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SIGNAL TO NOISE RATIO ANALYSIS IN VIRTUAL SOURCE

ARRAY IMAGING

JOSSELIN GARNIER∗, GEORGE PAPANICOLAOU† , ADRIEN SEMIN‡ , AND

CHRYSOULA TSOGKA§

Abstract. We consider correlation-based imaging of a reflector located on one side of a passive
array where the medium is homogeneous. On the other side of the array the illumination by remote
impulsive sources goes through a strongly scattering medium. It has been shown in [J. Garnier and
G. Papanicolaou, Inverse Problems 28 (2012), 075002] that migrating the cross correlations of the
passive array gives an image whose resolution is as good as if the array was active and the array
response matrix was that of a homogeneous medium. In this paper we study the signal to noise
ratio of the image as a function of statistical properties of the strongly scattering medium, the signal
bandwidth and the source and passive receiver array characteristics. Using a Kronecker model for the
strongly scattering medium we show that image resolution is as expected and that the signal to noise
ratio can be computed in an essentially explicit way. We show with direct numerical simulations
using full wave propagation solvers in random media that the theoretical predictions based on the
Kronecker model are accurate.

Key words. Imaging, wave propagation, random media, cross correlation, Kronecker model.

AMS subject classifications. 35R60, 86A15.

1. Introduction. Images of reflectors obtained with sensor arrays have resolu-
tion that depends on the size of the array, the central wavelength and bandwidth of
the probing signal, and the distance of the reflector from the array, the range. The
resolution improves as the size of the array increases and is best when it encloses
the reflector. It also improves as the bandwidth increases. This is because the du-
ration of the probing pulses sent by the array is proportional to the inverse of the
bandwidth and the identification of the received echoes is more accurate for narrow
pulses. However, image resolution deteriorates rapidly when the medium between the
reflector to be imaged and the sensor array is inhomogeneous and multiple scattering
generates recorded signals, traces, in which the echoes from the reflector to be imaged
are obscured.

If it is possible to have a passive, auxiliary array, as shown in Figure 2.1, that
is closer to the reflector to be imaged, then the effect of scattering by the medium
between the two arrays can be effectively minimized. This was observed in exploration
geophysics contexts [1, 23, 25] and studied mathematically in [17, 18]. Since the traces
recorded at the auxiliary passive array appear to be asynchronously generated, with
the illumination having passed through the scattering medium, it is necessary to image
by migrating, or back-propagating, the cross correlations of the traces. In fact, the
use of cross correlations virtually eliminates the effects of multiple scattering when
the imaging setup is as in Figure 2.1. As noted in [17, 18], this is because using a time
reversal interpretation of the cross correlations allows us to identify the matrix formed
by them as the array response matrix of the auxiliary array as if it were in active
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rather than passive mode. This is why this type of imaging with cross correlations is
called virtual source imaging. We may also motivate imaging by migrating the cross
correlations by analogy with ambient noise imaging [14, 15, 16, 25], if we think of
wave propagation through the randomly scattering medium as producing signals that
appear to come from spatially uncorrelated noise sources. If the sources surround the
auxiliary array and the reflector to be imaged then the Kirchhoff-Helmholtz identity
can be used [15, 25], which shows that the cross correlation of signals from different
sensors of the auxiliary array is essentially equal to the symmetrized Green’s function
between these sensors and hence includes travel time information from the reflector
to be imaged. This is the information needed in migration imaging. If the source
array is spatially limited, then the diversity of the illumination coming from it will
likely be enhanced by passing through the scattering medium as it will appear to
have originated from a wider array than the one that generated it. This can be shown
analytically to be the case for isotropic random media [18].

The purpose of this paper is to analyze the signal to noise ratio (SNR) of the
image using a Kronecker model for the effects of multiple scattering, which is a simple
but effective phenomenological model that works well in virtual source imaging. This
is shown by comparing the theoretical results with those obtained with fully resolved
direct numerical simulations of wave propagation in strongly scattering media, and
also with the asymptotic theoretical results obtained in the random paraxial regime.
The Kronecker model and the representation of the array data is given in Section 3.
The mean of the image is calculated in Section 4 and the SNR in Section 6. This
section contains the main theoretical results of the paper in Proposition 6.2. The
numerical simulations are presented in Section 7 and they support the theory very
well.

2. Formulation of the imaging problem. To describe more precisely the
imaging problem, we give a brief mathematical formulation for it. The space coor-
dinates are denoted by �x = (x, z) ∈ R2 × R. The waves are emitted by a point
source located at �xs which belongs to an array of sources (�xs)s=1,...,Ns located at the
surface, in the plane z = 0. Throughout the paper we use the subscript s (and s

�) in
�xs to indicate source location. The waves are recorded by an auxiliary passive array
of receivers (�xq)q=1,...,Nq located in the plane z = −L (see Figure 2.1). We use the
subscript q (and q

�) in �xq to denote receiver locations on the auxiliary array. The
recorded signals form the data matrix:

�
u(t, �xq; �xs), t ∈ R, q = 1, . . . , Nq, s = 1, . . . , Ns

�
. (2.1)

The waves can also be recorded at the illuminating, active array as well, so as to com-
pare the quality of images obtained when an auxiliary passive array is not available.
We denote the data matrix in this case by

�
u(t, �xr; �xs), t ∈ R, r = 1, . . . , Nr, s =

1, . . . , Ns

�
, with the difference being that �xr denotes the location of a receiver on the

surface array (in the plane z = 0) while �xq that of a receiver on the auxiliary passive
array (in the plane z = −L). We use the subscript r (and r

�) in �xr to denote receiver
locations on the primary array in the plane z = 0.

The wave field (t, �x) �→ u(t, �x; �xs) satisfies the scalar wave equation

1

c(�x)2
∂
2
u

∂t2
−∆u = ∇ · �F (t, �x; �xs), (2.2)

where c(�x) is the speed of propagation in the medium and the forcing term (t, �x) �→
�F (t, �x; �xs) models the source. We take the source to be point-like, located at �xs =
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0
z
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Fig. 2.1. Sensor array imaging of a reflector through a scattering medium in the region z ∈
(−L, 0). �xs is a source, �xr is a receiver in the surface array, �xq is a receiver in the auxiliary array,
and �y is the reflector.

