
EURASIP Journal on
Information Security

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16
DOI 10.1186/s13635-016-0040-5

RESEARCH Open Access

DB-SECaaS: a cloud-based protection
system for document-oriented NoSQL
databases
Yumna Ghazi1, Rahat Masood2*, Abid Rauf1, Muhammad Awais Shibli3 and Osman Hassan1

Abstract

The trend of cloud databases is leaning towards Not Only SQL (NoSQL) databases as they provide better support for
scalable storage and quick retrieval of exponentially voluminous data. One of the more prominent types of NoSQL
databases is document-based storage, which is being increasingly used in the dynamic cloud paradigm. However,
there are inherent security issues in cloud, including remote data residency along with the non-existent control of
owners over their own data. In addition to that, the inherent security features of most document-based NoSQL
databases lack granular access control and robust confidentiality mechanisms. There is also a distinct lack of a
comprehensive solution that effectively caters to all the security requirements of a document-oriented database in
cloud. In order to overcome these issues, we propose a database security-as-a-service (DB-SECaaS) system over
document-oriented database hosted in cloud, which provides authentication, fine-grained authorization, and
encryption of the database objects, while ensuring that access to the data is granted only to authorized users on a
need-to-know basis. The paper shows that the DB-SECaaS system strongly enhances the security of document-
oriented databases on cloud, and it is thus expected to facilitate the industry to reap the benefits of NoSQL without
worrying over security issues. In order to certify the abovementioned security enhancements, provided by DB-SECaaS,
the paper also provides a formal analysis of DB-SECaaS using the Scyther model checker. As a proof of concept, the
core functionalities of the protocol, i.e., authorization, authentication, and encryption, are formally modeled in Scyther
to formally verify that the proposed framework mitigates privacy and security concerns.

Keywords: Cloud database, Document-oriented NoSQL, Security-as-a-service, eXtensible access control markup
language (XACML), Database security

1 Introduction
Not Only SQL (NoSQL) databases provide a comprehen-
sive solution for a wide range of database issues, character-
ized by basically available, soft state, eventually consistent
(BASE) in lieu of relational models of atomicity, con-
sistency, isolation, and durability (ACID) [1]. Compared
to relational database management system (RDBMS),
NoSQL is found to have an accelerated rate of data pro-
cessing. It also provides a relatively inexpensive way for
enterprises to efficiently manage large volumes of data [2].
Among the many types of NoSQL databases, an impor-
tant and widely used type is document-oriented storage,

*Correspondence: rahat.masood@student.unsw.edu.au
2University of New South Wales (UNSW), NSW, Sydney, Australia
Full list of author information is available at the end of the article

wherein an object model is stored as a document. Being
schema-free, it allows great flexibility for updating data,
without the need for any significant restructuring. The
complexity of the documents varies based on the user’s
preference. Also, the independence of documents from
one another improves performance and decreases con-
currency side effects [3]. CouchDB [4], RavenDB [5], and
MongoDB [6] are some of the most popular document-
based NoSQL databases.
With the evolution of distributed computing into the

popular cloud paradigm, the aforementioned benefits of
document storage have come to the forefront, consider-
ing its support for distributed storage and scalability at
will. Cloud exploits this advantage by providing a more
cost-efficient, outsourced database management solution
that allows enterprises to easily store, manage, and pro-

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-016-0040-5-x&domain=pdf
mailto: rahat.masood@student.unsw.edu.au
http://creativecommons.org/licenses/by/4.0/

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 2 of 17

cess large volumes of data. Recently, many solutions, such
as Mongolab [7], RavenHQ [8], and Cloudant [9] have
been developed that commercially provide document-
oriented storage in cloud. However, while considerable
efforts are being made to enhance the performance and
provide flexible scalability options, the more pressing
issues of security in document-oriented databases seems
to be largely absent from the research landscape (see
Section 5). At best, most document databases provide
role-based access control, which is coarse-grained, where
users having the permission to read from or write to a
database can apply the operation on the entire database.
Even though this model of access control ensures autho-
rized access, it leaves the database vulnerable to attacks
from malicious insiders, which, according to a report by
McAfee [10], poses a considerable threat. In addition,
encryption of data, both in transit and at rest, is pro-
vided, using SSL for the former and third-party services
for the latter (see Table 4). Moreover, there are no holis-
tic solutions specifically tailored for document-oriented
databases that fulfill all the security requirements. The
recent breaches in cloud databases are a testament to their
vulnerabilities [11–13].
To overcome these limitations, we have developed

