientDC dc(this);

int Starty;

int loop3;

double Sum;

int ioop1;

int foop2;

int Mult;

double Res1 = abs(MaxWeight-MinlIn);
double Res2 = abs(MaxIn - MinWeight);
if(Res1>Res2) Mult = 255/(NumIns*Resl);
else Mult = 255/(NumIns*Res2);

for(StartY = 10; StartY<360; StartY+=35)
{

for (StartX = 10; StartX<360; StartX+=35)
{
Sum = 0;
double Dist = 0;
for(loop3 = 0; loop3<Numlns; loop3++)
{

double Temp= WeightVals[(StartX-10)/35]{(StartY-10)/35][loop3] - Inputs{loop3];
Sum += Sql’t(pOW(Temprz));

}
Sum = (int)(Sum*Mult);
for (loopl = 0; loop1<30; loopl++)

for (loop2 = 0; loop2<30; loop2++)

SetPixel(dc,StartX + loopl, StartY+loop2,RGB(Sum,0,0));//(int)(51*Sum)));
}
}
}

}
if (Test==1)
{

CPen WinPen;
WinPen.CreatePen(PS_SOLID,4,RGB(255,100,0));
CPen* pOriginaiPen; '
pOriginalPen = dc.SelectObject(&WinPen);

StartX = 10 + (35 * WinX);

StartY = 10 + (35 * WinY);

MoveToEx(dc, StartX, StartY, NULL); ~

InTeLLIGENT OpTicaL Sensor - 365

Arpenpix L — SorFtware Source Cope

LineTo{dc, StartX+30, StartY);
LineTo(dc, StartX+30, StartY+30);
LineTo(dc, StartX, StartY + 30);
LineTo(dc, StartX, StartY);

double WinDist=0;
for(int loop = 0; loop <NumlIns; loop++)

double Temp = WeightVals[WinX}[WinY][loop] - Inputs[loop];
WinDist += sqrt(pow(Temp,2));

}

char Text[500];

sprintf(Text,"Vectorial Distance is : %f - Mult :%i",WinDist,Mult);
MessageBox(Text);

#if \defined(AFX_VIEWWEIGHTSDLG_H__A3E1F763_ACF0_11D3_B160_8BFB919D1E24_ INCLUDED_)
#define AFX_VIEWWEIGHTSDLG_H__A3E1F763_ACFO_11D3_B160_8BFB919D1E24_ INCLUDED_

#if _MSC_VER >= 1000
#pragma once

#endif // _MSC_VER >= 1000
// ViewWeightsDlg.h : header file
//

const int NumIns=8;

i
// ViewWeightsDlg dialog

class ViewWeightsDlg : public CDialog
{

// Construction

public:

ViewWeightsDIg(CWnd* pParent = NULL); // standard constructor
double WeightVals[10][10][Numins];
int FireRates[10][10];

int MaxCycles;

int MaxLines;

double Inputs{NumIns];

int Test;

int WinX;

int WinY;

double MaxWeight;

double MinWeight;

double MaxiIn;

double MinlIn;

// Dialog Data
1/{{AFX_DATA(ViewWeightsDIg)
enum { IDD = IDD_WEIGHTS_DIALOG };
// NOTE: the ClassWizard will add data members here
1/} YAFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(ViewWeightsDIg)
protected:

InTeLLiGenT OpTicaL SeEnsor - 366

Arpenpix L — Sorrware Source Cope

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}YAFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
J1{{AFX_MSG(ViewWeightsDIg)
afx_msg void OnPaint();

virtual BOOL OnlInitDialog();
virtual void OnOK();

afx_msg void OnPlotButton();
afx_msg void OnSumButton();
afx_msg void OnBarsButton();
afx_msg void OnFiringButton();
/1 YYAFX_MSG
DECLARE_MESSAGE_MAP()

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // \defined
(AFX_VIEWWEIGHTSDLG_H__A3E1F763_ACF0_11D3_B160_8BFB919D1E24_INCLUDED_)

/**\
Header code for SOM network |

|
I
I
I
I
I
\

HAAAAAAAAAA KA A F A AAA KA AR A KRR AAAA KA AR A AR AR K AR A KA A KA A A KK AR AR A KKK

#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

const int SOM_NUMBER_INPUTS = 8;

class SOM
{

//designed for a 10x10 network with 5 inputs, to adapt change the
//size of the arrays Weight[J[1[], Winner[][] and Input[]
//Designed to read it's info from an ASCII file

private :
double MaxRate; //Maximum Learning Rate
double MinRate; //Minimum Learning Rate
double CurRate; //Current Learning Rate
int MaxCycles; //Max number of training cycles
int CurCycle; //Current cycle value

int MaxNeighbour; //Maximum neighbourhood
int MinNeighbour; //Minimum Neighbourhood
int CurNeighbour; //Current Neighbourhood

double Weight[10][10][SOM_NUMBER_INPUTS];
int Fire[10][10];

int WinnerX;
int Winnery;, -

InTeLLIGENT OpricaL Sensor - 367

Arpenoix L — Sortware Source Cooe

double Error;

int MapWidth;

int MapHeight;

int NumInputs;

double Input[SOM_NUMBER_INPUTS];

int DatalLines; //No of lines of data in file to be read
CString FileName; //Name of file to be presented
int FilePos; //Current Position of file pointer

public :

int SetDataLines(int); //return O for error, 1 for success

int CheckFileSize(); //returns 1 if size is equal to DataLines, else 0

int SetFileName(CString); //checks for file existance and returns 1 for success, else 0
int ReadDataline(); //reads a row of data from file and stores it in Input[]. If the data
//is not >=0 and <=1, returns a zero

double GiveData(int); //returns the value of Input[int]

int GiveWidth(){retum MapWidth; }

int GiveHeight(){return MapHeight; }

double GiveRate(){return CurRate; }

int GiveNeighbour(){return CurNeighbour;}

int GiveMaxNeighbour(){return MaxNeighbour;}

int GiveCycle(){return CurCycle;}

int GivewinnerX(){return WinnerX;}

int GiveWinnerY(){return Winnery;}

double GiveWeight(int X,int Y, int I){return Weight[X][Y][I];}

void DisplayWeights();

double GiveError(){return Error; }

int GiveFire(int x, int y){return Fire[x][y];}

void InitCurCycle(){CurCycle = 0;}

int SetMaxCycles(int); //sets the value of MaxCycles, returns 1 on success, 0 on fail
int SetMinNeighbour(int);//sets the value of MinNeighbour, returns 1 on success

int SetRates(double, double); //sets the maximum and minimum leaming rate values

void InitFilePos(){FilePos = 0;}

void SetNumInputs(){NumInputs=SOM_NUMBER_INPUTS;}

void SetMapSize(){MapHeight=10; MapWidth=10;}

void SetWeight(int x,int y, int z, double val)

Weight[x][y][z] = val;

void CalcMaxNeighbour(); //Calculates the maximum neighbourhood

void CalcCurNeighbour(); //calculates the current neighbourhood

void CalcCurRate(); //Calculates the curretn learning rate

void RandomWeights(); //1nitialises the network weights to random values
void IncCycle(){CurCycle++;}

void CalcWinner();

void CalcError(); //Runs network through one sequence of data for all nodes
//Call ReadDataline(), CalcCurNeighbour(), CalcCurRate()

//before applying this function.

int RunNet(); //returns 1 on success, 0 on fail

//Handles all calls required by CalcError()

//calls CalcError()

int InitNet(char*,int,int,int,double,double);//Cal! this to initialize the network
//variables sent are :FileName,Number of Data Lines in File

//No of Training Cycles, Min Neighbourhood, Max Learning Rate

//min Learning Rate

¥

[REHBRBRBRARBRBREHAB BB RENHBEREHHRRBR B RRHRFRBURBH BBV ERHRERBHHERY
I BHRBBBBBBH BB HHBBUHBRBBBRBBBBER BB BB HRRRBRBRBRBRBHHHRBERHHRRRH

InTeLugent Opricar Sensor - 368

Arpenpix L — Sortware Source Cope

//******************** END OF CLASS BODY 3K ok 3k 3k o A ok 3K K 3 5k Sk vk K ok ok vk sk 3k ok kK K
int SOM: :SetDataLines(int Number)
{

if (Number>0)

{

DataLines = Number;
return(1);

else return 0;

}

//***

int SOM: :SetFileName(CString Name)
{

ifstream TestFile(Name,ios: :nocreate, filebuf::sh_read);

if (TestFile)

{
FileName = Name;
TestFile.close();
return 1;

}

else

TestFile.close();
retun 0;
¥
}

//***

int SOM: : CheckFileSize()
{
char store;
int count=1;
ifstream TestFile(FileName,ios: :nocreate);
while(TestFile)
{

TestFile.get(store);

// TestFile.seekg(1,ios::cur);
if(store=="\n")

count++;

¥

TestFile.close();

FilePos = 0;

if (count== Datalines)

retun 1;

else return 0;
}
//***
int SOM: :ReadDataLine()
{

int loop;

ifstream DataFile(FileName,ios: :nocreate,filebuf: :sh_read);
DataFile.seekg(FilePos,ios: :beg);

for (loop = 0; loop <Numinputs; loop++)
DataFile >> Input[loop];

if ((Input[loop]<0) || (Input[loop]>1))
return O; -

Intewuicent OpricaL Sensor - 369

Appenpix L — Sorrware Source Cope

DataFile.seekg(1,io0s::cur);
FilePos = DataFile.tellg();

DataFile.close();

// ofstream CheckFile("Checkfile.txt");
/] for(loop = 0; loop < NumInputs; loop++)

{

// CheckFile << Input[loop] << "-";
}

// CheckFile.close();

return 1;

¥

//***

double SOM::GiveData(int Pos)
{

return (Input[Pos]);

[RERIAKAAAAAKAARF AR KK AKAKAAAA A AR AR koo ook dokokokokokokok ok

int SOM: :SetMaxCycles(int max)
if (max>0)

MaxCycles = max;
return 1;

else return 0;

>
/ e 2k kK 2K 3 3k e 3 k2K ok ok 3K 3k 3K K 3K oK 2k 3k 3 3k o o ke ke 3k 3k 2K 3 e 3K Sk Sk 3k ke ok vk Sk e 2k e 3k ke 3k 3k 3 2 K K Sk oK K ok ok sk ok K sk koK
int SOM: : SetMinNeighbour(int min)

if (min>=0)

{

MinNeighbour = min;
return 1;

else return 0;

b

//**

int SOM: :SetRates(double min, double max)

{
int checkl = 0;
int check2 = 0;
int check3 = 0;

if (max>=min) checkl = 1;
if ((min>=0) && (min<=1)) check2 = 1;
if ((max>=0) && (max<=1)) check3 =1,

if ((checkl==1)&&(check2==1)&&(check3==1))
{

MinRate = min;
MaxRate = max;
return 1;

else return 0;

InTeLLIGENT OpricaL Sensor - 370

Arpendix L — SorFtware Source Cope

//***

void SOM: :CalcMaxNeighbour()
div_t div_result;
int MapSize= MapWidth*MapHeight;
div_result = div((int)(sqrt(MapSize)), 2);

MaxNeighbour = div_result.quot;
¥

//***

void SOM::CalcCurNeighbour()

{
int NeighDiff;
double CycleDiff;

NeighDiff = MaxNeighbour - MinNeighbour;
CycleDiff = (MaxCycles - CurCycle);

CurNeighbour = (int)(MinNeighbour + ((NeighDiff)*(pow((CycleDiff/MaxCycles),2))));
}

//***

void SOM: : CalcCurRate()
double RateDiff;
double CycleDiff;
RateDiff = MaxRate - MinRate;
CycleDiff = MaxCycles - CurCycle;

CurRate = MinRate + ((RateDiff)*(pow((CycleDiff/MaxCycles),2)));
}

//***
void SOM: :RandomWeights()
{

int loop1, loop2, loop3;
srand({unsigned)time(NULL));

for (loop1=0; loopl<MapHeight; loopl++)
for (loop2 = 0; loop2<MapWidth; loop2++)
for (loop3 = 0; loop3<NumlInputs; loop3++)
Weight[loop2](loop1][loop3] = (float)(rand())/RAND_MAX;

Fire[loop2][loopl] = 0;

[AAAAAAKARAAKKKAAA KRR KA AAA KKK AR KA KK KA AHAKAAAKAAAA KA A A

void SOM: :CalcWinner()
{

int loopl;
int loop2;
int loop3;
double Dist=0;)

InTELLIGENT OpTicAL SENnSOR - 371

Arpenpix L — SorFtware Source Cobe

double Result=0;

double SmallDistance = 50; //Set it to the maximum vaiue
WinnerX = 10;

WinnerY = 10;

//First present the line of data to the network, and calculate the node with
//the lowest activation level

for (loop2 = 0; loop2<MapHeight;loop2++)
for (loopl = 0; loopl<MapWidth; loopl++)
{

Result =
Dist = 0
for (Ioop3 0; loop3<Numinputs; loop3++)

Dist = (Weight[loop1][loop2][loop3] - Input[loop3]);
Result += pow(Dist,2);

}
if (Result < SmallDistance)

WinnerX = ioop1; //stores location of winning node
WinnerY = loop2;
SmallDistance = Result;
Fire[loop1i][loop2]++;
}
}
b
}

[AR AAAAAA KA AR AK KA K AAA KA AR AR KA R A AR A A AAA AR KRR SR KA AR

void SOM: : CaicError()
{

int loop1;

int loop2;

int loop3;

double Dist=0;

double Result=0;

double SmallDistance = 50; //Set it to the maximum value
WinnerX = 10;

WinnerY = 10;

//First present the line of data to the network, and calculate the node with
//the lowest activation level

for (loop2 = 0; loop2<MapHeight;loop2++)

{

for (loopl = 0; loopl<MapWidth; loop1++)

Result = 0;
Dist = 0;
for (loop3 = 0; loop3<Numlnputs; loop3++)

Dist = (Weight[loop1][loop2][loop3] - Input[loop3]);
Result += pow(Dist,2);

}
if (Result < SmallDistance)
{
WinnerX = loopi; //stores location of winning node
WinnerY = loop2;
SmallDistance = Result;
Fire[loop1]{ioop2]++;

InTELUIGENT OPTicAL Sensor - 372

Appenpix L — Sortware Source Cope

b
}

//Now run the error through the network
//Checks that the neighbiurhood doesn't run over the map boundaries
//Adjust the weight values for each Input/Node

double Correc = 0;
int StartX, StartY, EndX, EndY;

if ((WinnerX - CurNeighbour)<0) StartX = 0;

else StartX = WinnerX - CurNeighbour;

if ((WinnerX + CurNeighbour)>=MapWidth) EndX = MapWidth-1;
else EndX = WinnerX + CurNeighbour;

if ((WinnerY - CurNeighbour)<0) StartY = 0;

else StartY = WinnerY - CurNeighbour;

if ((WinnerY + CurNeighbour)>=MapHeight) EndY = MapHeight-1;
else EndY = WinnerY + CurNeighbour;

for (loop2 = StartY; loop2 <= EndY; loop2++)
{
for (loopl = StartX; loopl<=EndX; loopl++)

for (loop3 = 0; loop3<NumlInputs; loop3++)
{

Correc = 0;

Dist = (Weight[loop1]{loop2][ioop3] - Input[loop3]);

Correc = (CurRate*Dist);

//if ((Correc>=-1) && (Correc<=0))

Weight[loop1][loop2][loop3] -= Correc;

if (Weight[loop1][loop2][loop3]>1) Weight[loop1][loop2][loop3] = 1;

if (Weight[loop1][loop2][loop3]<0) Weight[loop1][loop2][loop3] = O;

if (Weight[loop1i][loop2]{loop3]<0.000001) Weight[loop1][loop2][loop3] = 0;

//**
int SOM::RunNet()

int loop;
for (loop = 0; loop<Datalines; loop++)

if(ReadDataline())

CalcCurNeighbour();
CalcCurRate();
CalcError();

else
return 0;

}
FilePos = 0;
return 1;

}

[HFAAAKAKAAAAAAAK AR AR A A A KA A KA KA A K KA AR HAA KA A KKK KK

int SOM: :InitNet(char *filename, int numlines, int traincycles,int minneighbour,
double maxrate, double minrate)

CurCycle = 0;
if (1SetFileName(filename)) return 0; -

InTeLucent Optical Sensor - 373

Arpenpix L — SorFrware Source Cope

if (!SetDatalines(numiines)) return O;

if (!CheckFileSize()) return O;
SetNumiInputs();

SetMapSize();

if (!SetRates(minrate, maxrate)) return 0;
if (!SetMinNeighbour{minneighbour)) return 0;
if (SetMaxCycles(traincycles)) return 0;
CalcMaxNeighbour();
CalcCurNeighbour();

CalcCurRate();

RandomWeights();

InitFilePos();

return 1;

¥

[RFRFEFAAAAAAAAARAKAKAAAAA KA AAA AR AR A A A AR A AR AR AK K A K

void SOM::DisplayWeights()
double Sum = 0;
int loop1, loop2, foop3;
for (loop2 = 0; loop2< MapHeight; loop2++)
for (loopl = 0; loopl<MapWidth; loopl++)
{
for (loop3 = 0; loop3 < NumlInputs; loop3++)
{

Sum+= Weight[loop1][icop2][loop3];

}
cout <<Sum<<"\t";
Sum = 0;

cout <<"\n";

20.2 - Results Filter

// ResultsFilterDlg.cpp : implementation file
/ .

InTeLuGenT Opticat Sensor - 374

Arpenpix L — Sorrware Source Cope

#include "stdafx.h"
#include "ResultsFilter.h"
#include "ResultsFilterDlg.h"
#include <fstream.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __ FILE_ ;
#endif

i
// CAboutDlg dialog used for App About

class CAboutDIg : public CDialog

{
public:
CAboutDIg();

// Dialog Data
//{{AFX_DATA(CAboutDig)
enum { IDD = IDD_ABOUTBOX };
//YYAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
1/} YAFX_VIRTUAL

// Implementation
protected:
J/{{AFX_MSG(CAboutDIg)
1/} YAFX_MSG
DECLARE_MESSAGE_MAP()
}

CAboutDIg: :CAboutDIg() : CDialog(CAboutDIg::IDD)

{
//{{AFX_DATA_INIT(CAboutDig)
//}YAFX_DATA_INIT

}

void CAboutDIig: :DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
J/{{AFX_MSG_MAP(CAboutDIg)
// No message handlers
//} YAFX_MSG_MAP

END_MESSAGE_MAP()

i
// CResultsFilterDlg dialog

CResultsFilterDlg: : CResultsFilterDIg(CWnd* pParent /*=NULL*/)
: CDialog(CResultsFilterDlg: :1DD, pParent)

//{{AFX_DATA_INIT(CResultsFilterDig)

m_Source = _T(");

[/} YAFX_DATA_INIT

// Note that LoadIcon does not require a subsequent Destroylcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

IntecLicent Oprical Sensor - 375

Arpenpix L — Sorrware Source Cope

}
void CResultsFilterDlg: : DoDataExchange(CDataExchange* pDX)

{
CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CResultsFilterDIg)
DDX_Text(pDX, IDC_SOURCE_EDIT, m_Source);
/1 YAFX_DATA_MAP

¥

BEGIN_MESSAGE_MAP(CResultsFilterDlg, CDialog)
J/{{AFX_MSG_MAP(CResultsFilterDIg)
ON_WM_SYSCOMMAND()

ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_PROCESS_BUTTON, OnProcessButton)
ON_BN_CLICKED(IDC_SELECT_BUTTON, OnSelectButton)
1/} YAFX_MSG_MAP
END_MESSAGE_MAP()

i
// CResultsFilterDlg message handlers

BOOL CResultsFilterDlg: :OnInitDialog()
CDialog: :OnInitDialog();
// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu{MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
3
}

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hlcon, FALSE); // Set small icon

// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a control

}
void CResultsFilterDlg: :0nSysCommand(UINT nID, LPARAM [Param)
{

if ((nID & OxFFFO) == IDM_ABOUTBOX)

{

CAboutDlg digAbout;
digAbout.DoModal();
}

else

CDialog: :OnSysCommand(nID, |Param);
}
}

InTerucent OpTicaL Sensor - 376

Appenpix L — Sorrware Source Cope

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CResultsFilterDig: :OnPaint()
if (IsIconic())
{

CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.width() - xIcon + 1)/ 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.DrawlIcon(x, y, m_hlcon);

b

else

CDialog: :OnPaint();
b
}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.

HCURSOR CResultsFilterDlg: :OnQueryDraglcon()

{

return (HCURSOR) m_hIcon;

void CResultsFilterDlg: :OnProcessButton()
{
ifstream InFile(m_Source,ios: :nocreate);
ofstream OutFile("Temp.tmp");
if(!InFile)
{

MessageBox("File not found {");
return;

}
while(InFile)
{
InFile.close();
Outfile.close();
¥
void CResultsFilterDlg: :OnSelectButton()

CfileDialog m_Open(FALSE,"txt","*.txt",OFN_FILEMUSTEXIST,"Results File (*.txt)|*.txt||",NULL);
if(m_Open.DoModal()==IDOK)
{

m_Source = m_Open.GetPathName();
UpdateData(FALSE);

InTeLuGent Oprical Sensor - 377

Arpenpix L — SorFtware Source Cope

20.3 - Bitmap Wave Comparator

// bitmap wave comparatorDlg.cpp : implementation file

/!

#include "stdafx.h"

#include "bitmap wave comparator.h”
#include "bitmap wave comparatorDIg.h"
#include <fstream.h>

#include <math.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE_;
#endif

i
// CAboutDlg dialog used for App About

class CAboutDIg : public CDialog
{
public:

CAboutDIg();

// Dialog Data
//{{AFX_DATA(CAboutDIg)
enum { IDD = IDD_ABOUTBOX };
//}}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDig)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
1/} }YAFX_VIRTUAL

// Implementation
protected:
//{{AFX_MSG(CAboutDIg)
[/} }YAFX_MSG
DECLARE_MESSAGE_MAP()
1A

CAboutDIg: : CAboutDIg() : CDialog(CAboutDIg::IDD)
{

//{{AFX_DATA_INIT(CAboutDlg)
[/} YAFX_DATA_INIT
}

void CAboutDlg: : DoDataExchange(CDataExchange* pDX)
{

CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
//{{AFX_MSG_MAP(CAboutDIg)
// No message handlers
/1 }YAFX_MSG_MAP

END_MESSAGE_MAP()

T LT T

InTeLuiGent OpricaL Sensor - 378

Appenpix L — Sortware Source Cooe

// CBitmapwavecomparatorDlg dialog

CBitmapwavecomparatorDIg: : CBitmapwavecomparatorDIg(CWnd* pParent /*=NULL*/)
: CDialog(CBitmapwavecomparatorDig: :IDD, pParent)

J/{{AFX_DATA_INIT(CBitmapwavecomparatorDIg)

m_DiffCheck = FALSE;

m_OverlayCheck = FALSE;

m_AutoCheck = FALSE;

m_Image = FALSE;

//}YAFX_DATA_INIT

// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

void CBitmapwavecomparatorDIg: :DoDataExchange(CDataExchange* pDX)

CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CBitmapwavecomparatorDIg)
DDX_Check(pDX, IDC_DIFF_CHECK, m_DiffCheck);
DDX_Check(pDX, IDC_OVERLAY_CHECK, m_OverlayCheck);
DDX_Check(pDX, IDC_AUTO_CHECK, m_AutoCheck);
DDX_Check(pDX, IDC_IMAGE_CHECK, m_Image);
//}YAFX_DATA_MAP

BEGIN_MESSAGE_MAP(CBitmapwavecomparatorDlg, CDialog)
//{{AFX_MSG_MAP(CBitmapwavecomparatorDig)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED({(IDC_B1ANALYSE_BUTTON, OnBlanalyseButton)
ON_BN_CLICKED(IDC_B2ANALYSE_BUTTON, OnB2analyseButton)
ON_BN_CLICKED(IDC_BITMAP1_BUTTON, OnBitmap1Button)
ON_BN_CLICKED(IDC_BITMAP2_BUTTON, OnBitmap2Button)
ON_BN_CLICKED(IDC_QUIT_BUTTON, OnQuitButton)
ON_BN_CLICKED(IDC_DIFF_CHECK, OnDiffCheck)
ON_BN_CLICKED(IDC_OVERLAY_CHECK, OnOverlayCheck)
ON_BN_CLICKED(IDC_AUTO_CHECK, OnAutoCheck)
ON_BN_CLICKED(IDC_IMAGE_CHECK, OnImageCheck)
//}YAFX_MSG_MAP

END_MESSAGE_MAP()

I T
// CBitmapwavecomparatorDlg message handlers

BOOL CBitmapwavecomparatorDIg: :OnInitDialog()
{

CDbialog: :OnlnitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFQ) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu 1= NULL)
{

CString strAboutMenu;

strAboutMenu.LoadString(IDS_ABOUTBOX);

if (strAboutMenu.IsEmpty())

{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

InTeLGent Opticat Sensor - 379

Arpenpix L — Sorrware Source Cope

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a control

}
void CBitmapwavecomparatorDIg::OnSysCommand(UINT nID, LPARAM |Param)

{
if ((nID & OxFFFO) == IDM_ABOUTBOX)

{
CAboutDlg digAbout;
digAbout.DoModal();
}

else

Cbialog::OnSysCommand(nID, IParam);
}
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CBitmapwavecomparatorDIg: :OnPaint()
if (IsIconic())
{CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - cxIcon + 1) / 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.Drawlcon(x, y, m_hIcon);

b

else
{
CPaintDC dc(this);
int loop, loop2;
for(loop = 0; loop<320; loop++)
for(loop2 = 0; loop2<240; loop2++)
{
int Gray = Bitmap1[loop]{loop2];
dc.SetPixel(loop+13, loop2+13, RGB(Gray, Gray, Gray));

}
¥

for(loop = 0; loop<320; loop++)
for(loop2 = 0; loop2<240; loop2++)

int Gray = Bitmap2[loop][loop2];
dc.SetPixel(loop+350, loop2+13, RGB(Gray, Gray, Gray));

InTeLuigenT Orptical Sensor - 380

Arpenpix L — Sorrware Source Cobe

CPen RedPen, WhitePen,GreenPen,YellowPen;
RedPen.CreatePen(PS_SOLID,1,RGB(255,0,0));
WhitePen.CreatePen(PS_SOLID, 1,RGB(255,255,255));
GreenPen.CreatePen(PS_SOLID,1,RGB(0,255,0));
YellowPen.CreatePen(PS_SOLID,1,RGB(255,255,0));
CPen* pOriginalPen;

dc.MoveTo(15,480);
dc.LineTo(333,480);
dc.MoveTo(352,480);
dc.LineTo(669,480);

pOriginalPen = dc.SelectObject(&RedPen);
dc.MoveTo(13,480);
for(loop = 0; loop<320; loop++)

{
dc.LineTo(13+loop, 480-Sum[0][loop]/240};
}

pOriginalPen = dc.SelectObject(&WhitePen);
dc.MoveTo(350,480);

for(loop = 0; loop<320; loop++)

{

dc.LineTo(350+loop, 480-Sum[1][loop]/240);

¥

int Diff;

int MeanLevel = (int)(sqrt(pow(Mean1-Mean2,2)));
if(m_DiffCheck)

{

pOriginalPen = dc.SelectObject(&GreenPen);
dc.MoveTo(350,480);

for(loop = 0; loop<320; loop++)

{

Diff = (int)(sqrt(pow(Sum[0][loop]/240-Sum[1][loop]/240,2)));

//if (Diff<MeanLevel) Diff = MeanLevel + Diff;
//Diff = (int)(Diff- sqrt(pow(Meanl - Mean2,2)));
dc.LineTo(350+loop, 480-Diff);//RGB(255,0,0));
¥
}

if(m_OverlayCheck)

pOriginalPen = dc.SelectObject(&WhitePen);
dc.MoveTo(13,480);

for(loop = 0; loop<320; loop++)

{

dc.LineTo(13+loop, 480-Sum[1][loop]/240);
}
if(m_DiffCheck)

{

pOriginalPen = dc.SelectObject(&GreenPen);
dc.MoveTo(13,480);

for(loop = 0; loop<320; loop++)

Diff = (int)(sqrt(pow(Sum{0]{loop}/240-Sum[1}[loop]/240,2)));
// Diff = abs(Diff- sgrt(pow(Mean1/240 - Mean2/240,2)));
// if (Diff<MeanLevel) Diff = MeanLevel + Diff;
dc.LineTo(13+loop, 480-Diff);//RGB(255,0,0));
}
}
}

if(m_Image)

pOriginalPen = dc.SelectObject(&YellowPen);
int Summed=0; -

InteLLiGent Opticat Sensor - 381

Appenpix L — SorFrware Source Cope

int Diff;
int Max=0;
int MaxRef = 0;

for(loop = 0; loop<320; loop++)

{
Diff = (int)(sqrt(pow(Sum[0][loop]/240-Sum[1][loop]/240,2)));
Summed+= Diff;
if (Diff>Max)
{

Max = Diff;
MaxRef = loop;

b

¥
// if((MaxRef<0)||(MaxRef>320)) MaxRef = 0;
Summed = Summed/320;

int Xmin= 0;
int Xmax = 0;
loop = MaxRef;
int Gap = 0;
do

{
Diff = (int)(sqrt{pow(Sum[0][loop]/240-Sum[1][loop]/240,2}));
if(Diff<MeanLevel) Gap++;
loop--;
if(loop==0) Gap = 4;

while (Gap<4);
Xmin = loop+4;

loop = MaxRef;
Gap =0;
do

{
Diff = (int)(sqrt(pow(Sum[0][loop]/240-Sum([1][loop]/240,2)));
//if(Diff<Summed) Gap++;
if(Diff<MeanlLevel) Gap++;
loop++;
if(loop==320) Gap = 4,
}

while (Gap<4);
Xmax = loop-4;

dc.MoveTo(350 + Xmin,13);
dc.LineTo(350 + Xmin,253);
dc.MoveTo(350 + Xmax,13);
dc.LineTo(350 + Xmax,253);
dc.MoveTo(350+Xmin, 270);
dc.LineTo(350+Xmin, 490);
dc.MoveTo(350+Xmax,270);
dc.LineTo(350+Xmax,490);
}

CDialog: :OnPaint();
}
}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.