(xs, 0), and emitting a pulse F (t) with carrier frequency ω0 and bandwidth B:

�F (t, �x; �xs) = �ezF (t)δ(z)δ(x− xs). (2.3)

We consider in this paper a randomly scattering medium that occupies the section
z ∈ (−L, 0) and is sandwiched in between two homogeneous half-spaces:

1

c(�x)2
=

1

c
2
0

�
1 + µ(�x)

�
, �x ∈ R2 × (−L, 0). (2.4)

Here µ(�x) is a zero-mean stationary random process modeling the random hetero-
geneities present in the medium.
The homogeneous half-space z < −L is matched to the random section z ∈ (−L, 0).
We want to image a reflector below the random medium, placed at �y = (y,−Ly),
Ly > L. The reflector is modeled by a local change of the speed of propagation of the
form

1

c(�x)2
=

1

c
2
0

�
1 +

σref

|Ωref |
1Ωref (�x− �y)

�
, �x ∈ R2 × (−∞,−L),

where Ωref is a small domain and σref is the reflectivity of the reflector.

The goal is to image the location of the reflector from the data set (2.1). We will
study the imaging function introduced in [17] that migrates the cross correlation of
the recorded signals:

ICC(�y
S) =

Nq�

q,q�=1

C
�
T (�xq, �y

S) + T (�yS
, �xq�), �xq, �xq�

�
, (2.5)

where T (�x, �y) = |�x− �y|/c0 is the travel time from �y to �x in a homogeneous medium
with speed of propagation c0 and

C
�
τ, �xq, �xq�

�
=

Ns�

s=1

�

R
u
�
t, �xq; �xs

�
u
�
t+ τ, �xq� ; �xs

�
dt. (2.6)
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We refer to the argument �yS as the search point in the image domain and we expect
the imaging function to have a peak when �yS is at or near the true reflector location �y.

The usual travel time migration imaging with the active array is done with the
Kirchhoff Migration imaging function [2, 3]

IKM(�yS) =
Ns�

s=1

Nr�

r=1

u
�
T (�xr, �y

S) + T (�yS
, �xs), �xr; �xs

�
,

which for strongly scattering media gives a bad image, as is clearly seen in our nu-
merical simulations in Section 7.

3. Representation and statistical description of the recorded field. We
address the finite source aperture case, in which the sources do not cover the whole
surface z = 0. We now state the two main hypotheses under which the results in this
paper hold. The first hypothesis deals with the statistics of the field in the random
medium. The second hypothesis deals scattering from the reflector to be imaged. The
Fourier transform is defined here as

F̂ (ω) =

�
F (t)eiωt

dt.

3.1. The Kronecker model for propagation in a strongly scattering

medium. We assume that the medium is strongly scattering so that the complex
field that is transmitted through the random medium has Gaussian statistics, mean
zero, and cross correlations of the form

E
�
û0(ω, �xq; �xs)û0(ω

�
, �xq� ; �xs�)

�
= 0,

and

E
�
û0(ω, �xq; �xs)û0(ω�, �xq� ; �xs�)

�
= F̂ (ω)F̂ (ω�) exp

�
− (ω − ω

�)2

ω2
c

�

× exp
�
− |xq − xq� |2

X2
cq

− |xs − xs� |2

X2
cs

�
, (3.1)

for ω, ω� in the bandwidth [ω0−B/2, ω0+B/2] of the source, for �xs, �xs� ∈ [−b/2, b/2]2×
{0} in the source array, and for �xq, �xq� ∈ [−a/2, a/2]2×{−L} in the auxiliary receiver
array. We refer to (3.1) as the wave field covariance.

There should be a multiplicative constant in the formula (3.1) but we take it
equal to one as it does not play any role in the following. The parameter ωc is the
correlation frequency of the incoherent field in the plane z = −L of the auxiliary
receiver array, Xcq is the correlation radius of the field at the auxiliary receiver array
(when emitted from a point source at the source array), and Xcs is the correlation
radius of the field at the source array (when emitted from a point source at the
auxiliary receiver array). Since the complex field has Gaussian statistics, these three
parameters fully characterize the statistical properties of the illumination of the region
below the auxiliary receiver array, where the reflector to be imaged is located.

The separable form (3.1) of the field covariance function (separable in functions
of the frequency offsets ω − ω

�, the source offsets xs − xs� , and the receiver offsets
xq−xq�) is a model that has been proposed and used in the wireless telecommunication
literature, in order to analyze the behavior of telecommunication systems in strongly



Signal to noise ratio analysis in virtual source array imaging 5

scattering and statistically homogeneous random media. It is called the Kronecker
model [8]. The Gaussian form of the covariance function (in frequency offsets and
position offsets) allows us to get simple closed-form formulas but this hypothesis can
be relaxed.

The assumption of Gaussian statistics for the field is not used in the resolution
analysis of the imaging function, but it is used in the SNR analysis. It can be relaxed
in the sense that we only need a sub-Gaussianity assumption, that is to say, that the
fourth-order moments can be bounded by those of a Gaussian process of the same
covariance. It is widely accepted that in strongly scattering media the statistics of
the wave fields (for at least lower moments) become Gaussian-like resulting in the
exponential distribution for the intensity [13, 22, 24], which is consistent with the
experimental finding of the saturation of intensity fluctuation with the scintillation
index approaching unity [20]. The fourth-order moment properties coming from the
Gaussian assumption are used frequently, in particular in wireless telecommunications
[8, 10, 21]. It is called Rayleigh fading.

It is not in the scope of this paper to relate the proposed model for the com-
plex field that is transmitted through the random medium in [−L, 0] to a particular
asymptotic regime for wave propagation in random media. Rather we use this model
here as a benchmark to derive the results that direct numerical simulations clearly
support. We refer the reader to [18] where two different regimes (random paraxial
regime and randomly layered regime) are considered in detail in the same context
of virtual source imaging. The field covariance function in a more general imaging
context was also studied in the random paraxial regime in [5, Appendix B] and in the
random travel time model in [4].

3.2. Born approximation for the field scattered by the reflector. We
consider only the Born approximation for the point-like reflector, as in [17, 18], so
that the field recorded at the receiver �xq is given by

û(ω, �xq; �xs) = û0(ω, �xq; �xs)

−2i
ω
3
σref

c
3
0

�

R2

Ĝ0(ω, �xq; �y)Ĝ0(ω, �y; (x,−L))û0(ω, (x,−L); �xs)dx,(3.2)

where Ĝ0(ω, �x; �y) is the homogeneous three-dimensional Green’s function

Ĝ0(ω, �x; �y) =
1

4π|�x− �y| exp
�
i
ω

c0
|�x− �y|

�
. (3.3)

This Green’s function is used in (3.2) since the medium is assumed homogeneous in
the region z ∈ [−Ly,−L] between the auxiliary receiver array and the reflector.