a comprehensive database security-as-a-service (DB-
SECaaS) system, on top of a document-oriented database
in cloud, which would provide strong authentication,
fine-grained authorization, and data encryption to ensure
maximum security for the document-oriented database
layer lying underneath. The system has a service-oriented
architecture, which allows deploying individual compo-
nents for performing specific functions as separate ser-
vices. This choice of architecture introduces abstraction
to the services; therefore, making it easy for different
document-oriented databases to seamlessly integrate the
DB-SECaaS without having to customize and embed it
into their source code. The “as-a-service” concept pro-
vides an economic advantage for the businesses, since
they would be able to outsource the security of their
document-oriented database without having to buy the
requisite hardware or hire experts to operate them. There-
fore, our DB-SECaaS system would be equally effective for
any document-oriented database because of its utilization
regardless of the individual underlying architectures.
Our system provides strong authentication using the

Federal Information Processing Standards 196 (FIPS 196)
[14] challenge-response protocol, which is designed to
mitigate replay attacks. We also add an additional layer
of security using security assertion markup language
(SAML) authentication assertions to validate the iden-
tity of the user and the various services participating
in the system [15]. We offer a fine-grained authoriza-
tion at the granularity of attribute and document level
of the database, based on eXtensible access control

markup language (XACML) 3.0 [16], which is an access
control policy creation language. The usage of SAML and
XACML enhances the interoperability of the system, since
they are both well-known standards. The fine-grained
XACML policies restrict the access level of the users to
ensure that a user can only perform certain operations on
a certain data, if and only if she is allowed to do so. In addi-
tion, we also offer encryption to strengthen the protection
detail for the stored data.
The paper also presents a formal analysis and verifi-

cation on handover procedures of DB-SECaaS using the
Scyther model checker [17] to extract and debug the main
security flaws and threats that might exist in such pro-
cedures. Scyther allows the analysis of many potential
attacks, such as man-in-the-middle attack, replay attack,
message tampering, and information leakage (identity),
which can be launched on protocols. We have analyzed
these attacks using various Scyther attributes like Alive,
Niagree, Nisynch, and secret.
The rest of the paper is organized as follows: Section 2

explains the detailed architecture of the proposed DB-
SECaaS system. Section 3 describes the workflow and the
intercommunication of all the services that make up the
DB-SECaaS system. We evaluate the security of the DB-
SECaaS system in Section 4. In Section 5, we provide
an overview of the related work while highlighting our
contributions and finally, Section 6 concludes the paper.

2 The DB-SECaaS system
As mentioned previously, the proposed system is a com-
prehensive DB-SECaaS system for hosting document-
based NoSQL in cloud. It offers all the primarily
required security services for the underlying database,
specifically strong authentication, fine-grained authoriza-
tion, data encryption, and data integrity. The service-
oriented architecture ensures that the system provides
effective security mechanisms to any document-based
database. Our system constitutes multiple independent
services that handle important security features. Each
of them handles an important security feature and
communicates with other services, working together
to provide holistic security to the document-oriented
database.
For the sake of simplicity, we do not attach the requisite

aaS for as-a-service every time they are mentioned. In
order to provide these services, we utilize renowned
standards, namely SAML [15], XACML [16], and FIPS
196 [14]. The three main services at play are authen-
tication service, fine-grained authorization service, and
encryption service, which further depend on services that
complete their functionality. In the following subsections,
we describe these services that make up the DB-SECaaS.
Figure 1 illustrates the architecture for building the system
in the context of cloud services.

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 3 of 17

Fig. 1 The proposed architecture of the DB-SECaaS system over a document-oriented database hosted in cloud

2.1 Authentication service
The authentication service is responsible for verifying the
identities of the database users as well as the inter-system
requesting parties. It is composed of three services: strong
authentication as a service, identity management as a
service, and certificate authority as a service.

1. Strong authentication (SA) as a service: The SA
service performs authentication using the FIPS 196
mutual authentication protocol. Its extended security
functions include verification of certificates by the
CA service and verification of identities by the IDM
service. SA service is also used to issue and store
SAML authentication tickets to other services and
users.

2. Identity management (IDM) as a service: The IDM
service manages the identity credentials of the
database users, and once their identity is verified, it
issues SAML authentication assertions to confirm
their authenticity.

3. Certificate authority (CA) as a service: The CA1

service, with the support of XML key management
specification (XKMS), provides digital signature
services and issues certificates, which consist of a

public key and the necessary credentials required to
verify the database users and the services, for
authentication purposes. The CA service checks the
authenticity and also manages the keys and
certificates thus, establishing a reliable and safe
networking environment. The XKMS is used to
integrate and allow the easy management of the CA
service, thereby reducing the complexity of managing
CA at the end users and other DB-SEC system
services. The integration of XKMS with CA provides
a simple XML-based protocol for processing
key/certificate information by eliminating the need
for user applications and other services to
understand the CA syntax and semantics.