HCURSOR CBitmapwavecomparatorDIg: :0OnQueryDraglcon()

{

return (HCURSOR) m_hlIcon;
¥

void CBitmapwavecomparatorDlg: :OnBlanalyseButton()
{ -

Intewicent OpricaL Sensor - 382

Arpenpix L ~ Sorrware Source Cope

// TODO: Add your control notification handler code here
int loop, loop2;

//Zero all values

for(loop = 0; loop<320; loop++)

{

Sum([0][loop] = O;

}

Meanl = 0O;
for(loop = 0; loop<320; loop++)

{
for (loop2 = 0; loop2<240; loop2++)
{

//Add current pixel value to sum
Sum{0][loop] += Bitmap1[loop][loop2];
+
Mean1+=Sum[0][loop]/240;
}
Meanl = Mean1/320;
InvalidateRect(CRect(13,250,333,500));
}

void CBitmapwavecomparatorDlg: :0nB2analyseButton()
{

// TODO: Add your control notification handler code here

int loop, loop2;

for(loop = 0; loop<320; loop++)

{

Sum([1][loop] = O;

b

Mean2 = 0;
for(loop = 0; loop<320; loop++)
{

for (loop2 = 0; loop2<240; loop2++)
{
Sum[1][loop] += Bitmap2[toop][loop2];

}

Mean2+=Sum[1][loop]/240;

}

Mean2 = Mean2/320;
InvalidateRect(CRect(350,250,670,500));
if(m_OverlayCheck) InvalidateRect(CRect(13,250,333,500));

}
void CBitmapwavecomparatorDIg::OnBitmap1Button()

// TODO: Add your control notification handler code here
CFileDialog OpenFile(TRUE,".bmp","*.bmp");
if(OpenFile.DoModal()==IDOK)

{

CString Temp = OpenFile.GetPathName();
OpenBitmap(0,Temp);

int loop;

for (loop = 0; loop<320; loop++)

Sum[0][loop] = 0;
}

InvalidateRect(CRect(13,13,363,253));
if(m_AutoCheck) OnB1lanalyseButton();

3
void CBitmapwavecomparatorDig: :0OnBitmap2Button()

{
// TODO: Add your control notification handler code here
CFileDialog OpenFile(TRUE,".bmp","*.bmp");
if(OpenfFile.DoModal()==IDOK)
{

InTeLiGent OpricaL Sensor - 383

Arpenpix L — Sorrware Source Cope

CString Temp = OpenfFile.GetPathName();

OpenBitmap(1,Temp);

int loop;

for(loop = 0; loop<320; loop++)
Sum([1][loop] = 0;

}

InvalidateRect(CRect(350,13,670,253));

if(m_AutoCheck) OnB2analyseButton();
¥

}

DWORD ReadLong(fstream InFile)

BYTE al,a2,a3,a4;
DWORD ReturnVai;

InFile >> a1,
InFile >> a2;
InFile >> a3;
InFile >>a4;
Returnval =(DWORD)(al + a2*256 + a3*pow(256,2) + ad4*pow(256,3));

return Returnval;

b

WORD ReadShort(fstream InFile)

BYTE al,a2;
WORD ReturnVal;

InFile >> al;
InFile >> a2;

Returnval = (WORD)(al + a2*256);

return Returnval;

b

void CBitmapwavecomparatorDig: :OnQuitButton()

// TODO: Add your control notification handler code here
OnOK();
¥

void CBitmapwavecomparatorDIg: : OpenBitmap(BOOL Source, CString FileName)

// TODO: Add your command handler code here
BeginWaitCursor();

fstream InFile;
InFile.open(FileName,ios: :binary|ios::in);

WORD Header;

Header = ReadShort(InFile);

if(Header!=(('"M'<<8) + 'B'")) //Expect to read BM as first two bytes
{

EndWaitCursor();
return;

} -

InteLutgent OpricaL Sensor - 384

Appenpix L = Sorrware Source Cope

DWORD FileSize = ReadLong(InFile);
WORD Res1 = ReadShort(InFite);

WORD Res2 = ReadShort(InFile);
DWORD ImageOffset = ReadLong(InFile);
DWORD HeaderSize = ReadLong(InFile);
DWORD Width = ReadLong(InFile);
DWORD Height = ReadLong(InFile);

if (ReadShort(InFile) !'=1)

EndWaitCursor();
return;

b

WORD ColDepth = ReadShort(InFile);

DWORD Compression = ReadLong(InFile);

DWORD ImageSize = ReadLong(InFile);

DWORD XPelsMeter = ReadLong(InFile);

DWORD YPelsMeter = ReadLong(InFile);

DWORD Colours = ReadLong(InFiie);

DWORD ImpColours = ReadLong(InFile);
if(Compression!=0) //Not designed for compressed bitmaps

EndWaitCursor();
return;

}
if(Width!=320)

EndWaitCursor();
return;

}
if(Height!=240) //only for a 320x240 bitmap!

{
EndWaitCursor();
return;

¥
if(ColDepth!=24) //only for 24bit bitmaps
{

EndWaitCursor();
return;

}
unsigned char PixelR, PixelG, PixelB;
int loop, loop2;
InFile.seekg(ImageOffset,ios: :beg); //set file pointer to start of image data
for(loop =0; loop<240; loop++)
for (loop2 = 0; loop2<320; loop2++)
{
PixelB = InFile.get();
PixelG = InFile.get();
PixelR = InFile.get();
if(Source) Bitmap2[ioop2][240-loop-1] = (unsigned _int8)((PixelR)*0.3 + (PixelG)*0.59 + (PixelR)
*0.11);
else Bitmap1[loop2][240-loop-1] = (unsigned _int8)((PixelR)*0.3 + (PixelG)*0.59 + (PixelR)*0.11);
}

InFile.close();

EndWaitCursor();

void CBitmapwavecomparatorDIg: :OnDiffCheck()

InteLuigent OepticaL Sensor - 385

Arpenpix L — Sorrware Source Cope

// TODO: Add your control notification handler code here
UpdateData(TRUE);
InvalidateRect(CRect(350,250,670,500));
InvalidateRect(CRect(13,250,333,500));

}

void CBitmapwavecomparatorDlg: :OnOverlayCheck()

{
// TODO: Add your control notification handler code here
UpdateData(TRUE);
InvalidateRect(CRect(13,250,333,500));

¥

void CBitmapwavecomparatorDlg: :0nAutoCheck()

{
// TODO: Add your control notification handler code here
UpdateData(TRUE);

void CBitmapwavecomparatorDIg: :OnImageCheck()

{

// TODO: Add your control notification handler code here
UpdateData(TRUE);
InvalidateRect(CRect(350,13,670,253));
InvalidateRect(CRect(350,260,670,500));

b

InTeLLiGeNT OpricaL Sensor - 386

Arpenpix L ~ Sorrware Source Cope

// bitmap wave comparatorDIg.h : header file
/

#if defined

(AFX_BITMAPWAVECOMPARATORDLG_H_ CD5D3756_275C_11D4_93BE_0060084F84CD__INCLUDED_)
#define
AFX_BITMAPWAVECOMPARATORDLG_H__CD5D3756_275C_11D4_93BE_0060084F84CD__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

i
// CBitmapwavecomparatorDIg dialog

class CBitmapwavecomparatorDlg : public CDialog
{
// Construction
public:
int Mean2;
int Meani;
int Sum[2}[320];
unsigned _int8 Bitmap1{320][240];
unsigned _int8 Bitmap2[320]{240];
void OpenBitmap(BOOL,CString);
CBitmapwavecomparatorDIg(CWnd* pParent = NULL); // standard constructor

// Dialog Data

//{{AFX_DATA(CBitmapwavecomparatorDIg)

enum { IDD = IDD_BITMAPWAVECOMPARATOR_DIALOG };
BOOL m_DiffCheck;

BOOL m_OverlayCheck;

BOOL m_AutoCheck;

BOOL m_lImage;

//}YAFX_DATA

// ClassWizard generated virtual function overrides
J/{{AFX_VIRTUAL(CBitmapwavecomparatorDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
1/} YAFX_VIRTUAL -

InTeLLIGENT OpTicaL Sensor - 387

Arpenpix L — Sortware Source Coope

// Implementation
protected:
HICON m_hIcon;

// Generated message map functions
J/{{AFX_MSG(CBitmapwavecomparatorDIg)

virtual BOOL OnInitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDragIcon();

afx_msg void OnBlanalyseButton();

afx_msg void OnB2analyseButton();

afx_msg void OnBitmap1Button();

afx_msg void OnBitmap2Button();

afx_msg void OnQuitButton();

afx_msg void OnDiffCheck();

afx_msg void OnOverlayCheck();

afx_msg void OnAutoCheck();

afx_msg void OnImageCheck();

//}YAFX_MSG

DECLARE_MESSAGE_MAP()

b5

J/{{AFX_INSERT_LOCATION}}

// Microsoft Developer Studio will insert additional declarations immediately before the previous line,

#endif // |defined

(AFX_BITMAPWAVECOMPARATORDLG_H__CD5D3756_275C_11D4_93BE_0060084F84CD__INCLUDED_)

InTELLIGENT OpricaL Sensor - 388

Appenpix L — Sorrware Source Cobe

20.4 - Neural Demo

// Neural Demo 2Dlg.cpp : implementation file
1

#include "stdafx.h"

#include "Neural Demo 2.h"
#include "Neural Demo 2DIg.h"
#include <fstream.h>
#include <math.h>

#include "m_Dialogl.h"
#include "HELPDIALOG.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE;
#endif

i
// CAboutDIg dialog used for App About

class CAboutDIg : public CDialog
{

public:

CAboutDIg();

// Dialog Data
//{{AFX_DATA(CAboutDIg)
enum { IDD = IDD_ABOUTBOX };
//}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDIg)

protected:

virtual void DobataExchange(CDataExchange* pDX); // DDX/DDV support
//}YAFX_VIRTUAL

// Implementation
protected:
J/{{AFX_MSG(CAboutDIg)
[/} YAFX_MSG
DECLARE_MESSAGE_MAP()
¥

CAboutDIg::CAboutDIg() : CDialog(CAboutDig::IDD)
{

//{{AFX_DATA_INIT(CAboutDIg)
//YYAFX_DATA_INIT
}

void CAboutD!g: : DoDataExchange(CDataExchange* pDX)
{

CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
1/} YAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDIlg, CDialog)
//{{AFX_MSG_MAP(CAboutDIg)
// No message handlers

/1Y YAFX_MSG_MAP

END_MESSAGE_MAP()

T LTI T]

InTeLuGenT Oprical Sensor - 389

Arpenpix L — Sortware Source Cope

// CNeuralDemo2Dlg dialog

CNeuralDemo2DIg: : CNeuralDemo2DIg(CWnd* pParent /*=NULL*/)
: CDialog(CNeuralDemo2DIg: :IDD, pParent)

{
//{{AFX_DATA_INIT(CNeuralDemo2Dlg)
m_Objects = 0;
/13 YAFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

b4
void CNeuralDemo2Dlg: :DoDataExchange(CDataExchange* pDX)

{

CDialog:: DoDataExchange(pDX);
/1{{AFX_DATA_MAP(CNeuralDemo2Dlg)
DDX_Text(pDX, IDC_OBJECTS_EDIT, m_Objects);
1/} }YAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CNeuralDemo2Dlg, CDialog)
/1{{AFX_MSG_MAP(CNeuralDemo2DIg)
ON_WM_SYSCOMMAND()

ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_COMMAND(ID_MENU_ABOUT, OnMenuAbout)
ON_COMMAND(ID_MENU_BOUNDARIES, OnMenuBoundaries)
ON_COMMAND(ID_MENU_EXIT, OnMenuExit)
ON_COMMAND(ID_MENU_FILTER, OnMenuFilter)
ON_COMMAND(ID_MENU_HELP, OnMenuHelp)
ON_COMMAND(ID_MENU_NETWORK, OnMenuNetwork)
ON_COMMAND(ID_MENU_OPEN, OnMenuOpen)
//}YAFX_MSG_MAP
END_MESSAGE_MAP()

i
// CNeuraiDemo2Dlg message handlers

//***

int Stored[320](240];
CString Title;

int sharp[80][60];

int counter;

int Pos = 4;

int Draw1=0,Draw2=0;
float NetOut=0;

float NetInput[5];

struct Object

{
int Xmin, Xmax;
int Xmini{60], Xmaxi[60];
int Ymin, Ymax;

3

Object Box[100];

BOOL CNeuralDemo2DIg: :OnlnitDialog()
{

CDialog: :OnInitDialog();

InTELLIGENT OpTicAL Sensor - 390

Aepenpix L — Sorrware Source Cope

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty())

pSysMenu->AppendMenu(MF_SEPARATORY);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenuy);

¥

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a control

void CNeuralDemo2Dlg: :0nSysCommand(UINT nID, LPARAM IParam)
{
if ((nID & OxFFFQ) == IDM_ABOUTBOX)

{
CAboutDig digAbout;
digAbout.DoModal();
}

else

{
CDialog: :0nSysCommand(nID, IParam);

}
¥

// If you add a minimize button to your dialog, you will need the code below
// todraw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CNeuralDemo2Dlg: :OnPaint()

{if (IsIconic())
{CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - oxicon + 1) / 2;

inty = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.Drawlcon(x, y, m_hIcon);

}

else

{
CPaintDC dc(this);
int loop, loop2;)

InTeLLIGENT OpricaL Sensor - 391

Arpenpix L = Sorrware Source Cobe

if (Drawl)
for(loop = 0; loop<320; loop++)
{
for (loop2 = 0; loop2<240; loop2++)

if(Stored[loop]{!oop2])
SetPixel(dc,loop+12,loop2+18,RGB(0,100,200));
else SetPixel(dc,loop+12,loop2+18,RGB(0,0,0));
}
}

)
if (Draw2)
for (loop = 1; loop<=counter; loop++)

CPen BoxPen;
BoxPen.CreatePen(PS_SOLID, 1,RGB(255,255,0));
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&BoxPen);
MoveToEx(dc,4*Box[loop].Xmin+12, 4*Box[loop].Ymin+18,NULL);
LineTo(dc, 4*Box[loop].Xmax+16, 4*Box[loop].Ymin+18);
LineTo(dc, 4*Box[loop].Xmax+16, 4*Box[loop].Ymax+22);
LineTo(dc, 4*Box[loop].Xmin+12, 4*Box[loop].Ymax+22);
LineTo(dc, 4*Box[loop].Xmin+12, 4*Box[loop].Ymin+18);
}
}

CDialog: :OnPaint();
}
}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CNeuralDemo2DIg::OnQueryDragicon()

return (HCURSOR) m_hIcon;
}

void CNeuralDemo2Dlg: :OnMenuOpen()

// TODO: Add your command handler code here
char FileName[500];

char FileTitle[100];

int count = 0;

int loop, loop2;

for (loop=0; loop < 320; loop++)

{

for (loop2 = 0; loop2 < 240 ; loop2++)
Stored[loop][loop2]=0;

}

¥

Drawl = 0;

Draw2 = 0;

UpdateData(FALSE);
InvalidateRect(CRect(12,18,332,258), FALSE);

OPENFILENAME ofn;
ofn.IStructSize = sizeof(OPENFILENAME);

ofn.hwndOwner = m_hwnd;;
ofn.hInstance = NULL;

ofn.IpstrFilter = TEXT("VosDemo files * ~0s\0*.vos\O\0");

InveLuGent Oeprical Sensor - 392

Appenpix L ~ Sortware Source Cobe

ofn.IpstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterIndex = 1;
ofn.IpstrFile = FileName;
ofn.nMaxFile = 500;
ofn.IpstrFileTitle = FileTitle;
ofn.nMaxFileTitle = 99;
ofn.|pstrinitialDir = NULL;
ofn.IpstrTitle = "Open VOS file";
ofn.Flags = OFN_FILEMUSTEXIST;
ofn.IpstrDefExt = "BMP";
ofn.iCustData = NULL;
ofn.|pfnHook = NULL;
ofn.ipTemplateName = NULL;

FileName[0] = "\0';

if (GetOpenFileName(&ofn))

ifstream file_in(FileName);
int valuel;
int value2;

do

file_in >> valuel;
file_in >> value2;

Stored[valuel][value2] = 1;
count++;

}
while (file_in.eof() == 0);
file_in.close();

for (loop = 0; loop <320; loop++)
{for (toop2 = 0; loop2 <240; loop2++)
{if (Stored[loop][loop2] != 1)
}Stored[loop][loopZ] =0,

¥
}
Drawl = 1;
Pos = 6 + (int)(count/5000);
InvalidateRect(CRect(12,18,332,258), FALSE);
}
}

void CNeuralDemo2Dlg: :OnMenufFilter()
{

// TODO: Add your command handler code here
m_Dialogl m_dig;

m_dlg.m_Value = Pos;

m_dlg.DoModal();

Pos = m_dlg.m_Value;

InTeLLIGENT OpTicaL Sensor - 393

Appenoix L — Sortware Source Cope

void CNeuralDemo2Dlg: :OnMenuBoundaries()

{
// TODO: Add your command handler code here
int loop, loop2,loop3,loop4;
int count = 0;
int Mem = 0;
intgap =0, Set = 0;
//OnClearButton();

for (loop2=0; loop2<60; loop2++)
for (loop=0; loop<80; loop++)
sharp[loop][loop2] = 0;
count = 0;
for (loop3=0; loop3<4; loop3++)
{
for (loop4 = 0; loop4<4; loopd++)
if (Stored{4*loop+loop3]{4*loop2+loop4]==1)
count++;
¥
T
if (count >Pos)
sharp[ioop][loop2] = 1;
}
>
counter = 0;
for (loop = 0; loop<100; loop++)
{
Box[loop].Xmin = 80;
Box[loop].Ymin = 60;

Box[loop].Xmax = 0;
Box[loop].Ymax = 0;

//Check every line in the image
loop=0;
for(loop2=0; loop2<60; loop2++)

{

Set = 0;
Mem = 0;
gap = 0;

for (loop=0; loop<80; loop++)
if (sharp[loop][loop2]==1)
{

counter++;

Box[counter].Xmin = loop;
Box[counter].Ymin = loop2;
Box[counter].Ymax = loop2;
Box[counter].Xmax = loop;
Box[counter].Xmini[loop2] = loop;
Box[counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)

if((loop>=(Box[loop3].Xmin-2))&&(loop<=(Box[loop3].Xmax+2))&8&
((loop2-Box[loop3].Ymax) <3)&&(loop3!=counter)&8&
(loop2>0))

Set=1; -

InTecuent OpricaL Sensor - 394

Arpenpix L — Sortware Source Cope

Mem = loop3;

}

}
//End of line check
while((gap<3)&&(loop<80))
{

loop++;
if(sharp[loop][loop2]l==1)
{

gap = 0;
Box[counter].Xmax = loop;
Box{counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)

if((loop>=Box[loop3].Xmin-2)&8&(loop<=Box[loop3].Xmax+2)
&&(loop2-Box[loop3]. Ymax<3)&8&(loop3!=counter)&&(counter>0})

Set =1;
Mem = loop3;

}

b
//End of line check
}

else gap++;
gap = 0;

//Matching correction code, updates matched object
//and deleted new object created
if (Set==1)

if(Box[counter].Xmin<Box[Mem].Xmin) Box[Mem].Xmin = Box[counter].Xmin;
if(Box[counter].Xmax>Box[Mem].Xmax) Box[Mem].Xmax = Box[counter].Xmax;
Box[Mem].Ymax = loop2;
Box[counter].Xmin = 80;
Box[counter].Xmax = 0;
Box[counter].Ymin = 60;
Box[counter].Ymax = 0;
Box[Mem].Xmaxi[loop2] = Box[counter].Xmaxi{loop2];
Box[Mem].Xmini[loop2] = Box[counter].Xmini[loop2];
counter--;
Set = 0;
Mem = 0;
b
}

¥
loop=0;

//Box size filtering code, checking for minimum target size
int IsZero = 0;

for (loop = 1; loop<=counter; loop++)

E (IsZero==1)

loop--;
IsZero = 0;

}

int TArea = ((Box[loop].Xmax - Box[loop].Xmin)*(Box[loop].Ymax-Box[loop].Ymin));
if (TArea <74)

{

for (int loopl = loop; loopl<=counter; loopl++)

Box[loopl] = Box[loopl+1]; -

InTeLLiGent OeticaL Sensor - 395

Aprpenpix L — Sorrware Source Cope

if (loop==1) IsZero = 1;
else loop--;
¥
counter--;
¥
¥

m_Objects = counter;

UpdateData(FALSE);

Draw2 = 1;

InvalidateRect(CRect(12,18,333,259), FALSE);
}

void CNeuralDemo2Dlg: :OnMenuNetwork()
{
// TODO: Add your command handler code here

int valuel;

int value2;

int Xmax, Xmin, Ymax, Ymin;

int Xtemp=0, Ytemp=0, m_Area=0, m_X=0, m_Y=0;
int loop, loop2, loop3, loop4;

int Width=0, Height=0,Weighting=0,BoxArea=0;

int SegWidth=0, SegHeight=0,SegSet[4]{6],SegAcc=0,SegArea=0, x_max=0, y_max=0;
int TempWidth=0, TempHeight=0;

int CountX=0, CountY=0;

J[FFxxFFRRRRRRx NECESSARY VARIABLE INITIALISATIONS FOR BATCH PROCESS %tk

valuel = 0;
value2 = 0;
Xtemp=0;
Ytemp=0;
m_Area=0;
m_X=0;
m_Y=0;

J[R¥FrRRxRkkkx START OF CALCULATIONS *¥kkskomsoknskokoksokodordomaok dordo koot ok okkok

for (loop = 1; loop <= counter; loop++)

{
J[****xx%% CALCULATE BOX WIDTH< HEIGHT & AREA **Hkk**%x

Width = 0;
Height = 0;
Weighting = 0;
BoxArea = 0;

Xmin = 4*Box{loop].Xmin;
Xmax = 4*Box[loop].Xmax;
Ymin = 4*Box[loop].Ymin;
Ymax = 4*Box[loop].Ymax;

Width = Xmax - Xmin;
Height = Ymax - Ymin;
BoxArea = Width * Height;

//***************** C of G Ca|cu'ation 3 3k 3k 3k 3k ok ok ok ok Kk ok

//checks if both the Stored value and the sharp value is set

//then checks that the pixel is within the Xmin - Xmax range for the
//particular line and object. -

InTeLuiGent OpricaL Sensor - 396

Arpenpix L — SorFtware Source Cobpe

int Dist1=0, Dist2=0, Xacc=0, Yacc=0, loopl, TotArea=0, Yval=1;
for (loopl= Xmin; loopl<=Xmax+4; loopl++)
for (loop2 = Ymin; loop2 <=Ymax+4; loop2++)

if (((Stored[ioop1][loop2]==1) && (sharp[loopl/4][loop2/4]==1))

&& ((loopl>= 4* Box[loop].Xmini[loop2/4]) && (loopl <= (4+4*Box[loop].Xmaxi[loop2/4]))))

TotArea++;
Xacc += Distl;
Yacc += Dist2;
}
Distl++;
Yval++;

b4

Distl = 0;

Yval = 1;

Dist2++;

>

div_t Xpos, Ypos;
Xpos = div(Yacc, TotArea);
Ypos = div(Xacc, TotArea);

if (Xpos.rem>=(TotArea/2)) Xpos.quot++;
if (Ypos.rem>=(TotArea/2)) Ypos.quot++;

m_X = Xpos.quot + Xmin;
m_Y = Ypos.quot + Ymin;

//*************** END OF Cof G CALCULATION ke 2k ke ke e 3K 3K 3K K ok Ak

//*************** SEGMENT AREA CALC 2k 2k 4 3k 2 o 2K 2 3K K 3 K 3K dk Sk Sk Sk ok Sfe ok

//The set rectangle will be split up into an 3*4 array of equal
//segments, on which % set pixels calcs are carried out.

