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New formulas for Maslov’s canonical operator
in a neighborhood of focal points and caustics

in 2D semiclassical asymptotics

S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, and T. Ya. Tudorovskii

1. INTRODUCTION

Maslov’s canonical operator [15] (see also [5,16–19]) is used when constructing short-
wave (high-frequency, or rapidly oscillating) asymptotic solutions for a broad class of
differential equations with real characteristics. The asymptotics given by the canonical
operator are a far-reaching generalization of ray expansions in problems of optics, elec-
trodynamics, etc. and of WKB asymptotics for equations of quantum mechanics. These
asymptotics are based on some solutions of the equations of classical (Hamiltonian) me-
chanics and in a sense permit automatically and globally writing out solutions of equa-
tions of quantum and wave mechanics taking into account the focal points and caustics
occurring in the problem. The oscillations are usually characterized by a large positive
parameter k in problems of optics and by a small positive parameter h in problems of
quantum mechanics, and the asymptotics should be constructed as k → +∞ and h → +0,
respectively; in the present paper, we use the parameter h. The construction of Maslov’s
canonical operator is based on a fundamental geometric object known as a Lagrangian
manifold. While the original differential equation lives in an n-dimensional configuration
space Rn

x
with coordinates x = (x1, . . . , xn), the Lagrangian manifold, which we denote

by Λn is a smooth n-dimensional manifold in the phase space R2n
px

with coordinates (p, x),
p = (p1, . . . , pn), x = (x1, . . . , xn). In the one-dimensional case, where Lagrangian mani-
folds Λ1 are curves on the phase plane (p, x), one can manage without using these mani-
folds when constructing asymptotic solutions by the WKB method, but even in this case
they prove to be rather useful. Let α = (α1, . . . , αn) be coordinates on Λn; then one can
specify Λn by the formulas Λ = {p = P (α), x = X(α)}. In physical problems, as a rule,
the coordinates α vary on the product of the k-dimensional Euclidean space Rk and the
n − k-dimensional torus Tn−k or the n − k-dimensional sphere Sn−k. When construct-
ing a solution on Λn, one should specify an amplitude A = A(α), a measure (volume
element) dµ and a distinguished point α0 on Λn (the so-called central point1).
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1A different choice of the central point is equivalent to multiplying the canonical operator by a
constant phase factor eiθ.
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Maslov’s canonical operator Kh

Λn takes a function A on Λn to a function u(x, h)of
x ∈ Rn

x
; we denote this correspondence by

(1) u(x, h) = [Kh

ΛnA](x).

An important role in the definition and properties of the canonical operator is played by
the Lagrangian singularities Σ, which are defined as the set of zeros of the Jacobian J =
det ∂X

∂α
corresponding to the projection of Λn onto the configuration space Rn. The points

of Σ are said to be focal,and the projection of Σ onto Rn specifies the caustics of the wave
field u(x, h). The definition of u(x, h) involves some additional objects and is nonunique,
but this nonuniqueness gives only small changes in u(x, h) as h → 0 unimportant from
the viewpoint of physical applications. Finally, note that Maslov’s canonical operator is
an object of function theory on its own, even though its main applications are related to
partial differential equations.

One main idea underlying the canonical operator is to pass from the original differential
equation in the space Rn

x
to a simpler induced equation on Λn. The manifold Λn is not

universal even for a fixed differential equation; it depends on the problem considered for
that equation. The solution A of the reduced equation on Λn, known as the amplitude,
depends on the problem as well. It is very important that A is a smooth function on Λn

even in the vicinity if the Lagrangian singularities, in contracts to the amplitudes in the
traditional ray (WKB) expansions. For many types of problems (and for various original
differential equations), there exist recipes or algorithms for constructing the corresponding
manifolds and amplitudes. Once Λn and A have been obtained, the solution u(x) of
the original problem for the corresponding differential equation can be reconstructed by
formula (1). In other words, given Λn and A, [Kk

ΛnA](x) is the answer to the problem, and
this answer automatically includes objects and operations of ray expansions such that the
behavior in caustic domains, passage across the caustics, matching of various asymptotic
representations, etc. Thus, the problem is reduced to the construction of Λn and A and
to the simplification of the expression [Kk

ΛnA](x) in specific cases.
The right-hand side of (1) can only very vaguely be called a formula; it is rather

an algorithm or a set of rules that permit one to implement (1) in the form of more
or less closed-form expressions containing rapidly oscillating exponentials or integrals
of such exponentials. We point out that, first, that these formulas are not as a rule
the same (universal) for all values of the variables x; they have different asymptotic
representations in different domains (depending on the problem). Second, even in one
and the same domain these representations can be defined nonuniquely, and a lucky
choice of a representation may substantially simplify the (local) form of the solution
and permit one to represent it, for example, via well-known special or even elementary
functions. Maslov suggested a universal recipe for representing the function2 [Kh

ΛnA](x)
in a neighborhood of the caustics on the basis of the partial Fourier transform (i.e., the
Fourier transform with respect to part of the variables). This recipe applies in the most
general situation, but, for a rather broad class of interesting problems, one can (more
conveniently) use different representations that are not related to the choice of a partial
Fourier transform. The present paper, which deals with the two-dimensional case (n = 2),
presents a new integral representation (Eq. (29)) of oscillatory solutions for the case in
which the fundamental 1-form p dx nowhere vanishes on the corresponding Lagrangian
manifolds Λn. We also give some applications. We point out that our considerations do
not affect the general concept of the construction of Maslov’s canonical operator and the

2In contrast to the global function [Kh
ΛnA](x), this recipe depends on the coordinate system chosen

in Rn
x .
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fundamental underlying objects; we only suggest a more convenient implementation useful
in specific physical problems, for example, those related to the asymptotics of solutions of
the scattering problem, asymptotics of the Green function, linear hyperbolic systems with
variable coefficients (e.g., the wave equation) with localized initial data (e.g., see [9,10]),
etc. Note also that our formulas are in a sense a special case of the general formulas of the
theory of Fourier integral operators [12], and our main result is a specific (constructive)
form and an algorithm for the construction of these formulas, which can in particular be
used in combination with software like Mathematica or MatLab.

The paper is organized as follows. In Sec. 2, we consider an important example
illustrating the idea of a new formula for Maslov’s canonical operator and explaining why
it is tempting to write it out. This new formula (29) and associated objects are presented
in Sec. 3. Section 4 contains some examples. The proof of the main theorem and the
formulas expressing Maslov’s canonical operator in a neighborhood of the caustics via the
Airy and Pearcy functions are given in Appendices 1 and 2, respectively.

Some notation. All vectors are understood as column vectors. If ξ and η are n-vectors,
then we write �ξ, η� for the bilinear form �ξ, η� =

�
n

j=1 ξjηj = ξTη, where the symbol T
indicates the transpose of a matrix. Partial derivatives are denoted by subscripts; for
example, Φx = ∂Φ/∂x.

2. LAGRANGIAN MANIFOLD FOR THE BESSEL FUNCTION

There are only a few types of Lagrangian manifolds arising in specific physical appli-
cations. The simplest examples are Lagrangian surfaces. Let S(x), x ∈ Rn, be a smooth
function; then the equation p = ∂S

∂x
specifies a surface in the phase space R2n

px
. This sur-

face is a Lagrangian manifold, and associated with this manifold are functions u(x, h) of

the form A(x)e
iS(x)

h , known as WKB solutions. For such a function to be an asymptotic
solution of the Helmholtz equation h2�u+ n2(x)u = 0, it is in particular necessary that
the function S satisfy the Hamilton–Jacobi equation ∇S2 = n2(x).

Let us present an example of a 2D Lagrangian manifold, which is the main example
for this paper. This manifold corresponds to the Helmholtz equation with n2(x) = 1. We
start from the following simple problem: construct rapidly oscillating functions u(x, h),
x = (x1, x2) ∈ R2

x
, associated with the two-dimensional Lagrangian cylinder

(2)
Λ2 = {(x, p) : x = X(τ, ψ), p = P (τ, ψ), τ ∈ R, ψ ∈ S1 = R (mod 2π)},

where X(τ, ψ) = τn(ψ), P (τ, ψ) = n(ψ), n(ψ) = (cosψ, sinψ)T ,

in the four-dimensional phase space R4
(x,p) with coordinates (x, p) = (x1, x2, p1, p2). The

functions (τ, ϕ) form a coordinate system on Λ2. This manifold was used in [9,10] in the
representation of rapidly decaying function of the form f

�
x

h

�
, h � 1. The projection of

the manifold Λ2 onto the configuration space (plane) R2
x
is a two-sheeted covering with a

singularity at x = 0. One can readily compute the Jacobian J = det(Xτ , Xψ) = τ . Its
zeros (Lagrangian singularities) Σ are determined by the equation τ = 0, which specifies
a circle on Λ2. The projection of this circle into R2

x
is the degenerate caustic consisting of

the single point x = 0, and hence the manifold Λ2 is not in general position in the sense
of catastrophe theory. Nevertheless, manifolds of this type and their generalizations play
an important role in physical applications.

Recall that the points of Λ2 where J �= 0 are said to be regular, in contrast to the
singular (focal) points, where J = 0. The topological characteristic known as the Maslov
index plays an important role in asymptotic formulas. The Maslov index is defined in
our example is as follows. The circle τ = 0 divides Λ2 into two parts Ω± consisting of
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regular points with τ > 0 and τ < 0, respectively, with the same Maslov index m+ for all
points in Ω+ and the same Maslov index m− for all points in Ω−. Fix a point on Λ2 with
coordinates ψ0, τ0 = +0 and define the Maslov index m(ψ0, τ0) = 0; then m+ = 0, and
one can readily prove that m− = 1 (see Example 1 below and, e.g., [9,10]).

Let us write out the expressions provided for the rapidly oscillating functions by
the standard construction of Maslov’s canonical operator [Kh

Λ2a](x), acting on a smooth
function a(τ, ψ) on Λ2. Outside the caustic x = 0, we have the WKB function

u(x, h) = [Kh

Λ2a](x) ≡
�

±

1�
|J(τ±(x))|

�
e

i
h τ±(x)e−

iπm±
2 a(τ±(x), ψ±(x)

�

=
e−i

π
4

�
|x|

�

±
(e±

i
h (|x|+π/4)a(±|x|, ψ±(x)).

