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Abstract—This paper concerns state-based systems that
interact with their environment at physically distributed
interfaces, called ports. When such a system is used a
projection of the global trace, a local trace, is observed
at each port. As a result the environment has reduced
observational power: the set of local traces observed need
not define the global trace that occurred. We consider the
previously defined implementation relation⊑s and prove
that it is undecidable whether N ⊑s M and so it is also
undecidable whether testing can distinguishing two states
or FSMs. We also prove that a form of model-checking
is undecidable when we have distributed observations and
give conditions under which N ⊑s M is decidable. We
then consider implementation relation ⊑k

s that concerns
input sequences of lengthk or less. If we place bounds on
k and the number of ports then we can decideN ⊑k

s M in
polynomial time but otherwise this problem is NP-hard.

Keywords-D2.4: Software Engineer-
ing/Software/Program Verification, D2.5: Software
Engineering/Testing and Debugging, distributed systems,
finite state machine, distributed test architecture.

I. INTRODUCTION

Many systems interact with their environment
at multiple physically distributed interfaces, called
ports, with web-services, communications proto-
cols, cloud systems and wireless sensor networks
being important classes of such systems. When we
test such a system we place a local tester at each
port and the local tester at portp only observes
the events atp. This has led to the (ISO standard-
ised) definition of the distributed test architecture
in which we have a set of distributed testers, the
testers do not communicate with one another during
testing, and there is no global clock [1]. While it has
been shown that it is sometimes possible to make
testing more effective by allowing the testers to
exchange coordination messages during testing (see,
for example, [2]), this is not always feasible and
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the distributed test architecture is typically simpler
and cheaper to implement. Importantly, the situation
in which separate agents (users or testers) interact
with the system at its ports can correspond to the
expected use of the system.

Distributed systems often have a persistent in-
ternal state and such systems are thus represented
using state-based languages. In the context of testing
the focus has largely been on finite state machines
(FSMs) and input output transition systems (IOTSs),
with IOTSs being labelled transition systems (LTSs)
where we distinguish between input and output. The
interest in FSMs and IOTSs is partly due to them
being suitable for representing state-based systems.
In addition, many tools and techniques for model-
based testing1 transform a model, written in a high-
level notation, to an FSM or IOTS and test from
this (see, for example, [3], [4], [5], [6]). Model-
based testing has received much attention since it
facilitates test automation, the results of a recent
major industrial project showing the potential for
significant cost reductions [7].

The approach of testing from a formal model,
such as an FSM or IOTS, is often described as
formal testing. Given a formal modelM , ideally
we wish to produce a test suite that has some
desirable properties such as being guaranteed to find
certain types of faults. In order to reason about
testing it is normal to assume that the system under
test (SUT) behaves like an unknown modelN ,
typically described using the same formalism as
the specificationM : an approach used originally
by Moore [8] that has been formalised and gen-
eralised by Gaudel2 [9]. Once we have made this
assumption, that the SUT behaves like an unknown
model N written in a given formalism, we can
say what it means for the SUT to be correct by

1In model-based testing, test automation is based on a model of
the expected behaviour of the system or some aspect of this expected
behaviour.

2Gaudel calls this the minimal hypothesis.
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defining the required relationship betweenM and
N ; this relationship is usually called either an
implementation relationor a conformance relation.
If N andM are related under the implementation
relation used thenN is said toconformto M . Natu-
rally, the implementation relation used should reflect
the observational power of the environment: given
specificationM , if it is not possible to distinguish
between two modelsN1 andN2 through interacting
with them then either both should conform toM or
neither should conform toM . Good description of
formal testing have been produced by a number of
authors including Gaudel [9] and Tretmans [6].

This paper concerns verification and testing of
multi-port systems. Much of the work in the area
of distributed testing has focussed on FSM models
(see, for example, [10], [11], [12], [13]), although
there has also been work that considers more general
models such as IOTSs and variants of IOTSs (see,
for example, [14], [15]). While IOTSs are more
expressive, this paper explores decidability and
complexity issues in distributed testing and so we
restrict attention to multi-port FSMs. Naturally, the
negative decidability and complexity results proved
in this paper extend immediately to IOTSs.

When a state-based system interacts with its en-
vironment there is a sequence of inputs and outputs
called aglobal trace, with the user or tester at a
port p only observing the sequence of events at
p (a local trace). It is known that this introduces
additional controllability and observability problems
in testing (see, for example, [10], [11], [14], [12],
[13]). A controllability problem occurs when a tester
does not know when to supply an input due to it
not observing the events at the other ports [12],
[10]. Consider, for example, the global trace shown
in Figure 1. We use diagrams (Message Sequence
Charts) such as this to represent scenarios. In such
diagrams vertical lines represent processes and time
progresses as we go down a line. In this case the
system under test (SUT) has two ports,1 and 2,
we have one vertical line representing the SUT,
one representing the local tester at port1, and one
representing the local tester at port2. There is a
controllability problem because the tester at port2
should send inputx′ after y has been sent by the
SUT but cannot know when this has happened since
it does not observe the events at port1 and there
are no communications between the testers.

Observability problems refer to the fact that the
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Fig. 1. A controllability problem caused by inputx′

observational ability of a set of distributed testers
is less than that of a global tester since the local
traces observed need not uniquely define the global
trace that occurred [11]. Consider, for example,
global tracesσ and σ′ shown in Figures 2 and 3
respectively. The global traces are different but the
local testers observe the same local traces: in each
case the tester at port1 observesxyxy and the tester
at port2 observesy′.

Controllability problems lead to situations in
which the testers cannot know whether a particular
input sequence has been received by the SUT and
observability problems lead to the testers not being
able to determine the output sequence produced.
Thus, both affect the notion of conformance used.
Recent work has defined new notions of confor-
mance (implementation relations) that recognise this
reduced observational power and these have been
defined for FSMs [16] and IOTSs [15]. These im-
plementation relations essentially say that the SUT
conforms to the specification if the environment
(or set of testers) cannot distinguish observations
made from behaviours allowed by the specification.
If global trace σ of the SUT is observationally
equivalent to one in the specification thenσ is
considered to be an allowed behaviour since a set of
distributed testers/users would not observe a failure.