SegWidth=0;
SegHeight=0;
SegAcc=0;
SegArea=0;
x_max=0;
y_max=0;
TempWidth=0;
TempHeight=0;

div_t h,w;

h = div(Width, 4);

w = div(Height, 6);
SegWidth = h.quot;
SegHeight = w.quot;

SegArea = SegWidth * SegHeight;

for (loopl = 0; loopl <4; loopl++)

for (loop2 = 0; loop2<6; loop2++)
{
x_max = (loopl + 1) * SegWidth;
y_max = (loop2 + 1) * SegHeight;
if (loopl ==3)
{

X_max = Width;
TempWidth = Width - (3 * SegWidth);

Intersgent OpricaL Sensor - 397

Arpenpix L — Sorrware Source Cope

}

else TempWidth = SegWidth;
if (loop2 ==5)

{

y_max = Height;
TempHeight = Height - (5 * SegHeight);
}

else TempHeight = SegHeight;
SegAcc = 0;
for (loop3=(loop1*SegWidth); loop3<x_max;loop3++)

{
for (loop4=(loop2*SegHeight); loop4<y_max;loop4++)

if ((Stored[Xmin+loop3][Ymin+loop4]==

&& (sharp[(Xmin +loop3)/4][(Ymin + loop4)/4]==1))
//&& (loopl>= 4*Box[loop].Xmini[loop])
//&& { loopl <= 4*Box[loop].Xmaxi[loop]))

SegAcc++;

¥

>
SegSet{ioop1][loop2] =
SegSet[loop1]floop2]= (|nt)((100 * SegAcc)/(TempWidth * TempHeight));

SegAcc=0;
}
}

m_Area = (TotArea*100/BoxArea);
for (loop4 = 0; loop4<5; loop4++)
{

NetInput[loop4] =

NetInput[0] = (float)(pow(((Ymax-Ymin)*(-0.00880381)+2.86238),2)*0.351784 - 1,343);
NetInput[1] = (float)(pow((m_Area*(-0.0377996)+3.71819),2)*0.224719 - 1.0225);
NetInput[2] = (float)(tanh((SegArea*0.00110947)+1.52922)*28.2527 - 26.875);
NetInput[3] = (float)(log((SegSet[1][5]*0.156775)+3.46737)*1.17052 - 2.456);
NetInput[4] = (float)(log((SegSet[2][5]*0.156775)+3.15382)*1.14088 - 2.311);

for (loop4 = 0; loop4<5; loop4++)

{ ,
NetInput[loop4] = (float)((NetInput[loop4]+1)*.5);

¥

//NETWORK CODE HERE
float Xsum?7 = 0;
float Xout7 = 0;
NetOut = 0;
/* Generating code for PE 0 in layer <Hidden1> (3) */
Xsum7 = (float)(9.4248371 + (-9.7122078) * NetInput[0] + (-0.82052672) * NetInput[1] +

(-4.1746411) * NetInput[2] + (-1.6331787) * NetInput[3] + (-2.0222914) * NetInput{4]);
/* Generating code for PE 0 in layer <Hidden1> (3) */
Xout7 = (float)(tanh(Xsum? });

NetOut = (float)((0.15872838) + (0.04405418) * NetInput[0] + (-0.12671886) * NetInput[1] +
(:0.21494821) * NetInput[2] + (-0.029009042) * NetInput[3] + (-0.015002856) * NetInput[4] +
(0.91813892) * Xout7);

InTeLLGenT Opricat Sensor - 398

Arpenpix L = Sorrware Source Cope

/* De-scale and write output from network */
NetOut = (float)(NetOut * (0.625) + (0.5));

//END OF NETWORK CODE

int Temp = (int)(100*NetOut);

if (Temp>100) Temp = 100;

if (Temp<0) Temp = 0;

char Text[5];

/el ="";

itoa(Temp, Text, 10);

CClientDC dc(this);

dc.DrawText(Text, CRect(m_X,m_Y,m_X+30,m_Y+15),NULL);

UpdateData(FALSE);

}
void CNeuralDemo2Dlg: :OnMenuExit()

{

// TODO: Add your command handler code here
OnOK();

}

void CNeuralDemo2DIg: :OnMenuHelp()

{
HELPDIALOG m_dlg;
m_dlg.DoModal();

}

void CNeuralDemo2DIg: :OnMenuAbout()

CAboutDIg m_dlg;
m_dlg.DoModal();
}

InTeLLIGENT OpticaL Sensor - 399

Arpenpix L — SorFtware Source Cope

20.5 - Chloride Demo

// Chloride DemoDig.cpp : implementation file
/

#include “stdafx.h"

#include "Chloride Demo.h"
#include "Chloride DemoDlg.h"
#include <math.h>

#include "ViewDlg.h"

#include <time.h>

#include <direct.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;
#endif

i
// CAboutDIg dialog used for App About

struct BitmapStruct

{
CString Name;
unsigned _int8 Gray[320][240]; //hold bitmap grayscale info
DWORD Sum;
int ThresholdLevel;//keeps track of the total image intensity
//divide by 76800 to get the grayscale median
DWORD FileSize;

DWORD Width, Height; //Width and Height of the Bitmap in Pixels
DWORD Compression; //Specifies the type of compression used
DWORD ImageOffset; //Number of bytes from

start of file to image data
WORD ColDepth; //type of Bitmap
DWORD Colours;

DWORD ImpColours;

¥

struct ImageObject

unsigned short int Xmin;
unsigned short int Xmax;
unsigned short int Ymin,;
unsigned short int Ymax;
unsigned short int Xmini[60];
unsigned short int Xmaxi[60];

float NetInput[5];
unsigned _int8 Result;

int SegArea[4][6];

’

BitmapStruct BitmapDatum, BitmapCamera;
BOOL Difference[320][2401];

BOOL Sharp[80][60];

int NetworkThreshold;

ImageObject Box[100];

InTeLuiGent OpricaL Sensor - 400

Appenpix L — SoFrware Source Cope

class CAboutDIg : public CDialog

{
public:
CAboutDig();

// Dialog Data
//{{AFX_DATA(CAboutDIig)
enum { IDD = IDD_ABOUTBOX };
//}YAFX_DATA

// ClassWizard generated virtual function overrides
J/{{AFX_VIRTUAL(CAboutDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}YAFX_VIRTUAL

// Implementation
protected:
//{{AFX_MSG(CAboutDIg)
1/} YAFX_MSG
DECLARE_MESSAGE_MAP()
3

CAboutDIg: : CAboutDIg() : CDialog(CAboutDig::IDD)

{
//{{AFX_DATA_INIT(CAboutDIg)
//}YAFX_DATA_INIT

¥

void CAboutDIg: : DoDataExchange(CDataExchange* pDX)

{
CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
//}}YAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
//{{AFX_MSG_MAP(CAboutDIg)

// No message handlers
//}YAFX_MSG_MAP
END_MESSAGE_MAP()

i
// CChlorideDemoDlg dialog

CChlorideDemoDlg: :CChlorideDemoDIg(CWnd* pParent /*=NULL*/)
: CDialog(CChlorideDemoDIg: :1IDD, pParent)

//{{AFX_DATA_INIT(CChlorideDemoDIg)

m_DatumName = _T("");

m_CameraName = _T("");

m_Detail = _T("");

m_Batch = FALSE;

m_Savew = _T("");

1/} YAFX_DATA_INIT

// Note that LoadIcon does not require a subsequent Destroylcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME),

}
void CChlorideDemoDIg: : DoDataExchange(CDataExchange* pDX)

CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CChlorideDemoDIg)
DDX_Text(pDX, IDC_DATUM_EDIT, m_DatumName);
DDX_Text(pDX, IDC_CAMERA_EDIT, m_CameraName);
_ DDX_Text(pDX, IDC_DETAIL_EDIT, m_Detail);
DDX_Check(pDX, IDC_BATCH_CHECK, m_Batch);

InTeLLiGenT Opricat Sensor - 401

Appenpix L ~ Sortware Source Cope

DDX_Text(pDX, IDC_SAVE_EDIT, m_Savew);
//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CChlorideDemoDlg, CDialog)
//{{AFX_MSG_MAP(CChlorideDemoDIg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_COMMAND(MENU_FILE_EXIT, OnFileExit)
ON_COMMAND(MENU_OPEN_DATUM, OnOpenDatum)
ON_COMMAND(MENU_FILE_OPENCAMERA, OnFileOpencamera)
ON_COMMAND(ID_CALCULATIONS_IMAGEDIFFERENCE, OnCalculationslmagedifference)
ON_COMMAND(ID_SAVE_SAVEDIFFERENCE, OnSaveSavedifference)
ON_COMMAND(ID_SAVE_SAVESHARP, OnSaveSavesharp)
ON_COMMAND(ID_CALCULATIONS_NOISEFILTERING, OnCalculationsNoisefiltering)
ON_COMMAND(ID_CALCULATIONS_OBJECTBOUNDARIES, OnCalculationsObjectboundaries)
ON_COMMAND(ID_CALCULATIONS_NETWORKANALYSIS, OnCalculationsNetworkanalysis)
ON_COMMAND(ID_SAVE_SAVEOBJECTS, OnSaveSaveobjects)
ON_COMMAND(ID_SAVE_SAVEVDFSPEROBIECTINFO, OnSaveSavevdfsperobjectinfo)
ON_COMMAND(ID_SETTINGS_VIEWOPTIONS, OnSettingsViewoptions)
ON_BN_CLICKED(IDC_START_BUTTON, OnStartBatchButton)
ON_BN_CLICKED(IDC_BATCH_CHECK, OnBatchCheck)
ON_BN_CLICKED(IDC_NONE_RADIO, OnNoneRadio)
ON_BN_CLICKED(IDC_ALL_RADIO, OnAllRadio)
ON_BN_CLICKED(IDC_PROMPT_RADIO, OnPromptRadio)
ON_BN_CLICKED(IDC_SAVE_BUTTON, OnSaveButton)
ON_COMMAND(MENU_HELP_ABOUT, OnHelpAbout)
//}YAFX_MSG_MAP
END_MESSAGE_MAP()

i
// CChlorideDemoDIg message handlers

BOOL CChlorideDemoDlg: : OnInitDialog()
{
CDialog: :OnInitDialog();
// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFQ) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (IstrAboutMenu.IsEmpty())

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

}

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hlcon, FALSE); // Set small icon

// TODO: Add extra initialization here

ShowDiff = FALSE;
ShowSharp = FALSE;
ShowBox = FALSE;
~ ShowNet = FALSE;
NumBoxes = 0; -

InTeLLIGENT OpTicaL Sensor - 402

ArpenpIx L ~ SoFtware Source Cope

BatchNone = TRUE;
BatchPrompt = FALSE;
BatchAll = FALSE;

return TRUE; // return TRUE unless you set the focus to a control

}
void CChlorideDemoDIg: :0nSysCommand(UINT nID, LPARAM [Param)

{
if (nID & OxFFFQ) == IDM_ABOUTBOX)

{
CAboutDlg digAbout;
digAbout.DoModal();
>

else

CDialog: :OnSysCommand(nID, |Param);
}
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automaticaily done for you by the framework.

void CChlorideDemoDlg: : OnPaint()
{if (IsIconic())
{CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - exIcon + 1) / 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.DrawlIcon(x, y, m_hIcon);

3

else

{

CPaintDC dc(this);
int loop, loop2;

CPen SharpPen;
SharpPen.CreatePen(PS_SOLID,1,RGB(255,0,255));

//draw Datum and Camera images
for(loop2 = 0; loop2<240; loop2++)
{

for(loop = 0; loop<320; loop++)
{

int vai = 256-BitmapCamera.Gray[loop]{loop2];

dc.SetPixel(15+loop, 15+ioop2,RGB(val,val,val));//draw Camera

val = 256-BitmapDatum.Gray[loop][loop2];

dc.SetPixel(350+loop/2, 15+loop2/2,RGB(val,val,val));//draw Datum

if (ShownDiff)

if(Difference[loop][loop2])

dc.SetPixel(15+loop, 15+loop2,RGB(255,255,0)); //draw Difference

}
b -

InTeLucent OpTical Sensor - 403

Arpenpix L — Sorrware Source Cobe

if(ShowSharp)
{

CPen* pOriginalPen;

pOriginalPen = dc.SelectObject(&SharpPen);
for (loop2 = 0; loop2<60; loop2++)

{

for(loop = 0; loop<80; loop++)

if(Sharp[loop][loop2]==TRUE)
Rectangle(dc,(15+loop*4),(15+loop2*4),(19+loop*4),(19+locop2*4));

s
b

if ((ShowBox==TRUE)||(ShowNet==TRUE))
for (loop = 1; loop<=NumBoxes; loop++)

CPen BoxPen;
BoxPen.CreatePen(PS_SOLID,2,RGB(0,255,0));
CPen* pOriginalPen;

pOriginalPen = dc.SelectObject(&BoxPen);
dc.SetBkColor(RGB(0,0,0));

if(ShowBox)

{

dc.SetBkMode(TRANSPARENT);

dc.SetTextColor(RGB(0,255,0));

char Text[2];

itoa(loop, Text,10);

MoveToEx(dc,4*Box[loop].Xmin+15, 4*Box[loop].Ymin+15,NULL);

LineTo(dc, 4*Box[loop].Xmax+19, 4*Box[loop].Ymin+15);

LineTo(dc, 4*Box[loop].Xmax+19, 4*Box[loop].Ymax+19);

LineTo(dc, 4*Box[loop].Xmin+15, 4*Box[loop].Ymax+19);

LineTo(dc, 4*Box[loop].Xmin+15, 4*Box[loop].Ymin+15);

dc.DrawText(Text, CRect(4*Box[loop].Xmin+15,4*Box[loop].Ymin+15,4*Box[loop].Xmin+20,4*Box
[loop].Ymin+20),DT_NOCLIP);

}
if(ShowNet)
{

dc.SetBkMode(OPAQUE);
dc.SetTextColor(RGB(255,0,255));
char Text[5];
itoa(Box[loop].Result, Text,10);
int m_X = 4*Box[loop].Xmax+15;
int m_Y = 4*Box[loop].Ymin+15;
dc.DrawText(Text,CRect(m_X-10,m_Y,m_X,m_Y+15),DT_NOCLIP);
}
}
}

CDialog: :OnPaint();
}
b4

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CChlorideDemoDlg: :0nQueryDraglcon()

{
return (HCURSOR) m_hlcon;
3

void CChlorideDemoDlg: :OnFileExit()

// TODQ: Add your command handler code here
OnOK(); -

InTeLLIGENT OpTicaL Sensor - 404

Arpenpix L — Sortware Source Cope

T T T

/***/
/**************** FILE OPENING OPERATIONS ***************************/
/***/

i

DWORD ReadLong(fstream InFile)

{
BYTE al,a2,a3,a4;
DWORD Returnval;

InFile >> ai;
InFile >> a2;
InFile >> a3;
InFile >>a4;

ReturnVal =(DWORD)(al + a2*256 + a3*pow(256,2) + a4*pow(256,3));

return Returnval;

¥
WORD ReadShort(fstream InFile)

BYTE al,a2;
WORD ReturnVal;

InFile >> al;
InFile >> a2;

ReturnVal = (WORD)(al + a2*256);

return Returnval;

}

void CChlorideDemoDlg: :OnOpenDatum()

{
// TODO: Add your command handler code here
CFileDialog FileDIg(TRUE,"bmp","*.bmp");
if(FileDlg.DoModai()==IDCANCEL) return;
BeginWaitCursor();
m_DatumName = FileDlg.GetPathName();
m_Detail = "";
UpdateData(FALSE);

BitmapDatum.Name = FileDIg.GetFileName();
int Pos = m_DatumName.Find(BitmapDatum.Name});
m_DatumbDirectory = m_DatumName. Left(Pos);

fstream InFile;
InFile.open{m_DatumName,ios: :binary|ios::in);

WORD Header;

Header = ReadShort(InFile);

if(Header!=(('"M'<<8) + 'B")) //Expect to read BM as first two bytes
{

m_Detail = "File Header incorrect";
UpdateData(FALSE);
EndWaitCursor();

return;

b ;

InteLuent OpticaL Sensor - 405

Arpenpix L. — Sortware Source Cope

BitmapDatum.FileSize = ReadLong(InFile);
WORD Resl = ReadShort(InFile);
WORD Res2 = ReadShort(InFile);

BitmapDatum.ImageOffset = ReadLong(InFile);

DWORD HeaderSize = Readlong(InFile);
BitmapDatum.Width = ReadLong(InFile);
BitmapDatum.Height = ReadLong(InFile);
if (ReadShort(InFile) !=1)

{

m_Detail = "File has more than one colour plane”;

UpdateData(FALSE);
EndWaitCursor();
return;

}
BitmapDatum.ColDepth = ReadShort(InFile);

BitmapDatum.Compression = ReadlLong(InFile);

DWORD ImageSize = ReadLong(InFile);
DWORD XPelsMeter = ReadLong(InFile);
DWORD YPelsMeter = ReadLong(InFile);
BitmapDatum.Colours = ReadLong(InFile);

BitmapDatum.ImpColours = ReadLong(InFile);

if(BitmapDatum.Compression!=0)

m_Detail = "Bitmap File is Compressed";
UpdateData(FALSE);

EndWaitCursor();

return;

}
if(BitmapDatum.Width!=320)
{

m_Detail = "Image Width is not 320 pixels";
UpdateData(FALSE);

EndWaitCursor();

return;

)
if(BitmapDatum.Height!=240)
{

m_Detail = "File’s Height is not 240 pixels";
UpdateData(FALSE);

EndWaitCursor();

return;

)
if(BitmapDatum.ColDepth!=24)

m_Detail = "File is not a 24bit RGB image";
UpdateData(FALSE);

EndWaitCursor();

return;

}

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

BitmapDatum.Sum = 0;

InFile.seekg(BitmapDatum.ImageOffset,ios: :beg);

for(loop =0; loop<240; loop++)

{

for (loop2 = 0; loop2<320; loop2++)
PixelB = InFile.get();

PixelG = InFile.get();
PixelR = InFile.get();

//Not designed for compressed bitmaps

//only for a 320x240 bitmap!

//only for 24bit bitmaps

//set file pointer to start of image data

BitmapDatum.Gray[loop2][240-loop-1] = (unsigned _int8)((255-PixelR)*0.3 + (255-PixelG)*0.59 +

(255-PixelR)*0.11);

BitmapDatum.Sum += BitmapDatum.Gray[loop2][240-loop-1];

Intecuigent OpticaL Sensor - 406

Arpenpix L — SorFrware Source Cope

Difference[loop2][loop] = FALSE;
Sharp[loop2/4][loop/4] = FALSE;
}

InFile.close();
NumBoxes = 0;

//Finished reading the bitmap file, now calculate threshold
//and threshold version of image map

BitmapDatum.ThresholdLevel = (int)(BitmapDatum.Sum/76800);
EndWaitCursor();
Invalidate();

void CChiorideDemoDIg: : OnFileOpencamera()
{

// TODO: Add your command handler code here
CFileDialog FileDIg(TRUE,"bmp","*.bmp");
if(FileDlg.DoModal()==IDCANCEL) return;
BeginWaitCursor();

m_CameraName = FileDig.GetPathName();
m_Detail = "";

UpdateData(FALSE);

BitmapCamera.Name = m_CameraName;
clock_t a = clock();

fstream InFile;
InFile.open(m_CameraName,ios: :binary|ios::in);

WORD Header;

Header = ReadShort(InFile);

if(Header!=(('"M'<<8) + 'B")) //Expect to read BM as first two bytes
{

m_Detail = "File Header incorrect”;
UpdateData(FALSE);

EndWaitCursor();

return;

}

BitmapCamera.FileSize = Readlong(InFile);
WORD Rest = ReadShort(InFile);

WORD Res2 = ReadShort(InFile);
BitmapCamera.ImageOffset = ReadLong(InFile);
DWORD HeaderSize = Readlong(InFile);
BitmapCamera.Width = Readl.ong(InFile);
BitmapCamera.Height = ReadLong(InFile);
if (ReadShort(InFile) {=1)

{

m_Detail = "File has more than one colour plane";
UpdateData(FALSE);

EndWaitCursor();

return;

}

BitmapCamera.ColDepth = ReadShort(InFile);
BitmapCamera.Compression = ReadlLong(InFiie);
DWORD ImageSize = ReadLong(InFile);

DWORD XPelsMeter = ReadLong(InFile);
DWORD YPelsMeter = ReadLong(InFile);
BitmapCamera.Colours = ReadLong(InFile);
BitmapCamera.ImpColours = ReadLong(InFile);

if(BitmapCamera.Compression!=0) //Not designed for compressed bitmaps

m_Detail = "Bitmap File is Compressed";

InTewtcent Oprical Sensor - 407

Arpenpix L = SorFrware Source Cope

UpdateData(FALSE);
EndWaitCursor();
return;

}
if(BitmapCamera.Width!=320)

{

m_Detail = "Image Width is not 320 pixels";
UpdateData(FALSE);

EndWaitCursor();

return;

3
if(BitmapCamera.Height!=240) //only for a 320x240 bitmap!
{

m_Detail = "File's Height is not 240 pixels";
UpdateData(FALSE);

EndWaitCursor();

return;

>
if(BitmapCamera.ColDepth!=24) //only for 24bit bitmaps
{

m_Detail = "File is not a 24bit RGB image";
UpdateData(FALSE);

EndWaitCursor();

return;

¥

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

BitmapCamera.Sum = 0;
InFile.seekg(BitmapCamera.ImageOffset,ios: :beg); //set file pointer to start of image data

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)

{
PixelB = InFile.get();
PixelG = InFile.get();
PixelR = InFile.get();

BitmapCamera.Gray[ioop2][240-loop-1] = (unsigned _int8)((255-PixelR)*0.3 + (255-PixelG)*0.59 +
(255-PixelR)*0.11);
BitmapCamera.Sum += BitmapCamera.Gray[loop2][240-loop-1];
Difference[loop2][loop] = FALSE;
Sharp[loop2/4][loop/4] = FALSE;
}

InFile.close();

clock_t b = clock(); .

float secs = (float)((int)((b-a)*100000/CLOCKS_PER_SEC))/100000;
char Text[100}];

sprintf(Text,"Image loaded in %.3f seconds",secs);

m_Detail = Text;

UpdateData(FALSE);

NumBoxes = 0;

//Finished reading the bitmap file, now calculate threshold
//and threshold version of image map

BitmapCamera.ThresholdLevel =(int)(BitmapCamera.Sum/76800);
EndWaitCursor();
Invalidate();

Intecucent OpricaL Sensor - 408

Appenpix L — SorFrware Source Cope

void CChlorideDemoDIg: :OpenFile(CString Name)
{

BeginWaitCursor();
m_CameraName = Name;
m_Detail = "";
UpdateData(FALSE);

BitmapCamera.Name = m_CameraName;
clock_t a = clock();

fstream InFile;
InFile.open{m_CameraName,ios: :binary|ios::in);

WORD Header;

Header = ReadShort(InFile);

if(Header!=(('M'<<8) + 'B")) //Expect to read BM as first two bytes
{

m_Detail = "File Header incorrect”;
UpdateData(FALSE);
EndWaitCursor();

return;

}

BitmapCamera.FileSize = ReadLong(InFile);
WORD Resl = ReadShort(InFile);

WORD Res2 = ReadShort(InFile);
BitmapCamera.ImageOffset = ReadLong(InFile);
DWORD HeaderSize = ReadLong(InFile);
BitmapCamera.Width = ReadLong(InFile);
BitmapCamera.Height = ReadLong(InFile);

if (ReadShort(InFile) !=1)

m_Detail = "File has more than one colour piane";
UpdateData(FALSE);

EndWaitCursor();

return;

}

BitmapCamera.ColDepth = ReadShort(InFile);
BitmapCamera.Compression = ReadLong(InFile);
DWORD ImageSize = ReadLong(InFile);

DWORD XPelsMeter = ReadlLong(InFile);
DWORD YPelsMeter = ReadlLong(InFile);
BitmapCamera.Colours = ReadLong(InFile);
BitmapCamera.ImpColours = ReadLong(InFile);

if(BitmapCamera.Compression!=0) //Not designed for compressed bitmaps

m_Detail = "Bitmap File is Compressed”;
UpdateData(FALSE);

EndWaitCursor();

return;

Y
if(BitmapCamera.Width!=320)
{

m_Detail = "Image Width is not 320 pixels";
UpdateData(FALSE);

EndWaitCursor();

return;

}
if(BitmapCamera.Height!=240) //only for a 320x240 bitmap!

m_Detail = "File's Height is not 240 pixels";
UpdateData(FALSE);
EndWaitCursor();

. return;

¥

InteLucent Opticat Sensor - 409

Aepenpix L ~ Sorrware Source Cobe

if(BitmapCamera.ColDepth!=24) //only for 24bit bitmaps
{

m_Detail = "File is not a 24bit RGB image";
UpdateData(FALSE);

EndWaitCursor();

return;

¥

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

BitmapCamera.Sum = 0;
InFile.seekg(BitmapCamera.ImageOffset,ios: :beg); //set file pointer to start of image data

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)

{
PixelB = InFile.get();
PixelG = InFile.get();
PixelR = InFile.get();

BitmapCamera.Gray[loop2]{240-loop-1] = (unsigned _int8)((255-PixelR)*0.3 + (255-PixelG)*0.59 +
(255-PixelR)*0.11);

BitmapCamera.Sum += BitmapCamera.Gray[loop2][240-loop-1];

Difference[loop2][loop] = FALSE;

Sharp[loop2/4]{loop/4] = FALSE;

InFile.close();

clock_t b = clock();

float secs = (float)((int)((b-a)*100000/CLOCKS_PER_SEC))/100000;
char Text[100];

sprintf(Text,"Image loaded in %.3f seconds",secs);

m_Detail = Text;

UpdateData(FALSE);

NumBoxes = 0;

//Finished reading the bitmap file, now calculate threshold
//and threshold version of image map

BitmapCamera.ThresholdLevel =(int)(BitmapCamera.Sum/76800);
EndWaitCursor();
Invalidate();

i

/***/

JrREEERRR Rk k% [MAGE CALCULATION OPERATIONS *itkskokokskokokokokok sk ok ok ok okok f

JRERRAAAAKARAAAAAAAA AR R AR AR A A AK AR KA AR AAAKK KA KK KA AR KAKAK KKK |

o

void CChlorideDemoDlg: : Dolitter()

//**

//Following Code generates the thresholded array of the incomming image //
//first sequence, image as is

int toop, loop2, Space, Diff,count = 0;

int m_Mult = 5;

InTELLIGENT OPTICAL SENSOR - 410

Aprpenpix L - Sortware Source Cope

Space = (int)sgrt(pow(BitmapCamera.ThresholdLevel - BitmapDatum.ThresholdLevel,2));
for (loop = 0; loop <320; loop ++)