(3)

Here τ±(x) = ±|x|, the functions ψ+(x) = ϕ(x) and ψ−(x) = ϕ(x) + π are the solutions
of the equations

(4) τ cosψ = x1, τ sinψ = x2

for positive (the + sign) and negative (the − sign) τ , respectively, and ϕ(x) is the polar
angle of the vector x. To construct the function u(x, k) = [Kh

Λ2a](x) globally, including a
neighborhood of the caustic x = 0, one covers a neighborhood of the preimage of x = 0
on Λ2 by the canonical charts

Ω1 = {ψ ∈ (−3π/8, 3π/8)}, Ω3 = {ψ ∈ (5π/8, 11π/8)} with coordinates (x1, p2),

Ω2 = {ψ ∈ (π/8, 7π/8)}, Ω4 = {ψ ∈ (9π/8, 15π/8)} with coordinates (p1, x2).

Let 1 =
�4

j=1 ej(ψ) be a partition of unity on Λ2 subordinate to the cover of Λ2 by these
neighborhoods. Then, up to terms of lower order as h → +0, Maslov’s canonical operator
Kh

Λ2 applied to a function a on Λ2 is given by the formula

(5) u(x, h) = [Kh

Λ2a](x) ≡
�

j=1,3

�
i

2πh

�1/2 � +∞

−∞

e
i
h (τ cos2 ψ+x2p2)a(τ, ψ)ej(ψ)

|cosψ|

����ψ=ψj(x1,p2)
τ=τj(x1,p2)

dp2

+
�

j=2,4

�
i

2πh

�1/2 � +∞

−∞

e
i
h (τ sin2 ψ+x1p1)a(τ, ψ)ej(ψ)

| sinψ|

����ψ=ψj(p1,x2)
τ=τj(p1,x2)

dp1,

where i1/2 = eiπ/4 and the functions τj and ψj express the global coordinates (τ, ψ) on Λ2

via the coordinates in Ωj (i.e., via (x1, p2) for j = 1, 3 and via (p1, x2) for j = 2, 4). We
point out that, modulo small correction, (5) is independent of the choice of the charts Ωj

and the partition of unity {ej}.

Note that formula (5) can be significantly simplified, especially from the view point of
specific applications. Namely, one can replace the integration over the momenta p1 and
p2 by integration over the angle ψ in each chart Ωj by setting p1 = cosψ or p2 = sinψ,
depending on whether j is even or odd. This gives

u(x, h) =

�
i

2πh

�1/2 � 2π

0

e
i
h (x1 cosψ+x2 sinψ)A(x, ψ)dψ, where(6)

A(x, ψ) =
�

j=1,3

a

�
x1

cosψ
, ψ

�
ej(ψ) +

�

j=2,4

a

�
x2

sinψ
, ψ

�
ej(ψ).(7)
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If the function a(τ, ψ) is independent of τ , then A = a(ψ). Moreover, if a = 1, then
the function (6) is, up to a multiplicative constant, just the zero-order Bessel function

u(x, h) = J0

�√
x
2
1+x

2
2

h

�
, and (3) is none other than the leading term of its asymptotics for

large values of the argument.
This example shows that definition (6), (7), based on integration over the angle, is more

constructive and pragmatic than the standard definition of Maslov’s canonical operator
based on integration over momenta; in particular it does not require splitting into four
charts in the corresponding formulas; however, the “practical” drawback in definition (7)
of the function A is its “noninvariant” form with respect to the choice of the charts Ωj

and the partition of unity ej, although we again point out that the final result is invariant
modulo a small correction. The main goal of this paper and the formulas constructed
below is to provide a representation of Maslov’s canonical operator in a neighborhood
of Lagrangian singularities based on the integration over “angle variables” similar to ψ
and directly involving the function a on the corresponding Lagrangian manifold without a
partition of unity etc.

Let us show how one can naturally construct a function of the form (6) in our example
without using the standard representation (5).

Just as in the general case in Sec. 3 below, we use a specific form of the universal construction
of the theory of Fourier integral operators [12], which (being restated for the case of asymptotics
with respect to the small parameter h) say that, to construct the rapidly oscillating functions
corresponding to a given Lagrangian manifold Λ, one should find a real-valued nondegenerate

phase function Φ(x, θ) depending on parameters θ ∈ Rm (m ≥ 0) and determining Λ in the
sense that the differentials dΦθj (x, θ), j = 1, . . . ,m, are linearly independent at the points where
Φθ(x, θ) = 0 and one has the representation Λ2 = {(x, p) : ∃θΦθ(x, θ) = 0, p = Φx(x, θ)}. Then
the desired rapidly oscillating functions have the form

(8) u(x, h) =

�
i

2πh

�m/2 �
· · ·

�
e

i
hΦ(x,θ)

A(x, θ) dθ1 · · · dθm

with some amplitude A(x, θ), which is a smooth function compactly supported in θ. The uni-
versality of this construction is in particular shown by the following theorem.

Theorem 1. Let Φ1(x, θ), θ ∈ Rm1, and Φ2(x, θ), θ ∈ Rm2, be two nondegenerate phase

functions determining the same Lagrangian manifold Λ. Then the corresponding oscillatory

integrals of the form (8) specify one and the same class of rapidly oscillating functions (and one

can explicitly write out the transformation of amplitudes in the passage from one representation

to the other).

In this general form, the theorem is not used in the present paper. Hence we refer the reader
for the proof (and a more detailed statement concerning the transformation of amplitudes)
to [7, Theorem 4 and Corollary 1]. Theorem 2 below, which is a special case of Theorem 1, is
proved in detail in Appendix 1.

Let us return to our example. The construction described above is local in general,
but for the manifold Λ2 we can readily find a global defining function Φ(x, θ). Let x ∈ R2

and ψ ∈ S1. On the straight line

�ψ = {y ∈ R2 : y = X(τ, ψ), τ ∈ R},
take the point x∗ = X(τ∗, ψ) nearest to x, where τ∗ = �x,n(ψ)� (sice the segment [x, x∗]
is orthogonal to �ψ). Using ψ in the role of the variable θ, set

(9) Φ(x, ψ) = τ∗ ≡ �x,n(ψ)�.
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This phase function is nondegenerate, because

Φψ = �x,n�(ψ)�, (Φψ)x = n�(ψ) ≡ (− sinψ, cosψ) �= 0.

Next, the equation Φψ = 0 means that x and n�(ψ) are orthogonal; in other words, x is
collinear to n(ψ) and hence lies on �ψ, so that x = X(τ∗, ψ). Moreover, Φx(τ∗, ψ) =
n(τ∗, ψ) = P (τ∗, ψ), so that the point (x,Φx(τ∗, ψ)) lies on Λ2. It is easily seen that every
point in Λ2 can be obtained in such a way, so that the phase function (9) globally defines
the manifold Λ2.

The amplitude A(x, ψ) can be an arbitrary smooth function, so that the rapidly os-
cillating functions associated with the manifold Λ2 have the form

(10) u(x, h) =

�
i

2πh

�1/2 � 2π

0

e
i
h �x,n(ψ)�A(x, ψ) dψ.

Note, however, that this representation is asymptotically nonunique: if one replaces
A(x, τ) by any other smooth function A�(x, τ) such that

(11) A(x, ψ) = A�(x, ψ) on the set CΦ = {(x, ψ) : Φψ ≡ �n�(ψ), x� = 0},

then the integral (10) changes only by O(h).

Indeed, if the amplitude is zero at the points where Φψ = 0, then it can be represented
in the from of the product B(x, ψ)Φψ(x, ψ), and one can show by integrating by parts in the
integral (10) that u(x, h) = O(h).

For example, it follows that the integral (10) will not change in the leading term of
the asymptotics as h → 0 if one replaces A(x, ψ) by A(x∗, ψ). Note that

A(x∗, ψ) = A(τ∗n(ψ), ψ) = A(�x,n(ψ)�n(ψ), ψ) = a(�x,n(ψ)�, ψ),

where a(τ, ψ) = A(τn(ψ), ψ), so that the rapidly oscillating function associated with Λ2

can be represented in the form (cf. (6))

(12) u(x, h) =

�
i

2πh

�1/2 � 2π

0

e
i
h �x,n(ψ)�a(�n(ψ), x�, ψ) dψ.

This representation, in contrast to (10), is asymptotically unique.
In particular, if we drop the normalizing factor multiplying the integral and take the

constant a(x, ψ) = (2π)−1 for the amplitude, then we obtain the well-known integral
representation

(13) J0

�
|x|

h

�
=

1

2π

� 2π

0

e
i
h �x,n(ψ)� dψ

of the zero-order Bessel function as a special case of our construction.

Remark. Sometimes it is convenient to choose the amplitude in a form different
from that in (12). For example, using a change of the form (11), one can transform (12)
as follows: Set A(x, ψ) = a(|x|, ψ) if the function a(τ, ψ) is even in τ and A(x, ψ) =
�n(ψ), x�a(|x|, ψ)/|x| if a(τ, ψ) is odd in τ , and in the general case split a(τ, ψ) into the
odd and even parts and set

A =
a(|x|, ψ) + a(−|x|, ψ)

2
+ �n(ψ), x�

a(|x|, ψ)− a(−|x|, ψ)

2|x|
.
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Then (again omitting the normalizing factor multiplying the integral) modulo O(h) we
obtain

u(x, h) =

� 2π

0

e
i
h �x,n(ψ)�

�a(|x|, ψ) + a(−|x|, ψ)

2

+ �n(ψ), x�
a(|x|, ψ)− a(−|x|, ψ)

2|x|

�
dψ

=

� 2π

0

e
i
h �x,n(ψ)�

a(|x|, ψ) + a(−|x|, ψ)

2
dψ

− i
∂

∂k

�� 2π

0

eik�x,n(ψ)�
a(|x|, ψ)− a(−|x|, ψ)

2|x|
dψ

�����
k=1/h

.

(14)

In the general case, this representation looks more complicated than (12), but if, say, a
is independent of the angle ψ altogether, a = a(τ), then it readily leads to significant
simplifications; we obtain

u(x, h) = π
�
a(|x|) + a(−|x|)

�
J0

�
|x|

h

�
− iπ

�
a(|x|)− a(−|x|)

�
J�
0

�
|x|

h

�

= π
�
a(|x|) + a(−|x|)

�
J0

�
|x|

h

�
+ iπ

�
a(|x|)− a(−|x|)

�
J1

�
|x|

h

�
,(15)

where J1(y) is the first-order Bessel function.

Remark. When writing out formula (12), we have ignored the Maslov index in the
singular chart by omitting the factor e−iπms/2. In fact, one can show that ms = 0 in
this example provided that one chooses a nonsingular initial point on Λ2 with coordinates
(τ, ψ), τ > 0.

Remark. Let us compare the integrals (12) and (14) for the case in which a = τ 2.
Formula (14) gives 2π|x|2J0

� |x|
h

�
, while formula (14) gives

� 2π

0

e
i
h �x,n(ψ)�(�n(ψ), x�)2 dψ = −2π

∂2

∂(1/h)2
J0

�
|x|

h

�

= −2π|x|2J��
0

�
|x|

h

�
= 2π|x|2J0

�
|x|

h

�
− 2π|x|hJ1

�
|x|

h

�
.