Given multi-port FSMsN andM , there are two
notions of conformance for situations in which dis-
tributed observations are made: weak conformance
(⊑w) and strong conformance (⊑s). Under⊑w, it is
sufficient that for every global traceσ of N and port
p there is a global traceσp of M such thatσ andσp
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Fig. 2. Global traceσ.
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Fig. 3. Global traceσ′.

are indistinguishable at portp; they have the same
local traces atp. A similar notion has been discussed
for Message Sequence Charts (MSCs), where the
weak closure of a language has been defined [17]. In
contrast, under⊑s we require that for every global
traceσ of N there is some global traceσ′ of M
such thatσ and σ′ are indistinguishable at all of
the ports. To see the difference, let us suppose that
there are two allowed responses to inputx1 at port
1: eithery1 at port1 andy2 at port2 (global trace
σ) or y′1 at port1 andy′2 at port2 (global traceσ′).
Under⊑w it is acceptable for the SUT to respond
to x1 with y1 at port 1 and y′2 at port 2 since the

local trace at port1 is x1y1, which is a projection
of σ, and the local trace at port2 is y′2, which is
a projection ofσ′. However, this is not acceptable
under⊑s since no global trace of the specification
has projectionx1y1 andy′2.

One of the benefits of using an FSM when there
is only one port is that there are standard algorithms
for many problems that are relevant to test gener-
ation. For example, we can decide whether there
are strategies (test cases) that reach or distinguish
states [18] and such strategies are used by many
test generation algorithms (see, for example, [19],
[20], [21], [22]). In addition, if we have an FSM
specificationM and an FSM designN then we
can decide whetherN conforms toM . Thus, if
we wish to adapt standard FSM test techniques to
the situation where we have distributed testers then
we need to investigate corresponding problems for
multi-port FSMs. Recent work has shown that it
is undecidable whether there is a strategy that is
guaranteed to reach a state or that distinguishes
two states of an FSM in distributed testing [23].
However, this left open the question of whether one
can decide whether one FSM conforms to another.
It also left open the related question of whether
it is decidable whether there is a strategy that is
capable of distinguishing two FSMs of two states
of an FSM3. There also appears to have been no
work on model checking for such models.

This paper concerns two main problems. The first
is that of deciding, for multi-port FSMsM andN ,
whetherN conforms toM . This can be decided in
low order polynomial time for⊑w: for each portp
we simply compare the projections ofN andM at
p. However,⊑w is often too weak since it assumes
that the agents at the separate ports cannot log their
observations and communicate these to a common
agent. We therefore focus on the implementation
relation⊑s. The second problem relates to a type
of model checking where we have a modelM and
a finite automatonP defining a property and we
want to know whether any observation that might
be made ofM is in the language defined byP .

We prove that it is generally undecidable whether
N ⊑s M for multi-port FSMsN and M but we
also give some conditions under whichN ⊑s M is
decidable. This problem is important when we are

3It is decidable whether there is a strategy that is capable of
reaching a given state of an FSM.
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checking an FSM design against an FSM specifica-
tion. In addition,N ⊑s M if no possiblebehaviour
of N can be distinguished from the behaviours of
M . Thus, it is also undecidable whether there is
a test case that iscapable of distinguishing two
states or FSMs. This complements the result that
it is undecidable whether there is a test case that is
guaranteed to distinguish two states or FSMs [23].
However, the proofs use very different approaches:
the proof of the previous result [23] used results
from multi-player games while in this paper we
use results regarding multi-tape automata. Note that
many traditional methods for testing from an FSM
use sequences that distinguish between states, in
order to check that a (prefix of a) test case takes
the SUT to a correct state (see, for example, [19],
[20], [24], [21], [22]). The results in this paper and
in [23] suggest that it will be difficult to adapt such
techniques for distributed testing.

In addition to considering conformance, we also
investigate two forms of model checking given
model M and propertyP . One problem involves
asking whether any of the observations that might
be made ofM (sets of local traces) are consistent
with sequences in the regular language defined by
P . The second problem asks whether any of the
observations that might be made ofM could also be
made when interacting withP through distributed
interfaces. It transpires that both types of model
checking are undecidable.

Since it is undecidable whetherN ⊑s M , we
define a weaker implementation relation⊑k

s that
considers sequences of lengthk or less. This is
relevant when we know a bound on the length of
sequences in use or we know that the system will
be reset after at mostk inputs have been received.
For example, a protocol might have a bound on the
number of steps that can occur before a ‘disconnect’
happens. In addition, embedded systems are often
designed to repeat a sequence of activities in a
schedule, returning to the initial state at the end of
such a sequence: we might use the bound defined
by this (see, for example, [25]). It is also relevant
if we want a test case of length at mostk that
is capable of distinguishing two FSMs or states.
Naturally, it is decidable whetherN ⊑k

s M since
it is sufficient to reason about finite sets of global
traces. We prove that if we place a bound onk and
the number of ports then we can decide whether
N ⊑k

s M in polynomial time but the problem is

NP-hard without such bounds.
There are several factors that make results, re-

garding strong conformance, highly relevant to dis-
tributed testing. First, they provide information re-
garding implementation relations for testing dis-
tributed systems. Given a modelN ′ that represents
a possible SUT and specificationM we might want
to know whether there is a test that is capable of
distinguishingN ′ from M in testing and this is the
case if and only if we do not have thatN ′ ⊑s M .
This is important if we produce a set of models
that represent possible behaviours of the SUT, such
a set often being called afault domain. A fault
domain might be explicitly generated, as is done
in approaches to mutation testing (see, for example,
[26]), or it may be implicit. For example, there are
test generation algorithms that take an FSMM and
return a test (called a checking experiment) that is
guaranteed to determine whether the unknown FSM
N that models the SUT conforms toM as long as
N has no more thanm states for some givenm (see,
for example, [8], [20], [21]). As noted above, many
FSM based test techniques use tests that distinguish
states of the specification FSMM in order to check
that a transition takes the SUT to the correct state;
two statess1 and s2 can only be distinguished in
distributed testing if we do not have that the FSMs
formed by startingM in statess1 and s2 conform
to one another under⊑s.

This paper is structured as follows. Section II
provides preliminary definitions. In Section III we
discuss results regarding multi-tape automata that
we use in Section IV to prove the decidability re-
sults. Section IV also gives conditions under which
N ⊑s M is decidable. In Section V we explore
⊑k

s . Finally, in Section VI we draw conclusions and
discuss possible lines of future work.

II. PRELIMINARIES

This paper concerns the testing of state-based
systems whose behaviour is characterised by the
input/output sequences (global traces) that they can
produce. Given a setA we let A∗ denote the set
of sequences formed from elements ofA and we
let ǫ denote the empty sequence. In addition,A+

denotes the set of non-empty sequences inA∗.
Given sequenceσ ∈ A∗ we let pref(σ) denote the
set of prefixes ofσ. We are interested in finite state
machines, which define global traces (input/output
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sequences). Given a global traceσ = x1y1 . . . xkyk,
in which x1, . . . , xk are inputs andy1, . . . , yk are
outputs, the prefixes ofσ are the global traces of
the formx1y1 . . . xjyj with 0 ≤ j ≤ k.