{

for {loop2 = 0; loop2 < 240; loop2 ++)
{

//image jitter correction code
//can compensate by 1 pixel in a certain direction
//Normal image

2));

2));

2));

Diff = (int)sqrt(pow((BitmapCamera.Gray[loop]{loop2] - BitmapDatum.Gray[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity
{

// If a difference is detected, the pixel is shifted

// around by a distance of one pixel to evaluate if

// this is due to a small wind movement. The 9 pixels

// surrounding the current pixe! will be evaluated

// Every image pixel can be shifted in a different direction

//Image shifted up and left
if ((loop<319)&8&(loop2<239))
{

Diff = (int)sqrt(pow((BitmapCamera.Gray[loop+1]{loop2+1] - BitmapDatum.Gray[loop][loop2]),2));
if (DIff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted up
if (loop2<239)
{

Diff = (int)sqrt(pow((BitmapCamera.Gray[loop][loop2+1] - BitmapDatum.Gray[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

//Image shifted up and right
if ((loop>0)&&(loop2<239))
{

Diff = (int)sqrt(pow((BitmapCamera.Gray[loop-1]{loop2+1] - BitmapDatum.Gray[loop][loop2]),
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted left
if (loop<319)

Diff = (int)sqrt(pow((BitmapCamera.Gray[loop+1][loop2] - BitmapDatum.Gray[loop][loop2]),
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

//Image shifted right
if (loop>0)

Diff = (int)sqrt(pow((BitmapCamera.Gray[loop-1][loop2] - BitmapDatum.Gray[ioop]{ioop2]),
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted down and left
if ((loop<319)&&(loop2>0))

Diff = (int)sqrt(pow((BitmapCamera.Gray[loop+1][loop2-1] - BitmapDatum.Gray[loop]

[loop2]),2));

if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted down
if (loop2>0)

{
Diff = (int)sqrt(pow((BitmapCamera.Gray[loop][locop2+1] - BitmapDatum.Gray[loop]

[loop2]),2));

if (Diff > (m_Mult*Space)) -//m_Mult adjusts the sensitivity
{

//Image shifted dawn and right

InTeLLIGENT OpTicaL Sensor - 411

Arpenpix L — SorFrware Source Cope

if ((loop>0)&&(loop2>0))

{
Diff = (int)sart(pow((BitmapCamera.Gray{loop-1]}[loop2-1] - BitmapDatum.Gray[loop]

[loop2]},2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

//1f none of the pixel shifts Difference in a difference exclusion
//the pixel is marked as a set movement difference
Difference[loop][loop2] = TRUE;

count++;

// If any one of the pixel shifts Differences in a difference
//exclusion, the pixel is marked as non altered, ie only
//a small movement due to wind or BitmapCamera.Gray vibration

else Difference[loop][loop2] = FALSE;
b

>
// NetworkThreshold = 6 + (int)(count/5000);

NetworkThreshold = 6 + (int){(count/2222);
if (NetworkThreshold >15) NetworkThreshold = 15;

3

void CChlorideDemoDlg::DoSharp()
{

int loop,loop2, loop3, ioop4;
int count = 0;

for (loop2=0; loop2<60; loop2++)
for (loop=0; loop<80; loop++)
Sharp[loop](loop2] = FALSE;
count = 0;
for (loop3=0; loop3<4; loop3++)
{
for (loop4 = 0; loop4<4; loopd++)
if (Difference[4*loop-+loop3][4*loop2-+ioop4])
count++;

}
}
if (count >NetworkThreshold)

{
Sharp[loop][loop2] = TRUE;
}

InTELLIGENT OpTicAL SENsOR - 412

Arpenpix L — Sorrware Source Cope

int CChlorideDemoDlg: :DoObjects()
{

int counter = 0;

int loop, loop1, loop2, loop3;

int Mem, Set, gap;

for (loop = 0; loop<100; loop++)
{

Box[loop]}.Xmin = 80;
Box[loop].Ymin = 60;
Box[loop].Xmax = 0;
Box[loop].Ymax = 0;

//Check every line in the image
loop=0;

for(loop2=0; loop2<60; loop2++)
{

Set =0;

Mem = 0;

gap = 0;

for (loop=0; loop<80; loop++)
if (Sharp[loop]{loop2]==TRUE)
{

counter++;

Box[counter].Xmin = loop;
Box[counter].Ymin = loop2;
Box[counter].Ymax = loop2;
Box[counter].Xmax = loop;
Box[counter].Xmini[loop2] = loop;
Box[counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)

{
if((loop>=(Box[loop3].Xmin-2))&&(loop<=(Box[loop3].Xmax+2))&&
((loop2-Box[loop3].Ymax)<3)&&(loop3!=counter)&&
(loop2>0))
{

Set = 1;

Mem = loop3;
}
¥
//End of line check
while((gap<3)&&(loop<80))
{

loop++;
if(Sharp[loop][loop2]==1)
{

gap =0;
Box[counter].Xmax = loop;
Box[counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)

InTELLIGENT OpPTICAL SENSOR - 413

Appenpix L — Sorrware Source Cobe

if((loop>=Box[loop3].Xmin-2)&&(loop<=Box{loop3].Xmax+2)
&&(loop2-Box[loop3].Ymax < 3)&&(loop3!=counter)&&(counter>0))

Set=1;
Mem = loop3;

}

}
//End of line check
}
else gap++;
}
gap = 0;

//Matching correction code, updates matched object
//and deleted new object created
if (Set==1)

if(Box[counter].Xmin<Box[Mem].Xmin) Box[Mem].Xmin = Box[counter].Xmin;
if(Box[counter].Xmax>Box[Mem].Xmax) Box[Mem].Xmax = Box[counter].Xmax;
Box[Mem].Ymax = loop2;
Box[counter].Xmin = 80;
Box[counter].Xmax = 0;
Box[counter].Ymin = 60;
Box[counter].Ymax = O;
Box[Mem].Xmaxi[loop2] = Box[counter].Xmaxi[loop2];
Box[Mem].Xmini[loop2] = Box[counter].Xmini[loop2];
counter--;
Set = 0;
Mem = 0;
}
Y

}
loop=0;

//Box size filtering code, checking for minimum target size
int IsZero = 0;
for (loop = 1; loop<=counter; loop++)

{
if (IsZero==1)
{
loop--;
IsZero = 0;

}
int TArea = ((Box[loop].Xmax - Box[loop].Xmin)*(Box[loop].Ymax-Box[loop].Ymin));
if (TArea <74)

for (foop1 = loop; loopl<=counter; loopl++)

Box[loop1] = Box[loop1+1];
if (loop==1) IsZero = 1,
else loop--;
}
counter--;
}
¥
return counter;

b

void CChlorideDemoDIg: :GetNetInputs()
{

int loop,loop1,loop2,loop3, loop4;
int Width, Height;
int SegWidth, SegHeight, SegAcc,SegArea;

InTewLiGenT OpricaL Sensor - 414

Arpenpix L ~ Sortware Source Cope

for (loop = 0; loop <= NumBoxes; loop++)

//*************** SEGMENT AREA CALC ********************

//The set rectangle will be split up into an 3*4 array of equal
//segments, on which % set pixels calcs are carried out.

SegWidth=0;
SegHeight=0;
SegAcc=0;
SegArea=0;

int x_max=0;

int y_max=0;

int TempWidth=0;
int TempHeight=0;
Width = 0;
Height = 0
SegArea = 0;
SegAcc =0

Width = 4*Box[loop].Xmax - 4*Box[loop].Xmin;
Height = 4*Box[loop].Ymax - 4*Box[loop].Ymin;
div_t h,w;

w = div(Width, 4),;

h = div(Height, 6);

SegWidth = w.quot;

SegHeight = h.quot;

SegArea = SegWidth * SegHeight;

for (loopl = 0; loopl <4; loopl++)
{
for (loop2 = 0; loop2<6; loop2++)
{
x_max = (loopl + 1) * SegWidth;
y_max = (loop2 + 1) * SegHeight;
if (loopl ==3)

{
X_max = Width;
TempWidth = Width - (3 * SegWidth);

b4

else TempWidth = SegWidth;
if (loop2 ==5)

{

y_max = Height;
TempHeight = Height - (5 * SegHeight);

}
else TempHeight = SegHeight;
SegAcc = 0;
for (loop3= (Ioopl*Seandth), loop3<x_max;loop3++)
{
for (loop4=(loop2*SegHeight); loop4<y_max;loop4++)
{
if ((Difference[4*Box[loop].Xmin-+loop3]{4*Box[loop].Ymin+loop4])
&& (Sharp[(Box[loop].Xmin +Ioop_3_)][(Box[Ioop].Ymin + loop4)1))
//8& (loop1>= 4*Box[loop].Xmini[loop])
//&8 (loopl <= 4*Box[loop].Xmaxi[loop]))
{
SegAcc++;
}

}
Box[loop].SegArea[loop1][ioop2] =
Box[loop].SegAreafloopl][ioop2]= (|nt)((100 * SegAcc)/(TempWidth * TempHeight));

SegAcc=0;

InTeLLiGenT Opticat Sensor - 415

Aprpenpix L — Sortware Source Cope

void CChlorideDemoDlg: :RunNet()
{

//NETWORK CODE HERE

int loop;

float Output;

for(loop = 0; loop<NumBoxes; loop++)

float Xsum?7 = 0;
float Xout7 = 0;
Output = 0;
/* Generating code for PE 0 in layer <Hiddenl1> (3) */
Xsum7 = (float)(9.4248371 + (-9.7122078) * Box[loop].NetInput[0] + (-0.82052672) * Box[loop].
NetInput[1] +
(-4.1746411) * Box[loop].NetInput[2] + (-1.6331787) * Box[loop].NetInput[3] + (-2.0222914) * Box
[loop].NetInput[4]);
/* Generating code for PE 0 in layer <Hidden1> (3) */
Xout7 = (float)(tanh(Xsum7 });

Output = (float)((0.15872838) + (0.04405418) * Box[loop].NetInput[0] + (-0.12671886) * Box[loop].
NetInput[1] +
(-0.21494821) * Box[loop].NetInput[2] + (-0.029009042) * Box[loop].NetInput[3] + (-0.015902856)
* Box[loop].NetInput[4] +
(0.91813892) * Xout7);

/* De-scale and write output from network */
Output = (float)(Output * (0.625) + (0.5));

//END OF NETWORK CODE

Box[loop].Result = (int)(100*Output);

if (Box[loop].Result>100) Box[loop].Result = 100;
if (Box[loop].Result<0) Box[loop].Result = O;

//****************** MENU SELECTIONS *********************************//

void CChlorideDemoDIg: :OnCalculationsImagedifference()

{
// TODO: Add your command handler code here
BeginWaitCursor();
clock_t a = clock();
Dolitter();
clock_t b = clock();
float secs = (float)((int)((b-a)*100000/CLOCKS_PER_SEC))/100000;
char Text[100];
sprintf(Text,"Dynamic Network Threshold : %i Processing time was %.3f
seconds",NetworkThreshold,secs);
m_Detail = Text;
UpdateData(FALSE);
EndWaitCursor(};
if(ShowDiff==TRUE) Invalidate();
3

void CChlorideDemoDlg: : OnCalculationsNoisefiltering()

~// TODO: Add your command handler code here

InTELLIGENT OPTICAL SENSOR - 416

Appenpix L ~ Sorrware Source Cope

BeginWaitCursor();

clock_t a = clock();

Dolitter();

DoSharp();

clock_t b = clock();

float secs = (float)((int)((b-a)*100000/CLOCKS_PER _SEC))/100000;
char Text[100];

sprintf(Text,"Dynamic Network Threshold : %i Processing time was %.3f
seconds",NetworkThreshold,secs);

m_Detail = Text;

UpdateData(FALSE);

EndWaitCursor();

if((ShowDiff) || (ShowSharp)) Invalidate();

}

void CChlorideDemoDlg: :OnCalculationsObjectboundaries()

{
// TODO: Add your command handler code here
BeginWaitCursor(};
clock_t a = clock();
Dolitter();
DoSharp();
NumBoxes = DoObjects();
clock_t b = clock();
float secs = (float)((int)((b-a)*100000/CLOCKS_PER_SEC))/100000;
char Text[200];
sprintf(Text,"Dynamic Network Threshold : %i %i Object(s) identified in image Processing time was %.3f
seconds",NetworkThreshold, NumBoxes,secs);
m_Detail = Text;
UpdateData(FALSE);
EndWaitCursor();
if((ShowDiff) || (ShowSharp) || (ShowBox)) Invalidate();
}

void CChlorideDemoDlg: :OnCalculationsNetworkanalysis()

{
// TODO: Add your command handler code here

BeginWaitCursor();
clock_t a = clock();
Dolitter();

DoSharp();

NumBoxes = DoObjects();
GetNetInputs();

RunNet();

clock_t b = clock();
float secs = (float)((int)((b-a)*100000/CLOCKS_PER_SEC))/100000;

char Text[200]; ,

sprintf(Text,"Dynamic Network Threshold : %i %i Object(s) identified in image Processing time was %.3f
seconds", NetworkThreshold, NumBoxes,secs);

m_Detail = Text;

UpdateData(FALSE);

EndWaitCursor();
if((ShowDiff) || (ShowSharp) || (ShowBox) || (ShowNet)) Invalidate();

I T T T T

JRRFFAAAAAAAAAAAK KA AARAARAAAAAAA KA K AAAAAAKKAAAAAA KA A A KAAAK K KAKK |
JREFFAER ARk Rkxkx%k FILE SAVING OPERATIONS kokkokkokokokok sk *Kok

JRAFAAARAAAAAA AR FA KA AAA AR AAAAAAAA AR FAAAKKHAAAKAAAKFFAAAKFAAHKK |

i

InTeLLIGENT OPTicAL SeEnsor - 417

Arpenpix L — Sortware Source Cope

void CChlorideDemoDlg: :OnSaveSavedifference()

{

// TODO: Add your command handler code here
int Pos = BitmapCamera.Name.Find("bmp");

if (Pos==-1) Pos = BitmapCamera.Name.Find("BMP");
CString SaveName;

SaveName = BitmapCamera.Name.Left(Pos);
SaveName = SaveName + "vos";

CFileDialog FileDIg(FALSE,"vos",SaveName);
if(FileDlg.DoModal()==IDOK)

{

BeginWaitCursor();

CString SavePath = FileDlg.GetPathName();
Dolitter();

ofstream FileOut(SavePath);

if(!FileOut)

{

m_Detail = "File write error - Info could not be saved";
UpdateData(FALSE);

EndWaitCursor();

return;

int loop, loop2;
for (loop = 0; loop< 320; loop++)

for (loop2 = 0; loop2<240; loop2++)
{
if (Difference[loop][loop2])
FileOut << loop<<"\t"<<loop2<<"\n";

}

}
FileOut.close();
m_Detail = SavePath + " written successfully”;

}

EndWaitCursor();

UpdateData(FALSE);
b

void CChlorideDemoDIg::OnSaveSavesharp()

{
// TODO: Add your command handler code here
b

void CChlorideDemoDIg: :0nSaveSaveobjects()

{// TODO: Add your command handler code here

}

void CChlorideDemoDIg: :OnSaveSavevdfsperobjectinfo()
{// TODO: Add your command handler code here

}

i

SRR AR AR AAAA KA A KRR AAAR A AAAAAA KK AK AR AAAKHAAAAKAAAKAAAAAAAAAKKKAAAK |
JrErrrrkickkiokoorkRkkkk . GOFTWARE SETTINGS *#H%xkkkokokkohoksk ok ko ok KKK |
JRAFAAAA AR KA AR KA KA AR AR KA KA AAAAFAAAAAIRAAA AR AAAK [

it

InTeLLIGENT OpTicAL Sensor - 418

Arpenpix L = Sorrware Source Cooe

void CChlorideDemoDIg: :OnSettingsViewoptions()

// TODO: Add your command handler code here
//CDialog ViewDig(IDD_VIEW_DIALOG);

m_Viewdlg.m_Sharp = ShowSharp;
m_Viewdlg.m_Diff = ShowDiff;
m_Viewdlg.m_Boxes = ShowBox;
m_Viewdlg.m_Net = ShowNet;

if(m_Viewdlg.DoModal()==IDOK)

{
ShowSharp = m_Viewdig.m_Sharp;
ShowDiff = m_Viewd|g.m_Diff;
ShowBox = m_Viewdlg.m_Boxes;
ShowNet = m_Viewdlg.m_Net;
3

}

void CChlorideDemoDlg::OnStartBatchButton()
{

// TODO: Add your control notification handler code here
ShowSharp = FALSE;

ShowDiff = FALSE;

ShowBox = TRUE;

ShowNet = FALSE;

CFileFind Finder;

CString Title;

chdir(m_Datumbirectory);

BOOL bWorking = Finder.FindFile("*.bmp");

MessageBox("About to enter File Search mode",MB_OK);
UpdateData(FALSE);

int loop, loop1i,loop2;

while(bWorking)

{

bWorking = Finder.FindNextFile();

Title = Finder.GetFileTitle();

CString FullName = Finder.GetFilePath();
int Pos = FullName.Find(Title);

CString TempDir = FullName.Left(Pos);

OpenfFile(FullName);
OnCalculationsObjectboundaries();
GetNetInputs();

if ((BatchAll) || (BatchPrompt))

{

for(loop = 1; loop<=NumBoxes; loop++)

char Text[100];

sprintf(Text,"Would you like to save info for Box %i ?",loop);
if (m_SaveDir=="")

{

m_SaveDir = TempDir;

m_Savew = m_SaveDir;

UpdateData(FALSE);

}
if(BatchPrompt)
if(MessageBox(Text,"Save Query",MB_YESNQO)==IDYES)
{
char Ext[10];
sprintf(Ext,"%s%s-%i.sdf",m_SaveDir,Title,loop);

ofstream OutFile(Ext);
for(loop1 = 0; loopl1<6; loopl++)

InteLuiGent OpTicaL Sensor - 419

Arpenpix L — Sorrware Source Cobe

{
for(loop2 = 0; loop2<4; loop2++)

OutFile << (Box[loop].SegArea[loop2]{loop1]) <<"\t";

QutFile << end};

OutFile << "Segment Area Measurements in order 4x6 grid\n";
OutFile << "Datum File : "<< m_DatumName << endl;
OutFile << "Camera File : "<< m_CameraName<< endl;
OutFile << "Object No : " << loop;
OutFile.close();

}

>
if(BatchAll)
{

char Ext[10];
sprintf(Ext,"%s%s-%:i.sdf",m_SaveDir, Title,loop);

ofstream OQutFile(Ext);
for(loopl = 0; loop1<6; loopl++)

for(loop2 = 0; loop2<4; loop2++)
OutFile << Box[loop].SegArea[loop2]floopl] <<"\t";
OutFile << endl;

QutFile << "Segment Area Measurements in order 4x6 grid" << endl;
OutFile << "Datum File : "<< m_DatumName << endl;

OutFile << "Camera File : "<< m_CameraName << endl;

OutFile << "Object No : " << loop;

OutFile.close();

}

}
//Depending on the vBatch Svae settings

//save vdf file or not !
//***

// INSERT INTERRUPT CODE HERE

/ k ok 2k 3k 3K A 3k ok 2 3 o Sk ok 2k 3k 3 e e K ok 3k e Sk ok K 3 oK ok Sk ok 3K 3K K 3K K K Kk ko

b4
MessageBox("End of Search",MB_OK);

void CChlorideDemoDlg: :OnBatchCheck()

// TODO: Add your control notification handler code here

}
void CChlorideDemoDlg: :OnNoneRadio()

{
// TODO: Add your control notification handler code here
BatchNone = TRUE;
BatchAll = FALSE;
BatchPrompt = FALSE;
}

void CChlorideDemoDlg: :OnAllRadio()

{

// TODO: Add your control notification handler code here
BatchNone = FALSE;

BatchAll = TRUE;

BatchPrompt = FALSE;
} .

Intecuigent OpticaL Sensor - 420

Appenpix L — SorFtware Source Cope

void CChlorideDemoDlg: :OnPromptRadio()

// TODO: Add your contro! notification handler code here
BatchNone = FALSE;

BatchAll = FALSE;

BatchPrompt = TRUE;
}

void CChlorideDemoDlg: :OnSaveButton()

// TODO: Add your control notification handler code here
CFileDialog SaveDIg(FALSE,"save.sdf","save.sdf");
if(SaveDlg.DoModal() == IDOK)

{

m_Savew = SaveD!g.GetPathName();
CString Temp = SaveDlg.GetFileTitle();
int Pos = m_Savew.Find(Temp);
m_SaveDir = m_Savew.Left(Pos);
m_Savew = m_SaveDir;
UpdateData(FALSE);

}
3

void CChiorideDemoDig: :OnHelpAbout()
{

// TODO: Add your command handler code here
CAboutDlg m_dig;
m_dlg.DoModal();

}

InTeLLIGENT OpTicAL Sensor - 421

Appenpix L — SorFrware Source Cope

20.6 - Bitmap Headers

Z//
/ BITMAPHEADER.H

]/ Reference Header file in C++ designed for Bitmap Interpretation
// Aiming Specifically at a 320*%240 24bit Bitmap

// When File is read, image data is saved in grayscale to an array

// of type _int8
// Al the bitmap major header infois also saved to a structure

// which must be declared in the main program

// Written: 01.03.2000 by Jean-Marc Graumann
1
Y

#include <fstream.h>

struct BitmapStruct
{

CString Name;

unsigned _int8 Gray[320][240]; //hold bitmap grayscale info

unsigned long Sum; //keeps track of the total image intensity
//divide by 76800 to get the grayscale median

unsigned long FileSize;

unsigned short Width, Height; //Width and Height of the Bitmap in Pixels
unsigned char Compression; //Specifies the type of compression used
unsigned long ImageOffset; //Number of bytes from start of file to image data
unsigned char ColDepth; //type of Bitmap

unsigned long Colours;
unsigned long ImpColours;

’

unsigned long ReadLong(fstream InFile)
{

unsigned char al,a2,a3,a4;
unsigned long ReturnVal;

al = InFile.get();
a2 = InFile.get();
a3 = InFile.get();
a4 = InFile.get();
ReturnVal = al + a2<<8 + a3<<16 + a4<<24;
return ReturnVval;
3
unsigned short ReadShort(fstream InFile)

unsigned char al,a2;
unsigned short Returnval;

al = InFite.get();
a2 = InFile.get();

ReturnVal = al + a2<<8;

InTeLLIGENT OpTicaL Sensor - 422

Arpenpix L — SorFtware Source Cobe

return ReturnVal;
}
BOOL CheckHeader(fstream InFile)

{
InFile.get();// return FALSE;
InFile.get();// return FALSE;

return TRUE;

}

BOOL ReadBitmapHeader(fstream InFile,BitmapStruct &Map)

{
CheckHeader(InFile);//return FALSE; //if first to bytes are not BM, file format is invalid
Map.FileSize = ReadLong(InFile); //Get the FileSize;
InFile.seekg(4,ios::cur); //skip over reserved bits
Map.ImageOffset = ReadLong(InFile); // Get the image offset

unsigned long HeaderSize = ReadLong(InFile);
Map.Width = (unsigned short)ReadlLong(InFile);
Map.Height = (unsigned short)ReadLong(InFile);
if(ReadShort(InFile)!=1) return FALSE; //Bitmap can only have 1 colour plane
Map.ColDepth = (unsigned char)ReadShort(InFile);
Map.Compression = (unsigned char)ReadlLong(InFile);
unsigned long ImageSize = ReadlLong(InFile);
unsigned long XPelsMeter = ReadlLong(InFile);
unsigned long YPelsMeter = ReadLong(InFile);
Map.Colours = ReadLong(InFile);

Map.ImpColours = ReadLong(InFile);

return TRUE;
}

BOOL ReadImageData(fstream InFile,BitmapStruct &Map)

if(Map.Compression!=0) return FALSE; //Not designed for compressed bitmaps
if(Map.Width!=320) return FALSE;

if(Map.Height!=240) return FALSE; //only for a 320x240 bitmap!
if(Map.ColDepth!=24) return FALSE; //only for 24bit bitmaps

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

Map.Sum = 0;
InFile.seekg(Map.ImageOffset,ios: :beg); //set file pointer to start of image data

for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2++)

{
PixelB = InFile.get();
PixelG = InFile.get();
PixelR = InFile.get();

Map.Gray[loop2][240-loop-1] = (unsigned _int8)((255-PixelR)*0.3 + (255-PixelG)*0.59 + (255-PixelR)
*0.11);
Map.Sum += Map.Gray[loop2][240-loop-1];
}
}

return TRUE;
}

InteLuGent Oprical Sensor - 423

Arpenpix L - SorFrware Source Cope

20.7 - Cheat Office

// Cheat OfficeDlg.cpp : implementation file
/I

#include "stdafx.h"

#include "Cheat Office.h"
#include "Cheat OfficeDlg.h"
#include <fstream.h>
#include <math.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;
#endif

Yz
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{
public:
CAboutDIg();

// Dialog Data
//{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
double m_Mult;
[/} }AFX_DATA

// ClassWizard generated virtual function overrides
J1{{AFX_VIRTUAL(CAboutDIg)

protected: .