Thus, the difference between the two representations is −2π|x|hJ1

� |x|
h

�
= O(h).

3. GENERAL FORMULAS FOR CANONICAL OPERATOR IN 2D CASE

We proceed to the description of general formulas and constructions in the two-dimen-
sional case. Let Λ2 be a Lagrangian manifold in the four-dimensional phase space R4

px
.

The functions specifying the manifold Λ2 (i.e., the embedding Λ ⊂ R4
px
) will be denoted

by x = X(α), p = P (α), where α = (α1, α2) are coordinates on Λ2. To simplify the
notation we denote points of Λ2 by α as well.

1. Eikonal (action). Since Λ2 is Lagrangian, it follows that the Pfaff equation

(16) dτ(α) = P (α) dX(α) ≡ P1(α) dX1(α) + P2(α) dX2(α)

is locally solvable on Λ. (More precisely, it is solvable in an arbitrary simply connected
domain U ⊂ Λ2). A real solution τ(α) of Eq. (16) is called an eikonal (or action) in U ;
if U is connected, then the eikonal is defined up to an additive constant.
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2. Eikonal coordinates. From now on, we assume that Λ2 satisfies the following

Condition 1. The form P (α) dX(α) is nonzero for every α ∈ Λ2.

Thus, if τ is an eikonal in a neighborhood U of some point of Λ2, then dτ �= 0, and
hence (provided that U is sufficiently small) we can supplement τ with another function ψ
such that (τ, ψ) is a coordinate system in U . A coordinate system of this kind will be called
an eikonal coordinate system. We see that there exists an eikonal coordinate system in a
neighborhood of an arbitrary point α ∈ Λ2. The expressions of the functions (X(α), P (α))
via eikonal coordinates will be denoted by (X(τ, ψ), P (τ, ψ)) (rather than the technically
correct (X(α(τ, ψ)), P (α(τ, ψ)))) or even simply by (X,P ) with the arguments omitted.
The same notation will be used for other functions on Λ2.

Lemma 1. In eikonal coordinates, one has the relations

(17) �P,Xτ � = 1, �P,Xψ� = 0, �Pψ, Xτ � = �Pτ , Xψ�.

3. Measure and Jacobians. As was already noted, to construct the canonical op-
erator, one needs not only the Lagrangian manifold Λ2 but also some real measure on
this manifold. We assume that the measure is represented by a volume form 3 dµ. In
eikonal coordinates (τ, ψ) on Λ2, one has dµ = µ dτ ∧ dψ, where µ ≡ µ(τ, ψ) is a smooth
nonvanishing function called the density of the measure dµ in the coordinates (τ, ψ). Note
that in many physical problems the coordinate τ is the so-called “proper time” and µ = 1.
We introduce the Jacobians

J =
D(X)

Dµ
=

1

µ
det

∂(X1, X2)

∂(τ, ψ)
=

1

µ
det(Xτ , Xψ), �J = µ det(P, Pψ)(18)

J
ε =

D(X − iεP )

Dµ
def
=

1

µ
det

∂(X1 − iεP1, X2 − iεP2)

∂(τ, ψ)
, ε ∈ [0, 1].(19)

In contrast to µ, the Jacobians (18) and (19) are independent of the specific choice of
eikonal coordinates and hence are well defined globally on Λ2.

Lemma 2. One has

(20) |J | =
|Xψ|

µ|P |
; J

ε(α) �= 0 for any α ∈ Λ and ε > 0.

Proof. (i) (cf. [9]). The first relation is obviously true if Xψ = 0. Otherwise, it
suffices to take into account the relation Xτ = aXψ + bP , b = 1/P 2, which follows from
(17), and also the second relation in (17).

(ii) (see, e.g. [16]) Assume that the matrix Xα − iεPα is degenerate. Then there
exists a vector ξ �= 0 such that Xαξ = iεPαξ. The Lagrangian property implies that
P T

α
Xα−XT

α
Pα = 0, where the symbol T stands for transposition. It follows that P T

α
Xαξ−

XT

α
Pαξ = i(εP T

α
Pα + 1

ε
XT

α
Xα)ξ = 0. The matrices P T

α
Pα, XT

α
Xα are nonnegative, and

hence the last relation holds if and only if Pαξ = Xαξ = 0. It follows that the rank of

4× 2 matrix

�
Pα

Xα

�
is less than 2, which contradicts to assumption that the dimension of

Λ2 is 2. �

3Thus, we assume that Λ2 is orientable; the theory may pretty well be constructed without this
assumption, which we only make to simplify the exposition.
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4. Maslov index of regular points and closed paths. Fix a regular point α0 ∈

Λ2, which we call the central point. Without loss of generality, we assume that J (α0) > 0.
Next, let α ∈ Λ be an arbitrary nonsingular point. Fix some path γ(α0, α) ∈ Λ2 joining
α0 with α and define the Maslov index of α by the formula

(21) m(α) =
1

π
lim
ε→+0

ArgJ ε
��α
α0
,

where the increment of the argument is taken along γ(α0, α). In practice, it is better to
use the integral formula

(22) m(α) =
1

π
lim
ε→+0

Im

�

γ(α0,α)

dJ ε

J ε
.

The index m(α) is an integer depending on the choice of the path γ(α, α0) (and remaining
constant under continuous deformations of the path). In particular, m(α0) = 0 provided
that for the path joining α0 with itself one takes a path homotopic to the trivial path
(which does not leave α0 at all).

Let γ be some closed path on Λ2; then we can define the Maslov index m(γ) of γ by
setting

(23) ind γ =
1

π
lim
ε→+0

Arg
γ
J

ε
��α0

α0
=

1

π
lim
ε→+0

Im

�

γ

dJ ε

J ε
=

1

πi

�

γ

dJ ε

J ε
, ε > 0.

Example 1. Let Λ2 be the Lagrangian manifold (2). Fix the central point α0 = (τ =
δ, ψ = 0), δ → +0 (i.e., δ = +0). One can readily find that

J
ε = det

�
cosψ (τ − iε) sinψ
− sinψ (τ − iε) cosψ

�
= (τ − iε).

Thus, the points with nonzero coordinate τ are regular. For the index m(α), we have

m(α) =
1

π
lim
ε→0

Im

� (τ,ψ)

(δ,0)

dτ

τ − iε
=

1

π
lim
ε→0

�
arctan

�τ
ε

�
− arctan

�δ
ε

��
.

The last expression is 0 if τ > 0 and −1 if τ < 0 for any positive δ. Thus, m(α(τ, ψ)) = 0
for τ > 0 and m(α(τ, ψ)) = −1 for τ < 0. By the way, note that the index is independent
of the choice of the path in this example.

5. Nonsingular and singular charts. Canonical atlas. Maslov’s canonical op-
erator K = Kh

(Λ2,µ) associates a rapidly oscillating function u(x, h) = [Kh

(Λ2,µ)A](x, h) to

every function A ∈ C∞
0 (Λ2).4 It is convenient to split the definition of the canonical oper-

ator into two parts, local and global. In the local definition, the manifold Λ2 is covered by
special connected simply connected domains, which we will refer to as canonical charts,
and the canonical operator is defined separately in each chart (i.e., on functions supported
in that chart). To pass to the global definition, the local canonical operators are compared
on the intersections of charts and pasted together with the help of a partition of unity.

There are two kinds of canonical charts, nonsingular and singular.
Nonsingular charts. A point α ∈ Λ2 is said to be nonsingular if J (α) �= 0. Accord-

ingly, a nonsingular chart is an arbitrary connected simply connected domain U ⊂ Λ2

4The condition that A is compactly supported is convenient when describing the general theory. If
the projection πx : Λ2 −→ R2

x is proper (i.e., the preimage of every compact set is compact), then one can
safely replace C∞

0 (Λ2) with C∞(Λ2). This is what we do in our examples, where the function on which
the canonical operator acts is not compactly supported.
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consisting of nonsingular points. Since J (α) �= 0, it follows that there exists a smooth
solution α(x) = (τ(x), ψ(x)) of the system of equations

(24) X(α) = x ⇐⇒ X(τ, ψ) = x.

By solving this system, one passes from the coordinates α = (τ, ψ) on Λ2 to the coordinates
x = (x1, x2) on the configuration space.

Singular charts. By definition, nonsingular charts exhaust all Λ2 except for the focal
(or singular) points where J (α) = 0. Near the focal points, we need a different kind of
charts. Let α∗ ∈ Λ be a focal point. Take some system (τ, ψ) of eikonal coordinates on Λ
in a neighborhood of α∗. The coordinates of α∗ will be denoted by (τ ∗, ψ∗). Consider the
equation

(25) �P (τ, ψ), x−X(τ, ψ)� = 0.

Lemma 3. Equation (25) defines a smooth function

(26) τ = τ(x, ψ)

in a neighborhood of the point (x∗, ψ∗) ∈ R3, where x∗ = X(τ ∗, ψ∗), such that τ ∗ =
τ(x∗, ψ∗).

Lemma 4. There exists a neighborhood W of the point (x∗, ψ∗) ∈ R3 such that the
following conditions hold :

(i) The differential d(τψ) is nonzero at each point of the set

(27) Π = {(x, ψ) ∈ W : τψ(x, ψ) = 0},

which is therefore a smooth two-dimensional surface.
(ii) The mapping (x, ψ) �−→ (x, τx(x, ψ)) is a diffeomorphism of Π onto a neighborhood

U ⊂ Λ of the point α0 in Λ.
(iii) One has det(P, Pψ)

��
τ=τ(x,ψ)

�= 0, (x, ψ) ∈ W .

The domain U ⊂ Λ2, together with the eikonal coordinates (τ, ψ) and the function
(26) defined on W , will be called a singular chart on Λ2. Without loss of generality, we
assume that U and W are connected and simply connected.

Canonical atlas. It follows from the preceding that Λ2 can be covered by nonsingular
and singular charts. Let us take and fix a locally finite cover Λ2 =

�
j
Uj of Λ2 by

nonsingular and singular charts. We assume that the intersection of two arbitrary sets
Uj is connected and simply connected. (Of course, it can in particular be empty.) Such
a cover is called a canonical atlas, and we only deal with these charts Uj, which will be
called canonical charts. Without loss of generality, we assume that there exist eikonal
coordinates in each of the charts Uj.