In this paper we investigate the situation in
which a system interacts with its environment at
n physically distributed interfaces, called ports. We
let P = {1, . . . , n} denote the names of these
ports. A multi-port FSMM is defined by a tuple
(S, s0, I, O, h) in which S is the finite set of states,
s0 ∈ S is the initial state,I is the finite input
alphabet,O is the finite output alphabet, andh is the
transition relation. The set of inputs is partitioned
into subsetsI1, . . . , In such that forp ∈ P we have
that Ip is the set of inputs that can be received at
port p. Similarly, for port p we let Op denote the
set of outputs that can be observed atp. As is usual
we allow an input to lead to outputs at several ports
and so we letO = ((O1∪{−})× . . .× (On∪{−}))
in which − denotes null output. We ensure that
the Op are pairwise disjoint by labelling with port
names, where necessary. We letAct = I∪O denote
the set of possible observations and forp ∈ P
we let Actp = Ip ∪ Op denote the set of possible
observations at portp.

The transition relationh is of typeS×I → 2S×O

and should be interpreted as follows: if(s′, y) ∈
h(s, x), y = (z1, . . . , zn), andM receives inputx
when in states then it can move to states′ and
send outputzp to portp (all p ∈ P). This defines the
transition(s, s′, x/y), which is aself-loop transition
if s = s′. Since we only consider multi-port FSMs
in this paper we simply call them FSMs. The FSM
M is said to be adeterministic FSM (DFSM)if
|h(s, x)| ≤ 1 for all s ∈ S andx ∈ I.

FSM M is completely-specified if for every state
s and inputx, we have thath(s, x) 6= ∅. A sequence
(s1, s2, x1/y1)(s2, s3, x2/y2) . . . (sk, sk+1, xk/yk) of
consecutive transitions is said to be apath, which
hasstarting states1 andending statesk+1. This path
has label x1y1 . . . xkyk, which is called a (global)
trace. Further, x1 . . . xk and y1 . . . yk are the in-
put portion and theoutput portionrespectively of
x1y1 . . . xkyk. A path is acycle if its starting and
ending states are the same. The FSMM defines the
regular languageL(M) of the labels of paths ofM
that have starting states0. Given states ∈ S of
M we let LM(s) denote the set of global traces
that are labels of paths ofM with starting state
s, and soL(M) = LM(s0). We say thatM is

initially connectedif for every states of M there is
a path that has starting states0 and ending states.
We assume that any FSM considered is completely-
specified and initially connected since this simplifies
the analysis. Where this condition does not hold
we can remove the states that cannot be reached
and we can complete the FSM by, for example,
either adding self-loop transitions with null output
or transitions to an error state.

At times we will use results regarding finite
automata (FA) and so we briefly define FA here.
A FA M is defined by a tuple(S, s0, X, h, F )
in which S is the finite set of states,s0 ∈ S
is the initial state,X is the finite alphabet,h
is the transition relation, andF ⊆ S is the set
of final states. The transition relation has type
S × (X ∪ {τ}) → 2S where τ represents a silent
transition that is not observed. Similar to IOTSs,
a sequence(s1, s2, a1)(s2, s3, a2) . . . (sk, sk+1, ak) of
consecutive transitions is apath that hasstarting
states1 andending statesk+1. The label of this path
is the sequence formed by removing all instances
of τ from a1 . . . ak. The FAM defines the language
L(M) of labels of paths that have starting states0
and an ending state inF .

For a global traceσ and port p ∈ P we let
πp(σ) denote thelocal trace formed by removing
all elements that do not occur atp. This is defined
by the following rules in whichσ is a global trace
andy = (z1, . . . , zn) is an output (see, for example,
[15]).

πp(ǫ) = ǫ

πp(xσ) = πp(σ) if x ∈ Iq for someq 6= p

πp(xσ) = xπp(σ) if x ∈ Ip

πp(yσ) = πp(σ) if zp = −

πp(yσ) = zpπp(σ) if zp 6= −

Given a setA of global traces and portp we
let πp(A) = {πp(σ)|σ ∈ A} denote the set of
projections of sequences inA.

In the distributed test architecture, a local tester at
port p ∈ P only observes events fromActp. Thus,
two global tracesσ and σ′ are indistinguishable if
they have the same projections at every port and
we denote thisσ ∼ σ′. More formally, we say that
σ ∼ σ′ if for all p ∈ P we have thatπp(σ) = πp(σ

′).
Given an FSMM , we let L(M) = {σ′|∃σ ∈

L(M).σ ∼ σ′} denote the set of global sequences
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Fig. 4. Finite State MachinesM1 andN1

that are equivalent to elements ofL(M) under∼.
These are the sequences that are indistinguishable
from sequences inL(M) when distributed obser-
vations are made. Previous work has defined two
conformance relations for testing from an FSM that
reflect the observational power of distributed testing
[16]. Sometimes the agents at the separate ports of
the SUT will never interact with one another or
share information with other agents that can interact.
In such cases a global trace is acceptable if the local
trace observed at a portp is a local trace ofM (all
p ∈ P). This situation is captured by the following.

Definition 1: Given FSMsN and M with the
same input and output alphabets and the same set of
ports,N ⊑w M if for every σ ∈ L(N) and p ∈ P
there existsσp ∈ L(M) with πp(σp) = πp(σ). N is
said toweakly conformto M .

However, sometimes there is the potential for
information from separate testers to be logged and
later received by an external agent. For example,
there may be a central controller that receives the
observations made by each tester once testing is
complete. This leads to the following stronger con-
formance relation.

Definition 2: Given FSMsN and M with the
same input and output alphabets and the same set of
ports,N ⊑s M if for every σ ∈ L(N) there exists
σ′ ∈ L(M) such thatσ′ ∼ σ. N is said tostrongly
conformto M .

Given FSMsN and M we have thatN ⊑s M
if and only if L(N) ⊆ L(M) and this is the case
if and only if L(N) ⊆ L(M). It is also clear that
N ⊑s M implies thatN ⊑w M . In order to see that
⊑s is stronger than⊑w it is sufficient to consider
M1 andN1 shown in Figure 4. We do not have that
N1 ⊑s M1 sinceM1 has no global trace equivalent
to x1(y1, y

′

2) under∼. However, for every global
traceσ of N1 and portp there is a global traceσ′

of M1 such thatπp(σ) = πp(σ
′). Thus,N1 ⊑w M1.

III. CONFORMANCE AND MULTI-TAPE

AUTOMATA

While we can decide (in polynomial time)
whetherN ⊑w M , by comparing projections of
N and M on different ports, this is quite a weak
conformance relation since it does not allow us to
bring together local traces observed at the separate
ports. It seems likely that normally⊑s will be more
suitable and so we consider the problem of deciding
whetherN ⊑s M . In this section we study language
inclusion for multi-tape automata; in Section IV we
use the results described here to show that it is
generally undecidable whetherN ⊑s M for FSMs
M andN and also that a type of model checking
is undecidable. We first define multi-tape FA [27].