The expression (3.2) can be obtained from the following arguments. First the
classical Born approximation for the reflector [7, section 13.1.2] gives that

û(ω, �xq; �xs) = û0(ω, �xq; �xs) + ω
2

�

R3

Ĝ0(ω, �xq; �z)
� 1

c2(�z)
− 1

c
2
0

�
û0(ω, �z; �xs)d�z

= û0(ω, �xq; �xs) +
ω
2
σref

c
2
0|Ωref |

�

Ωref

Ĝ0(ω, �xq; �y + �z)û0(ω, �y + �z; �xs)d�z,

where û0(ω, �z; �xs) is the field transmitted through the random medium that illumi-
nates the point �z. If the reflector is small, the point approximation gives [17]

û(ω, �xq; �xs) = û0(ω, �xq; �xs) +
ω
2
σref

c
2
0

Ĝ0(ω, �xq; �y)û0(ω, �y; �xs), (3.4)
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where û0(ω, �y; �xs) is the field that illuminates the reflector. From the Green’s theorem,
we have

û0(ω, �y; �xs) =

�

R2

∂zû0(ω, (x,−L); �xs)Ĝ0(ω, (x,−L); �y)

−û0(ω, (x,−L); �xs)∂zĜ0(ω, (x,−L); �y)dx,

which can be approximated by

û0(ω, �y; �xs) = −2i
ω

c0

�

R2

û0(ω, (x,−L); �xs)Ĝ0(ω, (x,−L); �y)dx. (3.5)

Substituting (3.5) into (3.4) gives (3.2).

4. The mean imaging function. From now on we assume that the auxiliary
receiver array is a regular grid that covers the region [−a/2, a/2]2 × {−L}, and we
denote by ∆Xq the grid mesh size, with a

2
/∆X

2
q = Nq. Similarly we assume that the

source array is a regular grid that covers the region [−b/2, b/2]2×{0}, and we denote
by ∆Xs the grid mesh size, with b

2
/∆X

2
s = Ns. Remember that the support of the

Fourier transform F̂ (ω) of the source in the positive frequencies is [ω0−B/2, ω0+B/2].
ω0 is the central frequency and λ0 = 2πc0/ω0 is the central wavelength of the source.
The following proposition (proved in Appendix A) gives the full expression of the
expectation of the imaging function, from which we can determine the resolution of
the image.

Proposition 4.1. We consider the regime in which Xcq � a � Ly − L. We
also assume c0/B � (Ly−L) and ∆Xq � λ0(Ly−L)/a. We express the search point
near the reflector as �yS = (y + ξ,−Ly − η). The mean imaging function is given by

E
�
ICC(�y

S)
�
=

NsN
2
q

a4

σrefX
2
cq

8πc30(Ly − L)2

�

R
(−iω

3)|F̂ (ω)|2 exp
�
− 2i

ω

c0
η
�

×
� �

[−a/2,a/2]2
exp

�
i
ωξ · (xq� − y)

c0(Ly − L)

�
dxq�

�

×
� �

[−a/2,a/2]2
exp

�
−

X
2
cqω

2|xq − y|2

4c20(Ly − L)2
+ i

ωξ · (xq − y)

c0(Ly − L)

�
dxq

�
dω. (4.1)

We can briefly comment on the hypotheses of Proposition 4.1. The small aperture
hypothesis a � Ly−L leads to the paraxial approximation that simplifies the expres-
sions but does not change qualitatively the results. The hypothesis Xcq � a is the
minimal hypothesis that ensures that the field can be considered as spatially incoher-
ent across the auxiliary receiver array. The hypothesis c0/B � (Ly − L) means that
the pulse width is smaller than the travel time from the auxiliary receiver array to
the reflector, which is the minimal hypothesis to have some range information in the
recorded data. The hypothesis ∆Xq � λ0(Ly −L)/a allows us to use the continuum
approximation for the sums over xq,xq� , which become integrals over [−a/2, a/2]2 in
(4.1).

The following proposition is straightforward and provides a simple form for the
point spread function, the imaging function for a point reflector, from which the
resolution of the image is assessed. The expression of the peak amplitude of the
imaging function will be used when we study the signal-to-noise ratio of the image in
the next section.



Signal to noise ratio analysis in virtual source array imaging 7

Proposition 4.2. We assume the same hypotheses as in Proposition 4.1 and
additionally that B � ω0. If we consider that the reflector location is �y = (0,−Ly),
then we have the following results for the search point �yS = (y + ξ,−Ly − η).

1. If Xcq � λ0(Ly−L)
a , then

E
�
ICC(�y

S)
�
= −

NsN
2
qσrefω

3
0X

2
cq

4πc30(Ly − L)2

� � ∞

0
|F̂ (ω)|2 sin

�
2
ω

c0
η
�
dω

�

×sinc2
�

ω0aξ1

c0(Ly − L)

�
sinc2

�
ω0aξ2

c0(Ly − L)

�
. (4.2)

2. If Xcq � λ0(Ly−L)
a , then

E
�
ICC(�y

S)
�
= −

NsN
2
qσrefω0

a2c0

� � ∞

0
|F̂ (ω)|2 sin

�
2
ω

c0
η
�
dω

�

×sinc
�

ω0aξ1

c0(Ly − L)

�
sinc

�
ω0aξ2

c0(Ly − L)

�
. (4.3)

The sinc function is defined by sinc(s) = sin(s)/s. Here we have used the fact
that ω → |F̂ (ω)|2 is an even function since t → F (t) is real-valued.

The hypothesis B � ω0 allows us to simplify the expression (4.1) of the mean
imaging function by approximating the ω-integrated transverse spatial profile (in ξ)
by its value at ω = ω0, which gives the sinc functions with radius λ0(Ly − L)/a.

If F̂ (ω) = 1[ω0−B/2,ω0+B/2](|ω|), then the longitudinal profile (in η) is also a sinc
function, with radius c0/B, modulated by a rapid sin function:

�
|F̂ (ω)|2 sin

�
2
ω

c0
η
�
dω = B sinc

�
Bη

c0

�
sin

�2ω0η

c0

�
.

Proposition 4.2 shows that the cross-range resolution is λ0(Ly−L)/a and the range
resolution is c0/B. These resolution formulas are the classical Rayleigh resolution
limits obtained with active arrays in a homogeneous medium [9].

We note the existence of two regimes: when Xcq � λ0(Ly−L)
a , which means

that the transverse correlation radius of the illumination field is quite large, then the
point spread function has the form of a simple sinc function, as if we were using a
single coherent (say plane wave) illumination and we were migrating the auxiliary

receiver array data vector. When Xcq � λ0(Ly−L)
a , which means that the transverse

correlation radius of the illumination field is quite small, then the point spread function
has the form of a sinc2 function, as if the sensors of the auxiliary receiver array could
be used as active point sources and we were migrating the full array response matrix
of the array. This shows that the decorrelation properties of the illumination field
play an essential role as they allow to quantify the diversity of the illumination.