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}YAFX_VIRTUAL

// Implementation

protected:
//{{AFX_MSG(CAboutDIg)
afx_msg void OnMultButton();
/1 }YAFX_MSG

DECLARE_MESSAGE_MAP()

4

CAboutDIg: :CAboutDIg() : CDialog(CAboutDlg::IDD)

{
//{{AFX_DATA_INIT(CAboutDig)
m_Mult = 0.0;

InTeLucent OpTicaL Sensor - 424

Appenpoix L. — Sorrware Source Cope

/1Y YAFX_DATA_INIT

}
void CAboutDIg: : DoDataExchange(CDataExchange* pDX)

{
CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
DDX_Text(pDX, IDC_MULT_EDIT, m_Muit);
DDV_MinMaxDouble(pDX, m_Mult, 0., 5.);
//}}AFX_DATA_MAP
b

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
//{{AFX_MSG_MAP(CAboutDIg)
[/ YYAFX_MSG_MAP

END_MESSAGE_MAP()

I T LT T
// CCheatOfficeDIg dialog

CCheatOfficeDIg: : CCheatOfficeDIg(CWnd* pParent /*=NULL*/)
: CDialog(CCheatOfficeDlg::1DD, pParent)

{
//{{AFX_DATA_INIT(CCheatOfficeDlg)
m_DatumCheck = FALSE;
m_Mult = 0.0;
/13 YAFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}
void CCheatOfficeDlg: : DoDataExchange{CDataExchange* pDX)

{
CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CCheatOfficeDlg)
DDX_Check(pDX, IDC_DATUM_CHECK, m_DatumCheck);
DDX_Text(pDX, IDC_MULT_EDIT, m_Mult);
//}}YAFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CCheatOfficeDlg, CDialog)
//{{AFX_MSG_MAP(CCheatOfficeDIg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_BACKGROUND_BUTTON, OnBackgroundButton)
ON_BN_CLICKED(IDC_DATUM_BUTTON, OnDatumButton)
ON_BN_CLICKED(IDC_INCOMING_BUTTON, OnIncomingButton)
ON_BN_CLICKED(IDC_EXIT_BUTTON, OnExitButton)
ON_BN_CLICKED(IDC_PROCESS_BUTTON, OnProcessButton)
ON_BN_CLICKED(IDC_SET_BUTTON, OnSetButton)
/13 YAFX_MSG_MAP
END_MESSAGE_MAP()

i
// CCheatOfficeDlg message handlers

BOOL CCheatOfficeDIg: :OnlInitDialog()
{CDiang: :OnInitDialog();
// Add "About..." menu item to system menu.
// IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

InTeLtGenT OpricaL Sensor - 425

Appenpix L — Sortware Source Cope

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

{

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (\strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
}
}

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

Setlcon(m_hIcon, TRUE); // Set big icon
Setlcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here
for(int loop = 0; loop<320; loop++)

for (int loop2 = 0; loop2<240; loop2++)

{
Camera.Data[loop][loop2] = 0;
Background.Data{loop][loop2] = O;
Final.Data[loop][loop2] = 0;
Datum.Data[loop]{loop2] = 0;

}

¥

m_Muit = 0.2;

UpdateData(FALSE);

return TRUE; // return TRUE unless you set the focus to a control

}
void CCheatOfficeDIg::0nSysCommand(UINT nID, LPARAM |Param)

{
if ((nID & OXFFFO) == IDM_ABOUTBOX)
{

CAboutDlg digAbout;
digAbout.DoModal();
}

else

{
CDialog: :0OnSysCommand(nID, IParam);
}

}

// 1f you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CCheatOfficeDlg: :OnPaint()

{if (IsIconic())
CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - exIcon + 1) / 2;

inty = (rect.Height() - cylcon + 1} / 2;

// Draw the icon
dec.Drawlcon(x, y, m_hIcon);

InTeLLIGENT OpticaL Sensor - 426

Arpenpix L — SoFrware Source Cope

¥

else

{
CPaintDC dc(this);
int loop, loop2;

for(loop2 = 0; loop2 <240; loop2++)
{
for (loop = 0; loop < 320; loop++)

int Value = Final.Data[loop][loop2];
dc.SetPixel(14 + loop, 14 + loop2, RGB(Value, Value, Value));
Value = Camera.Data[loop][loop2];
dc.SetPixel(345 + loop/2, 14 + loop2/2,RGB(Value, Value, Value));
Value = Background.Data[loop][loop2];
dc.SetPixel(345 + loop/2, 148 + loop2/2,RGB(Value, Value, Value));
}
¥

CDialog::OnPaint();
}
}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CCheatOfficeDIg: :OnQueryDraglcon()

{
return (HCURSOR) m_hlcon;
}

void CCheatOfficeDlg: :OnBackgroundButton()
{

// TODO: Add your control notification handler code here
CFileDialog m_BackDIg(TRUE,"bmp","*.bmp");

CString Temp;

if (m_BackDlg.DoModal()==IDOK)

{

Temp = m_BackD|g.GetPathName();
Background = OpenFile(Temp);
Invalidate();

¥
void CCheatOfficeDlg: :OnDatumButton()

{
// TODO: Add your control notification handler code here
CFileDialog m_BackDIg(TRUE,"bmp","*.bmp");
CString Temp;
if (m_BackDlg.DoModal()==IDOK)
{
Temp = m_BackDIlg.GetPathName();
Datum = OpenfFile(Temp);
Camera = Datum;
Invalidate();

if(MessageBox("Do you want to use this Datum image ?","Datum Selection”,MB_OKCANCEL)==IDOK)
m_DatumCheck = TRUE;

else m_DatumCheck = FALSE;

UpdateData(FALSE);

}

}
void CCheatOfficeDlg: :OnIncomingButton()
{

// TODO: Add your control notification handler code here
CFileDialog m_BackDIg(TRUE,"bmp","*.bmp");

~ CString Temp;
if (m_BackDlg.DoModal()==IDOK)

InTeLLIGENT OpTicaL Sensor - 427

Arpenpix L — Sortware Source Cope

{
Temp = m_BackDIg.GetPathName();

Camera = OpenFile(Temp);
Invalidate();
}

}

void CCheatOfficeDlg: :OnExitButton()

{

// TODO: Add your control notification handler code here
OnOK();
}

DWORD ReadLong(fstream InFile)

{
BYTE al,a2,a3,a4;
DWORD Returnval;

InFile >> a1l;
InFile >> a2;
InFile >> a3;
InFile >>a4;

ReturnVal =(DWORD)(al + a2*256 + a3*pow(256,2) + a4*pow(256,3));

return ReturnVal;

b

WORD ReadShort(fstream InFile)
{

BYTE al,a2;
WORD ReturnVal;

InFile >> a1;
InFile >> a2;

ReturnVal = (WORD)(al + a2*256);

return ReturnVai;
}

Imagelnfo CCheatOfficeDIlg: :OpenFile(CString Name)

Imagelnfo Temp;

Temp.FileName = Name;

CString m_Detail;

BeginWaitCursor();

fstream InFile;

InFile.open(Name, ios: :binary|ios::in);

WORD Header;

Header = ReadShort(InFile);

if(Header!=(('"M'<<8) + 'B")) //Expect to read BM as first two bytes
{

m_Detail = "File Header incorrect";
UpdateData(FALSE);
EndWaitCursor();

return Temp;

}
DWORD FileSize = ReadLong(InFile);

InTeLLiGent Oprical Sensor - 428

Appenpix L — Sorrware Source Cope

WORD Res1 = ReadShort(InFile);

WORD Res2 = ReadShort(InFile);
DWORD ImageOffset = ReadLong(InFile);
DWORD HeaderSize = ReadLong(InFile);
DWORD Width = ReadLong(InFile);
DWORD Height = ReadLong(InFile);

if (ReadShort(InFile) !=1)

m_Detail = "File has more than one colour plane";
UpdateData(FALSE);

EndWaitCursor();

return Temp;

b4

WORD ColDepth = ReadShort(InFile);
DWORD Compression = ReadLong(InFile);
DWORD ImageSize = ReadLong(InFile);
DWORD XPelsMeter = ReadLong(InFile);
DWORD YPelsMeter = ReadLong(InFile);
DWORD Colours = Readlong(InFile);
DWORD ImpColours = ReadlLong(InFile),

if(Compression!=0) //Not designed for compressed bitmaps

m_Detail = "Bitmap File is Compressed”;
UpdateData(FALSE);

EndWaitCursor();

return Temp;

)
if(Width!=320)
{

m_Detail = "Image Width is not 320 pixels";
UpdateData(FALSE);

EndWaitCursor();

return Temp;

}
if(Height!=240) //only for a 320x240 bitmap!

m_Detail = "File's Height is not 240 pixels";
UpdateData(FALSE);

EndWaitCursor();

return Temp;

}
if(ColDepth!=24) //only for 24bit bitmaps
{

m_Detail = "File is not a 24bit RGB image";
UpdateData(FALSE);

EndWaitCursor();

return Temp;

b

unsigned char PixelR, PixelG, PixelB;
int loop, loop2;

InFile.seekg(ImageOffset,ios: :beg); //set file pointer to start of image data
int Sum = 0;
for(loop =0; loop<240; loop++)
{
for (loop2 = 0; loop2<320; loop2-++)
PixelB = InFile.get();
PixelG = InFile.get();
PixelR = InFile.get();
Temp.Data[loop2][240-loop-1] = (unsigned _int8)((PixelR)*0.3 + (PixelG)*0.59 + (PixelR)*0.11);

Sum += Temp.Data[loop2]}[240-loop-1];
} .

InteLigent OpricaL Sensor - 429

Arpenpix L = SorFrware Source Cope

InFile.close();

//Finished reading the bitmap file, now calculate threshold
//and threshold version of image map

Temp.Median = (unsigned |nt8)(Sum/76800),
EndWaitCursor();

return Temp;

}
void CCheatOfficeDIg: :OnProcessButton()
{

// TODO: Add your control notification handler code here
if (!m_DatumCheck) return;

Dolitter();

DoSharp();

DoObjects();

int loop, loop2;

Final = Background;

for(loop = 0; loop<320; loop++)

{
for(loop2 = 0; loop2<240; loop2++)

{
J/if((Sharp[loop/4][loop2/4])&&(Difference[loop][loop2]))
if (Difference[loop][loop2])

Final.Data[loop][loop2] = Camera.Datafloop][loop2];

}

Invalidate();

void CCheatOfficeDlg: : Dolitter()

//**

//Following Code generates the thresholded array of the incomming image //
//first sequence, image as is
int loop, loop2, Space, Diff,count = 0;

Space = (int)sgrt(pow(Camera.Median - Datum.Median,2));
for (loop = 0; loop <320; loop ++)

{
for (loop2 = 0; loop2 < 240; loop2 ++)
{

//image jitter correction code

//can compensate by 1 pixel in a certain direction

//Normal image

Diff = (int)sqrt(pow((Camera.Data[loop][loop2] - Datum.Data[loop][loop2]),2));
if (Diff> (m_Mult*Space)) //m_Mult adjusts the sensitivity

// If a difference is detected, the pixel s shifted

// around by a distance of one pixel to evaluate if

// this is due to a small wind movement. The 9 pixels

// surrounding the current pixel will be evaluated

// Every image pixel can be shifted in a different direction

//Image shifted up and left
if ((loop<319)&&(loop2<239))

Diff = (int)sqrt(pow((Camera.Data[loop+1]{loop2+1] - Datum.Data[loop][toop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted up
if (loop2<239)
{

InTELUIGENT OpTiCAL SeEnsor - 430

Arpenpix L — Sortware Source Cope

Diff = (int)sqrt(pow((Camera.Data[loop][loop2+1] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

//Image shifted up and right
if ((loop>0)&&(loop2<239))

{
Diff = (int)sgrt(pow((Camera.Data[loop-11[lcop2+1] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Muit adjusts the sensitivity

{
//Image shifted left
if (loop<319)
{
Diff = (int)sqrt(pow((Camera.Data[loop+1][loop2] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

//Image shifted right

if (loop>0)

{
Diff = (int)sqrt(pow((Camera.Data[loop-1]1[loop2] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted down and left
if ((loop<319)&8&(loop2>0))
{
Diff = (int)sqrt(pow((Camera.Data[loop+1]{ioop2-1] - Datum.Data[loop]fioop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted down
if (loop2>0)
{
Diff = (int)sqrt(pow((Camera.Data[loop][loop2+1] - Datum.Datafloop]{loop2}),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{

//Image shifted down and right
if ((loop>0)&&(loop2>0))

{
Diff = (int)sqrt(pow((Camera.Data[loop-1][loop2-1] - Datum.Data[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//1f none of the pixel shifts Difference in a difference exciusion
//the pixel is marked as a set movement difference
Difference[loop][ioop2] = TRUE;
count++;

¥
// If any one of the pixel shifts Differences in a difference

//exclusion, the pixel is marked as non altered, ie only
//a small movement due to wind or BitmapCamera.Gray vibration

else Difference[loop]floop2] = FALSE;

InTELLIGENT OpTicAL Sensor - 431

Arpendix L = Sorrware Source Cope

b

+
NetworkThreshold = 6 + (int)(count/5000);
}

void CCheatOfficeDIg: :DoSharp()

{
int loop,loop2, loop3, loop4;
int count = 0;

for (loop2=0; loop2<60; loop2++)
for (loop=0; loop<80; loop++)

Sharp{loop][loop2] = FALSE;
count = O;
for (loop3=0; loop3<4; loop3++)

for (loop4 = 0; loop4<4; loopd++)

if (Difference[4*loop+loop3][4*loop2+loop4])
count++;

}
}
if (count >NetworkThreshold)

{
Sharp(loop][loop2] = TRUE;

void CCheatOfficeDIg: : DoObjects()
{

int counter = 0;

int loop, loopl, loop2, loop3;

int Mem, Set, gap;

for (loop = 0; loop<100; loop++)

Box[loop].Xmin = 80;
Box[loop].Ymin = 60;
Box[loop].Xmax = 0;
Box[loop].Ymax = 0;

//Check every line in the image
loop=0;
for(loop2=0; loop2<60; loop2++)

{
Set = 0;
Mem = 0;
gap =0;
for (loop=0; loop<80; loop++)
if (Sharp[loop][loop2]==TRUE)
{

counter++;
Box[counter].Xmin = loop;

InTeLuGent OpricaL Sensor - 432

ArpenpIx L — Sortware Source Cope

Box[counter].Ymin = loop2;
Box[counter].Ymax = loop2;
Box[counter].Xmax = loop;
Box[counter].Xmini[loop2] = loop;
Box[counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)

{
if((loop>=(Box[loop3].Xmin-2))&&(loop<=(Box[loop3].Xmax+2))&&
((loop2-Box[loop3].Ymax)<3)&&(loop3!=counter)&8&
(loop2>0))

Set =1,
Mem = loop3;

¥
b
//End of line check

while((gap<3)&&(loop<80))
{

loop++;
if(Sharp[loop][loop2]==1)
{

gap = 0;
Box[counter].Xmax = loop;
Box[counter].Xmaxi[loop2] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)

{
if((loop>=Box[loop3].Xmin-2)&8&(loop<=Box[loop3].Xmax+2)
&8&(loop2-Box[loop3].Ymax<3)&&(loop3!=counter)&&(counter>0))

Set=1;
Mem = loop3;

}
}
//End of line check

else gap++,

gap = 0;

//Matching correction code, updates matched object
//and deleted new object created

if (Set==1)

{

if(Box[counter].Xmin<Box[Mem].Xmin) Box[Mem].Xmin = Box[counter].Xmin;
if(Box[counter].Xmax>Box[Mem].Xmax) Box[Mem].Xmax = Box[counter].Xmax;
Box[Mem].Ymax = loop2; ’
Box[counter].Xmin = 80;
Box[counter].Xmax = O;
Box[counter].Ymin = 60;
Box[counter].Ymax = 0;
Box[Mem]).Xmaxi[loop2] = Box[counter].Xmaxi[loop2];
Box[Mem].Xmini{loop2] = Box[counter].Xmini[loop2];
counter--;
Set =0;
Mem = 0,
}
}
}

loop=0;
//Box size filtering code, checking for minimum target size

~ int IsZero = 0;

InTeLLIGeNT OpricaL Sensor - 433

Arpenpix L — Sorrware Source Cobe

for (loop = 1; loop<=counter; loop++)
if (IsZero==1)

loop--;
IsZero = 0;

¥
int TArea = ((Box[loop].Xmax - Box[loop].Xmin)*(Box[loop].Ymax-Box[loop].Ymin});
if (TArea <74)

for (loopl = loop; loopl<=counter; ioopl++)

{
Box[loop1] = Box[loopl+1];
if (loop==1) IsZero = 1;
else loop--;

}

counter--;

b
b
b

void CCheatOfficeDlg: :0nSetButton()
{

// TODO: Add your control notification handler code here
UpdateData(TRUE);
}

// Cheat OfficeDlg.h : header file
//

#if 1defined(AFX_CHEATOFFICEDLG_H__C9352226_1C58_11D5_B1DA_F413A2ADS06F __INCLUDED_)
#define AFX_CHEATOFFICEDLG_H__ €9352226_1C58_11D5_B1DA_F413A2AD906F__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

I I T T T LT
// CCheatOfficeDlg dialog

struct Imagelnfo

CString FileName;

unsigned _int8 Data[320][240];
~ int Median;

¥

InTeLLIGENT OpTicaL Sensor - 434

Arpenpix L = SorFrware Source Cope

struct BoxInfo

{
unsigned _int8 Xmin;
unsigned _int8 Xmax;
unsigned _int8 Ymin;
unsigned _int8 Ymax;
unsigned _int8 Xmini[60];
unsigned _int8 Xmaxi[60];

Y

class CCheatOfficeDlg : public CDialog
{
// Construction
public:
void DoObjects();
void DoSharp();
void Dolitter();
Imagelnfo OpenFile(CString Name);
CCheatOfficeDIg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//{{AFX_DATA(CCheatOfficeDlg)
enum { IDD = IDD_CHEATOFFICE_DIALOG };
BOOL m_DatumCheck;
double m_Mult;
//}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CCheatOfficeDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//YYAFX_VIRTUAL

// Implementation
protected:
HICON m_hIcon;

// Generated message map functions
//{{AFX_MSG(CCheatOfficeDlg}

virtual BOOL OnlInitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM IParamy);
afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon();
afx_msg void OnBackgroundButton();
afx_msg void OnDatumButton();
afx_msg void OnIncomingButton();
afx_msg void OnExitButton();

afx_msg void OnProcessButton();
afx_msg void OnSetButton();
//}YAFX_MSG
DECLARE_MESSAGE_MAP()

private:
BoxInfo Box[100];
int NetworkThreshold;
BOOL Sharp[80][60];
BOOL Difference[320][240];
Imagelnfo Final;
Imagelnfo Background;
Imagelnfo Datum;
Imagelnfo Camera;

Y

InTeLuigent Opricat Sensor - 435

Aprrenpix L — Sorrware Source Cone

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous fine.

#endif // \defined
(AFX_CHEATOFFICEDLG_H_ _C9352226_1C58_11D5_B1DA_F413A2AD906F__INCLUDED_)

InTeLLIGenT OpricaL Sensor - 436

ArpenDix L ~ SoFrware Source Cope

20.8 - Vos Reader

// VosReaderDIlg.cpp : implementation file
/I

#include "stdafx.h"
#include "VosReader.h"
#include "VosReaderDlg.h"
#include <windowsx.h>
#include <string.h>
#include <fstream.h>
#include <iostream.h>
#include <direct.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;
#endif

i
// CAboutDIg dialog used for App About

class CAboutDIg : public CDialog

{
public:
CAboutDlg();

// Dialog Data
//{{AFX_DATA(CAboutDIg)
enum { IDD = IDD_ABOUTBOX };
//}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:
J/{{AFX_MSG(CAboutDIg)
//}YAFX_MSG
DECLARE_MESSAGE_MAP()

b5
CAboutDlg: :CAboutDIg() : CDialog(CAboutDig: :IDD)

{
//{{AFX_DATA_INIT(CAboutDig)
//}}AFX_DATA_INIT

3

void CAboutDIg: :DoDataExchange(CDataExchange* pDX)

{
CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
//}}YAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDlang)
//{{AFX_MSG_MAP(CAboutDig)

// No message handlers
//}}YAFX_MSG_MAP
END_MESSAGE_MAP()

InTELLIGENT OPTICAL SENSOR - 437

Areenpix L — Sortware Source Cope

I T LT T
// CVosReaderDlg dialog

CVosReaderDIg: : CVosReaderDIg(CWnd* pParent /*=NULL*/)
: CDialog(CVosReaderDig::IDD, pParent)

//{{AFX_DATA_INIT(CVosReaderDig)

m_ComboResult = _T("");

//}YAFX_DATA_INIT

// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}
void CVosReaderDlg: : DoDataExchange(CDataExchange* pDX)
{

CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CVosReaderDIg)
DDX_CBString(pDX, IDC_COMBO1, m_ComboResult);
//}}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CVosReaderDlg, CDialog)
J/{{AFX_MSG_MAP(CVosReaderDig)
ON_WM_SYSCOMMAND()

ON_WM_PAINT()

ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_EXIT_BUTTON, OnExitButton)
ON_BN_CLICKED(IDC_OPEN_BUTTON, OnOpenButton)
ON_BN_CLICKED(IDC_RESTORE_BUTTON, OnRestoreButton)
ON_BN_CLICKED(IDC_CREATE_BUTTON, OnCreateButton)
ON_BN_CLICKED(IDC_APPLY_BUTTON, OnApplyButton)
ON_BN_CLICKED(IDC_SAVE_BUTTON, OnSaveButton)
ON_WM_DESTROY()
ON_BN_CLICKED(IDC_VIEW_BUTTON, OnViewButton)
ON_BN_CLICKED(IDC_DELETE_BUTTON, OnDeleteButton)
//YYAFX_MSG_MAP

END_MESSAGE_MAP()

i
// CVosReaderDlg message handlers

BOOL CVosReaderDlg: :OnlInitDialog()
{
CDialog: :OnInitDialog();
// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (PSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (IstrAboutMenu.IsEmpty())

{

pSysMenu- >AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

}
>
// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog
SetIcon{m_hIcon, TRUE); B} // Set big icon

INTeLuGenT OpTicaL Sensor - 438

Appenpix L — SorFrware Source Cope

Setlcon{m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

char* buffer="";

getewd(buffer, 500);

m_Working = buffer;

CFileFind finder;

Cstring FilterDir = buffer;

FilterDir += "\\Filters";

chdir(FilterDir);
GetDlgItem(IDC_VIEW_BUTTON)->EnableWindow(FALSE);

CComboBox* FilterList = (CComboBox*)GetDlgitem(IDC_COMBO1);

BOOL bWorking = finder.FindFile("*.VRF");
while (bWorking)

bWorking = finder.FindNextFile();
FilterList->AddString(finder.GetFileTitle());

b
chdir(buffer);

return TRUE; // return TRUE unless you set the focus to a control

}
void CVosReaderDlg::0nSysCommand(UINT nID, LPARAM IParam)
{

if ((nID & OxFFFQ) == IDM_ABOUTBOX)

{
CAboutDIg digAbout;
digAbout.DoModal();
}

else

{
CDialog: :0nSysCommand(nID, {Param);
}

}

//************************ GLOBALS 2k 3 3k e 3k Sk ok S 3K Sk o 2k e e e o ok o ke ek sk ok ke

int Stored[324][244);
int Screen[3241[244];
int Change[3241[244];
float Filter[25];
CString Used = "";

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.
void CVosReaderDlg: :OnPaint()
{
if (IsIconic(}))
{
CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

InTeLLGenT OpricaL Sensor - 439

Arpenpix L — SorFtware Source Cope

int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(8wrect);

int x = (rect.Width() - cxIcon + 1) / 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.Drawlcon(x, y, m_hIcon);

}

else

{

CPaintDC dc(this);
if (Set3 == 0)

HBITMAP hbitmap = ::LoadBitmap(::AfxGetInstanceHandle(), MAKEINTRESOURCE(IDB_BITMAP2));
HDC hMemDC = ::CreateCompatibleDC(NULL);

SelectObject(hMemDC,hbitmap);

::StretchBIt(dc.m_hDC, 12, 18, 320, 240,hMemDC, 0,0,320, 240, SRCCOPY);
::DeleteDC(hMemDC);

: : DeleteObject(hbitmap);

else
for (int loop = 0; loop <320; loop ++)
for (int loop2 = 0; loop2<240; loop2 ++)

{
if (Screenfioop+2][loop2+2] == 1)
SetPixel(dc, loop+12, loop2+18,RGB(255,255,255));
else
SetPixel(dc, loop+12, loop2+18, RGB(0,0,0));
}
}
}

if (Setl != 0)

{
::StretchDIBits(dc.m_hDC,

347,
18,
160,
120,
0,
0,
DibWidth(Imagel),
DibHeight(Imagel),
DibPtr(Imagel),
DibInfo(Imagel),
DIB_RGB_COLORS,
SRCCOPY);

¥

else

HBITMAP hbitmap = ::LoadBitmap(: :AfxGetInstanceHandle(), MAKEINTRESOURCE(IDB_BITMAP1));
HDC hMemDC = ::CreateCompatibleDC(NULL);

SelectObject(hMemDC,hbitmap);
::StretchBlt(dc.m_hDC, 347, 18, 160, 120,hMemDC, 0,0,160, 120, SRCCOPY);

::DeleteDC(hMemDC);
:: DeleteObject(hbitmap);

if (Set2 1= 0)
{

::StretchDIBits(dc.m_hDC,
347,

InTeLLiGenT OpticaL Sensor - 440

Arpenpix L — Sorrware Source Cope

141,
160,

120,

0,

0,
DibWidth(Image2),
DibHeight(Image2),
DibPtr(Image2),
DibInfo(Image2),
DIB_RGB_COLORS,
SRCCOPY);

b

else

HBITMAP hbitmap = ::LoadBitmap(: :AfxGetInstanceHandle(), MAKEINTRESOURCE(IDB_BITMAP1));
HDC hMemDC = ::CreateCompatibleDC(NULL);

SelectObject(hMemDC,hbitmap);
::StretchBlt(dc.m_hDC, 347, 141, 160, 120,hMemDC, 0,0,160, 120, SRCCOPY);

::DeleteDC(hMemDC);
::DeleteObject(hbitmap);

CDialog: :OnPaint();
}
}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CVosReaderDlg: :OnQueryDraglIcon()

{
return (HCURSOR) m_hIcon;
}

void CVosReaderDIg: :OnExitButton()

{
// TODO: Add your control notification handler code here
OnOK();

//***************** OWN FUNCTION 34 3k ok 24 3 o 3 A o o ok ok kK Ak K K ok K ok ok

PDIB CVosReaderDlg: : DibOpenFile(LPSTR szFile)

{
HFILE fh;
DWORD dwLen;
DWORD dwaBits;
PDIB pdib;
LPVOID p;
OFSTRUCT of;

#if defined(WIN32) || defined (_WIN32)
#define GetCurrentInstance() GetModuleHandle(NULL)

#else
#define GetCurrentInstance() (HINSTANCE)SELECTOROF((LPVOID)&of)

#endif

fh = OpenFile(szFile, &of, OF_READ) ;.