5

6. Canonical operator in a nonsingular chart. In this case, the definition of
the canonical operator coincides with the standard one. Let Uj ⊂ Λ2 be a nonsingular
chart. It readily follows from the implicit function theorem that Uj is diffeomorphically
projected onto some open subset of R2

x
, and so the variables x = (x1, x2) can be used as

local coordinates in Uj and α = α(x) can be defined as the solution of Eqs. (24).
Choose an eikonal τ and an additional coordinate ψ in Uj. We define the Maslov

index mj in Uj by setting mj = m(αj). Now we construct the canonical operator Kj on

5In many physical problems, eikonal coordinates can be introduced globally on the entire Λ2; see
examples above and below.
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functions Aj(α) = Aj(τ, ψ) ∈ C∞
0 (Uj) in nonsingular charts by the formula

(28)

[KjAj](x, k) =
e

i
h τ(α)−i

πmj
2 Aj(α)�

|J (α)|

����
α=α(x)

≡ e
i
h τ(x)−i

πmj
2 Aj(τ, ψ)

�
µ(τ, ψ)|P (τ, ψ)|

|Xψ(τ, ψ)|

����
τ=τ(x)
ψ=ψ(x)

.

7. Canonical operator in a singular chart. Now let Uj ⊂ Λ2 be a singular chart
with eikonal coordinates (τ, ψ). Consider the Jacobians J and J̃ = det(P (τ, ψ), Pψ(τ, ψ))
at some nonsingular point (τ j, ψj). The second expression is nonzero everywhere in Uj,
in contrast to J (τ, ψ) which can change (and usually changes) its sign. We define the
Maslov index mj of the singular chart Uj by setting mj = m(αj) if J (τ, ψ) = det ∂X

∂(τ,ψ)

and J̃ (τ, ψ) = det(P, Pψ) have the same sign and mj = m(αj) + π if they have opposite
signs.

Example 2. Consider the manifold (2) again. For the singular chart Using we take a
neighborhood of the circle τ = 0 ⇔ p = n(ψ), x = 0 defined by the inequality |τ | < µ,
where µ is a positive number. We have J = τ and J̃ = det(P, Pψ) = 1. Thus, if we take a
point α = (τ, ψ) with positive τ , then the signs of J and J̃ coincide and m(Using) = 0. It
is easily seen that the result will be the same if one takes a point α = (τ, ψ) with negative
τ .

Now we define the action of the canonical operator in the singular chart Uj on a
function Aj ∈ C∞

0 (Uj) by the formula

(29) [KjAj](x, h) =

�
i

2πh

�1/2

e−i
πmj
2

�

R

�
e

i
h τAj(τ, ψ)

�
µ|det(P, Pψ)|

�

τ=τ(x,ψ)

dψ,

where arg i = π/2.

Theorem 2. The singular canonical operator (29) coincides modulo O(h) with the
standard Maslov canonical operator [15,17]. In particular, the Maslov index of the sin-
gular chart Uj coincides modulo 4 with the Maslov index of the corresponding canonical
chart in the standard construction of the canonical operator.

The proof of this theorem will be given in Appendix 1.

8. Quantization conditions and the global definition of the canonical op-
erator. To define the canonical operator globally, we need to choose the local eikonals
τj and numbers mj (or, equivalently, the arguments of the Jacobians J and �J ) in the
canonical charts in such a way that the local canonical operators coincide modulo O(h)
on the intersections of their canonical charts. This is possible if the Bohr–Sommerfeld
quantization conditions

(30)
2

πh

�

γj

P (α) dX(α) ≡ ind γj (mod 4), j = 1, . . . , N,

are satisfied for a basis γ1, . . . , γN of independent cycles on Λ2. Here ind γj is the Maslov
index of the cycle γj and N is the Betty number of Λ2. For the manifold in Sec. 2, N = 1
and ind γ1 = 0.

Let conditions (30) be satisfied, and let {ej} be a locally finite partition of unity on
Λ2 subordinate to the cover {Uj}. Let us define the global canonical operator Kh

Λ2 acting
on smooth functions A(α) on Λ2 by the formula

(31) u(x, h) = Kh

Λ2A ≡

�

j

Kj(ejA),
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where the sum is taken over all charts Uj of the canonical atlas on Λ2.

Theorem 3. If the quantization conditions are satisfied, then the canonical opera-
tor Kh

Λ2 defined in (31) is modulo O(h) independent of the choice of the charts Uj and the
partition of unity ej.

Proof. This theorem follows from Theorem 2 and from the fact that the desired
assertion holds for the “standard” canonical operator. �

A practical consequence of this theorem is as follows. Assume one wishes to construct
the asymptotic solution in a neighborhood of some given point x. Then one should find
all points αk(x) on Λ such that X(αk(x) = x, k = 1, . . . , k0. If all points αk(x) ∈ Λ2 are
“far” from the focal points, then the sum consists of the WKB type solutions (28). If one
or several (or an infinite set of) focal points α∗

n
= (τ ∗

n
, ψ∗

n
) on Λ are close to or even coincide

with some αk�(x), then the sum expressing the function u(x) should include the integrals
(29) with cut-off functions en(ψ) such that their support cover the ε-neighborhood of
these focal points. This, in turn, often gives the opportunity to express these integrals via
the special functions. We discuss such simplifications later in Sec. 10. Yet another useful
corollary is that in specific computations one need not assume that the domains (charts)
Uj are simply connected. Then, strictly speaking, the Uj are no longer charts, but the
formulas remain valid; moreover, some functions in the partition of unity are aggregated,
and the corresponding formulas are simplified greatly.

9. Relationship with differential equations. Commutation of the canon-
ical operator with h-differential and h-pseudodifferential operators. To make
the exposition self-contained, let us present a well-known assertion providing the applica-
tion of the canonical operator in partial differential equations. Consider a differential or
pseudodifferential operator with a small parameter h,

(32) �L = L(
2
x,

1

�p, h) ≡ L

�
2
x,−ih

1

∂

∂x
, h

�
,

given by its symbol L(x, p, h) with the Taylor expansion L(x, p, h) = H(x, p)+hL1(x, p)+
h2L2(x, p) + · · · . Recall that H(x, p) is called the principal symbol of the operator �L, or
the classical Hamiltonian, and the function 1

2(trHxp)− iL1(x, p), where trHxp is the trace

of the matrix Hxp(x, p), is called the subprincipal symbol of the operator �L.

Theorem 4. Let A ∈ C∞
0 (Λ2). Then

(33) �L(Kh

Λ2A) = K2
Λ(H|Λ2A) +O(h),

where H|Λ is the restriction of H(x, p) to Λ2. If, moreover, H(x, p) ≡ 0 on Λ2 and the
measure dµ is invariant with respect to shifts along the trajectories of the Hamiltonian
vector field

(34)
d

dt
= Hp(x, p)

∂

∂x
−Hx(x, p)

∂

∂p
,

then

(35) �L(Kh

Λ2A) = −ihKh

Λ2

�
dA

dt
−

1

2
(trHxp)|Λ2A+ iL1|Λ2A

�
+O(h2).

Proof. This is a consequence of Theorem 2 and the theorem on the commutation of
the “standard” canonical operator with differential operators. �
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In particular, this theorem gives a recipe for constructing Lagrangian manifolds, in-
cluding manifolds with eikonal coordinates (see the examples below).

10. Simplification of solutions near the caustics. A straightforward application
of formula (29) specifying the canonical operator Kh

Λ2 in the singular chart Uj with eikonal
coordinates (τ, ψ) requires computing an integral of a rapidly oscillating function. It is
natural to ask whether one can avoid this labor-consuming computation. We already
know that if the support of the amplitude Aj(τ, ψ) in (29) does not meet the set Γ ⊂ Λ2

of focal points, then formula (29) can be reduced to the form (28), which does not contain
integration. Hence, by using a partition of unity, one can readily verify that it suffices
to study the problem for the case in which the support suppAj is contained in a small
neighborhood of some focal point α∗ = α(τ ∗, ψ∗) ∈ Γ. Then the function (29) is modulo
O(h∞) concentrated in a neighborhood of the caustic (which is the projection πx(Γ) of
the set Γ ∈ Λ2 of focal points of Λ2 onto R2

x
), or, more precisely, in a neighborhood of the

projection x∗ = X(τ ∗, ψ∗) of the point α∗. We wish to simplify the integral formula (29)
for Kh

Λ2 in a neighborhood of the caustic by expressing the asymptotics of the function
KjAj via known special functions.

The asymptotic expansion of the integral (29) is related to the stationary (critical)
points ψcr(x) of the phase function τ(x, ψ) of this integral. These points depend on the
variables x = (x1, x2) and prove to be degenerate if x lies on the caustic. It follows
from the catastrophe theory and the stationary phase method [3, 17] that (except for
“superdegenerate” cases) only a small neighborhood of the point ψ∗ = ψcr(x∗) contributes
to the asymptotic expansion of the integral (29) for x close to x∗, and the contribution is
related to the normal form of the phase function τ . This form is determined by the first
nonzero coefficient in the Taylor series expansion of τ − τ ∗ in powers of ψ−ψ∗. To obtain
an asymptotics uniform in (x1, x2) near the caustic in some neighborhood independent
of h, one needs to reduce the phase function to a normal form in this neighborhood. This
procedure is based on the Malgrange preparation theorem and hence is not constructive.

More constructively, one can replace the phase function τ by a finite segment of its
Taylor series and obtain the asymptotics of the integral in an O(hδ)-neighborhood of
the caustic for some δ; for the points x near the boundary of this neighborhood, both
this asymptotics and the WKB representation (28) hold. Moreover, one can replace
the nonlinear dependence of ψcr and ψ on the variables x by a linear approximation in
x − X(τ ∗, ψ∗) and set x = X(τ ∗, ψ∗) in the amplitude A. This provides a complete
description of the asymptotic solution of the original problem. Note that we do not
paste together various asymptotics of solutions as in the method of matched asymptotic
expansions. We only simplify Maslov’s canonical operator in various domains. In general
position, the sufficient Taylor polynomial is of degree 3 for edges of the caustics (this results
in the Airy function) and 4 for the cusp of the caustic (this results in the Pearcy function).
There is a vast literature on the Airy and Pearcy functions and their applications to ray
expansions and the semiclassical approximation; here we only note [6,13,20].

Despite being simple in principle, the construction itself, as well as its justification,
involves quite a few technical details, and we give these in Appendix 2.

4. EXAMPLES

Let us discuss typical situations in which condition 1 for the existence of eikonal
coordinates is satisfied.

Example 3. Let the Hamiltonian H(x, p) be a homogeneous function of degree 1
with respect to the variables p (i.e., H(x, λp) = λH(x, p) for λ > 0), and suppose that
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a Lagrangian manifold Λ2 lies in the level set {(x, p) : H(x, p) = 1}. Then condition 1
is satisfied. Indeed, since H|Λ2 = const, it follows that Λ2 is invariant with respect to
the Hamiltonian vector field V (H) = Hp∂x −Hx∂p, and P dX(V (H)|Λ2) = PHp(X,P ) =
HΛ2 = 1 by the Euler identity, so that the form P dX is necessarily nonzero. We also see
that the Hamiltonian vector field does not vanish on Λ2. Hence we can introduce a local
coordinate system (τ, ψ) on Λ2 such that ψ is constant along the trajectories and τ is
the time along the trajectories (the so-called proper time); these coordinates are eikonal
coordinates.