Definition 3: An r-tape FA with disjoint alpha-
bets Σi, 1 ≤ i ≤ r, Σ =

⋃r
i=1Σi, is a tuple

(S, s0,Σ, h, F ) in which S is a finite set of states,
s0 ∈ S is the initial stateF ⊆ S is the set of final
states andh : S×Σ → 2S is the transition relation.

An r-tape FAN is thus a FA with alphabetΣ that
is partitioned intoΣ1, . . . ,Σr. As a result, it defines
a regular languageL(N): the set of labels of paths
from the initial state ofN that end in a final state.
However, it also defines a language ofr-tuples:N
accepts tuple(w1, . . . , wr) ∈ Σ∗

1 × . . . × Σ∗

r if and
only if there is some sequenceσ ∈ L(N) such that
πi(σ) = wi for all 1 ≤ i ≤ r. We let T (N) denote
the set of tuples accepted byN .

Deciding whetherN ⊑s M is similar to deciding
whether, for multi-tape FAN ′ and M ′, T (N ′) is
a subset ofT (M ′). This problem, regarding multi-
tape FA, is known to be undecidable [27]. However,
the proof of this result uses FA in which not all
states are final and in FSMs there is no concept of
a state not being a final state.

We now prove that language inclusion is undecid-
able even if we require all states to be final states.

Theorem 1:Let us suppose thatN and M are
multi-tape FA in which all states are final states.
The following problem is undecidable, even when
there are only two tapes: do we have thatT (N) ⊆
T (M)?

Proof: We will show that if we can decide this
problem for arbitrary multi-tape FA in which all
states are final states then we can prove this problem
for arbitrary multi-tape FA that may have states that
are not final states. Let us suppose thatN1 andM1

are multi-tape FA in which there may be states that
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are not final states. We will assume that for every
state ofN1 andM1 there is a path to a final state; any
state not satisfying this property can be removed.
We introduce a new elements to the alphabet of the
first tape and call thisx. FormN ′

1 andM ′

1 from N1

andM1 in the following way: from each final state
add a transition with labelx to a new sink state (with
no transitions leaving it) and make all of the states
final states. Thus,L(N ′

1) = pref(L(N1){x}) and
L(M ′

1) = pref(L(M1){x}). As a result,T (N1) ⊆
T (M1) if and only if T (N ′

1) ⊆ T (M ′

1). Thus, if
T (N ′

1) ⊆ T (M ′

1) is decidable for multi-tape FA in
which all states are final thenT (N1) ⊆ T (M1) is
decidable for multi-tape FA. The result thus follows
from this latter problem being undecidable [27].

Observe that this makes it straightforward to show
that it is undecidable whetherL(N) ⊆ L(M) for
LTSs (or IOTSs)N andM . In the next section we
show how this can be extended to FSMs. We now
prove some additional decidability results; these will
be used to prove that a type of model checking is
undecidable.

Theorem 2:Let us suppose thatN and M are
multi-tape FA in which all states are final states.
Then it is undecidable whetherT (N) ∩ T (M)
contain a tuple in which one or more components
are non-empty.

Proof: It is known that given multi-tape FAM1

andN1, it is undecidable whetherT (M1)∩T (N1) =
∅ [27]. We defineM ′

1 andN ′

1 in which we add new
tapesr + 1 andr + 2 with alphabets{x} and{x′}
respectively for symbolsx andx′ not used inN1 and
M1. We defineM ′

1 andN ′

1 in the following way.
• FormM ′

1 from M1 by adding a new start state
with a single transition, with labelx′, from
this to the start state ofM1 and by adding a
transition with labelx from each final state to
a new sink state (with no transitions leaving it)
and make all of the states final states.

• FormN ′

1 from N1 by adding a new start state
with a single transition, with labelx, from
this to the start state ofN1 and by adding a
transition with labelx′ from each final state to
a new sink state (with no transitions leaving it)
and make all of the states final states.

Thus,L(N ′

1) = pref({x}L(N1){x
′}) andL(M ′

1) =
pref({x′}L(M1){x}). It is clear thatT (M ′

1)∩T (N ′

1)
contain a tuple in which one or more components
are non-empty if and only ifT (M1) ∩ T (N1) 6= ∅.
The result thus follows from it being undecidable

for multi-tape FA M1 and N1 whetherT (M1) ∩
T (N1) = ∅.

This result shows that a type of model checking is
undecidable for LTSs and IOTSs. Specifically, given
a modelM and a property defined by FAP we can
define the following type of model checking: de-
ciding whetherL(M)∩L(P ) contains a non-empty
sequence. HereM is a model andP a property
and we wish to know whether any observations that
might be made ofM might also be made ofP . We
have seen that this is undecidable4.

Model checking has been considered for high
level message sequence charts (HMSCs), where we
ask whether thesets of linearisationsof HMSCs
M andP intersect [17], [28]. This is conceptually
similar to the problem above. There has also been
work in the context of trace theory [29] but this
previous work does not require that all of the states
of M are final states.

Finally, we prove that equivalence is undecidable
for multi-tape FA in which all states are final states.

Theorem 3:Let us suppose thatN and M are
multi-tape FA in which all states are final states.
The following problem is undecidable, even when
there are only two tapes: do we have thatT (N) =
T (M)?

Proof: First observe that given setsA and B
we have thatA ⊆ B if and only if A ∪ B = B.
Let us suppose that we have multi-tape automata
N1 andN2 with the same numbers of tapes and the
same alphabets and assume that all states ofN1 and
N2 are final states.

We will first show that we can construct a multi-
tape automatonN3 such thatT (N3) = T (N1) ∪
T (N2) and all states ofN3 are final states. As-
sume that N1 = (S, s0,Σ, h1, S) and N2 =
(Q, q0,Σ, h2, Q) We will useA⊎B, for setsA and
B, to denote the disjoint union ofA andB. Then
we letN3 be (S ⊎Q⊎{r0}, r0, h

′, S⊎Q⊎{r0}) for
r0 6∈ S⊎Q, in whichh is the union ofh1 andh2 plus
the following transitions: for every(s0, a, s) ∈ h1

we include inh′ the tuple(r0, a, s); and for every
(q0, a, q) ∈ h2 we include inh′ the tuple(r0, a, q).

Thus, if we can decide whetherT (N) = T (M)
for two multi-tape FA that have only final states
then we can also decide whetherT (N1)∪T (N2) =
T (N2) for two multi-tape FA that only have final

4While these results are based on Theorem 2, in which all states of
the multi-tape FA are final states, this result immediately generalises
to the case where we allow some states not to be final states.