The aforementioned authentication services are used
not only for verifying the users but also for other DB-
SECaaS system services. The entities can mutually or
unilaterally authenticate each other before exchanging the
messages or share the data.

2.2 Fine-grained authorization service
The fine-grained authorization service is responsible for
protecting the data from unauthorized disclosure. It is

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 4 of 17

primarily composed of policy administration point as
a service, policy decision point as a service, and policy
enforcement point as a service.

1. Policy administration point (PAP) as a service: The
PAP service allows users to create XACML policies
that are compliant with the fine-grained access
control (FGAC). System administrators can create
fine-grained policies through the PAP service and
modify them any time, as per their requirements.
These policies are stored in a policy repository on
cloud.

2. Policy enforcement point (PEP) as a service: The PEP
service acts as an intermediary between the policy
decision point (PDP) service and the client
application by capturing the client’s request for
accessing documents or collections in the
document-oriented database and converting it into
an SAML-wrapped XACML authorization decision
query and sending it over to the PDP service. It is
also responsible for interpreting the authorization
decision that it receives from the PDP service and
converting it into the native form that the client
application can understand.

3. Policy decision point as a service: The PDP service is
responsible for evaluating the authorization decision
request sent by the PEP service. Once it receives the
request from the PEP service, it fetches policies from
the policy repository and finds the policies applicable
to the request. It then determines whether to permit
or deny the user access to the database. If the
permission is granted, it puts forth a SAML attribute
request to the key distribution (KD) service to
retrieve the requested resource. If the permission is
denied, the PDP service returns a response to the
PEP service, which is then forwarded to the client.

2.3 Collection confidentiality service
This encryption service is responsible for performing
the encryption and decryption of the data stored in the
collection on the request of a privileged user. When the
data owner initiates the request to store the data in
collection, it first passes through the encryption service
where the data is encrypted through the collection key.
By default, every collection is encrypted with a unique
key, i.e., all the data which is to be stored in the same
collection is encrypted by using the same key. How-
ever, if security is an utmost concern, then fine-grained
encryption can also be provided where each column
of the table has a unique key. This kind of encryption
increases the security at the cost of performance of the
system. After encryption, the service stores the encrypted
data in the document-oriented NoSQL database. There
are two sub-modules, i.e., key distribution service

and encryption service, at the core of the encryption
service.

1. Key distribution as a service: The KD service
operates with symmetric encryption and shares
secret symmetric keys for the encryption and
decryption of the data stored in document-based
NoSQL. KD service separately manages the keys for
each user and for each resource. A complete mapping
between keys, users, and document-oriented
database resources is provided to avoid conflicts and
searching overhead. This service is also responsible
for creating, managing, and distributing the keys
across different services within the proposed system.
PDP service sends an attribute query request
(discussed in the next section) to the KD service for
the retrieval of keys from the KD database. KD
service validates the request through CA (FIPS 196
protocol) and checks for keys corresponding to the
attributes mentioned in the request. The keys are
passed to the encryption service for further
processing of encryption/decryption operation.

2. Encryption as a service: This service handles the
encryption and decryption of the data using the
advanced encryption standard (AES) algorithm, after
getting keys from the KD service. Its working process
is the same as traditional encryption-decryption
models; it is responsible for handling the designated
operations based on user queries to
document-oriented database.

2.4 Document-oriented NoSQL database
This can be any document-oriented NoSQL database in
cloud that will make use of all the security services that our
system provides, for example, MongoDB, CouchDB, and
RavenDB.

3 Execution flow of the DB-SECaaS
In this section, we will provide a detailed description of
the workflow of our system, which includes the three basic
security features that our system provides, i.e., authentica-
tion, authorization, and encryption. The system works in
four phases, namely policy creation phase, authentication
phase, fine-grained authorization phase, and encryption
phase.

3.1 Policy creation phase
In this phase, the system administrator creates fine-
grained policies that are meant to effectively filter out
unauthorized users from getting access to the document-
oriented database. The steps comprising this phase are
described below:
1. Administrators define fine-grained policies through

the PAP service and can modify and create new
policies at any time.

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 5 of 17

2. Policies are pushed into a policy repository, which the
PDP service uses to evaluate authorization decisions.

3.2 Authentication phase
This phase deals with the authentication of the user
and DB-SEC system services, which is handled by
the SA service, the IDM, and the CA service, com-
pliant with the FIPS 196 mutual authentication pro-
tocol. Figure 2 shows the workflow of the user
authentication phase. The same procedure has also
been followed for services authentication with each
other.