InTeLLIGENT OpTicaL Sensor - 441

Arrenpix L — SoFrware Source Cope

if (fh == -1)

{
HRSRC h;
h = FindResource(GetCurrentInstance(), szFile, RT_BITMAP);

#if defined(WIN32) || defined(_WIN32)
if (h)
return (PDIB)LockResource(LoadResource(GetCurrentInstance(), h));
#else
if (h)
fh = AccessResource(GetCurrentInstance(),h);
#endif
}

if (fh == -1)
return NULL;
pdib = DibReadBitmapInfo(fh);

if (!pdib)
return NULL;

dwBits = pdib->biSizeImage;
dwLen = pdib->biSize + DibPaletteSize(pdib) + dwBits;

p = GlobalReAllocPtr(pdib,dwlen,0);
if ('p)
GlobalFreePtr(pdib);

pdib = NULL;
}

else

{
pdib = (PDIB)p;
¥

if (pdib)
{
" hread(fh, (LPBYTE)pdib + (UINT)pdib->biSize + DibPaletteSize(pdib), dwBits);

_lclose(fh);
return pdib;

¥
PDIB CVosReaderDlg: : DibReadBitmapInfo(HFILE fh)

{
DWORD off;
HANDLE hbi = NULL;
int size;
inti;
int nNumColors;

RGBQUAD FAR *pRgb;
BITMAPINFOHEADER bi;
BITMAPCOREHEADER bc;
BITMAPFILEHEADER bf;
PDIB pdib;

if (fh == -1)
return NULL,;

off = _liseek(fh, OL, SEEK_CUR);

InTeLLiGenT OpricaL Sensor - 442

Arpenpix L = Sortware Source Cope

if (sizeof(bf) != _lread(fh,(LPSTR)&bf, sizeof(bf)))
return FALSE;

if (bf.bfType != BFT_BITMAP)

bf.bfOffBits = OL;
_liseek(fh, off, SEEK_SET);
}

if (sizeof(bi) != _lread(fh,(LPSTR)&bi, sizeof(bi)))
return FALSE;

switch (size = (int)bi.biSize)

default :
case sizeof(BITMAPINFOHEADER):break;

case sizeof(BITMAPCOREHEADER):
bc = *(BITMAPCOREHEADER*)8bi;
bi.biSize = sizeof(BITMAPINFOHEADER);
bi.biwidth = (DWORD)bc.bcWidth;
bi.biHeight = (DWORD)bc.bcHeight;
bi.biPlanes = (UINT)bc.bcPlanes;
bi.biBitCount = (UINT)bc.bcBitCount;
bi.biCompression = BI_RGB;
bi.biSizelmage = 0;
bi.biXPelsPerMeter = O;
bi.biYPelsPerMeter = 0;
bi.biClrUsed = O;
bi.biClrImportant = 0;

_liseek(fh, (LONG)sizeof(BITMAPCOREHEADER)-sizeof(BITMAPINFOHEADER),SEEK_CUR);

break;

b

nNumColors = DibNumColors(&bi);

#if 0
if (bi.biSizeImage == 0)
bi.biSizelmage = DibSizeImage(&bi);

if (bi.biClrUsed == 0)

bi.biClrUsed = DibNumColors(8&bi);
#else

FixBitmapInfo(&bi);
#endif

pdib = (PDIB)GlobalAllocPtr(GMEM_MOVEABLE, (LONG)bi.biSize + nNumColors * sizeof(RGBQUAD));

if (1pdib)
return NULL,;

*pdib = bi;
pRgb = DibColors(pdib);

if (nNumColors)

{
if (size == sizeof(BITMAPCOREHEADER))

{
_lread(fh, (LPVOID)pRgb, nNumColors * sizeof (RGBTRIPLE));

for (i = nNumColors -1; i >=0; i--)

{
RGBQUAD rgb;

rgb.rgbRed = ((RGBTRIPLE FAR *)pRgb)l[i].rgbtRed;
rgb.rgbBlue = ((RGBTRIPLE FAR *ZpRgb)[i].rgstIue;

InTeLLiGent Opricat Sensor - 443

Areenpix L — SorFrware Source Cope

rgb.rgbGreen = ((RGBTRIPLE FAR *)pRgb)[i].rgbtGreen;
rgb.rgbReserved = (BYTE)O;

pRgb[i] = rgb;
}
¥

else
_lread(fh, (LPVOID)pRgb, nNumColors * sizeof(RGBQUAD));
}}
if (bf.bfOffBits != OL)
_liseek(fh, off + bf.bfOffBits, SEEK_SET);

return pdib;

}
void CVosReaderDIg::0OnOpenButton()

{
// TODO: Add your control notification handler code here
char FileTitle[100];
char FileName[500];
Setl = 0;
Set2 = 0;
Set3 = 0;

OPENFILENAME ofn;
_fmemset(&ofn, 0, sizeof(ofn));
ofn.IStructSize = sizeof(OPENFILENAME);

ofn.hwndOwner = m_hWnd;;
ofn.hInstance = NULL;

ofn.IpstrFilter = TEXT("VosDemo files *.vos\0*.vos\0\0");

ofn.IpstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterIndex = 1;
ofn.IpstrFile = FileName;
ofn.nMaxFile = 500;
ofn.|pstrFileTitle = FileTitie;
ofn.nMaxFileTitle = 99;
ofn.IpstrinitialDir = NULL;
ofn.IpstrTitle = "Open BMP file";
ofn.Flags = OFN_FILEMUSTEXIST;
ofn.IpstrDefExt = "BMP";
ofn.ICustData = NULL;
ofn.lpfnHook = NULL;
ofn.IpTemplateName = NULL;

FileName[0] = "\0';

GetOpenFileName(&ofn);

if (FileName[0] != "\0")
{

CString FullName;
CString PartName;

FullName = FileName,
PartName = FileTitle;

char Name1[500];
char Name2[500];

Intecigent OpricaL Sensor - 444

Arpenpix L — SoFtware Source Cope

for (int loop = 0; loop<500; loop ++)
{
Namel[loop] = NULL;
Name2[loop] = NULL;
for (loop = 0; loop < 324; loop ++)
for (int loop2 = 0; loop2 < 244; loop2 ++)
Change{loop][loop2] = 0;
Stored[loop][loop2] = O;
Screen[loop][loop2] = 0;
}

}

int Count;
Count = FullName.Find(PartName);

for (loop = 0; loop < Count; loop ++)
Namel[loop] = FileName[loop];
Name2[loop] = FileName[loop];

strcat(Name2, "Camera.bmp");

strcat(Name1, "Datum.bmp");

ifstream file_in(FileName);

int valuel;

int value2;

do
{

file_in >> valuel;
file_in >> value2;

Change[valuel+2][value2+2] = 1;
Screen[value1l+2][value2+2] = 1;
Stored[value1l+2][value2+2] = 1;
}
while (file_in.eof() == 0);
for (loop = 2; loop <322; loop++)
{
for (int loop2 = 2; loop2 <242; loop2++)
{
if (Stored[loop][loop2] != 1)
{
Stored[loop][loop2] = -1;
Screen[loop]floop2] = -1;
Change[loop][loop2] = -1;
}

}
¥

Set3 = 1;
InvalidateRect(CRect(12,18,332,258), FALSE);
if(Imagel = DibOpenFile(Namel))

Setl =1;
}
if(Image2 = DibOpenfFile(Name2))

InTetLicenT OpTicat Sensor - 445

Appenoix L — Sorrware Source Cope

{
Set2 = 1;
}
}
Invalidate();
¥

void CVosReaderDIg: :OnRestoreButton()

{

// TODO: Add your control notification handler code here
Used = Illl;

for (int loop=0; loop<324; loop++)

{
for (int loop2 = 0; loop2<244; loop2++)
{

Screen[loop][loop2] = Stored[loop][loop2];
Change[loop][loop2] = Stored[loop]{loop2];
}

}
InvalidateRect(CRect(12,18,336,262));
b

void CVosReaderDIlg: :OnCreateButton()

{
// TODO: Add your control notification handler code here
CString FilterDir = m_Working + "\\Filters" ;
chdir(FilterDir);

m_dlg.DoModal();

CFileFind finder;

CComboBox* FilterList = (CComboBox*)GetDIgltem(IDC_COMBO1);
FilterList->ResetContent();

BOOL bWorking = finder.FindFile("*.VRF");

while (bWorking)

{
bWorking = finder.FindNextFile();
FilterList->AddString(finder.GetFileTitle());

}
chdir(m_Working);

void CVosReaderDIg: :OnApplyButton()

{
// TODO: Add your control notification handier code here
UpdateData(TRUE);
m_FilterName = m_Working + "\\Filters\\" + m_ComboResult + ".vrf";
Used = m_ComboResult;
ifstream file_in(m_FilterName);
char Validation1;
char Validation2,;
char Validation3;

file_in >> Validationl,
file_in >> Validation2;
file_in >> Validation3;

InTELLIGENT OpTIcAL SENSOR - 446

Arerenpix L — SorFrware Source Cope

if ((Validation1 =="v") && (Validation2 =='R") && ((Validation3 =='3")||(Validation3 =='5"})))
{

for (int loop = 0; loop<5; loop ++)

Filter[O+loop] = O;
Filter[1+loop] = O;
Filter{2+loop] = O;
Filter[3+loop] = 0O;
Filter[4+loop] = O;

file_in >> Filter[0+loop];
file_in >> Filter[1+loop};
file_in >> Filter[2+loop];
file_in >> Filter[4+loop];

}
float Temp = 0;
for (loop = 0; loop <320; loop ++)

{
for (int loop2 = 0; loop2 <240; loop2 ++)
for (int loop3 = 0; loop3<5; loop3 ++)

{

Temp +=(Change[loop+loop3][loop2]) * (Filter[loop3]);

Temp +=(Change[loop+loop3][loop2+1]) * (Filter[loop3+5]);
Temp +=(Change[loop+loop3][loop2+2]) * (Filter[loop3+10]);
Temp +=(Change[loop+loop3][loop2+3]) * (Filter[loop3+15]);
Temp +=(Change[loop+loop3][loop2+4]) * (Filter[loop3+20]);

}
if (Temp >=0)
Screen[loop+2][loop2+2]=1;
else Screen[loop+2][loop2+2]=-1;
Temp = 0;
}
¥

for (loop = 2;loop<322; loop++);
for (int loop2 = 2; loop2<242; loop2++)
Change{loop][loop2] = Screen{loop][loop2];
// Screen[loop][loop2] = Change[loop][loop2];
}}
InvalidateRect(CRect(12,18,336,262));

else MessageBox("Invalid Filter File");

e

void CVosReaderDig: :OnSaveButton()

{// TODO: Add your control notification handler code here
CString SaveDir = "";

SaveDir = m_Working + "\\Saved Data";
chdir(SaveDir);

CFileFind finder;

BOOL bWorking = finder.FindFile("*.VRD");
int Trial = 1;

while (bWorking)

{

bWorking = finder.FindNextFile();

if (Trial == atoi(finder.GetFileTitle()))
{

Trial ++;

InTELLIGENT OPTICAL SENSOR - 447

Appenpix L — SoFtware Source Cope

}

}

char* Temp = ",

itoa(Trial, Temp,10);

CString NewName = Temp;

NewName += ".vrd";

UpdateData(TRUE);
ofstream SaveFile(NewName);
SaveFile << "VRD\n";
SaveFile << "Filter used : ";
SaveFile << Used <<"\n";

SaveFile << "Original Data - Filtered Data :\n";
for (int loop = 2; loop <322; loop++)

for (int loop2 = 2; loop2 <242; loop2++)

{
SaveFile << Stored[loop][loop2]<<"\t"<<Screen[loop][loop2]<<"\n";
}

SaveFile.close();
chdir(m_Working);

3

void CVosReaderDig: :OnDestroy()
{
CDialog: :OnDestroy();
// TODO: Add your message handler code here

GlobalFreePtr(Imagel);
GlobalFreePtr(Image2);

}
void CVosReaderDlg: :OnViewButton()
{
// TODO: Add your control notification handler code here

// chdir(m_Working);
// m_dlg.DoModal();

}

void CVosReaderDIg: :OnDeleteButton()

{
// TODO: Add your control notification handler code here
CString FilterDir = m_Working + "\\Filters" ;
chdir(FilterDir);
UpdateData(TRUE);

CString Temp = m_ComboResult;
m_FilterName = m_ComboResult + ".vif";

if ((Temp == "") || (DeleteFile(m_FilterName) == 0))
MessageBox("File could not be found");
else

{
CFileFind finder;

InTeLLiGent OpricaL Sensor - 448

Arpenpix L — SoFtware Source Cope

CComboBox* FilterList = (CComboBox*)GetDIgItem(IDC_COMBO1);

FilterList->ResetContent();

BOOL bWorking = finder.FindFile("* .VRF");
while (bWorking)

{

bWorking = finder.FindNextFile();
FilterList->AddString(finder.GetFileTitle());

b
3

chdir(m_Working);
}
// VosReaderDlg.h : header file

#include "Editor.h"
//

#if 'defined(AFX_VOSREADERDLG_H__CA31C186_4268_11D2_BA0C_0060084F84CD__ INCLUDED_)
#define AFX_VOSREADERDLG_H__CA31C186_4268_11D2_BAOC_0060084F84CD__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

i

// CVosReaderDig dialog
//Overhead declarations for DIB manipulation
typedef LPBITMAPINFOHEADER PDIB;

#define DibWidth(Ipbi) \
(UINT)(((LPBITMAPINFOHEADER)(Ipbi))->biWidth)

#define DibHeight(lpbi) \
(UINT)(((LPBITMAPINFOHEADER)(Ipbi))->biHeight)

#define DibColors(Ipbi) \
((RGBQUAD FAR *)(({LPBYTE)(Ipbi) + (int)(Ipbi)->biSize))

#ifdef WIN32
#define DIbPtr(Ipbi) \

((Ipbi)->biCompression == BI_BITFIELDS \

? (LPVOID)(DibColors(lpbi) + 3)\

: (LPVOID)(DibColors(lpbi) + (UINT)(Ipbi)->biClrUsed))
#else
#define DibPtr(Ipbi) \

(LPVOID)(DibColors(Ipbi) + (VINT)(Ipbi)->biCirUsed)
#endif

#define DibInfo(pDIB) \
((BITMAPINFO FAR *)(pDIB))

#define DibNumColors(Ipbi) \
((Ipbi)->biClrUsed == 0 && (Ipbi)->biBitCount <= 8\
? (int)(1 << (int)(Ipbi)->biBitCount) \
: (int)(Ipbi)->biCirUsed)

#define DibPaletteSize(Ipbi) \
(DibNumColors(Ipbi) * sizeof(RGBQUAD))

#define BFT_BITMAP 0x4d42

#define WIDTHBYTES(I) \
((unsigned)((i+31)&(~31))/8)

#define DibWidthBytesN(Ipbi, n) \
* (UINT)WIDTHBYTES((UINT)(Ipbi)->biWidth * (UINT)(n))

InTELLIGENT OpPTiCAL SENSOR - 449

Arpenpix L — Sorrware Source Cope

#define DibWidthBytes(Ipbi) \
DibwidthBytesN(Ipbi, (Ipbi)->biBitCount)

#define DibSizelmage(ipbi) \
((ipbi)->biSizeImage == 0\
? ((DWORD)(UINT)DibWidthBytes(Ipbi) * (DWORD)(UINT)(Ipbi)->biHeight) \
: (Ipbi)->biSizeImage)
#ifndef BI_BITFIELDS
#define BI_BITFIELDS 3
#endif
#define FixBitmapInfo(lpbi) \
if ((Ipbi)->biSizeImage == 0) \
(Ipbi)->biSizelmage = DibSizeImage(Ipbi); \
if ((ipbi)->biClrUsed == 0) \
(Ipbi)->biCirUsed = DibNumColors(Ipbi); \
if ((Ipbi)->biCompression == BI_BITFIELDS && (Ipbi)->biClrUsed == 0)

class CVosReaderDlg : public CDialog
{

// Construction

public:

int Set1;

int Set2;

int Set3;

PDIB Imagel;

PDIB Image2;

CString m_FilterName;
CString m_Working;

CVosReaderDIg(CWnd* pParent = NULL); // standard constructor
CEditor m_dlg;

// Dialog Data
//{{AFX_DATA(CVosReaderDIg)
enum { IDD = IDD_VOSREADER_DIALOG };
CString m_ComboResuit;
//}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CVosReaderDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
/13 YAFX_VIRTUAL

// Implementation

protected:
HICON m_hIcon;
PDIB DibOpenFile(LPSTR szFile);
PDIB DibReadBitmapInfo(HFILE fh);

// Generated message map functions
//{{AFX_MSG(CVosReaderDIg)

virtual BOOL OninitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon();
afx_msg void OnExitButton();

afx_msg void OnOpenButton();
afx_msg void OnRestoreButton();
afx_msg void OnCreateButton();
afx_msg void OnApplyButton();
afx_msg void OnSaveButton();

InTeLuGenT OpticaL Sensor - 450

Appenpix L — SorFrware Source Cope

afx_msg void OnDestroy();
afx_msg void OnViewButton();
afx_msg void OnDeleteButton();
//}YAFX_MSG
DECLARE_MESSAGE_MAP()

+

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // defined(AFX_VOSREADERDLG_H__CA31C186_4268_11D2_BA0C_0060084F84CD__INCLUDED_)

// Editor.cpp : implementation file
//

#include "stdafx.h"
#include "VosReader.h"
#include "Editor.h"
#include <fstream.h>
#include <direct.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE_ ;
#endif

Y
// CEditor dialog

CEditor: : CEditor(CWnd* pParent /*=NULL*/)
: CDialog(CEditor::1DD, pParent)

{
//{{AFX_DATA_INIT(CEditor)
m_Input0 = 0.0f;
m_Inputl = 0.0f;
m_Inputl0 = 0.0f;
m_Inputll = 0.0f;
m_Inputi2 = 0.0f;
m_Inputl3 = 0.0f;
m_Input14 = 0.0f;
m_Inputl5 = 0.0f;
m_Inputl6 = 0.0f;
m_Inputl7 = 0.0f;
m_Input18 = 0.0f;
m_Input19 = 0.0f;
m_Input2 = 0.0f;

" m_Input20 = 0.0f;

InTELLIGENT OpPTicAL SENSOR - 451

Appenpix L — Sortware Source Cope

m_Input21 = 0.0f;
m_Input22 = 0.0f;
m_Input23 = 0.0f;
m_Input24 = 0.0f;
m_Input3 = 0.0f;
m_Input4 = 0.0f;
m_Input5 = 0.0f;
m_Input6 = 0.0f;
m_Input7 = 0.0f;
m_Input8 = 0.0f;
m_Input9 = 0.0f;
m_FilterName = _T("");
//}YAFX_DATA_INIT

void CEditor::DoDataExchange(CDataExchange* pDX)

{

CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CEditor)
DDX_Text(pDX, IDC_EDITO, m_Input0);
DDX_Text(pDX, IDC_EDIT1, m_Inputl);
DDX_Text(pDX, IDC_EDIT10, m_Input10);
DDX_Text(pDX, IDC_EDIT11, m_Inputll);
DDX_Text(pDX, IDC_EDIT12, m_Inputl2);
DDX_Text(pDX, IDC_EDIT13, m_Input13);
DDX_Text(pDX, IDC_EDIT14, m_Inputi4);
DDX_Text(pDX, IDC_EDIT15, m_Inputl5);
DDX_Text(pDX, IDC_EDIT16, m_Input16);
DDX_Text(pDX, IDC_EDIT17, m_Inputl7);
DDX_Text(pDX, IDC_EDIT18, m_Inputl8);
DDX_Text(pDX, IDC_EDIT19, m_Input19);
DDX_Text(pDX, IDC_EDIT2, m_Input2);
DDX_Text(pDX, IDC_EDIT20, m_Input20);
DDX_Text(pDX, IDC_EDIT21, m_Input21);
DDX_Text(pDX, IDC_EDIT22, m_Input22);
DDX_Text(pDX, IDC_EDIT23, m_Input23);
DDX_Text(pDX, IDC_EDIT24, m_Input24);
DDX_Text(pDX, IDC_EDIT3, m_Input3);
DDX_Text(pDX, IDC_EDIT4, m_Input4);
DDX_Text(pDX, IDC_EDITS, m_Input5);
DDX_Text(pDX, IDC_EDIT6, m_Input6);
DDX_Text(pDX, IDC_EDITZ, m_Input?7);
DDX_Text(pDX, IDC_EDITS, m_Input8);
DDX_Text(pDX, IDC_EDIT9, m_Input9);

DDX_Text(pDX, IDC_FILTERNAME_EDIT, m_FilterName);

//Y}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CEditor, CDialog)
/1{{AFX_MSG_MAP(CEditor)

ON_BN_CLICKED(IDC_CANCEL_BUTTON, OnCancelButton)
ON_BN_CLICKED(IDC_SAVE2_BUTTON, OnSave2Button)

//}YAFX_MSG_MAP
END_MESSAGE_MAP()

i

// CEditor message handlers

void CEditor::OnCancelButton()
{

// TODO: Add your control notification handler code here

OnOK();
}

InTeLLIGENT OPTIcAL SENSOR - 452

Appenpix L — SorFtware Source Cobe

void CEditor: :0nSave2Button()

{
// TODO: Add your control notification handler code here
CString Name = "";
m_FilterName = "";
UpdateData(TRUE);
CFileFind finder;
int Error = 0;
chdir("Filters");

BOOL bWorking = finder.FindFile("*.VRF");
while (bWorking)
{

bWorking = finder.FindNextFile();
if (finder.GetFileTitle() == m_FilterName)

{
Error = 1,
¥
if (m_FilterName =="")
{
Error = 2;
¥

switch (Error)

case 0:{
Name = m_FilterName + ".vif";
ofstream file_out(Name);
file_out << "VR5\n";
file_out << m_Input0 << "\t"

<<m_Inputl<<"\t"<<m_Input2<<"\t"<<m_Input3<<"\t"<<m_Input4<<™\n";

file_out << m_Input5 << "\t"

<<m_Input6<<"\t"<<m_Input7<<"\t"<<m_Input8<<"\t"<<m_Input9<<"\n";

file_out << m_Input10 << "\t"

<<m_Inputll<<"\t"<<m_Inputl12<<™t"<<m_Input1i3<<"\t"<<m_Inputld<<™\n";

file_out << m_Inputl5<< "\t"

<<m_Input16<<"\t"<<m_Input17<<"\t"<<m_Input18<<"\t"<<m_1nput19<<..\n..;

file_out << m_Input20 << "\t"

<<m_Input21<<"\t"<<m_Input22<<"\t"<<m_Input23<<"\t"<<m_Input24<<™\n";

file_out.close();

m_Input0 = 0;
m_Inputl = 0;
m_Input2 = 0;
m_Input3 = 0;
m_Input4 = 0;
m_Input5 = 0;
m_Inputé = 0;
m_Input7 = 0;
m_Input8 = 0;
m_Input9 = 0;

m_Inputl0 = 0;
m_Inputll = 0;
m_Inputl2 = 0;
m_Inputl3 = 0;
m_Inputl4 = 0;
m_Inputl5 = 0;
m_Inputi6 = 0;
m_Inputl? = 0;
m_Inputl8 = 0;
m_Inputl9 = 0;
m_Input20 = 0;
m_Input21 = 0;
m_Input22 = 0;
m_Input23 = 0;

InTeLLicent Oprical Sensor - 453

Arpenpix L — Sorrware Source Cope

m_Input24 = 0;

UpdateData(FALSE);
OnOK();
}

break;

case 1:MessageBox("File already exists");
break;

case 2:MessageBox("Enter a Filter Name");
break;
}

m_FilterName = "";

#if \defined(AFX_EDITOR_H__60F2F6E0_4B4C_11D2_BA11_0060084F84CD__INCLUDED_)
#define AFX_EDITOR_H__60F2F6EQ_4B4C _11D2_BA11_0060084F84CD__INCLUDED_

#if _MSC_VER >= 1000
#pragma once

#endif // _MSC_VER >= 1000
// Editor.h : header file

1/

I T T T L 10T
// CEditor dialog

class CEditor : public CDialog
{

InveLLigent OpticaL Sensor - 454

Aprenpix L — Sorrware Source Cope

// Construction
public:
CEditor(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//{{AFX_DATA(CEditor)
enum { IDD = IDD_EDIT_DIALOG };
float m_InputO;
float m_Inputl;
float m_Inputl0;
float m_Inputll;
float m_Inputl2;
float m_Inputl3;
float m_Input14;
float m_Inputl5;
float m_Inputl6;
float m_Inputl?;
float m_Input18;
float m_Inputl9;
float m_Input2;
float m_Input20;
float m_Input21;
float m_Input22;
float m_Input23;
float m_Input24;
float m_Input3;
float m_Input4;
float m_Input5;
float m_Input6;
float m_Input7;
float m_Input8;
float m_Input9;
CString m_FilterName;
/1y }AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CEditor)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//3YAFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//{{AFX_MSG(CEditor)

afx_msg void OnCancelButton();
afx_msg void OnSave2Button();
//}YAFX_MSG
DECLARE_MESSAGE_MAP()

I

J/{{AFX_INSERT_LOCATION}}

// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // \defined(AFX_EDITOR_H__60F2F6EQ_4B4C_11D2_BA11_0060084F84CD__INCLUDED_)

InTeLtigent Oprical Sensor - 455

Appenpix L — SoFtware Source Cope

InTewLIGenT Oprical Sensor - 456

Arpenpix L ~ SoFrware Source Cope

20.9 - VosViewer

// vos viewerDlg.cpp : implementation file
/I

#include "stdafx.h"
#include "vos viewer.h"
#include "vos viewerDIg.h"
#include <fstream.h>
#include <direct.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;
#endif

yriiiaianonnnn
// CAboutDIg dialog used for App About

class CAboutDlg : pubtic CDialog

{
public:
CAboutDIg();

// Dialog Data
//{{AFX_DATA(CAboutDIg)
enum { IDD = IDD_ABOUTBOX };
//}}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
1/} YAFX_VIRTUAL

// Implementation
protected:
J/{{AFX_MSG(CAboutDIg)
//3YAFX_MSG
DECLARE_MESSAGE_MAP()
3

CAboutDlg: :CAboutDIg() : CDialog(CAboutDig::IDD)

{

//{{ AFX_DATA_INIT(CAboutDIg)
//Y}AFX_DATA_INIT

)

void CAboutDlg: : DoDataExchange(CDataExchange* pDX)

CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
//}}YAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDIg, CDialog)
//{{AFX_MSG_MAP(CAboutDIg)
// No message handlers
/1 } YAFX_MSG_MAP

END_MESSAGE_MAP()

///
// CVosviewerDIg dialog

InTeLLigent Oprical Sensor - 457

Arpenpix L = SoFtware Source Cope

CVosviewerDlg: : CVosviewerDIg(CWnd* pParent /*=NULL*/)
. CDialog(CVosviewerDlg::IDD, pParent)

//{{AFX_DATA_INIT(CVosviewerDIg)

m_Name = _T("");

//}YAFX_DATA_INIT

// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hlcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}
void CVosviewerDlg: : DoDataExchange(CDataExchange* pDX)

{
CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CVosviewerDig)
DDX_Text(pDX, IDC_NAME_EDIT, m_Name);
//}}YAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CVosviewerDlg, CDialog)
/1{{AFX_MSG_MAP(CVosviewerDlg)
ON_WM_SYSCOMMAND()

ON_WM_PAINT()

ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_COPY_BUTTON, OnCopyButton)
ON_BN_CLICKED(IDC_DEL_BUTTON, OnDelButton)
ON_BN_CLICKED(IDC_NEXT_BUTTON, OnNextButton)
ON_BN_CLICKED(IDC_OPEN_BUTTON, OnOpenButton)
ON_BN_CLICKED(IDC_PREV_BUTTON, OnPrevButton)
ON_BN_CLICKED(IDC_QUIT_BUTTON, OnQuitButton)
ON_BN_CLICKED(IDC_COL1_BUTTON, OnCol1Button)
ON_BN_CLICKED(IDC_COL2_BUTTON, OnCol2Button)
ON_BN_CLICKED(IDC_HOME_BUTTON, OnHomeButton)
ON_BN_CLICKED(IDC_LAST_BUTTON, OnLastButton)
//}YAFX_MSG_MAP
END_MESSAGE_MAP()

i
// CVosviewerDlg message handlers

BOOL CVosviewerDlg: :OnInitDialog()
{
CDialog: :OnInitDialog();
// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OXFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (IstrAboutMenu.IsEmpty())