7



states. However, this holds if and only ifT (N1) ⊆
T (N2). The result thus follows from Theorem 1.

IV. RESULTS FORFINITE STATE MACHINES

In this section we consider FSMs. In contrast
to finite automata and IOTSs, a transition has an
input/output pair as a label and there is an associ-
ated atomicity assumption (input cannot be received
before output has been produced by the previous
transition). We now show how a multi-tape FA can
be represented using an FSM before using this to
prove results regarding FSMs.

In order to extend Theorem 1 to FSMs we define
a function that takes a multi-tape FA and returns an
FSM. This construction is similar to one previously
produced for single-port models [30].

Definition 4: Let us suppose that
N = (S, s0,Σ, h, S) is a FA with r tapes
with alphabetsΣ1, . . . ,Σr. We define the FSM
F(N) with r + 1 ports as defined below in which
for all 1 ≤ p ≤ r we have that the input alphabet
of N at p is Σp and the output alphabet is empty
and further we have that the input alphabet at port
r + 1 is empty and the output alphabet atr + 1 is
{0, 1}. In the following fora ∈ {0, 1} we useak to
denote thek-tuple whose firstk − 1 elements are
empty and whosekth element isa.

F(N) = (S ∪ {se}, s0,Σ, {0n+1, 1n+1}, h
′) in

which se 6∈ S, for all z ∈ Σ we have that
h′(se, z) = {(se, 0r+1)} and for alls ∈ S andz ∈ Σ
we have thath′(s, z) is defined by the following:

1) If h(s, z) = S ′ 6= ∅ then h′(s, z) =
{(s′, 1r+1), (s

′, 0r+1)|s
′ ∈ S ′};

2) If h(s, z) = ∅ thenh′(s, z) = {(se, 0r+1)}.
The idea is that while following a path ofN

the FSMF(N) can produce either0 or 1 at port
r+1 in response to each input but once we diverge
from such a path the FSM can then only produce
0 (at r + 1) in response to an input. An alternative
would for the FSM to only be defined on sequences
from L(N) and to output1 while a path from
N is followed. However, this does not result in a
completely-specified FSM.

Lemma 1:Let us suppose thatN andM are r-
tape FA with alphabetsΣ1, . . . ,Σr. ThenT (N) ⊆
T (M) if and only if F(N) ⊑s F(M).

Proof: First assume thatF(N) ⊑s F(M) and
we are required to prove thatT (N) ⊆ T (M).
Assume thatσ ∈ T (N) and so there exists some

σ′ ∼ σ such thatσ′ ∈ L(N). Sinceσ′ ∈ L(N)
we have thatL(F(N)) contains the global traceρ′

in which the input portion isσ′ and each output
is 1r+1. SinceF(N) ⊑s F(M) we must have that
there is someρ′′ ∈ L(F(M)) such thatρ′′ ∼ ρ′.
However, since the outputs are all at portr+1 and
the inputs are at ports1, . . . , r we must have that
ρ′′ has output portion that contains only1r+1 and
input portionσ′′ for someσ′′ ∼ σ′. Thus, we must
have thatσ′′ ∈ L(M). Sinceσ ∼ σ′ and σ′ ∼ σ′′

we must have thatσ ∈ T (M) as required.
Now assume thatT (N) ⊆ T (M) and we are

required to prove thatF(N) ⊑s F(M). Let ρ be
some element ofL(F(N)) and it is sufficient to
prove thatρ ∈ L(F(M)). Thenρ = ρ1ρ2 for some
maximal ρ2 such that all outputs inρ2 are 0r+1.
Let the input portions ofρ1 and ρ2 be σ1 and σ2

respectively. By the maximality ofρ2 we must have
thatρ1 is either empty or ends in output1r+1. Thus,
σ1 ∈ L(N) and so, sinceT (N) ⊆ T (M), there
existsσ′

1 ∼ σ1 with σ′

1 ∈ L(M). But this means that
M can produce the output portion ofρ1 in response
to σ′

1 and so there existsρ′1 ∈ L(F(M)) with ρ′1 ∼
ρ1. By the definition ofF(M), since all outputs in
ρ2 are0r+1 we have thatρ′ = ρ′1ρ2 ∈ L(F(M)). The
result therefore follows from observing thatρ′ =
ρ′1ρ2 ∼ ρ1ρ2 = ρ.

Theorem 4:The following problem is undecid-
able: given FSMsN andM with the same alpha-
bets, do we have thatN ⊑s M?

Proof: This follows from Lemma 1 and Theo-
rem 1.

We can extend this to show that state equivalence5

is undecidable.
Theorem 5:The following problem is undecid-

able: given FSMM and two statess and s′ of M ,
ares ands′ equivalent.

Proof: We will prove that we can express the
problem of deciding multi-port FSMs equivalence in
terms of state equivalence. We assume that we have
multi-port FSMsM1 andM2 with the same input
and output alphabets and we wish to decide whether
M1 andM2 are equivalent. Lets01 and s02 be the
initial states ofM1 and M2 respectively. We will
construct an FSMM in the following way. We add
a new portp and inputxp atp. The input ofxp in the
initial states0 of M movesM to eithers01 or s02

5Two statess1 and s2 of an FSMM are equivalent if the FSMs
M1 andM2 formed by changing the initial state ofM to bes1 and
s2 respectively are equivalent:L(M1) = L(M2).

8



and produces no output. All other input in states0
movesM to a states′0 6= s0, that is not a state ofM1

or M2, from which all transitions are self-loops with
no output. The input ofxp in a state ofM1 or M2

leads to no output and no change of state. Now we
can observe that a sequence in the language defined
by startingM in states0i, i ∈ {0, 1}, is equivalent
under∼ to a sequence fromL(Mi) followed by a
sequence of zero or more instances ofxp. Thus,s01
ands02 are equivalent if and only ifM1 andM2 are
equivalent. The result thus follows from Theorem 4
and the fact that if we can decide equivalence then
we can decide inclusion.

We now consider problems relating to distin-
guishing FSMs and states in testing. We can only
distinguish between FSMs and states on the basis
of observations and each observation, in distributed
testing, defines an equivalence class of∼.

Definition 5: It is possible to distinguish FSMN
from FSM M in distributed testing if and only if
L(N) 6⊆ L(M). Further, it is possible to distinguish
between FSMsN and M in distributed testing if
and only ifL(N) 6⊆ L(M) andL(M) 6⊆ L(N).

The first part of the definition says that we can
only distinguishN from M if there is some global
trace ofN that is not observationally equivalent to
a global trace ofM . The second part strengthens
this by requiring that we can distinguishN from M
and alsoM from N . The following is an immediate
consequence of Theorem 4.