1. The user of the DB-SECaaS system sends a login
request to the SA service as the first message in the
FIPS 196 strong authentication protocol.

(a) The SA service checks the validity of the user
with the IDM service and

(b) Sends the response back to the user as per the
FIPS 196 message.

2. The user submits the certificate to the SA service,
which then verifies it using certificate chain
validation and the OCSP protocol.

(a) The certificate request and response
mechanism follows the XKMS protocol to
perform the basic public key infrastructure
(PKI) operations at the CA service. In other
words, user application (web browser) sends
XKMS messages over simple object access
protocol (SOAP) to perform the operations.

(b) If both verifications are successful, SA service
will execute the FIPS 196 compliant
challenge/response protocol with the user.2

3. After the successful execution of challenge-response
protocol and user verification, the SA service issues
the SAML ticket, which is sent back to the user
(client application) along with the SAML
authentication response <saml: Response>,
consequently asserting the user’s identification. The
<saml: Response> contains, among other tags, a
SAML assertion <saml: Assertion> and
authentication statement <saml:AuthnStatement>,
which in turn contains the evidence of
authentication and the user and issuer’s attributes.

4. The user stores the SAML ticket locally in a file on a
disk. This SAML ticket is also stored by the SA
service for verification at the next steps. The final
results of the authentication procedure are that the
user has the SAML ticket on his/her disk and the SA
service has the copy of the ticket issued to the user.
The authentication workflow mentioned above, is
also used by other DB-SEC services of the system to
authenticate one another. For instance, in order to
send the authorization request and response, the PEP
and PDP services should first mutually authenticate
each other using the authentication mechanism
defined above. Similarly, the KD and encryption
services should first authenticate before sending the
database keys. In other words, all the services of
DB-SECaaS system must be authenticated and a
SAML ticket is assigned to each service for a specific
lifetime (more than the lifetime of the user SAML
ticket), during which the services can communicate
with each other for operations execution.

3.3 Authorization phase
Once the user has been authenticated, she can make a
request to access the collection, document, or an attribute

Fig. 2 Detailed workflow of the authentication phase

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 6 of 17

of a document, where the fine-grained authorization ser-
vice steps are in. Figure 3 depicts the internal working of
the fine-grained authorization service.

5. (a) User requests data from the
document-oriented database and, along with
the request, sends the SAML authentication
ticket, which is intercepted by the PEP service.

(b) PEP server passes the SAML ticket to the SA
service, which checks the ticket and confirms
its validity.

(c) The SA service returns its decision back to
the PEP.

6. The PEP service passes a XACML-SAML
authorization decision query
<xacml-samlp:XACMLAuthzDecisionQuery> to
the PDP service for approval. The request contains
the user ID, action required, and indication of all
document-oriented database resources needed to
fulfill the request. The PDP makes the decision of
whether the user should be allowed access or not.

7. In order to evaluate the user’s request, the PDP
service fetches the XACML policies from the policy
repository. The PDP service will use the XACML
subject, resource, and action attributes within the
authorization query to decide which policy is
applicable and whether the subject can perform the
specified action on the requested resource (see Fig. 4).

8. Information and policy in hand, the PDP service is
able to render a decision.

(a) If the request is denied, the PDP service sends
the “Deny” decision to the PEP service. In case
the access is granted, the PDP service
generates and sends the SAML authorization
ticket and response in the form of <samlp:
Response> (see Fig. 5) to the PEP, which then
sends it to the user application.

(b) In addition, the PDP service also
simultaneously sends a SAML attribute query
<samlp:AttributeQuery> to the document
database to retrieve the data (attributes values,
documents, collection) for the requested data,
but since the database is encrypted, the
request will be intercepted by the KD service.

9. The SAML authorization ticket received from PEP is
stored at the user’s local disk as well as at PDP service
to allow the user to access the same resource again
within the interval specified in the ticket.
These SAML tickets, generated at steps 6 and 8 of
authentication and authorization phases, represent
single sign-on (SSO) into the network or cloud. The
ticket has a default lifetime of 8 hrs. The advantage of
SSO is that if a user tries to access the same data
from the document-oriented database within a
specific interval, mentioned in the ticket, then she
does not require to follow the same authentication
and authorization steps again. Rather, the user
application only needs to represent the SAML
authentication and authorization ticket to the PEP,
which is forwarded to the PDP and SA services for

Fig. 3 The detailed workflow of the authorization phase (The dotted arrows depict the policy creation phase)

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 7 of 17

Fig. 4 XACML-SAML authorization decision query

onward decision. This procedure of SSO and re-
usability of SAML ticket saves the time and decreases
the overhead of calling same operations repeatedly.