This gives the following (well-known) method for constructing Lagrangian manifolds
with eikonal coordinates. Namely, let Λ1

0 = {(x, p) ∈ R4
p,x

: x = X0(ψ), p = P 0(ψ)} be a
smooth open (ψ ∈ R) or closed (ψ ∈ S) curve in the four-dimensional phase space such
that H|Λ1

0
= 1 and (i) each trajectory (P (τ, ψ), X(τ, ψ)) of the Hamiltonian system

(36) ṗ = −Hx, ẋ = Hp

issuing from Λ1
0 is transversal to it and (ii) (see [14, 21]) all these trajectories leave

each bounded domain in R4
x,p

in finite time. Then the union of these trajectories is the
Lagrangian manifold Λ2 = {(x, p) ∈ R4

x,p
: x = X(τ, ψ), X(τ, ψ)} with eikonal coordinates

(τ, ψ). The fact that Λ is a smooth manifold follows from assumptions (i) and (ii)
(see [14,21]). The Lagrangian property follows from the conservation of the skew inner
product of solutions of linear Hamiltonian systems.

Example 4 (Maupertuis–Jacobi principle and canonical operator). Consider the Ha-
miltonian

H(x, p) =
p2

2m
+ v(x),

arising in particular when constructing semiclassical asymptotics for the Schrödinger equa-
tion. Here m is the mass, and the potential v(x) is assumed to be smooth and bounded.
Suppose that a Lagrangian manifold Λ lies in the level set {(x, p) : H(x, p) = E} for some
E > maxx v(x) (unbound states). This property can be rewritten in the form

p2

2m
= E − v(x) ⇐⇒

p2

2m(E − v(x))
= 1 ⇐⇒

|p|�
2m(E − v(x))

= 1.

By the Maupertuis–Jacobi principle (see [2], and also [8]), the trajectories of the field V (H)
on Λ coincide (up to a change of time) with those of the field V (H) corresponding to the
Hamiltonian homogeneous of first order with respect to p (defining the so-called Finsler
metric):

H(x, p) = |p|C(x), C(x) = 1/
�
2m(E − v(x)).

Namely, let (P (τ, ψ), X(τ, ψ)) be the solutions of the system

(37) ṗ = −|p|Cx, ẋ =
p

|p|
C

issuing from the corresponding curve Λ1
0. Then, according to Maupertuis–Jacobi principle,

we can introduce a new time t = t(τ, ψ) by setting

(38) t =

�
τ

0

�
2m(E − V (X(τ, ψ))) dτ =

�
τ

0

|P (τ, ψ)| dτ.

By solving this equation for τ , we obtain a function τ(t, ψ). Now, by substituting
it into the functions P (τ, ψ) and X(τ, ψ), we obtain the functions (P(t, ψ),X (t, ψ) =
(P (τ(t, ψ), ψ), X(τ(t, ψ), ψ)), which are the solutions of the Hamiltonian system with
Hamiltonian H. On the manifold Λ2, one has H(x, p) = 1, and we are in the framework
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of Example 3. Thus, on Λ2 we have two coordinate systems (two distinct parametriza-
tions) (t, ψ) and (τ, ψ) related by the formulas τ = τ(t, ψ), ψ = ψ, and the Jacobian of
passage from (t, ψ) to (τ, ψ) is equal to 1/|P (τ, ψ)|.

Let us explain the passage from the Hamiltonian system with theH(x, p) to the system
with the Hamiltonian H(x, p) and from the coordinates (t, ψ) to (τ, ψ) at a “quantum
level” in the following way. Consider the stationary Schrödinger equation

(39) −
h2

2m
�u+ vx)u = Eu,

under the assumption that the potential v(x) is a smooth function such that E > V and
h is a small positive parameter. It is useful to recall that, by introducing the function
n2 = 2m(E − v(x)) and large parameter k = 1/h, we can rewrite (39) in a form of the
Helmholtz equation

(40) (∆ + k2n2(x))u(x, k) = 0, x ∈ R2,

where the refraction coefficient n(x) is a smooth everywhere positive function.

Remark. It is often assumed in physical applications that v(x) → 0 as |x| → ∞.
In this case, we can assume that n2(x) → 1 as |x| → ∞. To this end, in the preceding
formulas one should replace the parameter h by the parameter h� = h/

√
E and the

potential v by the potential v� = v/E.

Set C(x) = 1/
�
2m(E − v) ≡ 1/n(x). By dividing (40) by 2m(E − v), we obtain

(41) (−h2C2(x)∆− 1)u(x, h) = 0, x ∈ R2,

The operator −h2C2(x)∆ =
2

C2(x)
1

p̂2, p̂ = −ih ∂

∂x
, is essentially self-adjoint in the weighted

L2 space with weight 1/C2(x) and is positive in this space. Hence there exists a self-

adjoint positive operator L̂ =
�
−h2C2(x)∆ =

�
2

C2(x)
1

p̂2 and one can rewrite (41) in the

form (L̂ + 1)(L̂ − 1)u = 0. The first factor on the left-hand side is a positive operator,
and hence one can divide this equation by it and rewrite it in the form (L̂ − 1)u = 0.

Now let us represent the operator L̂ =

�
2

C2(x)
1

p̂2 in the form of a pseudodifferential

operator L(
2
x,

1

p̂, h) with symbol L(x, p, h) having the asymptotic expansion L(x, p, h) =
H(x, p) + hL1(x, p) + h2L2(x, p) + · · · . One cannot find the exact symbol L(x, p, h), but
it is easy to find the coefficients H and Lj(x, p). For constructing the leading tern of
the semiclassical asymptotics, only H and L1 are important. Let us find them. We have

(L(
2
x,

1

p̂, h))2 =
2

C2(x)
1

p̂2. Using the formulas in [16,18] and passing in this equation from
operators to their symbols, we find the equation for L:

L(
2
x, p− ih

1

∂

∂x
, h)L(x, p, h) = C2(x)p2.

Using the Taylor expansion with respect to ih
1
∂

∂x
of the first factor, we readily obtain

H(x, p) ≡ L0(x, p) = C(x)|p| and L1(x, p) =
i

2H
∂H

∂p

∂H

∂x
≡ i �Cx,p�

2|p| ≡
i

2trHpx.
Assume that we have constructed a Lagrangian manifold as in Example 3 invariant

with respect the corresponding vector field V (H). Here the Hamiltonian is H = |p|C(x),
and the Hamiltonian system has the form (37).
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Let A(τ, ψ) be an amplitude on Λ. Consider the function u = Kh

Λ2A. Let us find out
under what conditions this function is a solution of Eq. (39) modulo O(h2). According to
the construction of Λ2, the derivative d

dt
coincides with the derivative d

dτ
on Λ, and hence,

by applying Theorem 4, we obtain the equation dA

dτ
− trHpx|Λ2A = 0 for the amplitude.

By the Hamiltonian system, we have Ṗ = −|P |Cx(X), which gives trHpx|Λ = �Cx,p�
|p| |Λ2 =

−
�Ṗ,P�
|P| = |Ṗ|

|P| = −
d log |P|

dτ . Thus, the solution A can be presented in the form

(42) A =
A0(ψ)

|P (τ, ψ)|
=

A0�
2m(E − v(X(τ, ψ)))

(because |P |
√

2m(E−v(X(τ,ψ)))
≡ H = 1), where A0 is an arbitrary smooth compactly sup-

ported6 function.
Now we can state the general result.

Lemma 5. Let Λ2 be an invariant Lagrangian manifold with eikonal coordinates con-
structed from some smooth curve Λ1

0, and let A0(ψ) be an arbitrary smooth function. Then
the function

(43) u = KΛ2

�
A0(ψ)

|P (τ, ψ)|

�
=

1�
2m(E − v(X(τ, ψ)))

Kh

Λ2 [A0(ψ)] +O(h)

satisfies the Schrödinger equation (39) modulo O(h2).

The last formula and formula (38) give a different representation of Maslov’s canonical
operator based on the coordinates (t, ψ) and hence a representation of the asymptotic
solution of Eq. (39) different from the one used, in particular, in [14,21].

The suggested method for constructing Lagrangian manifolds permits one to obtain a
broad class of asymptotic solutions of the Schrödinger equation. The problem is to find
appropriate curves Λ1

0 and functions A(ψ0) giving asymptotic solutions that are of inter-
est from the viewpoint of applications. Note also that problems with an axisymmetric
potential can be reduced to one-dimensional problems if one passes to polar coordinates.
However, this passage results in a singularity at the origin and requires additional studies
when constructing the corresponding asymptotics. In our scheme, there are no “coordi-
nate” singularities, and the two-dimensional nature of the problem can readily be taken
into account when specifying the corresponding Lagrangian manifold, which, in our opin-
ion, makes the suggested scheme very efficient in applications; see the examples below.

Example 5 (two Lagrangian manifolds important in physical applications). Let us
present two (well-known) special Lagrangian manifolds with eikonal coordinates important
in physical applications. Let the potential v(x) or velocity C satisfy assumptions (i) and
(ii). The first Lagrangian manifold is related to the circle

(44) Λ1
0 = {(x, p) ∈ R4

p,x
: x = 0, p = n(0)n(ψ), ψ ∈ S1

}, n(ψ) =

�
cosψ
sinψ

�
.

Then Λ2 = {(p, x) ∈ R4
p,x

: p = (P (τ, ψ), X(τ, ψ)), τ ∈ R, ψ ∈ S1}, is a smooth mani-
fold diffeomorphic to the two-dimensional cylinder in R4

px
. Maslov’s canonical operator

on such manifolds gives the generalized asymptotic eigenfunctions of the Schrödinger op-
erator (39), and the canonical operator on the “half-cylinder” (with τ ≥ 0) defines the

6The last property is not necessary; it only guarantee that the function u is well defined in an
appropriate function space.
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asymptotics of the Green function of the Schrödinger operator (39) or the corresponding
Helmholtz operator (see [14]).

Now assume for simplicity that the potential v is a compactly supported function and
its support suppV lies in some domain D ∈ R2

x
in the half-plane x1 < a. Now take Λ1

0

to be the straight line Λ1
0 = {p1 =

√
E, p2 = 0, x1 = a, x2 = ψ} and set A0 = 1. Then

the function u (43) gives the leading term of the asymptotic solution w of the scattering
problem for Eq. (39). A precise statement and proof can be found in [21, Chap. XI].
Formula (43) gives a different and, together with (28), (65), and (66), more explicit
representation of the corresponding asymptotics.