Corollary 1: The following problems are unde-
cidable in distributed testing.

• Is it possible to distinguish FSMN from FSM
M in distributed testing?

• Is it possible to distinguish between FSMsN
andM in distributed testing?

Similar to the proof of Theorem 5, we can express
the problem of distinguishing between two FSMs as
that of distinguishing two statess ands′ of an FSM
M . Thus, the above shows that it is undecidable
whether there is a test case that is capable of
distinguishing two states of an FSM or two FSMs.
This complements a previous result [23], that it is
undecidable whether there is some test case that
is guaranteedto distinguish two states or FSMs.
It also suggests that it will be difficult to extend
traditional methods, for generating tests from FSMs,
where they use sequences to distinguish states.

Before we prove that a form of model checking is
undecidable for FSMs we define a function similar

to F .
Definition 6: Let us suppose that

N = (S, s0,Σ, h, S) is a FA with r tapes
with alphabetsΣ1, . . . ,Σr. Given integer k we
define the FSMF(N, k) with r+1 ports as defined
below in which for all 1 ≤ p ≤ r we have that
the input alphabet ofN at p is Σp and the output
alphabet is empty and further we have that the
input alphabet at portr+1 is empty and the output
alphabet atr + 1 is {1, k}. In the following for
a ∈ {1, k} we useaj to denote thej-tuple whose
first j − 1 elements are empty and whosejth
element isa.
F(N, k) = (S ∪ {se}, s0,Σ, {1r+1, kr+1}, h

′) in
which se 6∈ S, for all z ∈ Σ we have thath′(se, z) =
{(se, kr+1)} and for all s ∈ S and z ∈ Σ we have
that h′(s, z) is defined by the following:

1) If h(s, z) = S ′ 6= ∅ then h′(s, z) =
{(s′, 1r+1)|s

′ ∈ S ′};
2) If h(s, z) = ∅ thenh′(s, z) = {(se, kr+1)}.
The idea is that while following a path ofN the

FSM F(N, k) produces1 at portr + 1 in response
to each input but once we diverge from such a path
the FSM then producesk (at r + 1) in response
to an input. The following result is an immediate
consequence of the definition.

Lemma 2:Let us suppose thatN andM are r-
tape FA with alphabetsΣ1, . . . ,Σr. ThenT (N) ∩
T (M) contains a tuple with at least one non-empty
element if and only ifL(F(N, 2)) ∩ L(F(M, 3))
contains a non-empty sequence.

Theorem 6:Given FSMsM andP the following
problem is undecidable: do we have thatL(M) ∩
L(P ) contains a non-empty sequence?

Proof: These results follow from Theorem 2
and Lemma 2.

Finally, we give conditions under which equiv-
alence and inclusion are decidable. The proof of
the following uses a results from (Mazurkiewicz)
trace theory. We will only use trace theory in proofs
(Proposition 1, Proposition 5, and Lemma 3); some
readers might skip the following description and just
read the results. In trace theory, if the alphabet is
Σ then there is a symmetric independence relation
I of type Σ × Σ. If (a, b) ∈ I then a and b are
said to be independent andab andba are equivalent
[31]. Relation I defines an equivalence relation
∼I : σ, σ′ ∈ Σ∗ are equivalent under∼I if σ can
be rewritten toσ′ using a sequence of rewrites
of the form σ1abσ2 → σ1baσ2 for (a, b) ∈ I.
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Independence relationI can be represented using
an independence graphGI in which each vertex
represents an element ofΣ and there is an edge
between the vertex representinga ∈ Σ and the
vertex representingb ∈ Σ if and only if a and b
are independent. Similarly, there is a dependence
graphGD defined by there being an edge between
the vertex representinga ∈ Σ and the vertex
representingb ∈ Σ if and only if a and b are not
independent. For FSMs,a andb are independent if
and only if they are at different ports.

Proposition 1: Let us suppose that multi-port
FSMs N and M have the same input and output
alphabets and that for each portp ∈ P, |Actp| ≤ 1.
Then it is decidable whetherN ⊑s M .

Proof: This can be seen as being an instance of
the inclusion problem for rational trace languages6,
which is decidable if the independence relation
is transitive (Theorem 66, [31]). However, since
|Actp| ≤ 1 for all p ∈ P, the elements ofAct
are pairwise independent and so the independence
relation is transitive. The result thus follows.

This condition, that the alphabet at each port con-
tains only one symbol, is quite strong and it seems
unlikely that many systems will have this property.
However, it is relevant if there are properties to be
tested that relate to the sequencing of interactions
between the ports and not the actual values observed
at the ports. For example, there may be a schedule
that determines how the system should interact with
the agents at its ports and, in turn, this schedule
may relate to quality of service agreements that
determine the relative amount of access to resources
that the system provides to the agents.

We now consider the case where each transition
produces output at all ports.

Proposition 2: Let us suppose thatM is an FSM
in which all transitions produce output at all ports.
ThenN ⊑s M if and only if L(N) ⊆ L(M).

Proof: First observe that ifN ⊑s M then each
transition ofN must also produce output at every
port. Consider a sequenceσ ∈ L(M) ∪ L(N) that
containsk inputs. Since every transition produces
output at all ports, for a portp we have thatπp(σ)
containsk outputs with each inputxi at p being
between the output produced atp by the previous
input and the output produced atp in response to

6A trace language is rational if it is can be formed from finite
sets using a finite number of union, concatenation, and star-iteration
operations.

xi. Thus, given sequencesσ, σ′ ∈ L(N)∪L(M) we
must have thatσ′ ∼ σ if and only if σ′ = σ. The
result therefore holds.

Decidability results have been proved for classes
of deterministic multi-tape automata, where a multi-
tape automatonM with r tapes is deterministic
if the state setS can be partitioned into subsets
S1, . . . , Sr such that all transitions from a state
in Si have a label in the alphabetΣi for tape i,
1 ≤ i ≤ r. An FSM M can be represented by a
multi-tape automatonM ′ in which the states ofM
are represented by final states ofM ′ and if M has
transition(s, s′, x/y) then inM ′ there is a path from
the state that representss to the state that represents
s′ with a label σ that starts withx and has that
πp(xy) = πp(σ) for all p ∈ P. By definition, for
M ′ to be deterministic we require that the FSM
M has no state in which it can receive input at
more than one port. Since we consider completely-
specified FSMs, this requires that input can only be
received at one port.

Proposition 3: Let us suppose thatM andN are
FSMs that can receive input at only one port. If
either every state ofM is involved in at most one
cycle or every state ofN is involved in at most one
cycle then it is decidable whetherN ⊑s M .