3.4 Encryption phase
The encryption phase is shown in Fig. 6. Once the PDP
sends the attribute query to the KD service to retrieve the

key, the following steps take place inside the encryption
service:

10. The KD service receives the SAML Attribute Query
<samlp:AttributeQuery> (see Fig. 7) from the PDP,
which requests the data object(s) that the user
requested.

Fig. 5 XACML-SAML authorization decision query response

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 8 of 17

Fig. 6 The workflow of the encryption phase

(a) The KD service verifies with the CA if the
request is actually from the PDP service so
that it can mitigate the risk of repudiation.
The CA service would extract the signature
from the attribute query to verify the sender
of the request.

11. Once the attribute query has been verified, the KD
service communicates with the database to retrieve
the desired keys.

(a) KD service sends the key to the encryption
service for decryption process.

12. Encryption service retrieves the encrypted data from
the document-oriented database and decrypts it
using keys.

13. Data is finally sent to the user, enveloped in the
SAML attribute response <samlp: Response>
(see Fig. 8).
Figure 9 shows the overview of the workflow of the
system, a holistic view of the interaction of the
services with each other.

4 Security evaluation
The main objective of any security feature or parame-
ter within a system is to defend against the attacks and
to patch the vulnerabilities from being exploited by the
attacker. Thus, every newly developed systemmust be ver-
ified to ensure that it is free of security loopholes or weak-
nesses. We have separately evaluated the effectiveness
of the major services the DB-SECaaS has to offer, i.e.,
fine-grained authorization service and the encryption ser-
vice via qualitative measures as per the National Institute

Fig. 7 SAML attribute query

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 9 of 17

Fig. 8 SAML attribute query response

of Standards and Technology (NIST) recommendations.
Moreover, we have used a well-known formal verification
tool, known as Scyther [18], to verify secure communica-
tion within our system.

4.1 Evaluation of the authorization service
The evaluation of the authorization service has been done
with respect to the NIST-identified security metrics for
access control models [19, 20]. NIST guidelines for access
control evaluation metrics provide a complete ontology
for access control policy. This ontology determines the
relationships between access control primitives. For fine-
grained authorization service, we have also designed an
ontology that explains its core features and functions.
The fine-grained authorization service is then evaluated
using the metrics, defined by NIST, which are further
divided into two categories: administration and enforce-
ment. Table 1 explains the access control metrics sup-
ported by the system.

The NIST guidelines for access control evaluation met-
rics provide a complete ontology for access control pol-
icy. This ontology determines the relationships between
access control primitives. For fine-grained authoriza-
tion service, we have also designed an ontology that
explains its core features and functions. The fine-grained
authorization service is then evaluated using the met-
rics, defined by NIST, which are further divided into
two categories: administration and enforcement. Table 1
explains the access control metrics supported by the
system.

4.2 Evaluation of encryption service
Evaluation of encryption service is carried out through
the given guidelines and recommendations of NIST on
encryption and key management [21]. For the effective
use of cryptography in databases, it is essential to prop-
erly create and manage the keys. We have used the KD
service for secure key generation, storage, and distribution

Fig. 9 Overview of the workflow of the DB-SECaaS system

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 10 of 17

Table 1 Support of NIST access control metrics by fine-grained authorization service of the proposed system
Metric Description Fine-grained authorization service

Administration properties

Privileges/capabilities discovery Query or graphic display for discovering
the subjects, objects, or capabilities from
assigned privileges.

Our system provides a complete interface which is
provided to authorize users (administrators, data owners)
to view the database subjects (data users), objects
(database columns), and capabilities (actions).

Ease of privilege assignments Steps required to
1. Assign, change, or remove privilege
from a subject.
2. Assign, change, or remove the
capabilities of a subject.
3. Create, change, or remove a subject.

The fine-grained authorization service requires less
steps for assigning, changing, managing, and removing
privileges, capabilities, objects, and subjects Usability of
a system is increased through friendly interface and less
turnaround steps.

Syntactic support for specifying AC
rules

Authorization system must be capable
of providing logical expression for the
specification of policies and rules.

FG authorization service is based on the architecture of
XACML; therefore, full support is provided for complex
expressions such as AND, OR, <, and >.

Policy management Authorization system must provide the
ability to resolve policy conflicts, policy
revocation, and policy identification
functions.