Now consider more specific examples.

Example 6. (Asymptotics of a solution of the Helmholtz equation with axisymmetric
refraction coefficient and of generalized eigenfunctions of the Schrödinger equations with
axisymmetric potential). Consider the Helmholtz equation (40) in which the refraction
coefficient n(x) is a smooth everywhere positive function depending only on |x|, n(x) ≡
n(|x|), and equal to 1 for |x| > R0. For this equation, consider the problem of finding
rapidly oscillating solutions whose associated Lagrangian manifold Λ2 coincides with the
manifold (2) for large |x|. (In particular, if A = 1 and the measure dµ on Λ2 is chosen
to be invariant with respect to the Hamiltonian vector field, as is actually the case in the
example with n2(x) ≡ 1, considered in Sec. 2, then our solution will be in a sense nearly
proportional to the Bessel function J0

� |x|
h

�
for large |x|.)

For Λ2 we take the Lagrangian manifold passing through the circle (44) and invariant
with respect to the Hamiltonian vector field corresponding to the Hamiltonian H(x, p) =
p2−n2(x). As was said above, to find Λ2 and determine eikonal coordinates on Λ2, we use
the Jacobi–Maupertuis principle and proceed to the equivalent first-order homogeneous
Hamiltonian H(x, p) = |p|

n(|x|) = |p|C(|x|). The solution of the corresponding Hamiltonian

system can be sought in the form X(τ, ψ) = ρ(τ)n(ψ), P (τ, ψ) = Pρ(τ)n(ψ). By solving
the equations, we find that

ρ(τ) is the inverse function of T (r) =

�
r

0

n(r) dr, Pρ(τ) = n(ρ(τ)).

The pair (τ, ψ) is an eikonal coordinate system on Λ2. We see that for large |τ | this
manifold coincides with the one considered in Sec. 2, but the parametrization is different.
(The two parametrizations differ for large τ by the shift

(45) δτ =

�
R0

0

(n(r)− 1) dr

in the variable τ .)
We claim that, in these eikonal coordinates, the entire manifold Λ2 is covered by one

singular canonical chart. Indeed, Eq. (25) has the global solution τ(x, ψ) = T (�x,n(ψ)�).
The set Π = {(x, ψ) : τψ(x, ψ) = 0} has the form Π = {(x, ψ) : x ⊥ n�(ψ)} = {(x, ψ) : x �

n(ψ)}, and d(τψ) �= 0 on Π, because ∂

∂x
(τψ) = n(|x|)n�(ψ) �= 0 on Π. The mapping

(x, ψ) −→ (x, τx(x, ψ)) acts on Π by the formula Π � (x, ψ) �−→ (x, n(|x|)n(ψ)) and is
easily seen to be a diffeomorphism of Π onto Λ2. Finally,

det(P, Pψ) = P
2
ρ
(τ) det(n,nψ) = P

2
ρ
(τ) = n2(ρ(τ)) �= 0.

Thus, we see that the manifold Λ2 is indeed covered with one singular canonical chart.
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The measure invariant with respect to the Hamiltonian vector field associated with
the Hamiltonian H(x, p) has the form dµ = 1

n2(ρ(τ)) dτ ∧ dψ. Thus,

(46) [K2
ΛA](x, h) =

�
i

2πh

�1/2 � 2π

0

e
i
hT (�x,n(ψ)�)A(�x,n(ψ)�, ψ) dψ.

Let us show that this integral can be expressed via the Bessel function. A straightforward
computation proves the following

Lemma 6. There exists a smooth change of variables y = g(x), �ψ = �ψ(x, ψ) such that
T (�x,n(ψ)� = �y,n( �ψ)�. Moreover,

(47) g(x) =
T (|x|)

|x|
,

∂ �ψ
∂ψ

����
Π

=

�
|x|n(|x|)

T (|x|)
.

Using this result and taking A ≡ 1, we obtain

[Kh

Λ21](x) =

�
i

2πh

�1/2 � 2π

0

e
i
h

�
T (|x|)
|x| x,n( �ψ)

��
∂ �ψ
∂ψ

�−1

d �ψ

=

�
i

2πh

�1/2�� 2π

0

e
i
h

�
T (|x|)
|x| x,n( �ψ)

��
T (|x|)

|x|n(|x|)
d �ψ +O(h)

�
.

(48)

The amplitudes in these two integrals coincide on Π; consequently, their difference can be
represented as the product of a smooth function by τψ, and integration by parts shows
that the difference of the integrals is indeed O(h) compared with the main term. Now we
finish the computation and find that

(49)

�
2πh

i

�1/2

[Kh

Λ21](x, k) = a(|x|)J0

�
T (|x|)

h

�
+O(h), a(|x|) = 2π

�
T (|x|)

|x|n(|x|)
.

We see that the canonical operator on this manifold gives a “distorted” Bessel function:
it is multiplied by the factor a(|x|), which tends to unity as |x| → ∞, and, which is more
important, has the phase shift δτ given by (45): for R > R0, Eq. (49) has the form

�
2πh

i

�1/2

[Kh

Λ21](x, h) = a(|x|)J0(k(|x|+ δτ)) +O(h).

Example 7. Now consider a simple example from the wave beam theory. Consider
the following Cauchy problem for the Schrödinger type equation arising in optics in the
well-known paraxial approximation:

(50) ih
∂v

∂t
= −ihc

∂v

∂x3
− h2 c

4k

�
∂2v

∂x2
1

+
∂2v

∂x2
2

�
, v|t=0 = v0.

Here c and k are physical (positive) constants. Let us make the well-known change of
variables z = x3 − ct and set v(x1, x2, x3, t) = u(x1, x2, z), where u is the new unknown
function. The equation (43) acquires the form of the 2D Schrödinger equation

(51) ih
∂v

∂t
= −

h2

2m

�
∂2v

∂x2
1

+
∂2v

∂x2
2

�
, m =

2k

c
, u|t=0 = v0(x1, x2, z),

including the variable z az the a parameter. Let x be the column 2-vector with components
(x1, x2). Needless to say, one can solve the Cauchy problem for Eq. (51) by the Fourier
method and obtain the answer in the form of an integral of rapidly varying functions,
but the asymptotic simplification of such integrals (by methods like the stationary phase
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method) is a rather difficult problem, so that the approach based on Maslov’s canonical
operator is in our opinion more efficient. Let us choose the initial data in a form of
the Maslov canonical operator on the family of Lagrangian manifolds Λ0(z) = {p =
P 0(α, ψ) ≡ λ(z)n(ψ), x = X0 ≡ αn(ψ), α ∈ R, τ ∈ S parametrized by z,

(52) u|t=0 = v0(x1, x2, z) = KΛ2
0(z)

[A].

Here λ(z) is a smooth function, for example, λ(z) = 1/
√
1 + z2 or λ(z) = a+b(1+tanh z),

a and b are constants, a > 0, and |b| < a.
We take the measure density µ ≡ 1 and the amplitude A(α) on Λ0(z) of the form

A(α) = g(α)f(z), where g(α) and f(z) are smooth compactly supported functions. For
simplicity, assume that g(α) is even. Let us fix the central point α0 = (α = +0, ψ = 0)
on Λ0(z). Let us show that the solution (51) connected with such type of manifolds the
generalizes the solutions known as Bessel beams in optics.

Let us apply the general Maslov asymptotic construction of solutions of the Cauchy
problem for differential (and pseudodifferential) equations. To this end, we shift the
manifold Λ0(z) with the help of the phase flow gt

H
corresponding to the Hamiltonian

system with Hamiltonian H = p
2

2m . One can readily show that the “shifted” manifold is

Λ2
t
(z) = gt

H
Λ0(z) ≡ {p = P (α, ψ) ≡ λ(z)n(ψ), x = X0 + tHp(P 0) ≡

�
α + tλ(z)m

�
n, α ∈

R, τ ∈ S}. The central point on Λ2
t
(z) is the point αt

0 with coordinates (α = +0, ψ = 0).
Then the leading term of the asymptotic solution of problem (51), (52) is [15,17]

(53) u = v0(x1, x2, z, t) = ei
s(t)
h −iπm(αt

0)/2KΛ2
t (z)

[At],

where s(t) is the integral (the action) of the Lagrangian L = (�p,Hp� − H) = p
2

2m along
the trajectory formed by the central points,

s(t) =

�
t

0

P 2(0, ψ)

2m
dt = t

λ2(z)

2m

and m(αt

0) is the number of focal points on this trajectory on the time interval [0, t]. One
can readily show that m(αt

0) = 0. The amplitude At is the solution of the transport
equation on Λ2

t
, which has the form ∂A

t

∂t
= 0, and At|t=0 = A0; hence At = A(α).

Now let us compute Kh

Λ2
t (z)

[At]. The eikonal is

(54) τ =

� (α,ψ)

(α=+0,ψ=0)

P dX = λ(z)α,

and the eikonal coordinates are (τ = λα, ψ), α = τ/λ. In the eikonal coordinates, we have
P = λ(z)n(ψ), X = ( τ

λ(z) + tλ(z)m )n(ψ) and Xψ = ( τ

λ(z) + tλ(z)m )n⊥(ψ) = (α + tλ(z)m )n(ψ).

We see that the manifolds (cylinders in 4 − D phase space R4
px
) Λ2

t
(z) = Λ2

0(z) coincide
as geometrical objects, and so Λ2

0 is invariant with respect to the phase flow gH
t
. The

Lagrangian singularities are again the circle τ

λ(z) = −tλ
2(z)
m , which moves with time on Λ0.

Their projection onto the physical plane is the point x = 0 (which does not move with
time t). One can cover the manifold Λ2

0 by two regular charts U1 = {τ > −tλ2(z)+δ} and
U3 = {τ < −tλ2(z) − δ} and one singular chart U2 = {|τ + tλ2(z) < 2δ}. The solution

of the equations X(τ, ψ) = x is τ = −tλ
2(z)
m ± λ(z)|x|, where the sign + is taken for U1

(where τ > tλ
2(z)
m ) and the sign − is taken for U2 (where τ < tλ

2(z)
m ); n(ψ) = x/|x|. We

specify the Maslov index m1 = 0 for the points in U1. By analogy with Example 1, we



20 S. YU. DOBROKHOTOV, G. MAKRAKIS, V. E. NAZAIKINSKII, AND T. YA. TUDOROVSKII

find that the Maslov index m2 = −1 in U2. Thus, outside some neighborhood of the origin
the canonical operator gives the formula

u = e−
itλ2(z)
2mh e−i

π
4

�
λ(z)�
|x|

�
e

iλ(z)|x|
h + iπ

4 g
�
|x| − t

λ(z)

m

�
+ e−

iλ(z)|x|
h − iπ

4 g
�
−|x| − t

λ(z)

m

��
f(z).