Proof: A multi-tape FA is simple if no state is
in more than one cycle. It is known that language
inclusion is decidable for two deterministic multi-
tape FA in which at least one is simple [32]. The
result thus follows from the fact that, under the con-
ditions in the hypothesis, we can form deterministic
multi-tape FAM ′ and N ′ to representM and N
and at least one of these is simple.

If we are interested in equivalence then we can
weaken the conditions on the FSMs.

Proposition 4: If M and N are FSMs that can
receive input at only one port then it is decidable
whether bothN ⊑s M andM ⊑s N hold.

Proof: It is known that equivalence is decidable
for deterministic multi-tape FA [33]. The result thus
follows from the fact that, under the conditions in
the hypothesis, we can form deterministic multi-tape
FA M ′ andN ′ to representM andN .

Finally, we will use the result that a rational
trace language7 is a regular language if every cycle
(star) in the expression that defines the language

7The result is actually proved for a generalisation of tracescalled
semi-commutations.
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has a labelσ such that the dependence graphGD

restricted to the letters inσ is strongly connected8

[34]. Importantly, the proof also showed how we
can construct a FAM ′ such thatL(M ′) = L(M).
Thus, if we consider two FSMs that satisfy this
condition then the inclusion problem can be reduced
to deciding inclusion for two regular languages and
so is decidable. For FSMs the dependence relation
simply relates all elements at the same port and so
we obtain the following result.

Proposition 5: Let us suppose that FSMsM and
N are such that every cycle has a labelσ such that
there is a portp where all inputs and outputs inσ
are atp. Then it is decidable whetherN ⊑s M .

V. BOUNDED CONFORMANCE

We have seen that it is undecidable whether two
FSMs are related under⊑s. However, we might
use a weaker notion of conformance that considers
sequences of length at mostk for some k. This
would be relevant when the expected usage does
not involve sequences of length greater thank since,
for example, the system will be reset after at mostk
inputs. For example, in a communications protocol
we might have that a ‘disconnect’ must happen after
at most k steps. Systems that implement atomic
transactions might also have this property: once a
transaction has been completed the state of the sys-
tem returns to its original value once one abstracts
away any changes to, for example, a database that
has been accessed. In addition, embedded systems
are often designed to repeat a sequence of activities
in a schedule, returning to the initial state at the
end of such a sequence: we might use the bound
defined by this (see, for example, [25]). It is also
relevant where we want a test case of length at most
k that distinguishes two FSMs or states. Finally,
the tester might use such a notion and choose a
suitable value ofk based on a trade-off between
cost and effectiveness or start with a small value
of k and gradually increase it if necessary. In this
section we define such an implementation relation
and explore the problem of deciding whether two
FSMs are related under this.

First, we introduce some notation. We letIOk

denote the set of global traces that have at mostk
inputs. In addition, for an FSMN we letLk(N) =

8Directed graphG is strongly connected if for any two verticesv
andv′ it is possible to find a path fromv to v

′.

L(N) ∩ IOk denote the set of global traces ofN
that have at mostk inputs. We can now define our
implementation relation.

Definition 7: Given FSMsN and M with the
same input and output alphabets, we say thatN
strongly k-conforms toM if for all σ ∈ Lk(N)
there exists someσ′ ∈ L(M) such thatσ′ ∼ σ. If
this is the case then we writeN ⊑k

s M .
Clearly, givenN andM it is decidable whether

N ⊑k
s M : we can simply generate every element

of Lk(N) and for eachσ ∈ Lk(N) we determine
whetherσ ∈ L(M). The following shows that this
can be achieved in polynomial time if we have a
bound on the number of ports.

Lemma 3:Given a sequenceσ ∈ IOk and FSM
M with n ports, we can decide whetherσ ∈ L(M)
in time of O(|σ|n).

Proof: The membership problem for a se-
quenceσ and rational trace language with alphabet
Σ and independence relationI can be solved in
time of O(|σ|α) whereα is the size of the largest
clique in the independence graph [35]. Since each
observation is made at exactly one port and two
observations are independent if and only if they are
at different ports, we have that the maximal cliques
of the independence graph all have sizen and so
α = n. The result therefore follows.

Theorem 7:If there are bounds on the value of
k and the numbern of ports then the following
problem can be solved in polynomial time: given
FSMsN andM with at mostn ports, do we have
thatN ⊑k

s M?
Proof: First observe thatLk(N) has O(qk)

elements, whereq denotes the maximum number
of transitions leaving a state ofN . Thus, sincek is
bounded, the elements inLk(N) can be produced in
polynomial time. It only remains to consider each
σ in Lk(N) and decide whether it is inL(M).
However, by Lemma 3, this can be decided in
polynomial time. The result therefore follows.

Thus, if there are bounds on the number of ports
and the length of sequences considered then we
can decideN ⊑k

s M in polynomial time. However,
the proof of Theorem 7 introduced terms that are
exponential inn andk. It transpires that the problem
is NP-hard without such bounds even for DFSMs.
The proof uses the following.

Definition 8: Given boolean variablesz1, . . . , zr
let C1, . . . , Ck denote sets of three literals, where
each literal is either a variablezi or its negation.
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The three-in-one SAT problem is: does there exist
an assignment to the boolean variables such that
eachCj contains exactly one true literal.

The three-in-one SAT problem is known to be
NP-complete [36].

The construction of the FSMM1 in the following
proof is similar to one from a proof in [16].

Theorem 8:The following problem is NP-hard:
given k and completely specified DFSMsN and
M , do we have thatN ⊑k

s M?
Proof: We will show that we can reduce the

three-in-one SAT problem to this and suppose that
we have variablesz1, . . . , zr and clausesC1, . . . , Cq.
Define a DFSMM1 with r + q + 2 ports, inputs
z−1, z0, z1, . . . , zr at ports−1, 0, 1, . . . , r and out-
puts y1, . . . , yr+q at ports 1, . . . , r + q. We count
ports from−1 since the roles of inputs at−1 and0
will be different from the roles of the other inputs.

DFSM M1 has statess0, s1, s2, s3 in which s0
is the initial state. The states represent different
‘modes’ and we now describe the roles ofs1 and
s2. In states1 an input at portp will lead to output
at all ports corresponding to clauses with literalzp.
In states2 an input at portp will lead to output at
all of the ports corresponding to clauses with literal
¬zp. The input z0 movesM1 from s1 to s2. The
special inputz−1 takesM1 from states0 to states1.

Overall, input z0 does not produce output and
only changes the state ofM1 if it is in s1, in which
case it takesM to s2. Input z−1 does not produce
output and only changes the state ofM1 if it is in
states0, in which case it takesM1 to states1.

For inputzp, 1 ≤ p ≤ r, there are four transitions:
1) From s1 there is a transition that, for all1 ≤

j ≤ k, sendsyr+j to r + j if Cj containszp
and otherwise sends no output tor + j. The
transition sends no output to ports−1, . . . , r
and does not change state.