The proposed system provides policy management
features to administrators via PAP.

Flexibilities of configuration into
existing systems

Access control needs to be enforced by
application and client/service protocol
in order to provide more flexibility and
security.

FG authorization service is based on application and
client-service model. PAP acts like an application for
administrators to create and manage policies. This will
provide ease in installation and configuration.

The horizontal scope Authorization system for unstructured
databases should be supported by
multiple hosts via network. Moreover,
access control should be defined across
database records and fields of database
records.

Distribution ability in FG authorization service is provided
by hosting each service of the system in different services.
In addition, multiple services can be used to host replicas
of the single service. Vertical scope is provided by defining
policies across database records and fields.

Enforcement properties

Bypass Authorization system can be designed
in a way to bypass the policy rules for
exceptional access control decisions.

The FG authorization service of our system does not
allow request to bypass PEP or PDP to access database
resources. There is no method defined that can ignore
policy service in exceptional or critical situations.

Least privilege principle An effective authorization system
supports least privilege principle. For
databases, least privilege needs to be
defined at the cell level or column level.

FG authorization service specifies policies at cell, column,
and table levels of the database. Access to every cell
requires permission from policy service.

Separation of duty (SoD) Authorization system can either
implement static or dynamic separation
of duties.

In order to prevent data from excessive privilege
abuse, the proposed system permits authorized users
to access duty-related resources. However, fine-grained
authorization only provides static SoD where privileges
assign to subjects need to be defined before practical
execution of the system.

Conflict resolution or prevention Authorization system must be capable
to prevent and resolve policy rule
conflicts.

Use of XACML ensures the prevention of policy and
rule conflicts. Conflict-avoiding algorithms are provided to
resolve the conflicts automatically.

Operational/situational awareness An effective authorization system must
provide situational awareness
(environmental constraints and
conditions).

FG authorization service has the ability to take into
account environmental variables such as time, threshold
values, and behavior for making access decisions. XACML
provides the environmental functions and conditions to
restrict access to particular domains.

Granularity of control Authorization system must be capable
to provide control up to granularity
of cell or column (objects). Same data
needs to be protected at different levels
of granularity.

Architecture of FG authorization model is based on
granularity of objects. Therefore, the proposed system
also provides privacy control for the data with different
classifications of the fields in database.

Expression (policy/model)
properties

Authorization system needs to support
existing access control standards or rule
specification language.

XACML, a standard policy language for access control
systems, is used for the representation of policies and rules
to protect the data.

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 11 of 17

via strong algorithms. These keys are used in symmet-
ric key algorithms for protecting data against unautho-
rized attempts and modifications. Table 2 presents the
evaluation of our encryption service according to the
guidelines and recommendations given byNIST. The eval-
uation of encryption service helps to approve its correct
functioning for document-oriented databases.

4.3 Formal analysis
In this subsection, we provide a detailed description of
our formal analysis of DB-SECaaS using Scyther, which
has been shown to be a quite effective model checking
tool for verification, falsification, and analysis of security

Table 2 Evaluation of encryption service in the system

Cryptograhic algorithm: symmetric data encryption

Security function: data encryption

Algorithm-related information:

• Initialization vectors (IVs) are used to alleviate the problem of
encrypting the same data with the same key. The problem of
repeated block detection and substitution of individual blocks is
catered by introducing variable IVs.

• Shared secrets such as passwords or passphrases can also be used
to generate the key. This key is then used to encrypt the data. For
decryption, the same key needs to be generated via shared secret.
This secret is only shared with the users which are authorized to
access the data.

• RNG seeds: random seed values are also used to generate different
keys for the encryption. However, these randomly generated values
are stored at KD service repository in order to get the same key for
decryption.

Cryptoperiods: We define cryptoperiods as the amount of data that are
protected by a given key. For this encryption service, we have used
different keys for each column or table to avoid risks of exposure. Little
data is exposed if key is compromised by any adversary. Moreover,
cryptoperiods to protect the data with one key is usually longer because
of overhead issues of changing keys frequently.

Cryptographic mechanism:

Key size: AES-128

Operating environment: limited access to KDMS service (only to
authorized users)

Protection mechanism:

• Availability: backups and replicas of KD service are created at
different locations to make data readily available for cryptographic
functions

• Integrity: KD service is protected from unauthorized modifications
using physical and cryptographic mechanisms. This service is placed
at a fully secure environment with appropriate access controls and
limited access. In addition, integrity of the stored information is
checked through message authentication code (MAC).

• Confidentiality: an encryption algorithm approved by FIPS 140-2 is
used through which it is not easier to recover the key. Moreover,
controlled access is provided via access control mechanisms.