{
pSysMenu->AppendMenu(MF_SEPARATOR});
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

}
}
// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

"// TODO: Add extra initialization here

InteLucent OepticaL Sensor - 458

Appenpix L ~ SorFrware Source Cope

¢_BackColor = RGB(0,0,0);

¢_ForeColor = RGB(255,255,0);
GetDIgItem(IDC_COPY_BUTTON)->EnableWindow(FALSE);
GetDIgItem(IDC_DEL_BUTTON)->EnableWindow(FALSE);
GetDIgItem(IDC_PREV_BUTTON)->EnableWindow(FALSE);
GetDlgitem(IDC_NEXT_BUTTON)->EnableWindow(FALSE);
GetDlgltem(IDC_HOME_BUTTON)->EnableWindow(FALSE);
GetDigltem(IDC_LAST_BUTTON)->EnableWindow(FALSE);
FileOpen = FALSE;

return TRUE; // return TRUE unless you set the focus to a control

>
void CVosviewerDlg::OnSysCommand(UINT nID, LPARAM {Param)

{
if ((nID & OxFFFQ) == IDM_ABOUTBOX)

{
CAboutDig digAbout;
digAbout.DoModal();
}

else

{
CDialog: :0nSysCommand(nID, {Param);

3
b

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CVosviewerDIg: :OnPaint()
if (IsIconic())
CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - exIcon + 1) / 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.Drawlcon(x, y, m_hlcon);

b

else

{
if (FileOpen==TRUE) DisplayFile();
CDialog::OnPaint();
}
}

// The system calls this to obtain the cursor to display while the user drags

// the minimized window.
HCURSOR CVosviewerDlg: :0nQueryDraglcon()

return (HCURSOR) m_hlIcon;
}

void CVosviewerDlg: :0nCopyButton()

{ _
// TODO: Add your controi notification handler code here
CFileDialog m_FileDIg(FALSE, "vos",m_FileName);
if(m_FileDlg. DoModal()==IDOK)

{

InTeLuGent OpTicaL Sensor - 459

Appenpix L — Sortware Source Cope

Cstring Path = m_FileDIg.GetPathName();
CopyFile(m_PathName, Path, TRUE);

¥
void CVosviewerDIg: :0OnDelButton()

// TODO: Add your control notification handter code here
if(MessageBox("Do you really want to delete this File ?","FileDelete", MB_YESNO)==IDYES)
if(DeleteFile(m _FileName))

MessageBox("File Deleted");

m_Name = "";
GetDIgItem(IDC_DEL_BUTTON)->EnableWindow(FALSE);
GetDIgItem(IDC_COPY_BUTTON)->EnableWindow(FALSE);
FileOpen = FALSE;

UpdateData(FALSE);

Invalidate();

else MessageBox("Cannot delete File");

¥
void CVosviewerDlg: :OnNextButton()

// TODO: Add your control notification handler code here
CFileFind Finder;

BOOL bWorking = Finder.FindFile("*.vos");

int iResult = 0;

CString m_Temp;

while (bWorking)

{

bWorking = Finder.FindNextFile(); //Try to find the current file
m_Temp = Finder.GetFileName();
if ((m_Temp == m_FileName) && (bWorking))

bWorking = Finder.FindNextFile(); //When found, find the next file
m_NextFile = Finder.GetFileName();

m_PathName = Finder.GetFilePath();

m_FileName = m_NextFile;

iResult = DisplayFile();

bWorking = FALSE;

>
else if(1bworking) MessageBox("End of File List");
}

¥

void CVosviewerDIg: :OnOpenButton()

{
// TODO: Add your control notification handler code here
CFileDialog m_Filedig(TRUE,"VOS data file","*.vos");
if(m_Filedlg.DoModal()==IDOK) '

{
m_FileName = m_Filedlg.GetFileName();
m_PathName = m_Filedlg.GetPathName();
int iResuit = DisplayFile();
}

}

void CVosviewerDlg::OnPrevButton()

// TODO: Add your control notification handler code here
CFileFind Finder;

BOOL bWorking = Finder.FindFile("*.vos");

int iCount = 0;

int iResult = 0;

CString m_Temp;

"bWorking = Finder.FindNextFile();

InTeLicenT OrticaL Sensor - 460

Arpenpix L — SorFrware Source Cope

while(bWorking)

m_PrevFile = Finder.GetFileName();
m_PathName = Finder.GetFilePath();

bWorking = Finder.FindNextFile();
if (m_FileName==Finder.GetFileName())

{
bWorking=FALSE;
m_FileName = m_PrevFile;
iCount = 1;

b

if (iCount==0) MessageBox("No Previous Files");
else iResult = DisplayFile();
+

void CVosviewerDIg::0nQuitButton()

{

// TODO: Add your control notification handler code here
OnOK();
}

BOOL CVosviewerDig: : DisplayFile()
{

m_Name = m_PathName;
UpdateData(FALSE);

GetDIgltem(IDC_DEL_BUTTON)->EnableWindow(TRUE);
GetDlgltem(IDC_COPY_BUTTON)->EnableWindow(TRUE);
GetDIgltem(IDC_PREV_BUTTON)->EnableWindow(TRUE);
GetDIgItem(IDC_NEXT_BUTTON)->EnableWindow(TRUE);
GetDIgItem(IDC_HOME_BUTTON)->EnableWindow(TRUE);
GetDIgItem(IDC_LAST_BUTTON)->EnableWindow(TRUE);

ifstream InFile(m_FileName);
DWORD Attribs = GetFileAttributes(m_FileName);
if (Attribs == FILE_ATTRIBUTE_READONLY)

{
MessageBox("File is Read Only");
GetDIgItem(IDC_DEL_BUTTON)->EnableWindow(FALSE);

+

// if(GetFileSize(InFile,NULL)==0xFFFFFFFF)
if (sizeof(InFile)==0)
{

MessageBox("File is Void");
GetDIgItem(IDC_COPY_BUTTON)->EnableWindow(FALSE);

return FALSE;
}

FileOpen = TRUE;
CClientDC dc(this);

int valuel;
int value2;

for(int loop = 0; loop<320; loop++)

{for (int loop2 = 0; loop2 <240; loop2++)
{SetPier(dc, loop+15, loop2+15,¢_BackColor);
}}

do

{

InFile >> vaiuel;

InTeLLIGENT OpricaL Sensor - 461

Appenpix L — Sortware Source Cope

InFile >> value2;
SetPixel(dc,valuel+15,value2+15,c_ForeColor);

}
while (InFile.eof() == 0);
InFile.close();

return TRUE;
}

void CVosviewerDlg::0nCol1Button()

// TODO: Add your control notification handler code here
CColorDialog m_ColdIig(TRUE);
m_Coldlg.DoModal();
c_BackColor = m_Coldlg.GetColor();
}

void CVosviewerDIg: :0nCol2Button()

{
// TODO: Add your control notification handler code here
CColorDialog m_Coldig(TRUE);
m_Coldig.DoModal();
¢_ForeColor = m_Coldlg.GetColor();
}

void CVosviewerDig: :OnHomeButton()

{
// TODO: Add your control notification handler code here
// TODO: Add your control notification handler code here
CFileFind Finder;
BOOL bWorking = Finder.FindFile("*.vos");
CString m_Temp;
int iResult;

bWorking = Finder.FindNextFile();
m_FileName = Finder.GetFileName();
m_PathName = Finder.GetFilePath();
iResult = DisplayFile();

}
void CVosviewerDig: :OnLastButton()

{
// TODO: Add your control notification handler code here
CFileFind Finder;
BOOL bworking = Finder.FindFile("*.vos");
CString m_Temp;
int iResult;
while(bWorking)

{
bWorking = Finder.FindNextFile();

m_FileName = Finder.GetFileName();
m_PathName = Finder.GetFilePath();
iResult = DisplayFile();

}

InTeLigenT Opricat Sensor - 462

Arpenpix L — SoFtware Source Cope

20.10 - Weyrad Demo

// Demo 2DIg.cpp : implementation file
/

#include "stdafx.h"
#include "Demo 2.h"
#include "Demo 2Dlg.h"
#include <string.h>
#include <windowsx.h>
#include <direct.h>
#include <fstream.h>
#include <math.h>
#include <afx.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;
#endif

T LT L LT T T
// CAboutDlg dialog used for App About

class CAboutDIg : public CDialog

public:
CAboutDIg();

// Dialog Data
J/{{AFX_DATA(CAboutDIg)
enum { IDD = IDD_ABOUTBOX };
//}3AFX_DATA

// ClassWizard generated virtual function overrides
J/{{AFX_VIRTUAL(CAboutDig)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//YYAFX_VIRTUAL

// Implementation
protected:
J/{{AFX_MSG(CAboutDig)
J/}YAFX_MSG

DECLARE_MESSAGE_MAP()

5
CAboutDlg: :CAboutDIg() : CDialog(CAboutDig::IDD)

{
//{{AFX_DATA_INIT(CAboutDIg)
//}YAFX_DATA_INIT

}
void CAboutDIg: : DoDataExchange(CDataExchange* pDX)

{
CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
J/{{AFX_MSG_MAR(CAboutDIg)

// No message handlers
//3YAFX_MSG_MAP
END_MESSAGE_MAP()

i

InverLigent OericaL Sensor - 463

Appenpix L — SorFtware Source Cope

// CDemo2DIg dialog

CDemo2Dig: :CDemo2DIg(CWnd* pParent /*=NULL*/)
: CDialog(CDemo2Dlg::IDD, pParent)

{
//{{AFX_DATA_INIT(CDemo2Dlg)
m_Source = _T("");
m_SaveEdit = _T("");
m_Batch = FALSE;
m_Mult = 0;
[/} YAFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hlcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

3
void CDemo2DIg: : DoDataExchange(CDataExchange* pDX)

{

CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CDemo2Dlg)
DDX_Control(pDX, IDC_START_BUTTON, m_Start);
DDX_Text(pDX, IDC_SOURCE_EDIT, m_Source);
DDX_Text(pDX, IDC_SAVE_EDIT, m_SaveEdit);
DDX_Check(pDX, IDC_BATCH_CHECK, m_Batch);
DDX_Text(pDX, IDC_UPDATE_EDIT, m_Muit);
//YYAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CDemo2Dlg, CDialog)
//{{AFX_MSG_MAP(CDemo2DIg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_EXIT_BUTTON, OnExitButton)
ON_BN_CLICKED(IDC_GRAB1_BUTTON, OnGrab1Button)
ON_BN_CLICKED(IDC_GRAB2_BUTTON, OnGrab2Button)
ON_BN_CLICKED(IDC_START_BUTTON, OnStartButton)
ON_BN_CLICKED(IDC_SELECT_BUTTON, OnSelectButton)
ON_WM_DESTROY()
ON_BN_CLICKED(IDC_SAVESELECT_BUTTON, OnSaveselectButton)
ON_BN_CLICKED(IDC_BATCH_CHECK, OnBatchCheck)
ON_BN_CLICKED(IDC_UPDATE_BUTTON, OnUpdateButton)
//}YYAFX_MSG_MAP
END_MESSAGE_MAP()

i
// CDemo2Dig message handlers

BOOL CDemo2Dlg::OnlnitDialog()
{
CDialog: :OnInitDialog();
// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty())

{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
}
}

InTeLuiGent Orptical Sensor - 464

Appenoix L ~ Sortware Source Cope

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

Setlcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here
ButtonText="&START";
UpdateData(FALSE);

Selected = 0;

Selected2 = 0;

grabbed = 0;

m_Muit = 5;

UpdateData(FALSE);

GetDIgItem(IDC_START_BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_GRAB1_BUTTON)->EnableWindow(FALSE);
GetDIgItem(IDC_GRAB2_BUTTON)->EnableWindow(FALSE);

return TRUE; // return TRUE unless you set the focus to a control

}
void CDemo2Dlg: :0nSysCommand(UINT nID, LPARAM IParam)

{
if ((nID & OXFFFQ) == IDM_ABOUTBOX)

CAboutDig digAbout;
digAbout.DoModal();
¥

else

{
CDialog: :0nSysCommand(nID, |Param);

b
X

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

R Rk F Rk % GLOBAL VARIABLES DECLARATIONS * ¥ kskkokskok otk ok ko koK 4ok

int Camera[320][240];
int Reference[320][240];
int Result[320][240];
PDIB m_datum;

int Iterations = 10;

int Count = 0;

int DatumThreshold = O;
int CameraThreshold = O;
int Len = 0;

CString m_SourceDir;

//***

void CDemo2DIg::OnPaint()

{if (IsIconic())
{CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

InTetLigent OpricaL Sensor - 465

Appenpix L = SorFrware Source Cope

int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - oxicon + 1) / 2;

int y = (rect.Height() - cylcon + 1)/ 2;

// Draw the icon
dc.DrawIcon(x, y, m_hIcon);

¥

else

{
CPaintDC dc(this);
if (grabbed2 ==1)

::StretchDIBits(dc.m_hDC,

354,

21,

320,

240,

0,

0,
DibWidth(m_pdibPicture),
DibHeight(m_pdibPicture),
DibPtr(m_pdibPicture),
DibInfo(m_pdibPicture),
DIB_RGB_COLORS,
SRCCOPY);

)
if (grabbed == 1)

::StretchDIBits(dc.m_hDC,
15,
21,
320,
240,
o,
0,
Dibwidth(m_datum),
DibHeight(m_datum),
DibPtr(m_datum),
DibInfo(m_datum),
DIB_RGB_COLORS,
SRCCOPY);

[FEAARAAAAAAAR KR AAAAAAAKAAKAAAA KA A KA A A AR Kook e KRR AR A KKK

//Following Code grabs the image displayed on screen into an array(Incomming)
//Proceeds to invert the image (Invert), stores the inverted grayscale image

//(Grayed) and calculates the threshold //

int Red, Green, Blue;

int Sum = 0;

int loop, loop2;

int ColMax=0,ColMin=255;

for (loop=0; loop < 320;loop++)
{
for (loop2=0; loop2<240; loop2++)
{
Red = GetRValue(GetPixel(dc, 354+loop,21+loop2));

Green = GetGValue(GetPixel(dc, 354+loop,21+loop2));
Blue = GetBValue(GetPixel(dc, 354+loop,21+loop2));

InTeLLIGENT OpricaL Sensor - 466

AppenpIx L — Sorrware Source Cope

Camerafloop][loop2] = abs((int)((255-Red)*0.3) + (int)((255-Green)*0.58) + (int)((255-Blue)*0.12));

ColMin = (ColMin>Camera[loop]{loop2])?Camera[loop][loop2]:ColMin;
ColMax = (ColMax<Camera[loop]{lcop2])?Camera[loop][loop2]:ColMax;

Sum += Camera[loop][loop2];

}
>
ofstream Check("c:\\temp\\check.txt");
Check << ColMax<<endI;
Check << ColMin<<endt;
int Range = ColMax-ColMin;
Check <<Range;

CameraThreshold = abs(Sum/76000);

m_Mult = (int)((Range*3/255)+2);
UpdateData(FALSE);

Check << m_Mult;
Check.close();

//**
//Following Code generates the thresholded array of the incomming image //

//first sequence, image as is
if ((grabbed != 0) && (ButtonText =="8&STOP"))

int Space = (int)sqrt(pow(CameraThreshold - DatumThreshold, 2));
for (loop = 0; loop <320; loop ++)

for (loop2 = 0; loop2 < 240; loop2 ++)

//image jitter correction code
//can compensate by 1 pixel in a certain direction

//Normal image
int Diff = (int)sqrt(pow({Camera[loop][loop2] - Reference[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
// If a difference is detected, the pixel is shifted
// around by a distance of one pixel to evaluate if
// this is due to a small wind movement. The 9 pixels
// surrounding the current pixel will be evaluated
// Every image pixel can be shifted in a different direction

//Image shifted up and left
if ((loop<319)&&(loop2<239))

{
Diff = (int)sqrt(pow((Camera[ioop+1][loop2+1] - Reference[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Muit adjusts the sensitivity
{
//Image shifted up
if (loop2<239)

Diff = (int)sgrt(pow((Camera[loop][loop2+1] - Reference[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted up and right
if ((Ioop>0)&&(|oop2<239))_.

InveLuGenT OpricaL Sensor - 467

Arpenpix L ~ Sorrware Source Cope

Diff = (int)sqrt(pow((Camera[loop-1][loop2+1] - Reference[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

//Image shifted left
if (loop<319)

Diff = (int)sqrt(pow((Camera[loop+1][loop2] - Reference[loop][icop21),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted right
if (loop>0)
{

Diff = (int)sqrt(pow((Camera[loop-1][loop2] - Reference[loop][loop2]),2));
if (Diff > (Mm_Mult*Space)) //m_Mult adjusts the sensitivity

{ .
//Image shifted down and left
if ((loop<319)8&(loop2>0))

{Diff = (int)sqrt(pow((Camera[loop+1][loop2-1] - Reference[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity

{
//Image shifted down
if (loop2>0)

{Diff = (int)sqrt(pow((Camera[loop][loop2+1] - Reference[loop][loop2]),2));
if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity
{

//Image shifted down and right
if ((loop>0)&8(loop2>0))

Diff = (int)sqrt(pow((Camera[loop-1][loop2-1] - Reference[loop][loop2]),
2 if (Diff > (m_Mult*Space)) //m_Mult adjusts the sensitivity
{

//1f none of the pixel shifts result in a difference exclusion
//the pixel is marked as a set movement difference
Result{loop][loop2] = 1;

SetPixel(dc,354+loop,21 +loop2,RGB(255,255,0));

// If any one of the pixel shifts results in a difference
//exclusion, the pixel is marked as non aitered, ie only
//a small movement due to wind or camera vibration
else Result[loop][loop2] = O;
}

}

>
CDialog: :OnPaint();

InTeLuiGgent OpricaL Sensor - 468

Appenpix L — SoFtware Source Cope

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CDemo2Dlg::0OnQueryDragicon()

{
return (HCURSOR) m_hIcon;
¥

void CDemo2Dlg: :OnExitButton()

{
// TODO: Add your control notification handler code here
OnOK();

}

void CDemo2Dlg: :OnGrabiButton()
{
// TODO: Add your control notification handler code here
CopyFile(FileName, "Datum.tmp”, FALSE);
m_datum = m_pdibPicture;
grabbed = 1;
int loop, loop2;
for (loop = 0; loop < 320; loop++)

{
for (loop2 = 0; loop2 < 240; loop2++)

Reference[loop][loop2] = Camera[loop]{loop2];

}
DatumThreshold = CameraThreshold;

InvalidateRect(CRect(15,21,335,261),FALSE);
}

void CDemo2DIg: :OnGrab2Button()

{
// TODO: Add your control notification handler code here
m_pdibPicture = DibOpenFile(FileName);
GetDIgItem(IDC_GRAB1_BUTTON)->EnableWindow(TRUE);
InvalidateRect(CRect(354,21,674,261),FALSE);

}

void CDemo2DIg: :SaveFile()

{

//File Details being Saved here

CString NewName;
CString OIdExt;
OldExt = "bmp";
CString OldExt1;
OldExtl = "BMP";
CString NewExt;
NewExt = "vos";

CString Temp;
int Pos = m_Source.Find(OIdExt);

if (Pos==-1)
{

Intecicent OpticaL Sensor - 469

Arpenpix L — SoFtware Source Cope

Pos = m_Source.Find(OIdExt1);

}
Temp = m_Source.Left(Pos);
Temp = Temp + NewExt;

Pos = m_SavekEdit.Find("image.vos");
NewName = m_SaveEdit.Left(Pos);

NewName = NewName + Temp;

ofstream file;
file.open(NewName);
for (int loop = 0; loop< 320; loop++)

{
for (int loop2 = 0; loop2<240; loop2++)

if (Result[loop][loop2] == 1)
file << loop<<"\t"<<loop2<<"\n";

}
file.close();

//End of Save procedure
}

void CDemo2DIg: :OnStartButton()

{
// TODO: Add your control notification handler code here
if ((ButtonText == "&START") && (Selected != 0))

{
ButtonText = "&STOP";
GetDIgltem(IDC_SELECT_BUTTON)->EnableWindow(FALSE);
GetDigltem(IDC_SAVESELECT_BUTTON)->EnableWindow(FALSE);
GetDigitem(IDC_GRAB1_BUTTON)->EnableWindow(FALSE);
GetDIgItem(IDC_EXIT_BUTTON)->EnableWindow(FALSE);

if (m_Batch==TRUE)

{
CFileFind Finder;
CString Title;
GetDigItem(IDC_START_BUTTON)->EnableWindow(FALSE);
// chdir(m_SourceDir);

BOOL bWorking = Finder.FindFile("*.bmp");
while(bWorking)

{

// chdir(m_SourceDir);
bWorking = Finder.FindNextFile();
Title = Finder.GetFileTitle();

char *title;

title = "";

strcat(title, Title);

m_pdibPicture = DibOpenfFile(title);
Invalidate();

SaveFile();

}

else

Invalidate();
SaveFile();
}

X

InTeLLiGenT OpTicat Sensor - 470

Appenpix L — SoFrware Source Cope

else

{
ButtonText = "&START";
GetDIgltem(IDC_SELECT_BUTTON)->EnableWindow(TRUE);
GetDIgltem(IDC_EXIT_BUTTON)->EnableWindow(TRUE);
GetDlgitem(IDC_GRAB1_BUTTON)->EnableWindow(TRUE);
GetDlgItem(IDC_SAVESELECT_BUTTON)->EnableWindow(TRUE);
}

SetDIgltemText(IDC_START_BUTTON, ButtonText);
b

void CDemo2DIg: :OnSelectButton()

// TODO: Add your control notification handler code here
Selected = 1;

ButtonText = "&START";
SetDIgltemText(IDC_START_BUTTON, ButtonText);

char FileTitle[100];

OPENFILENAME ofn;

memset(&ofn, 0, sizeof(ofn));
ofn.IStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = NULL,;

ofn.hlnstance = NULL,;

ofn.IpstrFilter = TEXT("Bitmap Picture Files *.bmp\0*.bmp\0\0");

ofn.|pstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterindex = 1;
ofn.lpstrFile = FileName;
ofn.nMaxFile = 500;
ofn.|pstrFileTitle = FileTitle;
ofn.nMaxFileTitle = 99;
ofn.lpstrInitialDir = NULL;
ofn.|pstrTitle = "Open Bmp File";
ofn.Flags = OFN_FILEMUSTEXIST;
ofn.IpstrDefExt = "BMP";
ofn.|CustData = NULL;
ofn.IpfnHook = NULL;
ofn.lpTemplateName = NULL;

FileName[0] = "\0';
GetOpenFileName(&ofn);

if (FileName[0] 1= "\0")

grabbed2 = 1;

m_Source = FileTitle;

CString Temp;

Temp = FileName;

int Pos;

Pos = Temp.Find(m_Source);
m_SourceDir = Temp.Left(Pos);

UpdateData(FALSE);
GetDlgItem(IDC_START_BUTTON)->EnableWindow(TRUE);
GetDigitem(IDC_GRAB2_BUTTON)->EnableWindow(TRUE);

CopyFile(FileName, "Camera.tmp", FALSE);
OnGrab2Button();
'}

InTeLigent Optical Sensor - 471

Appenpix L. — SorFtware Source Cope

void CDemo2Dlg::OnSaveselectButton()

{
// TODO: Add your control notification handler code here
CFileDialog dig(FALSE,"vos file","image.vos");
dig.DoModal();
m_SaveEdit = dig.GetPathName();
UpdateData(FALSE);

void CDemo2DIg: :OnBatchCheck()

{

// TODO: Add your contro! notification handler code here
if (m_Batch==TRUE) m_Batch = FALSE;

else m_Batch = TRUE;
3

//***************** OWN FUNCTION 3k 2k 3 3K e e ok sk 3k e e ok Kk 3 ok ok kK k

PDIB CDemo2Dlg:: DibOpenFile(LPSTR szFile)

{
HFILE fh;
DWORD dwlen;
DWORD dwBits;
PDIB pdib;
LPVOID p;
OFSTRUCT of;

#if defined(WIN32) || defined (_WIN32)

#define GetCurrentInstance() GetModuleHandle(NULL)

#else

#define GetCurrentInstance() (HINSTANCE)SELECTOROF((LPVOID)&of)
#endif

fh = OpenFile(szFile, &of, OF_READ);
if (fh == -1)

{
HRSRC h;
h = FindResource(GetCurrentInstance(), szFile, RT_BITMAP);

#if defined(WIN32) || defined(_WIN32)
if (h)
return (PDIB)LockResource(LoadResource(GetCurrentInstance(), h));
#else
if (h)
fh = AccessResource(GetCurrentInstance(),h);
#endif
}

if (fh == -1)
return NULL;
pdib = DibReadBitmaplInfo(fh);

if (!pdib)
return NULL;

InTeLigent OpTicaL Sensor - 472

Appenpix L — SoFtware Source Cope

dwBits = pdib->biSizelmage;
dwlen = pdib->biSize + DibPaletteSize(pdib) + dwBits;

p = GlobalReAllocPtr(pdib,dwLen,0);

if (!p)

{
GlobalFreePtr(pdib);
pdib = NULL;

}

else

{
pdib = (PDIB)p;
}

if (pdib)
{
_hread(fh, (LPBYTE)pdib + (UINT)pdib->biSize + DibPaletteSize(pdib), dwBits);

_Iclose(fh);
return pdib;
}

PDIB CDemo2Dlg: :DibReadBitmaplInfo(HFILE fh)

{
DWORD off;
HANDLE hbi = NULL;
int size;
int i;
int nNumColors;
RGBQUAD FAR *pRgb;
BITMAPINFOHEADER bi;
BITMAPCOREHEADER bc;

BITMAPFILEHEADER bf;
PDIB pdib;

if (fh == -1)
return NULL;

off = _lIseek(fh, OL, SEEK_CUR);

if (sizeof(bf) != _lIread(fh,(LPSTR)8bf, sizeof(bf}))
return FALSE;

if (bf.bfType != BFT_BITMAP)
{
bf.bfOffBits = OL;

_liseek(fh, off, SEEK_SET);
}

if (sizeof(bi) != _lread(fh,(LPSTR)&bi, sizeof(bi)))
return FALSE;

switch (size = (int)bi.biSize)
{

default :
case sizeof(BITMAPINFOHEADER):break;

InteLucent Optical Sensor - 473

Aepenpix L ~ SoFtware Source Cope

case sizeof(BITMAPCOREHEADER):
bc = *(BITMAPCOREHEADER*)&bi;
bi.biSize = sizeof(BITMAPINFOHEADER);
bi.biWidth = (DWORD)bc.bcWidth;
bi.biHeight = (DWORD)bc.bcHeight;
bi.biPlanes = (UINT)bc.bcPlanes;
bi.biBitCount = (UINT)bc.bcBitCount;
bi.biCompression = BI_RGB;
bi.biSizelmage = 0;
bi.biXPelsPerMeter = 0;
bi.biYPelsPerMeter = 0;
bi.biClrUsed = 0;
bi.biClrImportant = 0;