We also note that the density of the auxiliary receiver array plays no role in the
resolution of the imaging function (provided ∆Xq � λ0(Ly − L)/a). We will see in
the next section that it plays a role in the statistical stability of the image.

5. Connection with the random paraxial regime. In the previous section
Propositions 4.1 and 4.2 were derived with the Kronecker model. In this section we
show that the same results can be obtained from a multiscale analysis starting from
the wave equation in the random paraxial regime. The comparison of these two series
of results shows that the Kronecker model can be used to analyze the properties of
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the correlation-based imaging function. In more detail, we relate the parameter Xcq

of the Kronecker model to the physical parameters of the random paraxial model in
Subsection 5.1. In Subsection 5.2 we compare the results obtained in this paper with
the ones obtained in [18] using a multiscale analysis in the random paraxial regime,
and we show that they are equivalent upon the suitable identification of the parameter
Xcq of the Kronecker model.

5.1. The form of the covariance function. The form (3.1) of the field covari-
ance function has been derived in different situations in which scattering is relatively
strong. In particular it was derived in the random paraxial regime in [5, Appendix
B] and in [10, 11]. Without reproducing the full analysis, we can briefly examine the
dependence of the covariance function with respect to the receiver offset in the case
of a medium with isotropic three-dimensional weak fluctuations µ(�x) of the index of
refraction. When the conditions for the paraxial approximation are fulfilled, backscat-
tering can be neglected and wave propagation is governed by an Itô-Schrödinger equa-
tion with a random potential that has the form of a Gaussian field whose covariance
function is given by [19]

E
�
B(x, z)B(x�

, z
�)
�
= γ0(x− x�)

�
|z| ∧ |z�|

�
, (5.1)

with

γ0(x) =

� ∞

−∞
E[µ(0, 0)µ(x, z)]dz. (5.2)

The first two moments of the field transmitted through the random medium in z ∈
(−L, 0) have the following expressions at the auxiliary receiver array:

E
�
û0(ω, �xq)

�
= ûhomo(ω, �xq) exp

�
− γ0(0)ω2

L

8c20

�
, (5.3)

where γ0 is given by (5.2) and ûhomo is the solution in the homogeneous medium, and

E
�
û0(ω, �xq)û0(ω, �xq�)

�
= ûhomo(ω, �xq)ûhomo(ω, �xq�) exp

�
−γ2(xq − xq�)ω2

L

4c20

�
, (5.4)

where γ2(x) =
� 1
0 γ0(0) − γ0(xs)ds. These are classical results (see [20, Chapter 20]

and [18]) once the Itô-Schrödinger equation has been proved to be correct. In the case
in which scattering is strong so that γ0(0)ω2

0L/(8c
2
0) becomes larger than one, then

the first moment (5.3) is vanishing and the second moment (5.4) takes the form

E
�
û0(ω, �xq)û0(ω, �xq�)

�
= ûhomo(ω, �xq)ûhomo(ω, �xq�) exp

�
− |xq − xq� |2

X2
cq

�
,

for any ω ∈ [ω0 −B/2, ω0 +B/2], where Xcq given by

X
2
cq =

12c20
γ̄2ω

2
0L

=
3λ2

0

π2γ̄2L
, (5.5)

is the correlation radius of the field at the auxiliary receiver array, λ0 = 2πc0/ω0 is the
central wavelength, and γ̄2 comes from the expansion γ0(x) = γ0(0)− γ̄2|x|2+o(|x|2).

The form (3.1) of the field covariance function was also obtained (along with
higher-order moments) with a simpler model of the random medium, the so-called



Signal to noise ratio analysis in virtual source array imaging 9

random travel time model, that affects only the phases and gives random wave front
distortions [4]. In this model, the field in the random medium is the unperturbed field
with an additional random phase whose standard deviation is much larger than 2π.
This large phase explains why the mean field is zero. The large phases in the product
of fields in the covariance function compensate each other, because one of the fields is
complex-conjugated, and this compensation happens only when the frequencies and
the receivers are close to each other. This explains the form of the covariance function
(3.1).

5.2. The form of the imaging function. We give a brief review of the results
that can be found in [18] that give the expression of the mean imaging function in
the random paraxial regime and compare them with the results of Proposition 4.2.

At the end of Section 3.4 [18], we find the very same results as in Proposition 4.2
if we take care to identify the effective receiver aperture aeff in Section 3.4 [18] with
λ0(Ly − L)/Xcq. According to Section 3.4 [18], the effective receiver aperture aeff is
the diameter of the piece of the auxiliary receiver array that is useful for imaging the
reflector just below it. The identification of aeff with λ0(Ly − L)/Xcq makes sense
because a field with angular diversity in a cone with width λ0/Xcq and with an offset
larger than aeff will not illuminate the reflector at distance Ly−L, while a beam with
an offset smaller than aeff will illuminate the reflector.

The two cases identified in Proposition 4.2, i.e. Xcq � λ0(Ly − L)/a, resp.
Xcq � λ0(Ly − L)/a, correspond to aeff � a, resp. aeff � a, as stated at the end of
Section 3.4 [18], where we had already identified the two regimes with sinc or sinc2.
The results are again in agreement.

Furthermore, since aeff � γ̄
1/2
2 L

3/2(Ly−L)/Ly � γ̄
1/2
2 L

1/2(Ly−L) (see Eqs. (2.3-

2.4) in [18]), we can again identify Xcq � λ0/(γ̄
1/2
2 L

1/2) as in (5.5).
These series of results, obtained on the one hand with the paraxial wave model

and on the other hand with the Kronecker model, are fully consistent with each other.
This shows that the Kronecker model can be used to analyze virtual source imaging.

6. Statistical stability of the imaging function. We now address the sta-
tistical stability of the image. Our goal is to get an approximate formula for what
we call the signal-to-noise ratio (SNR) defined as the mean imaging function at the
reflector position over the standard deviation of the imaging function:

SNRCC =
|E[ICC(�y)]|

Var(ICC(�yS))1/2
, (6.1)

for �yS in the vicinity of �y. This is not what is usually called SNR, the ratio of
signal to noise energy, since there is no source of noise energy here. But the medium
inhomogeneities do create fluctuations in the wave fields and hence in the signals
received by the auxiliary array and so (6.1) does measure the relative size of the
fluctuations in the image much as in the usual SNR. The following proposition is
proved in Appendix B and it describes the variance of the imaging function as a
function of the parameters of the problem.