• Integration with other applications: KD service is hosted separately
from other applications and services. This service is organized in a
form of layered architecture and communicates securely via secure
channel; therefore, there are fewer chances of data misuse and
disruption.

protocols. Scyther can verify protocols with unbounded
number of sessions, with guaranteed termination. Scyther
formally analyzes security protocols under the assumption
of perfect cryptography; for example, it may validate that
an attacker can learn nothing from an encrypted message
unless it has a key.
Model checking is a state-space-based formal tech-

nique for modeling and analyzing hardware and software
systems. It performs exhaustive verification of a system
modeled as a finite state machine (FSM) in an automatic
manner. The verification process consists of the following
steps:

1. The system to be verified is described as a state-space
model in a formal notation specified by the model
checker.

2. The properties of the system that need to be verified
are extracted from the working of the system and
formally specified using temporal logic, like linear
temporal logic (LTL) or computational tree logic
(CTL).

3. The formal model of the system along with its
properties are fed to the model checker to
automatically verify if the system meets the required
specifications.

One of the most powerful features of model checking
is the provision of generating a counter-trace in case of a
failing property. This counter-trace can be used to deter-
mine the cause of the error, which could be a modeling
issue or a bug in the system under consideration. However,
the state-space model of a complex system may become
very large making the verification task quite complex
computationally, i.e., a problem that is usually referred
to use the state-space explosion problem. Generating a
more abstract model of the system or using bounded
model checking (BMC) [22] are commonly used to over-
come the state-space explosion problem. BMC reduces
the state-space exploration effort by restricting the search
for a counterexample for a given property within k-bound
levels.
In order to verify the security of DB-SECaaS, we propose

to focus on three of its main security features, i.e., authen-
tication, authorization, and encryption. The specification
of the roles in all three phases is done individually for the
verification of corresponding properties. These properties
are formally specified in the form of Scyther claims.
We use five claims that Scyther supports namely,

Secret, Alive, Niagree, Weakagree, and Nisynch. Secret
makes sure that the confidentiality of our messages being
sent/received is not compromised. For the DB-SECaaS
system, it ascertains secure communication between the
database application, SA service, and IDM service. Alive
validates that the communication partner has sent a

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 12 of 17

response to the requesting entity and is available. It
ensures that the responding entity is available when a
request is sent to it, e.g., it can be used to check if the CA is
alive. Nisynch is a synchronization claim that ensures that
the protocol is in synch and that it is secure against replay
attacks. It can be used to validate that the PEP and PDP
services are synchronized. Niagree is the non-injective
agreement claim that verifies source authentication, for
instance, it can be used to ascertain that the CA authenti-
cates the source effectively.

4.3.1 Model description
The Scyther model for DB-SECaaS mainly describes the
behavior of the protocol in terms of its roles, i.e., either an
initiator or a responder. Our system consists of multiple
communicating agents, including the client, and the var-
ious component service agents of DB-SECaaS, e.g., KDS,
PEPaaS, and PDPaaS. Agents execute their runs to achieve
their security goals. Every role specification consists of
a sequence of events describing the messages, which the
agent shall send and receive, as well as certain security
claims. An intrudermay try to oppose these security goals.
The capabilities of the intruder determine its strength
in attacking a protocol run. In order to resist attacks,
an agent can make use of cryptographic primitives when
constructing messages. More details about the message
elements that are used in our formal model can be found
in [23].
The actual behavior of the entire system, consisting

of the intruder and a set of agents executing a number
of runs, is encoded in the traces of the system. Every
claim event in a trace results in a declaration about the
trace that may or may not be true. A secrecy claim
event is essentially the statement that something is never
known to the adversary. Authorization is the process
of determining which permissions a person or system
are supposed to have. Authentication is captured by the
notion of synchronization, which in turn requires that the
corresponding send and receive messages are executed in
the expected order. Effective security must employ both
strong authentication and strict authorization.
The following claims are used, where the x denotes the

role for which the claim is tested and y is the message:

• Claim (x, Secret, y): The agent performing the role
x knows that the intruder will never have knowledge
of y.

• Claim (x, Nisynch): The agent performing the role x
knows that the message it received is from an
authenticated sender [17].

• Protocol specification: Describes the behavior of each
of the roles in the protocol. Most often, a role in a
security protocol is specified as a sequential list of
events.

• Agent model: The agents execute the roles of the
protocol. The agent model is based on a closed world
assumption. This means that honest agents show only
the behavior described in the protocol specification.