_lIseek(fh, (LONG)sizeof(BITMAPCOREHEADER)-sizeof(BITMAPINFOHEADER),SEEK_CURY);
break;

¥

nNumColors = DibNumColors(&bi);
#if O

if (bi.biSizelmage == 0)

bi.biSizelmage = DibSizeImage(8bi);

if (bi.biClrUsed ==

bi.biClrUsed = DibNumColors(&bi);
#else

FixBitmapInfo(&bi);
#endif

pdib = (PDIB)GlobalAllocPtr(GMEM_MOVEABLE, (LONG)bi.biSize + nNumColors * sizeof(RGBQUAD));

if (!pdib)
return NULL;

*pdib = bi;
pRgb = DibColors(pdib);

if (nNumColors)
if (size == sizeof(BITMAPCOREHEADERY))

{
_lread(fh, (LPVOID)pRgb, nNumColors * sizeof (RGBTRIPLE));
for (i = nNumColors -1; i >=0; i--)

{
RGBQUAD rgb;
rgb.rgbRed = ((RGBTRIPLE FAR *)pRgb)[i].rgbtRed;
rgb.rgbBlue = ((RGBTRIPLE FAR *)pRgb)[i].rgbtBlue;
rgb.rgbGreen = ((RGBTRIPLE FAR *)pRgb)[i].rgbtGreen;
rgb.rgbReserved = (BYTE)O;

}pRgb[i] = rgb;

b

else
{

_lread(fh,(LPVOID)pRgb, nNumColors * sizeof(RGBQUAD));
}

}

if (bf.bfOffBits != OL)
_liseek(fh, off + bf.bfOffBits, SEEK_SET);

return pdib;

¥

InTeLLIGENT OpTicaL Sensor - 474

Arpenpix L — SorFrware Source Cope

void CDemo2Dig::0OnDestroy()
CDialog: :OnDestroy();

// TODO: Add your message handler code here
GlobalFreePtr(m_pdibPicture);
GlobalFreePtr(m_datum);

>

void CDemo2Dlg: :OnUpdateButton()

// TODO: Add your control notification handler code here
UpdateData(TRUE);
}

InTeELLIGENT OpTicaL Sensor - 475

AppenpIx L — SorFtware Source Cope

20.11 - Multiple Data Extractor

// Data ExtractorDIg.cpp : implementation file
/I

#include "stdafx.h"
#include "Data Extractor.h”
#include "Data ExtractorDlg.h"

#include <windowsx.h>
#include <string.h>
#include <fstream.h>
#include <iostream.h>
#include <direct.h>
#include <math.h>
#include <iomanip.h>

#include <fstream.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE__;
#endif

il
// CAboutDig dialog used for App About

class CAboutDIg : public CDialog

{
public:
CAboutDIg();

// Dialog Data
//{{AFX_DATA(CAboutDIg)
enum { IDD = IDD_ABOUTBOX };
//}}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDIg)
protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

/1y YAFX_VIRTUAL

// Implementation
protected:
J/{{AFX_MSG(CAboutDIg)
//}YAFX_MSG
DECLARE_MESSAGE_MAP()
3

CAboutDIg: :CAboutDIg() : CDialog(CAboutDig::1DD)

{
//{{AFX_DATA_INIT(CAboutD!g)
/1Y YAFX_DATA_INIT

}

void CAboutDIg: : DoDataExchange(CDataExchange* pDX)

{
CDialog: : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
1/ YYAFX_DATA_MAP

}

InTeLuGent OpticaL Sensor - 476

ArpenpIX L = Sorrware Source Cope

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
//{{AFX_MSG_MAP(CAboutDig)
// No message handlers
[/ }}YAFX_MSG_MAP

END_MESSAGE_MAP()

i
// CDataExtractorDIg dialog

CDataExtractorDlg: : CDataExtractorDIg(CWnd* pParent /*=NULL*/)
: CDialog(CDataExtractorDIg::1IDD, pParent)

//{{AFX_DATA_INIT(CDataExtractorDlg)

m_Target = _T("");

m_Objects = 0;

m_Percent = 0;

m_FuliName = _T("");

//} YAFX_DATA_INIT

// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}
void CDataExtractorDIg: : DoDataExchange(CDataExchange* pDX)

{

CDialog: : DoDataExchange(pDX);
/1{{AFX_DATA_MAP(CDataExtractorDig)
DDX_Control(pDX, IDC_SET_SLIDER, m_SetSlider);
DDX_Text(pDX, IDC_TRAGET_EDIT, m_Target);
DDX_Text(pDX, IDC_OBIECT_EDIT, m_Objects);
DDX_Text(pDX, IDC_PERCENT_EDIT, m_Percent);
DDX_Text(pDX, IDC_NAME_STATIC, m_FuliName);
//}YAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CDataExtractorDIlg, CDialog)
//{{AFX_MSG_MAP(CDataExtractorDIg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_EXIT_BUTTON, OnExitButton)
ON_BN_CLICKED(IDC_OPEN_BUTTON, OnOpenButton)
ON_BN_CLICKED(IDC_CLAC_BUTTON, OnClacButton)
ON_BN_CLICKED(IDC_TARGET_BUTTON, OnTargetButton)
ON_BN_CLICKED(IDC_VALID_CHECK, OnValidCheck)
ON_BN_CLICKED(IDC_BOUND_BUTTON, OnBoundButton)
ON_BN_CLICKED(IDC_CLEAR_BUTTON, OnClearButton)
ON_WM_HSCROLL()
ON_BN_CLICKED(IDC_SAVE_BUTTON, OnSaveButton)
//YYAFX_MSG_MAP

END_MESSAGE_MAP()

i
// CDataExtractorDlg message handlers

int Stored[320]{240];

int Check1=0, Check2=0;

CString Title;

int sharp[801[60];

int Xmin[100],Xmax[100],Ymin[100],Ymax[100];
int counter;

int Pos = 7;

BOOL CDataExtractorDlg: :OnInitDialog()
{

InTELLIGENT OpPTiCAL SEnsor - 477

Arpenpix L — Sorrware Source Cope

CDialog: :OnlnitDialog();
// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu = NULL)

{

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (1strAboutMenu.ISEmpty())

{
pSysMenu->AppendMenu(MF_SEPARATORY);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

¥

}
// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

m_Objects = 0;

CSliderCtri* SliderOne = (CSliderCtri*)GetDlgItem(IDC_SET_SLIDER);
SliderOne->SetRange(0,15);

SliderOne->SetPos(7);

SliderOne->SetTicFreq(2);

char Temp[1024];
_getcwd(Temp, 1024);
m_ProgDir = Temp;

return TRUE; // return TRUE unless you set the focus to a control

}
void CDataExtractorDIg: :0nSysCommand(UINT nID, LPARAM IParam)

{
if ((nID & OxFFFO) == IDM_ABOUTBOX)

{
CAboutDlg digAbout;
digAbout.DoModal();

Y

else

{
CDialog: :0nSysCommand(nID, IParamy);

X
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.
void CDataExtractorDIg: :OnPaint()
{
if (IsIconic())
CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);
// Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);

int cylcon = GetSystemMetrics(SM_CYICON);
" CRect rect;

InTerLiGenT OpTicaL Sensor - 478

Arpenpix L — SorFrware Source Cope

GetClientRect(&rect);
int x = (rect.Width() - cxIcon + 1) / 2;
int y = (rect.Height() - cyIcon + 1) / 2;

// Draw the icon
dc.Drawlcon(x, y, m_hIcon);

3

else

{

CPaintDC dc(this);

CPen ShapePen;
ShapePen.CreatePen(PS_SOLID,1,RGB(255,0, 255));
CPen* pOriginalPen;

pOriginalPen = dc.SelectObject(&ShapePen);

for(int loop = 0; loop < 320; loop++)
{
for(int loop2 = 0; loop2<240; loop2++)
{
if(Stored[loop][loop2]) SetPixel(dc,loop+12,lo0p2+18,RGB(0,100,200));

for (loop = 0; loop<80; loop++)
{
for (int loop2 = 0; loop2<60; foop2++)

if (sharp[loop][loop2] == 1)
Rectangle(dc,(12+4*loop),(18+4*loop2),(16+4*Ioop),(22+4*l00p2));

for (loop = 1; loop<=counter; loop++)

CPen BoxPen;
BoxPen.CreatePen(PS_SOLID, 1,RGB(0,255,0));
CPen* pOriginalPen;
pOriginalPen = dc.SelectObject(&BoxPen);
MoveToEx(dc,4*Xmin[loop]+12, 4*Ymin[loop]+18,NULL);
LineTo(dc, 4*Xmax[loop]+16, 4*Ymin[loop]+18);
LineTo(dc, 4*Xmax[loop]+16, 4*Ymax[loop]+22);
LineTo(dc, 4*Xmin[loop]+12, 4*Ymax[loop]+22);
LineTo(dc, 4*Xmin[loop]+12, 4*Ymin[loop]+18);

}

CDialog: :OnPaint();
¥
}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CDataExtractorDlg: :OnQueryDraglcon()

{
return (HCURSOR) m_hIcon;
}

void CDataExtractorDig: :OnExitButton()

{
// TODO: Add your control notification handler code here
OnOK();

}

void CDataExtractorDlg: :OnOpenButton()

{
// TODO: Add your control notification handler code here
‘char FileName[500];

InTeLLIGENT OPTICAL SENSOR - 479

Arpenpix L — SoFtware Source Cobe

char FileTitle[100];

OnClearButton();

int loop, loop2;

for (loop=0; loop < 320; loop++)

for (loop2 = 0; loop2 < 240 ; loop2++)
iStored[loop][loop2]=0;

¥

UpdateData(FALSE);
InvalidateRect(CRect(12,18,332,258), FALSE);

OPENFILENAME ofn;
_fmemset(&ofn, 0, sizeof(ofn));
ofn.IStructSize = sizeof(OPENFILENAME);

ofn.hwndOwner = m_hwWnd;;
ofn.hInstance = NULL;

ofn.)pstrFilter = TEXT("VosDemo files *.vos\0*.vos\O\0");

ofn.IpstrCustomFilter = NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterIndex = 1;
ofn.|pstrFile = FileName;
ofn.nMaxFile = 500;
ofn.IpstrFileTitle = FileTitle;
ofn.nMaxFileTitle = 99;
ofn.IpstrinitialDir = NULL;
ofn.lpstrTitle = "Open VOS file";
ofn.Flags = OFN_FILEMUSTEXIST;
ofn.|pstrDefExt = "BMP";
ofn.ICustData = NULL;
ofn.IpfnHook = NULL;
ofn.lpTemplateName = NULL;

FileName[0] = "\0';

if (GetOpenFileName(&ofn))

{

int count;

Check2 = 1;

CString FullTitle = FileTitle;

count = FullTitle.Find(".vos");

Title = FullTitle.Left(count);

ifstream file_in(FileName);

m_FileName = FileName;

m_FullName = m_FileName;

int Pos = m_FullName.ReverseFind('\\');
m_FullName = m_FullName.Right(m_FullName.GetLength()-Pos-1);

int valuel;
int value2;

CPaintDC dc(this);
m_Percent = 0;
do

file_in >> valuel;

InTeLLiGent OpricaL Sensor - 480

Appenpix L — SorFrware Source Cooe

file_in >> value2;

Stored[valuel][value2] = 1;
// SetPixel(dc,valuel+12,value2+18,RGB(0,100,200));

b3
while (file_in.eof() == 0);
file_in.close();

for (loop = 0; loop <320; loop++)
for (loop2 = 0; loop2 <240; loop2++)
{if (Stored[loop]{loop2] {= 1)
{Stored[loop][loopZ] =0;

b

else m_Percent++;

}
b

m_Percent = (int)(((float)m_Percent*100)/(320*240));
UpdateData(FALSE);

int Correction = (int)(0.15*m_Percent + ((100-m_Percent)/15)*sin(0.01*3.141592654*m_Percent));
CSliderCtri* SliderOne = (CSliderCtri*)GetDIgltem(IDC_SET_SLIDER);

SliderOne->SetPos(Correction);

CString Texter;

Texter.Format("%d",Correction);

SetDIgitemText(IDC_SET_STATIC, Texter);

InvalidateRect(CRect(12,18,332,258), FALSE);
// InvalidateRect(CRect(12,18,332,258), FALSE);

X
3

void CDataExtractorDlg: :OnClacButton()
{
// TODO: Add your control notification handler code here
int loop, loop2,loop3,loop4;
int count = 0;
OnClearButton();
for (loop2=0; loop2<6E0; loop2++)
for (loop=0; loop<80; loop++)
{
sharp[loop]{ioop2] = O;
count = 0;
for (loop3=0; loop3<4; loop3++)
for (loop4 = 0; loop4<4; loopd++)
{
if (Stored[4*loop+loop3][4*loop2+loopd]==1)
count++;
¥
Y
if (count >Pos) //(Pos = Slider value)

{
sharp[loop][loop2] = 1;

InTeLuGent OpricaL Sensor - 481

ArpenpIX L — SoFtware Source Cope

}

InvalidateRect(CRect(12,18,332,258), FALSE);
¥
b
3

void CDataExtractorDIg: :OnTargetButton()

{
// TODO: Add your control notification handler code here
UpdateData(TRUE);
if (chdir(m_Target))
{

MessageBox("Couldn't change to drive");
Check1=0;

¥
else Checkl=1;
}

void CDataExtractorDIg: :OnValidCheck()

{
// TODO: Add your control notification handler code here
UpdateData(TRUE);

void CDataExtractorDig: :OnBoundButton()

{
// TODO: Add your control notification handler code here
int loop, loop2, foop3, Mem = 0;
int gap = 0, Set = 0;
counter = 0;

for (loop = 0; loop<100; loop++)

{

Xmin[loop] = 80;
Ymin[loop] = 60;
Xmax[loop] = 0;
Ymax[loop] = O;

//Check every second line in the image
loop=0;
for(loop2=0; loop2<60; loop2++)

{

Set = 0;

Mem = 0;

gap = 0;

//while(loop2<80)

for (loop=0; loop<80; loop++)

if (sharp[loop][loop2]==1)
{

counter++;

InTeLLigent OpticaL Sensor - 482

Arpenpix L — SorFtware Source Cobe

Xmin[counter] = loop;

Ymin[counter] = loop2;
Ymax{counter] = loop2;
Xmax[counter] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; loop3++)

{
if((loop>=Xmin[loop3]-2)&&(loop<=Xmax[loop3]+2)&&
(loop2-Ymax[loop3]<3)&&(loop3!=counter)&&
(loop2>0))

Set =1,
Mem = loop3;

}

T
//End of line check
while((gap<1)&&(loop<80))
{

loop++;
if(sharp[loop][loop2]==1)
{

gap = 0;
Xmax[counter] = loop;

//Previous line check for position matching
for(loop3 = 0; loop3<counter; ioop3++)

{
if((loop>=Xmin[loop3]-2)&&(loop<=Xmax[loop3]+2)
&&(loop2-Ymax{loop3]<3)&8&(loop3!=counter)&&(counter>0))

{
Set=1;
Mem = loop3;

}
b
//End of line check

}

else gap++;

b
gap = 0;

//Matching correction code, updates matched object
//and deleted new object created

if (Set==1)

{

if(Xmin[counter]<Xmin[Mem]) Xmin[Mem] = Xmin[counter};
if(Xmax[counter]>Xmax[Mem]) Xmax[Mem] = Xmax[counter];
Ymax[Mem] = loop2; v
Xmin[counter] = 80;

Xmax[counter] = 0;

Ymin[counter} = 60;

Ymax[counter] = 0;

counter--;

Set = 0;

Mem = 0;

}
}
3
loop=0;

¥
m_Objects = counter;
UpdateData(FALSE);

InTeLLIGENT OpTicaL Sensor - 483

Appenpix L — SoFtware Source Cope

InvalidateRect(CRect(12,18,333,259), FALSE);

}
void CDataExtractorDlg: :OnClearButton()

{
// TODO: Add your control notification handler code here
int loop,loop2;
for (loop = 0; loop<80; loop++)

{

for (loop2 = 0; loop2<60; loop2++)
sharp[loop]{loop2] = O;

}

>

counter = 0;
m_Objects = 0;

for (loop = 0; loop<11; loop++)

{

Xmin[loop] = 80;
Xmax[loop] = O;
Ymin[loop] = 60;
Ymax[loop] = 0;

UpdateData(FALSE);
Invalidate();

CPaintDC dc(this);
for (loop = 0; loop<320; loop++)

{
for (loop2 = 0;loop2<240; loop2++)

{
if(Stored[loop][loop2])
SetPixel(dc,loop+12,l00p2+18,RGB(0,100,200));
}

}
}
void CDataExtractorDlg: :OnHScroll(UINT nSBCode, UINT nPos, CScroliBar* pScrollBar)

// TODO: Add your message handler code here and/or call default
CSliderCtri* SliderOne = (CSliderCtri*)GetDigitem(IDC_SET_SLIDER);
Pos = SliderOne->GetPos();

CString Texter;

Texter.Format("%d",SliderOne->GetPos());
SetDIgltemText(IDC_SET_STATIC,Texter);

OnClacButton();
InvalidateRect(CRect(12,18,333,259), FALSE);

CDialog: :OnHScroll(nSBCode, nPos, pScroliBar);
}

void CDataExtractorDlg::OnSaveButton()

{
// TODO: Add your control notification handler code here
CSliderCtri* SliderOne = (CSliderCtri*)GetDIgltem(IDC_SET_SLIDER);
Pos = SliderOne->GetPos();

char Temp[1024];
_getcwd(Temp,1024);

_chdir(m_ProgDir);
ofstream OutFile("Results.log", ios::app);

InTeLLGenT OpTicaL Sensor - 484

Arpenpix L — SorFrware Source Cope

OutFile << m_FullName << "\t" << m_Percent << "\t" << Pos << endl;
OutFile.close();

_chdir(Temp);
}

// Data ExtractorDlg.h : header file
/I

#if |defined(AFX_DATAEXTRACTORDLG_H_ 0690B747_B844_11D2_9F64_9FF1E7497238__ INCLUDED_)
#define AFX_DATAEXTRACTORDLG_H__0690B747_B844_11D2_9F64_9FF1E749723B__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

Yo
// CDataExtractorDIg dialog

class CDataExtractorDlg : public CDialog

{
// Construction
public:
CString m_FileName;
CString m_ProgDir;
CDataExtractorDIg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//1{{AFX_DATA(CDataExtractorDIg)
enum { IDD = IDD_DATAEXTRACTOR_DIALOG };
CSliderCtdl m_SetSlider;
int m_Xcoord;
int m_Xmax;
int m_Xmin;
int m_Ymax;
int m_Ymin;

CString m_Target;

int m_X;

int m_Y;

int m_Area;

int m_SegArea;

int m_SegHeight;
int m_SegWidth;
BOOL m_ValidCheck;
int m_Objects;

int m_Percent;
CString m_FullName;
//}}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CDataExtractorDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
/13 YAFX_VIRTUAL

// Implementation
protected:
HICON m_hIcon;

// Generated message map functions
//{{AFX_MSG(CDataExtractorDlg)

virtual BOOL OnlnitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon(); .

InTewiGent Opricat Sensor - 485

Arpenpix L ~ SorFrware Source Cope

afx_msg void OnExitButton();

afx_msg void OnOpenButton();

afx_msg void OnClacButton();

afx_msg void OnTargetButton();

afx_msg void OnValidCheck();

afx_msg void OnBoundButton();

afx_msg void OnClearButton();

afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);
afx_msg void OnSaveButton();

//}YAFX_MSG

DECLARE_MESSAGE_MAP()

%

J/{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // 'defined
(AFX_DATAEXTRACTORDLG_H__0690B747_B844_11D2_9F64_9FF1E749723B__INCLUDED_)

InTeLLGenT OpricaL Sensor - 486

	423331_001
	423331_002
	423331_003
	423331_004
	423331_005
	423331_006
	423331_007
	423331_008
	423331_009
	423331_010
	423331_011
	423331_012
	423331_013
	423331_014
	423331_015
	423331_016
	423331_017
	423331_018
	423331_019
	423331_020
	423331_021
	423331_022
	423331_023
	423331_024
	423331_025
	423331_026
	423331_027
	423331_028
	423331_029
	423331_030
	423331_031
	423331_032
	423331_033
	423331_034
	423331_035
	423331_036
	423331_037
	423331_038
	423331_039
	423331_040
	423331_041
	423331_042
	423331_043
	423331_044
	423331_045
	423331_046
	423331_047
	423331_048
	423331_049
	423331_050
	423331_051
	423331_052
	423331_053
	423331_054
	423331_055
	423331_056
	423331_057
	423331_058
	423331_059
	423331_060
	423331_061
	423331_062
	423331_063
	423331_064
	423331_065
	423331_066
	423331_067
	423331_068
	423331_069
	423331_070
	423331_071
	423331_072
	423331_073
	423331_074
	423331_075
	423331_076
	423331_077
	423331_078
	423331_079
	423331_080
	423331_081
	423331_082
	423331_083
	423331_084
	423331_085
	423331_086
	423331_087
	423331_088
	423331_089
	423331_090
	423331_091
	423331_092
	423331_093
	423331_094
	423331_095
	423331_096
	423331_097
	423331_098
	423331_099
	423331_100
	423331_101
	423331_102
	423331_103
	423331_104
	423331_105
	423331_106
	423331_107
	423331_108
	423331_109
	423331_110
	423331_111
	423331_112
	423331_113
	423331_114
	423331_115
	423331_116
	423331_117
	423331_118
	423331_119
	423331_120
	423331_121
	423331_122
	423331_123
	423331_124
	423331_125
	423331_126
	423331_127
	423331_128
	423331_129
	423331_130
	423331_131
	423331_132
	423331_133
	423331_134
	423331_135
	423331_136
	423331_137
	423331_138
	423331_139
	423331_140
	423331_141
	423331_142
	423331_143
	423331_144
	423331_145
	423331_146
	423331_147
	423331_148
	423331_149
	423331_150
	423331_151
	423331_152
	423331_153
	423331_154
	423331_155
	423331_156
	423331_157
	423331_158
	423331_159
	423331_160
	423331_161
	423331_162
	423331_163
	423331_164
	423331_165
	423331_166
	423331_167
	423331_168
	423331_169
	423331_170
	423331_171
	423331_172
	423331_173
	423331_174
	423331_175
	423331_176
	423331_177
	423331_178
	423331_179
	423331_180
	423331_181
	423331_182
	423331_183
	423331_184
	423331_185
	423331_186
	423331_187
	423331_188
	423331_189
	423331_190
	423331_191
	423331_192
	423331_193
	423331_194
	423331_195
	423331_196
	423331_197
	423331_198
	423331_199
	423331_200
	423331_201
	423331_202
	423331_203
	423331_204
	423331_205
	423331_206
	423331_207
	423331_208
	423331_209
	423331_210
	423331_211
	423331_212
	423331_213
	423331_214
	423331_215
	423331_216
	423331_217
	423331_218
	423331_219
	423331_220
	423331_221
	423331_222
	423331_223
	423331_224
	423331_225
	423331_226
	423331_227
	423331_228
	423331_229
	423331_230
	423331_231
	423331_232
	423331_233
	423331_234
	423331_235
	423331_236
	423331_237
	423331_238
	423331_239
	423331_240
	423331_241
	423331_242
	423331_243
	423331_244
	423331_245
	423331_246
	423331_247
	423331_248
	423331_249
	423331_250
	423331_251
	423331_252
	423331_253
	423331_254
	423331_255
	423331_256
	423331_257
	423331_258
	423331_259
	423331_260
	423331_261
	423331_262
	423331_263
	423331_264
	423331_265
	423331_266
	423331_267
	423331_268
	423331_269
	423331_270
	423331_271
	423331_272
	423331_273
	423331_274
	423331_275
	423331_276
	423331_277
	423331_278
	423331_279
	423331_280
	423331_281
	423331_282
	423331_283
	423331_284
	423331_285
	423331_286
	423331_287
	423331_288
	423331_289
	423331_290
	423331_291
	423331_292
	423331_293
	423331_294
	423331_295
	423331_296
	423331_297
	423331_298
	423331_299
	423331_300
	423331_301
	423331_302
	423331_303
	423331_304
	423331_305
	423331_306
	423331_307
	423331_308
	423331_309
	423331_310
	423331_311
	423331_312
	423331_313
	423331_314
	423331_315
	423331_316
	423331_317
	423331_318
	423331_319
	423331_320
	423331_321
	423331_322
	423331_323
	423331_324
	423331_325
	423331_326
	423331_327
	423331_328
	423331_329
	423331_330
	423331_331
	423331_332
	423331_333
	423331_334
	423331_335
	423331_336
	423331_337
	423331_338
	423331_339
	423331_340
	423331_341
	423331_342
	423331_343
	423331_344
	423331_345
	423331_346
	423331_347
	423331_348
	423331_349
	423331_350
	423331_351
	423331_352
	423331_353
	423331_354
	423331_355
	423331_356
	423331_357
	423331_358
	423331_359
	423331_360
	423331_361
	423331_362
	423331_363
	423331_364
	423331_365
	423331_366
	423331_367
	423331_368
	423331_369
	423331_370
	423331_371
	423331_372
	423331_373
	423331_374
	423331_375
	423331_376
	423331_377
	423331_378
	423331_379
	423331_380
	423331_381
	423331_382
	423331_383
	423331_384
	423331_385
	423331_386
	423331_387
	423331_388
	423331_389
	423331_390
	423331_391
	423331_392
	423331_393
	423331_394
	423331_395
	423331_396
	423331_397
	423331_398
	423331_399
	423331_400
	423331_401
	423331_402
	423331_403
	423331_404
	423331_405
	423331_406
	423331_407
	423331_408
	423331_409
	423331_410
	423331_411
	423331_412
	423331_413
	423331_414
	423331_415
	423331_416
	423331_417
	423331_418
	423331_419
	423331_420
	423331_421
	423331_422
	423331_423
	423331_424
	423331_425
	423331_426
	423331_427
	423331_428
	423331_429
	423331_430
	423331_431
	423331_432
	423331_433
	423331_434
	423331_435
	423331_436
	423331_437
	423331_438
	423331_439
	423331_440
	423331_441
	423331_442
	423331_443
	423331_444
	423331_445
	423331_446
	423331_447
	423331_448
	423331_449
	423331_450
	423331_451
	423331_452
	423331_453
	423331_454
	423331_455
	423331_456
	423331_457
	423331_458
	423331_459
	423331_460
	423331_461
	423331_462
	423331_463
	423331_464
	423331_465
	423331_466
	423331_467
	423331_468
	423331_469
	423331_470
	423331_471
	423331_472
	423331_473
	423331_474
	423331_475
	423331_476
	423331_477
	423331_478
	423331_479
	423331_480
	423331_481
	423331_482
	423331_483
	423331_484
	423331_485
	423331_486
	423331_487
	423331_488
	423331_489
	423331_490