Proposition 6.1. We assume the same hypotheses as in Proposition 4.1 and
additionally b � Xcs and ωc � B. We consider a search point �yS in the vicinity of
�y. We denote

Is =
Ns�

s,s�=1

exp
�
− 2|xs − xs� |2

X2
cs

�
. (6.2)
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1. If ∆Xq > Xcq, then

Var
�
ICC(�y

S)
�
= IsN

2
q
π
1/2

21/2
ωc

� �
|F̂ (ω)|4dω

�
. (6.3)

2. If ∆Xq < Xcq and Xcq � λ0(Ly − L)/a, then

Var
�
ICC(�y

S)
�
=

IsN
2
q

∆X4
q

π
5/2

ωcX
4
cq

21/2

� �
|F̂ (ω)|4dω

�
. (6.4)

3. If ∆Xq < Xcq and Xcq � λ0(Ly − L)/a, then

Var
�
ICC(�y

S)
�
=

Is

∆X8
q

27/2π9/2
ωcc

4
0(Ly − L)4

ω
4
0

� �
|F̂ (ω)|4dω

�
. (6.5)

This proposition shows in particular that the ratio of the inter-distance between
receivers ∆Xq and the correlation radius of the illumination field Xcq plays an impor-
tant role in the variance of the fluctuations of the image. By combining the results
of Proposition 4.2 and Proposition 6.1, we get the following result (see Appendix

C). Recall that N1/2
s ∆Xs = b is the source array aperture and N

1/2
q ∆Xq = a is the

auxiliary receiver array aperture.
Proposition 6.2. As a function of the inter-distance between receivers ∆Xq,

the inter-distance between sources ∆Xs, and the bandwidth of the source B, the SNR
varies as

SNRCC ≈
σrefX

2
cq

λ
3
0(Ly − L)2

�
b

∆Xs ∨Xcs

��
a

∆Xq ∨Xcq

�2� B

ωc

�1/2
. (6.6)

This proposition shows that, when the correlation radius Xcq is small, then it is
relevant to have a dense auxiliary receiver array for a given aperture in order to
get good stability. Indeed, for a given aperture a, the SNR increases when the inter-
distance ∆Xq decreases, until the inter-distance becomes of the order of the correlation
radius Xcq of the illumination field, and then the SNR reaches a value determined by
Xcq. Proposition 6.2 is the main theoretical result of the paper. It is supported well
by direct numerical simulations as we describe in the next section.

7. Numerical simulations. We consider the two-dimensional imaging setup
shown in Figure 7.2. We use parameters that are rather typical in exploration geo-
physics with somewhat higher frequencies. The reflector that we wish to image is
hidden below a complex structure, modeled here by random fluctuations in the speed
of propagation c(�x) given by (2.4). In Figure 7.2 we plot the square of the sound speed
that fluctuates around the constant c0 = 3000m/s. The reflector is a square centered
at (0,−60λ0) with edge length equal to 2λ0. At the free-surface of the medium, where
we use a Neumann boundary condition, we have an array of Ns = 97 sources-receivers
located at �xs = (−24λ0 + (s − 1)λ0/2, 0), s = 1, . . . , Ns. We also assume that we
can record the pressure field on an auxiliary array of Nq = 61 receivers located at
�xq = (−15λ0 + (q − 1)λ0/2,−51λ0), q = 1, . . . , Nq. The simulation that we do is as
follows. From each source located at the surface array we send a pulse of the form

F (t) = sinc(B0t) cos(2πf0t) exp
�
− t

2

2T 2
0

�
, (7.1)
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and we record the response at the auxiliary receiver array that is located below the
complex structure of the medium. In (7.1) we take f0 = 100Hz, B0 = 100Hz and
T0 = 0.3 s so that λ0 = 30m.

We show in Figure 7 the absolute value of the Fourier transform of the pulse
F (t) for positive frequencies. Its support is in the interval [f0 −∆f/2, f0 +∆f/2] =
[80, 120]Hz for f0 = 100Hz and ∆f = 40Hz.

80 85 90 95 100 105 110 115 120
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

frequency in Hz

Fig. 7.1. The absolute value of the Fourier transform of the pulse F (t) (normalized by its
maximal value) for positive frequencies. The frequency content of the data is in the interval ∆f =
[80, 120]Hz

Fig. 7.2. The imaging setup. The reflector that we wish to image is below the complex medium.
We have two arrays, an active one on the surface and a passive one below the complex structure.

Let us first consider what happens when the array at the surface is used as a
receiver array as well. In Figure 7.3(a) we display the traces recorded on the array as
a function of distance from the source �x1 and in Figure 7.3(b) the Kirchhoff migration
(KM) image obtained when using all sources on the array. Recall that the Kirchhoff
migration image obtained at a search point �yS , considering the receivers located at
(�xr)1≤r≤Nr

(both sources and receivers are located on the surface) is:

IKMr(�y
S) =

Ns�

s=1

Nr�

r=1

u
�
T (�xs, �y

S) + T (�xr, �y
S), �xr; �xs

�
. (7.2)
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In Figure 7.3(a), we see that the traces are strongly fluctuating and the reflected signal
from the object that we wish to image is overwhelmed by the multiple scattering from
the complex medium. The corresponding KM image is also very noisy. It is clear that
in such a medium we cannot image the reflector using the array at the surface.

(a) Traces on the surface receiver array. Each
line is the trace recorded by one receiver.

(b) KM image IKMr

Fig. 7.3. Traces and Kirchhoff migration image IKMr using the data of the surface receiver array.

Another image that we can compute is the Kirchhoff migration image considering
the receivers located on the auxiliary array at (�xq)1≤q≤Nq . With the sources at the
surface but with the receivers inside the medium at the auxiliary array the imaging
function is given by

IKM(�yS) =
Ns�

s=1

Nq�

q=1

u
�
T (�xs, �y

S) + T (�xq, �y
S), �xq; �xs

�
. (7.3)

In Figure 7.4(a) we show the traces recorded on the auxiliary receiver array (for
source �x1) and in Figure 7.4(b) the KM image IKM. The results are bad as well
and we cannot obtain a good image of the reflector. Note that the Kronecker model
predicts that the mean wave is zero, so that the SNR of the KM image is theoretically
zero. In a more reasonable model such as the random paraxial model [18] or the
random travel time model [4] the mean wave (and therefore the mean KM imaging
function) is exponentially small as a function of the propagation distance which gives
a very low SNR for the image.