Now let us represent the solution in a neighborhood of the origin x = 0. The solution
τ(x, ψ, t) of the equation �P, x−X� = 0 is τ = �x,n(ψ)�− tλ

2(z)
2m , and det(P, Pψ) = λ2(z).

Since the last determinant does not vanish anywhere on Λt(z), we can omit the cutoff
function in the singular chart and everywhere write

u =

�
i

2πh

�1/2

e−
itλ2(z)

mh λ(z)

� 2π

0

e
i
hλ(z)�x,n(ψ)�g

�
�x,n(ψ)� − t

λ(z)

2m

�
f(z) dψ.

Now, using the same argument as in the derivation of (15), we obtain

u = π

�
i

2πh

�1/2

e−
itλ2(z)
2mh λ(z)f(z)

��
g

�
|x| − t

λ(z)

m

�
+ g

�
−|x| − t

λ(z)

m

��
J0

�
λ(z)|x|

h

�

+ i

�
g

�
|x| − t

λ(z)

m

�
− g

�
−|x| − t

λ(z)

m

��
J1

�
λ(z)|x|

h

������
z=x3−ct

.

APPENDIX 1. PROOF OF THEOREM 2

We denote the product Aj(τ, ψ)
�
µ(τ, ψ) by ϕ(τ, ψ). Without loss of generality, we

assume that the support suppϕ is contained in a small neighborhood of a singular point
(τ0, ψ0) ∈ Uj. Let us represent the canonical operator on functions supported in a neigh-
borhood of (τ0, ψ0) in the form of the standard canonical operator in a singular chart. Prior
to this, we make a rotation of the coordinate system on the x-plane (and the associated
rotation of the dual coordinate system on the p-plane)so as to ensure that P2(τ0, ψ0) = 0.

Lemma 7. Under the condition P2(τ0, ψ0) = 0, the variables (x1, p2) can be taken for
canonical coordinates on the Lagrangian manifold in a neighborhood of the point (τ0, ψ0).

Proof. We make all computations at (τ0, ψ0). Since P2 = 0, it follows that �P,Xτ � ≡

P1X1τ and hence X1τ �= 0. Next, 0 �= det(P, Pψ) ≡ P1P2ψ, whence it follows that P2ψ �= 0,
and finally, 0 = �P,Xψ� ≡ P1X1ψ, whence it follows that X1ψ = 0, because P1 �= 0.
Consequently,

Js ≡ det
(X1, P2)

(τ, ψ)
= det

�
X1τ X1ψ

P2τ P2ψ

�
= det

�
X1τ 0
P2τ P2ψ

�
= X1τP2ψ �= 0.

�
Let us write out the canonical operator7 in the coordinates (x1, p2):

(55) [Kϕ](x, h) =

�
i

2πh

�1/2 �
e

i
hS(x1,p2)+p2x2

ϕ
√
Js

dp2.

Let us apply the Fourier transform with respect to the variable x2 to (29) and (55) and
prove that the resulting expressions coincide modulo O(h); i.e.,

(56)
1

2πh

� �
e

i
h (τ−p2x2)ϕ

�
det(P, Pψ)

�

τ=τ(x,ψ)

dψdx2 = e
i
hS(x1,p2)+p2x2

ϕ
√
Js

+O(h).

7Here we have included the Maslov index in the argument of the Jacobian, write Jacobians themselves
instead of their absolute values, and accordingly drop the factors of the form e−imjπ/2 altogether.
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Let us compute the expression on the left-hand side in (56) by the stationary phase
method. We write τ − p2x2 = Φ(ψ, x2) and obtain, modulo O(h),

1

2πh

� �
e

i
h (τ−p2x2)ϕ

�
det(P, Pψ)

�

τ=τ(x,ψ)

dψdx2 �
1

i

e
i
hΦϕ

�
det(P, Pψ)�

det (−Φ��)

����
at the stationary point

,

where the argument of the determinant det (−Φ��) is computed as the sum of arguments
of the eigenvalues of the 2× 2 matrix −Φ��, the argument being take in the set {−π, 0}.

Now let us carry out the computations at the point (x1, p2) = (X1(τ0, ψ0), P2(τ0, ψ0)).
The function τ(x, ψ) is determined from the equation

(57) �P, x−X� = 0,

from which, by differentiating with the properties of the eikonal coordinates taken into
account, we obtain

τψ =
�x−X,Pψ�

1− �x−X,Pτ �
, τx =

P

1− �x−X,Pτ �
.

Thus, the stationary point equations, together with (57), give

�P, x−X� = 0, �Pψ, x−X� = 0, p2 =
P2

1− �x−X,Pτ �
,

whence, by the condition det(P, Pψ) �= 0, we have

x = X, p2 = P2.

For the second derivatives of the phase function at the stationary point, we obtain

Φψψ = −�Xψ, Pψ�,(58)

Φψx2 = P2ψ − �Xτ , Pψ�P2 = P2ψ,(59)

Φx2x2 = PτP2 + P2�x−X,Pτ �
�
x2

= 0,(60)

whence it follows that

det (−Φ��) = det

�
�Xψ, Pψ� −P2ψ

−P2ψ 0

�
= −P 2

2ψ,

arg det (−Φ��)
ε=1
= arg det

�
ε�Xψ, Pψ� −P2ψ

−P2ψ 0

�

ε→0
= arg det

�
0 −P2ψ

−P2ψ 0

�
= −π.

(One eigenvalue is negative, and the other is positive.) Let us show that

(61)
1

√
Js

=

�
det(P, Pψ)

i
�
det (−Φ��)

.

First of all, note that

Js det(P, Pψ) = X1τP2ψ P1P2ψ = P1X1τP
2
2ψ = (P1X1τ + P2X2τ )P

2
2ψ = P 2

2ψ = − det (−Φ��)

and relation (61) holds, because

arg det(P, Pψ) = arg det(−Φ��) + 2 arg i− argJs = π − π − argJs = − argJs.

Now if we use the rule for choosing the argument of the Jacobian in the standard singular
chart and make the above-mentioned rotation, then, in terms of the original coordinates,
we obtain the rule for choosing the argument of the singular Jacobian indicated in Sec. 7.
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APPENDIX 2. REPRESENTATION OF SOLUTIONS
IN A NEIGHBORHOOD OF THE CAUSTICS
VIA THE AIRY AND PEARCY FUNCTIONS

Let us show how the function (29) can be expressed near the caustic via the Airy and
Pearcy functions for a Lagrangian manifold in general position [3]. We include the factors
√
µ and e−iπmj/2 in (29) in the amplitude and consider the integral

(62) I ≡ I(x, h) =
� i

2πh

�1/2
� �

e
i
h τ(ψ,x)A(τ, ψ)|det(P, Pψ)|

1/2
�
τ=τ(ψ,x)

dψ,

where the support suppA(τ, ψ) lies in a neighborhood of a focal point (τ ∗, ψ∗) ∈ Λ2. We
compute the integral (62) in a neighborhood of the projection8 x∗ = X∗ ≡ X(τ ∗, ψ∗) of
that point onto the configuration space R2

x
. Let us subject the Lagrangian manifold Λ2

to the following technical condition (which is satisfied in all specific examples considered
in Sec. 4 and without which the definitive formulas would be much more awkward).

Condition 2. The Lagrangian manifold Λ2 lies in a level set of some Hamiltonian of
the form H(x, p) = F (x, |p|).

There exist two possible case for a focal point (τ ∗, ψ∗) in general position [3,17]:

(a) X∗
ψψ

�= 0, or, equivalently, J ∗
ψ
�= 0 (an A2 singularity, or a fold).

(b) X∗
ψψ

= 0, butX∗
ψψψ

�= 0; or, equivalently, J ∗
ψ
= 0, but J ∗

ψψ
�= 0 (an A3 singularity,

or a cusp).

(Recall that J is the nonsingular Jacobian (18).) It turns out that the integral (62) can
be expressed in a small neighborhood of the point x∗ of the caustic via the Airy function

(63) Ai(y) =
1

π

� ∞

0

cos

�
η3

3
+ yη

�
dη =

1

2π

� ∞

−∞
exp

�
i

�
η3

3
+ yη

��
dη

in case (a) and via the Pearcy functions

(64) P±(v, y) =
1

2π

� ∞

−∞
exp

�
i(yη + vη2 ± η4)

�
dη

in case (b). Namely, the following theorem holds.

Theorem 5. Under the above-mentioned conditions, the following asymptotic expan-
sions hold in an O(h5/6)-neighborhood of the point x∗:

(65) I =
e−iπ/425/6

√
π|P ∗||P ∗

ψ
|

3
√
|�P ∗, X∗

ψψ
�|

6
√
h

A(τ ∗, ψ∗) exp
� i

h
(τ ∗ + �P ∗, x−X∗

�)
�

× Ai

�
−
21/3�P ∗

ψ
, x−X∗�

h2/3 3
√
�P ∗, X∗

ψψ
�

�
+O(

6
√
h)

in case (a) and

(66) I =
e−iπ/4 4

√
6

√
π 4
√
h

√
|P ∗||P ∗

ψ
|

4
√
|�P ∗

ψ
, Xψψψ�|

A(τ ∗, ψ∗) exp
� i

h
(τ ∗ + �P ∗, x−X∗

�)
�

× P±

�
4

�
24

h3|�P ∗
ψ
, Xψψψ�|

�P ∗
ψ
, x−X∗

�,

�
6

h|�P ∗
ψ
, Xψψψ�|

�P ∗
ψψ

, x−X∗
�

�
+O(1)

8Objects calculated at the point (τ∗, ψ∗), are equipped with the superscript ∗ (e.g., X∗
ψψ =

Xψψ(τ∗, ψ∗)), which does not mean Hermitian conjugation in this section.



NEW FORMULAS FOR MASLOV’S CANONICAL OPERATOR 23

in case (b), where the upper sign on P± is taken for �P ∗
ψ
, Xψψψ� > 0 and the lower sign

is taken in the opposite case.

Proof. First, let us derive some general formulas for integrals of rapidly oscillating
functions. Let z = (z1, . . . , zn) be a vector of real parameters, |z| ≤ ε0, and let Φ(β, z) be
a smooth function with Taylor series expansion

Φ(β, z) = Φ(3)(β, z) +O(β4) = Φ(4)(β, z) +O(β5),

Φ(3) = q0(z) + q1(z)β +
q2(z)

2
β2 +

q3(z)

6
β3 +O(β4), Φ(4) = Φ(3) +

q4(z)

24
β4

whose coefficients qj(z) in turn have the expansions

(67)
q0 = a0 + �b0, z�, q1 = a1 + �b1, z�+O(z2), q2 = a2 + �b2, z�+O(z2),

q3 = a3 +O(z), q4 = a4 +O(z).