2) From s2 there is a transition that, for all1 ≤
j ≤ k, sendsyr+j to r+ j if Cj contains¬zp
and otherwise sends no output tor + j. The
transition sends no output to ports−1, . . . , r
and does not change state.

3) From s0 there is a transition to states3 that
produces no output.

4) From s3 there is a transition to states3 that
produces no output.

Now consider the global traceσ that starts with
input sequencez−1z0z1 . . . zr−1 and then has input
zr producing the outputsyr+1 . . . yr+q; all outputs

are produced in response to the last input. Clearly
we do not haveσ ∈ L(M1). We now prove that
σ ∈ L(M1) if and only if there is a solution to the
instance of the three-in-one SAT problem. Consider
the problem of deciding whether there existsσ′ ∈
L(M1) such thatσ′ ∼ σ. Clearly the first input in
σ′ must bez−1. Each inputzp is received once by
the DFSM and these can be received in any order
after z−1. Thus, for all1 ≤ p ≤ r we do not know
whetherzp will be received before or afterz0 in σ′.
If zp is received beforez0 then an output is sent to all
ports that correspond to clauses that contain literal
zp. If zp is received afterz0 then an output is sent
to all ports that correspond to clauses that contain
literal ¬zp. Thus there existsσ′ ∈ L(M1) such that
σ′ ∼ σ if and only if there exists an assignment to
the boolean variablesz1, . . . , zr such that eachCj

contains exactly one true literal.
We now construct DFSMsN and M such that

N ⊑k
s M if and only if σ ∈ L(M1). In the following

we assume thatr > 1 and let σ1 be the global
trace formed fromσ by replacing the prefixz−1z0z1
by z1z−1z0. Thus,σ1 ∼ σ. We form N from M1

by adding a new path that has labelσ1. We add
states′3 such that the input ofz1 in states0 leads
to state s′3 (instead of s3) and no output. From
s′3 we add a transition with labelz0 to another
new states′4. We repeat this process, adding new
states, until we have a path froms0 with label
z1z0z−1z2z3 . . . zr−1 ending in states′r+3. We then
add a transition froms′r+3 to s′r+4 with input zr and
the outputsyr+1, . . . , yr+q. Finally, we completeN
by adding a transition tos3 with input zp and null
output from a states′j if there is no transition froms′j
with input zp. Clearly,L(N) = L(M1)∪pref(σ1)I

∗.
Let σ′

1 be defined such thatσ1 = z1σ
′

1. We can
similarly form an FSM M from M1 such that
L(M) = L(M1)∪pref({z1}I{σ′

1})I
∗. Since eachIp

contains only one input we have that{z1}I{σ′

1}I
∗

and {σ1}I
+ define the same sets of equivalence

classes under∼. Thus, the equivalence classes of
pref(σ1)I

∗ and pref({z1}I{σ′

1})I
∗ under ∼ differ

only in the one that containsσ1 and we know that
σ1 ∼ σ. We therefore have thatN ⊑k

s M , for
k > r + 1, if and only if σ ∈ L(M1) and we know
that this is the case if and only if the instance of
the three-in-one SAT problem has a solution. The
result follows from the three-in-one SAT problem
being NP-hard.

The results suggest that it is likely to be feasible
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to decideN ⊑k
s M if there are only a few ports

and k is not large. For some classes of system,
such as communications protocols, we have only
two ports. Thus, it likely to be feasible to determine
conformance and generate test cases to distinguish
states and FSMs for such systems where the bound
on sequence length is not too large.

VI. CONCLUSIONS

There are important classes of systems such
as cloud systems, communications protocols, web
services and wireless sensor networks, that inter-
act with their environment at physically distributed
ports. In testing such a system we place a local tester
at each port and the local tester (or user) at portp
only observes the events that occur atp. It is known
that this reduced observational power, under which
a set of local traces is observed, can introduce ad-
ditional controllability and observability problems.

This paper investigated testing from a finite state
machine (FSM) modelM that is the specification
for a system that interacts with its environment at
physically distributed ports. We considered imple-
mentation relation⊑s that requires the set of local
traces observed to be consistent with a global trace
of the specification. We proved that it is undecidable
whetherN ⊑s M even if there are only two ports
and gave conditions under which this is decidable.
We also showed that a form of model checking is
undecidable. The results also apply to labelled tran-
sition systems and input output transition systems.

There are several additional ramifications for test-
ing. One such consequence is that it is undecidable
whether there is a test case that iscapableof distin-
guishing two states of an FSM or two FSMs. This
complements results that show that it is undecidable
whether there is a test case that isguaranteedto
distinguish between two states or two FSMs [23].
While these results appear to be related the proofs
used different approaches: the earlier result used
results from multi-player games while this paper
used results regarding multi-tape automata. Many
methods for generating tests from a single-port
FSM use sequences that either distinguish FSMs
or distinguish states. The former is relevant when
we have a fault domainF that contains a finite
set of FSMs that model possible behaviours of the
SUT: when testing from a single-port FSMM we
know that it is possible to produce a test suite that

distinguishes all elements ofF , that do not conform
to M , from M . The results in this paper suggest
that it will not be possible to extend such fault-
based techniques to distributed testing. In addition,
many techniques for generating tests from a single-
port FSMM use sequences that distinguish states
of M and, again, it seems unlikely that we will
be able to extend such techniques to distributed
testing. However, the paper also gave a number of
conditions under which conformance is decidable.

Since it is undecidable whetherN ⊑s M we
defined a weaker implementation relation⊑k

s that
only considers input sequences of lengthk or less.
This is particularly relevant in situations in which
it is known that input sequences of length greater
than k need not be considered since, for example,
the system must be reset before this limit has been
reached. The tester might also either choose a value
for k based on an analysis of the cost/benefit trade-
off or potentially start with a small value fork and
increase it if no problems are found. We proved that
if we place a bound onk and the number of ports
then we can decide whetherN ⊑k

s M in polynomial
time but otherwise this problem is NP-hard.

There are several avenues for future work. First,
there is the problem of finding weaker conditions
under which we can decideN ⊑s M . There is also
the problem of extending the results to situation in
which we can make additional observations such
as refusals, where we observe the system not be-
ing able to accept an input. The results regarding
⊑k

s suggest that it will be feasible to determine
conformance, and generate test cases to distinguish
states and FSMs, for some classes of systems.
For example, in communications protocols normally
there are only two ports: deciding⊑k

s is likely to be
feasible if there is a (not too large) bound on the
length of sequences before a disconnect must occur.
It would be interesting to investigate the practical
boundaries for such systems through significant case
studies. Finally, while we have proved that deciding
⊑k

s is NP-hard it is still open whether it is in NP.
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