Let us now consider imaging with cross correlations of the recorded traces. We
compute the following imaging functions:

• ICCr considering only the surface receiver array (�xr)1≤r≤Nr defined by

ICCr

�
�yS) =

Na�

r,r�=1

Cr
�
T (�yS

, �xr) + T (�yS
, �xr�), �xr, �xr�

�
, (7.4)

with the cross correlation Cr(τ, �xr, �xr�) computed by

Cr(τ, �xr, �xr�) =
Ns�

s=1

�
u(t, �xr; �xs)u(t+ τ, �xr� ; �xs)dt. (7.5)
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(a) Traces on the auxiliary receiver array (b) KM image IKM

Fig. 7.4. Traces and Kirchhoff migration image IKM using the data of the auxiliary receiver
array.

• ICC considering only the auxiliary array of receivers (�xq)1≤q≤Nq defined by
(2.5),

In Figure 7.5(a) we show the cross correlations on the surface array Cr(τ, �xr, �x1), r =
1, . . . , Nr and in Figure 7.5(b) the image ICCr. In Figure 7.6(a) we display the cross
correlations on the auxiliary receiver array C(τ, �xq, �x1), q = 1, . . . , Nq and in Figure
7.6(b) the image ICC. Comparing the images shown in Figures 7.5(b) and 7.6(b) it is
easy to conclude that the best imaging functional is ICC that uses cross correlations
on the auxiliary receiver array.

(a) Cross correlations on the surface array (b) Image ICCr

Fig. 7.5. Cross correlations and image ICCr using the data of the surface array.

For completeness, we also plot images obtained with other imaging functions.

- We show on Figure 7.7 the image obtained using a Coherent Interferometric
Imaging (CINT) function using the surface array data in which the cut-off parameters
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(a) Cross correlations on the auxiliary receiver
array

(b) Image ICC

Fig. 7.6. Cross correlations and image ICC using the data of the auxiliary receiver array.

are optimized according to the method prescribed in [6]:

ICINT(�y
S) =

��

|ω−ω�|≤Ωd

dωdω
�

Ns�

s,s�=1

|�xs−�xs� |≤Xd(
ω+ω�

2 )

Nr�

r,r�=1

|�xr−�xr� |≤Xd(
ω+ω�

2 )

û(ω, �xr; �xs)û(ω�, �xr� ; �xs�)

× exp
�
− iω

�
T (�xr, �y

S) + T (�xs, �y
S)
�
+ iω

��T (�xr� , �y
S) + T (�xs� , �y

S)
��

.

The optimal parameters are found to be Ωd = B and Xd(ω) =
32λ0

(ω/ω0)
, but the image

is not yet good. Indeed it is not expected that the CINT function gives a good image
in this strongly scattering situation as proved and discussed in [4] for instance.

Fig. 7.7. Optimal CINT function using the data of the surface receiver array.

- We show on Figure 7.8 the image computed using the cross correlations on the
surface receiver array when only the diagonal terms are taken into account, i.e., we
compute

Idiag
CCr (�y

S) =
Nr�

r=1

Cr
�
T (�yS

, �xr) + T (�yS
, �xr), �xr, �xr

�
, (7.6)



Signal to noise ratio analysis in virtual source array imaging 15

with the cross correlation term Cr(τ, �xr, �xr�) computed as before by (7.5). Again the
low quality of this image is expected.

Fig. 7.8. Image Idiag
CCr using the data of the surface receiver array.

- We show in Figure 7.9 the image obtained by the Matched Field imaging function
using the data recorded on the surface array:

IMFr(�y
S) =

�
dω

���
Ns�

s=1

Nr�

r=1

û(ω, �xr; �xs) exp
�
− iω

�
T (�xr, �y

S) + T (�xs, �y
S)
�����

2
. (7.7)

Note that it is a kind of CINT function with the special choice for the cut-off param-
eters Xd = ∞ and Ωd = 0.

Fig. 7.9. MF image IMFr using the data of the surface receiver array.

Finally, a natural question that arises is: what happens if we compute the imaging
functional using relation (2.5), with the cross correlation term C(τ, �xq, �xq�) computed
by

C(τ, �xq, �xq�) =

� � Ns�

s=1

u(t, �xq; �xs)
�� Ns�

s=1

u(t+ τ, �xq� ; �xs)
�
dt. (7.8)

We plot on figure 7.10(b) the imaging functional ICC computed with cross correlations
given by (7.8) and we compare it with ICC plotted on figure 7.10(a). It is clear that the
quality of the image deteriorates when the crossed terms u(t, �xq; �xs)u(t+ τ, �xq� ; �xs�)
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for s� �= s are included. In fact it is possible to analyze this modified imaging function
in the same way as we have analyzed the imaging function ICC defined by (2.5). We
find that the mean modified imaging is equal to the mean imaging function E[ICC]
described in Proposition 4.1, which shows that the resolution properties of the two
imaging functions are identical. But the SNR of the modified imaging function is
much lower than the one of the imaging function ICC:

SNRCCmod = SNRCC
I
1/2
s

Ns
< SNRCC,

where Is is defined by (6.2), which shows that it is always smaller than N
2
s . This

confirms that the imaging function ICC is the correct way to image the reflector.

(a) Plot of ICC (b) Plot of ICC when cross correlations are
computed with crossed terms

Fig. 7.10. Comparison between ICC images using (2.6) for computing the cross correlations
on the left and (7.8) on the right.

8. SNR computations. We consider in this section the two-dimensional imag-
ing setup shown in Figure 7.2. We focus our attention on the SNR of the obtained
image, and in particular we want to check if there is good agreement between (6.6)
and the numerical results. Note that the expressions in Propositions 4.1 and 6.1 are
obtained in a three-dimensional context, and that in a two-dimensional context the
theoretical SNR formula (6.6) now reads

SNRCC ≈ σrefXcq

λ
2
0(Ly − L)

�
b

∆Xs ∨Xcs

�1/2� a

∆Xq ∨Xcq

��
B

ωc

�1/2
. (8.1)

We will therefore let vary the different parameters that appear in (8.1), i.e., the
bandwidth, the number of sources Ns = b/∆Xs and the inter-distance between sources
∆Xs, the number of receivers Nq = a/∆Xq and the inter-distance between receivers
∆Xq.

The SNR is computed numerically as follows. Let ID(�y) be the averaged absolute
value of the image over a square of size 2λ0×2λ0 centered at �y. The SNR is computed
as

SNR =
ID(�y∗)

max�y �=�y∗ ID(�y)
(8.2)
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where �y∗ is the point where the image admits its maximal value and �y �= �y∗ means
that squares of size 2λ0 × 2λ0 centered at �y and �y∗ do not intersect.