Let f(β, z) be a smooth function vanishing for |β| > β0, where β0 is sufficiently small.

Lemma 8. (i) If a3(0) �= 0, then, for z in an O(h5/6)-neighborhood of zero, one has
�

R
f(β, z)e

iΦ(β,z)
h dβ =

�

R
f(0, z)e

iΦ(3)(β,z)
h dβ +O(h2/3)(68)

= 2πf(0, z) 3

�
2h

q3
exp

� i

h

�
q0 +

q32
3q23

−
q1q2
q3

��
sign(q3)Ai

� 2q1q3 − q22)

22/3q4/33 h2/3

�
+O(h2/3)(69)

= 2πf(0, 0) 3

�
2h

|a3|
exp

� i

h
(a0 + �b0, z�)

�
Ai

� 2�b1, z�

22/3h2/3 3
√
a3

�
+O(h2/3).(70)

(ii) If a3 = 0 but a4 �= 0, then, for z in an O(h7/8)-neighborhood of zero,
�

R
f(β, z)e

iΦ(β,z)
h dβ =

�

R
f(0, z)e

iΦ(4)(β,z)
h dβ +O(h1/2)(71)

= f(0, z) 4

�
24h

|a4|
exp

� i
h
(q0 ± (−q1q3 +

q2q23
2q4

−
q43
8q24

))
�

× P±
�

4

�
24

h3|q4|

�
q1 +

q33
3q24

−
q2q3
q4

�
,

�
6

h|a4|
(q2 −

a23
2q4

)
�
+O(h1/2)

(72)

= f(0, 0) 4

�
24h

|a4|
exp

� i
h
(a0 + �b0, z�)

�

× P±
�

4

�
24

h3|a4|
�b1, z�,

�
6

h|a4|
�b2, z�

�
+O(h1/2),

(73)

where the sign on P± is taken according to the sign of a4.

Proofof Lemma 8. (i) Since q3(0) �= 0, it follows that |q3(z)| > C > 0 in an O(h5/6)-
neighborhood of the point z = 0, where the constant C is independent of h. This permits
one to apply the theory in [4, 11] to the original integral and obtain (68). To proceed
to (69), in the integral (63) one should make the change of variables β = qy − a2/q3,
q = 3

�
2h/q3, choosing the sign with regard for the sign of q3. Since |z| < h5/6, we see
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that the expansion (67) gives

q0 +
q32
3q23

−
q1q2
q3

= a0 = a0 + �b0, z�+O(z2),
2q1q3 − q22

22/3q4/33 h2/3
=

2�b1, z�

22/3 3
√
a3h2/3

+
O(z2)

h2/3
;

moreover, O(z2)h−2/3 = O(h) and O(z2)h−1 = O(h2/3). Hence in an O(h5/6)-neighbor-
hood of the point z = 0 one can replace (69) by (70).

The proof of (ii) is similar. First, using the argument in [4,11], we obtain (71). To
obtain (72) for q4 > 0, we make the change of variables β = qy − q3/a4, q = 4

�
24h/q4 in

the integral
�
R f(0, z)e

iΦ(4)(β,z)
h dβ. For q4 < 0, we consider the complex conjugate integral

and use the substitution qj → −qj to reduce the proof of (72) to the preceding. Again
using the expansion for qj(z), we find that

q0 − q1q3 +
q2q23
2q4

−
q43
8q24

= q0(0) + �b0, z�+O(z2),

q1 +
q
3
3

3q24
−

q2q3

q4

h3/4 4
√
q4

=
�b1, z�
4
√
a4h3/4

+
O(z2)

h3/4
,

q2 −
q
2
3

2q4
√
hq4

=
�b2, z�
√
ha4

+
O(z2)
√
h

.

If we assume that |z| < h7/8, then O(z2)h−3/4 = O(h), O(z2)h−1/4 = O(h3/2), O(z2)h−1 =
O(h3/4), and in an O(h5/6)-neighborhood of the point z = 0 we obtain (73). �

Remark. The passage from (71) to (73) produces an error of O(h3/4). Hence the
largest error results from the truncation of the amplitude and phase function of the original
integral.

Let us return to the proof of the theorem. Let us apply Lemma 8 to the integral (62).
The change of variables β = ψ − ψ∗, z = x−X∗ in (62) gives the integrals (68) and (71)
with Φ = τ(ψ∗ + β,X∗ + z) and f = g(τ, ψ)

�
| det(P, Pψ)|. Next, let us compute the

coefficients aj and b0, b1, b2 in (67) by using (25) and by computing the derivatives of Pψ,
Xψψ etc. at the focal point (τ ∗, ψ∗). By differentiating the relations �P,Xψ� = 0 and
F (x, |p|) = const (see condition 2) with respect to ψ, we obtain

�Pψ, Xψ�+ �P,Xψψ� = 0, �Pψψ, Xψ�+ 2�Pψ, Xψψ�+ �P,Xψψψ� = 0,

�Pψψψ, Xψ�+ 3�Pψψ, Xψψ�+ 3�Pψ, Xψψψ�+ �P,Xψψψψ� = 0,

�Pψ, P � = n(X)�nx(X), Xψ�

By setting ψ = ψ∗ and τ = τ ∗, we find that

X∗
ψ
= 0, �P ∗, X∗

ψψ
� = 0, �P ∗, X∗

ψψψ
� = −2�P ∗

ψ
, X∗

ψψ
� in case (a),(74)

X∗
ψ
= X∗

ψψ
= 0, �P ∗, X∗

ψψψ
� = 0, �P ∗, X∗

ψψψψ
� = −3�P ∗

ψ
, X∗

ψψψ
� in case (b),(75)

�P ∗
ψ
, P ∗

� = 0(76)

Note that the 4-vector

�
Pψ

Xψ

�
is nondegenerate, because dimΛ = 2. Hence P ∗

ψ
�= 0 and

(77) | det(P ∗, P ∗
ψ
)| = |P ∗

||P ∗
ψ
|.

Let us find the coefficients aj and bj from the expansion ψ(β, z) = τ(ψ∗ + β,X ∗+z)τ ∗ +
∆(β, z), where τ(ψ, x) is the solution of Eq. (25); to this end, we transform (25) by setting
X∗ = X(τ ∗, ψ∗), X1(β) = X(ψ∗ + β, τ ∗) − X∗, and ∆ = τ − τ ∗ and by considering the
function

Q(β,∆) = X(ψ∗ + β, τ ∗+∆)−X∗
−X1(β)−Xτ (ψ

∗ + β, τ ∗+∆)∆.
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One can readily verify that Q|∆=0 = 0 and Qτ |∆=0 = 0 and hence Q = O(∆2). Let
us substitute the expansion X(ψ∗ + β, τ ∗ + ∆) = X∗ + X1(β) + ∆Xτ (ψ∗ + β, τ ∗ + ∆)
into Eq. (25) and take into account the fact that �P,Xτ � = 1. We obtain ∆ = �P (ψ∗ +
β, τ ∗ + ∆), x − X∗ − X1(β) − Q�, or ∆ = �P (ψ∗ + β, τ ∗ + ∆), z − X1(β)� + O(∆2).
Next, P (ψ∗ + β, τ ∗ + ∆) = P (ψ∗ + β, τ ∗) + ∆Pτ (ψ∗ + β, τ ∗) + O(∆2) and hence ∆ =
�P (ψ∗ + β, τ ∗) + ∆Pτ (ψ∗ + β, τ ∗), z −X1(β)�+O(∆2), or

∆ =
�P (ψ∗ + β, τ ∗), z −X1(β)�

1− �
∂P

∂τ
(ψ∗ + β, τ ∗), z −X1(β)�

+O(∆2)

= −
�P (ψ∗ + β, τ ∗), X1(β)�

1 + �
∂P

∂τ
(ψ∗ + β, τ ∗), X1(β)�

+
�P (ψ∗ + β, τ ∗), z�

1 + �
∂P

∂τ
(ψ∗ + β, τ ∗), X1(β)�

−
�P (ψ∗ + β, τ ∗), X1(β)��∂P

∂τ
(ψ∗ + β, τ ∗), z�

(1 + �
∂P

∂τ
(ψ∗ + β, τ ∗), X1(β)�)2

+O(∆2) +O(z2)

By using (74) and (75), we find that

�P (ψ∗ + β, τ ∗), X1(β)� =
�
P ∗,

β3

6
X∗

ψψψ
+

β4

24
X∗

ψψψψ

�
+
�
P ∗
ψ
,
β3

2
X∗

ψψ
+

β4

6
X∗

ψψψ

�

+O(β5) =
�
P ∗
ψ
,
β3

6
X∗

ψψ
+

β4

24
X∗

ψψψ

�
+O(β5),

�∂P
∂τ

(ψ∗ + β, τ ∗), X1(β)
�
= O(β2).

A standard argument of the iteration method readily shows that, to find the coeffi-
cients (67), in the last formula it suffices to retain the terms

−
�P (ψ∗ + β, τ ∗), X1(β)�

1 +O(β2)
+

�P (ψ∗ + β, τ ∗), z�

1 + β2�P ∗
τ
, X∗

ψψ
�/2 +O(β3)

= −

�
P ∗
ψ
,
β3

6
X∗

ψψ
+

β4

24
X∗

ψψψ

�

+O(β5) +
�
P ∗ + βP ∗

ψ
+

β2

2
P ∗
ψψ

+O(β3), z
�
−

β2

2
�P ∗, z��P ∗

τ
, X∗

ψψ
�.

The iteration method gives the following formulas for the desired coefficients:

a0 = τ ∗, a1 = a2 = 0, a3 = −�P ∗
ψ
, X∗

ψψ
�, a4 = −�P ∗

ψ
, X∗

ψψψ
�,(78)

b0 = �P ∗, x−X∗
�, b1 = �P ∗

ψ
, x−X∗

�,

b2 = �P ∗
ψψ

, x−X∗
� − �P ∗, x−X∗

��P ∗
τ
, X∗

ψψ
� = (in case (b) = �P ∗

ψψ
, x−X∗

�.(79)

Now, by substituting these coefficients into (70) and (73) and by combining them with (76)
and (77), we arrive at the formulas in Theorem 5. �

References

[1] V. I. Arnold, Funkts. Anal. i Prilozhen., 1:1 (1967), 1–14. English transl: Funct. Anal. Appl., 1:1
(1967), 1–13.

[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978.
[3] V. I. Arnold, Singularities of Caustics and Wave Fronts, Fazis, Moscow, 1996. (Russian)
[4] V. I. Arnold, S. M. Gussein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1,
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