8.1. SNR versus bandwidth. We apply here a treatment to the cross corre-
lations in the Fourier domain in order to analyze the role of the bandwidth. More
exactly we apply a band-pass filter H(f) to the recorded signals to retain only the fre-
quency components centered at the central frequency f0 = 100Hz with a bandwidth
∆f : the filter has the form H(f) = 1[f0−∆f/2,f0+∆f/2](|f |).

We plot on Figure 8.1 the Fourier transform of C(τ, �x1, �x61) (we only plot for the
positive frequencies). One can see that the spectrum of the signal is in the bandwidth
[f0 −∆f/2, f0 +∆f/2] for ∆f = 40Hz as expected because the support of the signal
F (t) sent by the sources is supported in this frequency band.

80 85 90 95 100 105 110 115 120
−1

−0.8

−0.6

−0.4
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0
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0.4

0.6

0.8

1

frequency in Hz

Fig. 8.1. The Fourier transform of the cross correlation C(τ, �x1, �x61) of the data recorded at
the auxiliary array (we only plot for positive frequencies).

We show in Figure 8.2 the ICC images obtained when the band-pass filter H(f)
is used with different values of ∆f .

As predicted by the theory bandwidth affects both the image resolution and the
SNR. The range resolution is c0/B and therefore as the effective bandwidth (here
∆f) decreases the image becomes less focused in range. Loss of resolution is also
accompanied with loss in SNR and we observe that the amplitude of the ghosts in the
image increases as the bandwidth decreases.

∆f (in Hz) 40 15 10 7.5
% of signal kept 100 65.81 53.14 45.98

SNR 23.93 10.16 6.13 3.48

We plot on Figure 8.3 the value of the SNR with respect to the bandwidth ∆f

(blue circles) and the regression equation given by (8.3) (black line). SNR does lin-
early depend on the square root of the bandwidth as predicted by the theory (see
Proposition 6.2 and relation (8.1)).

SNR =
�

16.9∆f − 115.5. (8.3)

8.2. SNR versus number of sources. We computed the ICC images and their
SNR for various values of the parameters Ns and ∆Xs. As an example, we show on
Figure 8.4 imaging results for array apertures b = (Ns − 1)∆Xs = 8λ0, 18λ0 and 28λ0

(from left to right). These results suggest that SNR depends on the source array
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(a) ∆f = 40Hz (b) ∆f = 15Hz

(c) ∆f = 10Hz (d) ∆f = 7.5Hz

Fig. 8.2. ICC for Nq = 61 receivers with ∆Xq = λ0/2 and Ns = 97 sources with ∆Xs. We
filter the data using the band-pass filter H(f) = 1[f0−∆f/2,f0+∆f/2](|f |).

5 10 15 20 25 30 35 40
0

5

10

15

20

25

Fig. 8.3. Plot of measured SNR (blue dots) as a function of the bandwidth ∆f and regression
(black line).

aperture. More precisely, SNR is linear with the square root of b as predicted by the
theory (see Proposition 6.2 and relation (8.1)). This is illustrated in Figure 8.5 where
we plot the value of the SNR with respect to b and the regression equation given by
(8.4) (black line).

SNR =
√
11.96 b− 50.53. (8.4)

We also observe in Figure 8.4 that the source array aperture does not affect the
resolution of the image as predicted by the theory (see Proposition 4.2).

8.3. SNR versus number of receivers. We computed the ICC images and
their SNR for various values of the parameters Nq and ∆Xq. Recall that the theory
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(a) Ns = 17, ∆Xs = λ0/2 (b) Ns = 37, ∆Xs = λ0/2 (c) Ns = 57, ∆Xs = λ0/2

(d) Ns = 9, ∆Xs = λ0 (e) Ns = 19, ∆Xs = λ0 (f) Ns = 29, ∆Xs = λ0

Fig. 8.4. Plot of ICC for source array aperture b = (Ns − 1)∆Xs = 8λ0, 18λ0 and 28λ0

(from left to right). The number of receivers is Nq = 61 and the inter-distance between receivers is
∆Xq = λ0/2.
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Fig. 8.5. Plot of measured SNR as a function of b and regression (black line). Blue circles
correspond to ∆Xs = λ0/2, red squares to ∆Xs = λ0 and yellow triangles to ∆Xs = 3λ0/2.

(see Proposition 6.2 and relation (8.1)) suggests that SNR is linear with respect to
a/Xcq as long as ∆Xq is smaller than Xcq otherwise SNR is linear with respect to
a/∆Xq which means that for a fixed array aperture SNR decreases as ∆Xq increases.
It is this latter behavior that we observe in our numerical results as illustrated on
Figures 8.6-8.7. Indeed, on Figure 8.6 we plot the measured SNR as a function of
∆Xq (measured in λ0/2) for a fixed array aperture a = 21λ0. We also plot the linear
regression equation (black line),

SNR = −9.4∆Xq + 30. (8.5)

We observe that SNR decreases when ∆Xq increases although the corresponding
array aperture a is fixed. This is not what we observed on the source array where the
SNR for a fixed array aperture b does not depend on ∆Xs (see Figure 8.5).

On Figure 8.7 we plot the measured SNR as a function ofNq for fixed ∆Xq = λ0/2
and we also plot the linear regression,
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Fig. 8.6. Plot of measured SNR as a function of ∆Xq (measured in λ0/2) for a fixed array
aperture a = 21λ0.

SNR = 0.284Nq + 7.74. (8.6)
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Fig. 8.7. Plot of measured SNR as a function of Nq (blue circles) and regression obtained for
∆Xq = λ0/2 (black line).

9. Numerical results when the reflector is also in a randomly inhomo-

geneous medium. The positions of the source and auxiliary receiver arrays are as
in section 7. The propagation medium a strong scattering medium with strength of
fluctuations 10% in the region (−25λ0, 25λ0)× (−50λ0,−5λ0) and elsewhere it is ei-
ther a layered or an isotropic random medium with a smaller strength of fluctuations
2− 4%.

(a) c
2(�x) (b) Plot of ICC using Nq = 21 (c) Plot of ICC using Nq = 61

Fig. 9.1. Results obtained using cross correlations on the auxiliary receiver array. Layered
medium with σ = 0.02, �x = λ0/20 below the auxiliary receiver array.

It can be seen that the migration of the cross correlation matrix of the auxiliary
array data still gives good images in this weakly scattering situation. We also observe
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(a) c
2(�x) (b) Plot of ICC using Nq = 21 (c) Plot of ICC using Nq = 61

Fig. 9.2. Results obtained using cross correlations on the auxiliary receiver array. Layered
medium with σ = 0.04, �x = λ0/20 below the auxiliary receiver array.

(a) c
2(�x) (b) Plot of ICC using Nq = 21 (c) Plot of ICC using Nq = 61

Fig. 9.3. Results obtained using cross correlations on the auxiliary receiver array. Isotropic
medium with σ = 0.02, �x = λ0/2 below the auxiliary receiver array.

(a) c
2(�x), isotropic medium σ =

4%, �x = λ0/2
(b) Plot of ICC for Nq = 21 re-
ceivers

(c) Plot of ICC for Nq = 61 re-
ceivers

Fig. 9.4. Results obtained using cross correlations on the auxiliary receiver array. Isotropic
medium with σ = 0.04, �x = λ0/2.

that the size of the receiver array a affects both the resolution and the SNR of the
image. The cross-range resolution is λ0(Ly−L)/a and therefore as the array aperture
increases, the image resolution in cross-range improves. Increasing the array aperture
also benefits the SNR of the image as we see by the reduction of the amplitude of
the ghosts in Figures 9.1 to 9.4 (compare middle and right image in each figure). It
is clear, however, that the image looses stability as scattering increases. When the
medium between the auxiliary array and the reflector becomes more scattering (but
not too strongly scattering), then it is anticipated that CINT techniques could be used
to improve the stability of the image as it was done with active array data [5, 6]. Note,
however, that this situation cannot be analyzed with the Kronecker model because
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this model does not possess the correct phase information. Because of this drawback
the Kronecker model is not suitable to analyze all situations related to imaging in
complex media.

10. Conclusion. In this paper we have analyzed an imaging configuration as
in Figure 2.1 in which the data of an auxilary receiver array are available to image
a reflector embedded below a strongly scattering medium. The overall conclusion is
that migration of the cross correlation matrix of the auxiliary array data gives a much
better image than the migration of the data themselves. This is observed when com-
paring Figure 7.4 and Figure 7.6 obtained by using 2D full wave simulated data. The
same conclusion was drawn from the theoretical analysis carried out in Sections 4 and
6 using the Kronecker model for the incoherent field transmitted through the scatter-
ing medium. The Kronecker model is simple and it allows us to analyze in an explicit
way the resolution and the stability properties of the imaging function. Moreover, its
predictions are in full agreement with the results of the numerical simulations and
also with the theoretical predictions obtained from the analysis of some asymptotic
regimes, in particular the random paraxial regime (see Section 5 and [18]).
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Appendix A. Proof of Proposition 4.1. In this appendix we give the proof
of Proposition 4.1. From the definition (2.5) the mean imaging function has the form

E
�
ICC(�y

S)
�
=

Ns�

s=1

Nq�

q,q�=1

�
E
�
û(ω, �xq; �xs)û(ω, �xq� ; �xs)

�

× exp
�
− iω

|�xq − �yS |+ |�xq� − �yS |
c0

�
dω.

The recorded field û has the form (3.2) so that the mean imaging function is the sum
of three main contributions:
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dω,
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− iω

|�xq − �yS |+ |�xq� − �yS |
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dxdω,
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c0

�
dxdω.
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There is also a fourth contribution which is of order σ2
ref and that is neglected consis-

tently with the Born approximation.
Using the form (3.1) of the covariance of the illumination field û0, the first con-

tribution is

E
�
ICC(�y

S)
�
I
= Ns

Nq�

q,q�=1

exp
�
− |xq − xq� |2

X2
cq

�

×
�

|F̂ (ω)|2 exp
�
− iω

|�xq − �yS |+ |�xq� − �yS |
c0

�
dω.

The pulse width 1/B of the source is much smaller than the travel time (Ly − L)/c0
from the auxiliary receiver array to the reflector. Consequently the integral in the
first contribution is vanishing.

Using (3.1), the second contribution is

E
�
ICC(�y
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II

= −2i
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c
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�
− iω

|�xq − �yS |+ |�xq� − �yS |
c0

�
dxdω.

Using the explicit form of the homogeneous Green’s function (3.3) and the paraxial
approximation a � Ly − L, the amplitude factors of the two homogeneous Green’s
functions can be considered as constant and
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dxdω,

D(�x, �xq, �xq�) = |�x− �y|+ |�xq� − �y| − |�xq − �yS | − |�xq� − �yS |.

Parameterizing the search point as �yS = (y+ξ,−Ly−η), and using again the paraxial
approximation the term D can be expanded as (for �x = (x,−L))

D(�x, �xq, �xq�) = −2η+
1

(Ly − L)

�
(x−xq) · (

xq + x

2
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Substituting and integrating in x gives:
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The hypothesis ∆Xq � λ0(Ly − L)/a allows us to substitute a continuous integral
for the discrete sum in q, q

� and to get the desired result.
The third contribution can be addressed in the same way, and it gives no contri-

bution as the phases of the cross correlation term and of the product of homogeneous
Green’s functions do not compensate each other.
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Appendix B. Proof of Proposition 6.1. In this appendix we give the proof
of Proposition 6.1. The variance of ICC(�yS) is dominated by contribution of the
illumination field û0. Using the Gaussian property of the field û0, the second moment
of ICC(�yS) consists of the sum of three terms:
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�
, �xq̃� ; �xs�)]
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Using the form (3.1) of the covariance function of the illumination field, the first term
is
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which is vanishing because the sum of travel times is much larger than the pulse width

of the source. This term is in fact E
�
ICC(�yS)

�2
.

Using (3.1) again, and the expansion
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the second term in the expression of E
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If ∆Xq > Xcq, then
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If ∆Xq < Xcq (and Xcq � a) then
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If, additionally, Xcq < λ0(Ly − L)/a, then
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otherwise (ie if Xcq > λ0(Ly − L)/a)
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which gives
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The third term in the expression of E
�
ICC(�yS)2

�
can be analyzed in the same way

but it does not give any contribution because it is proportional to
�

|F̂ (ω)|4 exp
�
− 4i

ω

c0
(Ly − L)

�
dω,

and this is vanishing since the sum of travel times is much larger than the source pulse
width.

Appendix C. Proof of Proposition 6.2. Let us assume that the Fourier
transform of the source pulse profile has the normalized form

F̂ (ω) = F̂0

� |ω| − ω0

B
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,

where ω0 is the central frequency and B is the bandwidth.
If we do not write the multiplicative constants (such as 2π and quantities related

to F̂0), we have by Proposition 4.2
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and by Proposition 6.1
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As a result, the SNR defined by (6.1) has the following form
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Moreover, the quantity Is defined by (6.2) has the following behavior:

Is =
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πNsX
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which gives
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This completes the proof of the proposition.
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