• Communication model: Describes how the messages
are exchanged between the agents. We assume
asynchronous communication with a single network
buffer because this is the most general approach.

• Threat model: It is based on a parameter in the
semantics of the model based on the Dolev and Yao’s
network threat model [24], where the intruder has
complete control over the communication network.

• Cryptographic primitives: They are idealized
mathematical constructs, such as encryption, using
the black box approach. This means that an adversary
cannot learn anything from an encrypted message
except if he has the key.

• Security requirements: They are expressed as safety
properties (i.e., something bad will never happen).

4.3.2 Formal verification results
The strength of any security application is the effec-
tiveness with which it prevents attacks. Our evalua-
tion through Scyther verifies the strength and validity
of the DB-SECaaS for document-based databases on
cloud. We have designed the DB-SECaaS system to pro-
vide protection to the underlying document-oriented
NoSQL database by providing certain security features.
Whether these features are effective or not depends on
how successfully the system circumvents attacks, and
the claims in Scyther help validating the mitigation of
attacks. Table 3 provides the specific attacks our solu-
tion mitigates and the mechanisms it employs to do
so. The results show that the provided security fea-
ture are quite effective, and given the fact that the
system employs a secure communication protocol, like
SAML, all the interactions between the system entities
are also protected from external interferences. There-
fore, apart from providing security services, our find-
ings show that the DB-SECaaS system itself mitigates
the security concerns which are raised in the previous
sections.
More details about the results and specifications can be

found in [23]. All phases of the system have been analyzed
separately in order to ascertain the mitigation of all pos-
sible cryptographic attacks. Our analysis results conclude
that there are no attacks that can be identified within the
given bounds. There can be attacks outside the bounded
state-space, but the state-space in the case of our protocol
is very huge; thus, themodel cannot be checked rigorously
due to the infamous problem of state-space explosion in
model checking. We overcame this problem by using a
modular approach and thus analyzing sub-modules of the
complete system at a time. Authentication, authorization,

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 13 of 17

Table 3 Attacks mitigated by the DB-SECaaS system, as a whole

Attack Status Entity Mechanism

Alteration Mitigated KD service, encryption
service

Our system uses encryption to protect the data from alteration and
forgery. Only authorized users have the privilege to get the keys for
decryption.

Denial of service Partially
mitigated

KD service, FG
authorization service

This threat is partially mitigated using access control. Requests
cannot directly communicate with the database, rather they need
to be validated by authorization service to get data access.
However, further study is needed to investigate DoS attack on
authorization service.

Excessive privilege abuse Mitigated FG authorization service Fine-grained policies in our system are defined based on “need-to-
know” principle where privileges to resources are assigned from cell
level to table level. Principle of least privileges is followed.

Unauthorized elevation of
privileges

Mitigated FG authorization service Each request to database is evaluated by fine-grained
authorization policies, which keep malicious insiders from
escalating their privileges.

Injection attacks Partially
mitigated

FG authorization service Injection attacks mostly occur at application layer. Even if malicious
user breaches the application security, he still needs to pass the
fine-grained authorization service. Injection attacks are also partially
mitigated using least privilege access control model. Fine-grained
access control model allow user to access data on a need-to-know
basis.

Backup data exposure Mitigated Encryption service, KD
service

The system protects backup data using encryption service. Data is
stored in encrypted form; therefore, if malicious attempts are made,
it is still useless.

Login attacks Mitigated SA service, IDM service,
fine-grained authorization
service, encryption service,
KD service

We have combined authentication with authorization where user
request is evaluated to access to data. In addition, keys are
managed separately at KD service to decrypt the data. Encryption
together with the authorizationmakes overall security more strong.

and encryption phases are verified individually with the
properties, as shown in the analysis exhibits.

5 Related work
A lot of research has been carried out in the last few years
to mitigate the security challenges in cloud databases, but
contributions specifically dealing with NoSQL databases
are few and far between. Moreover, to the best of our
knowledge, none of the existing works propose a compre-
hensive security solution for NoSQL databases in cloud.
There are a few works available regarding document-
oriented NoSQL security, which serves to emphasize
the immaturity of security techniques in this particu-
lar domain. Due to the lack of research in our area of
focus, we have carried out an extensive survey with a
three-dimensional approach: we begin with solutions that
provide a particular security service for cloud databases;
subsequently, we move on to solutions that increas-
ingly incorporate more security features to protect cloud
databases, like security-as-a-service (DB-SECaaS). Finally,
we narrow it down by enlisting the security mecha-
nisms that some of the more popular document-oriented
databases have to offer.

5.1 Focused security solutions for cloud databases
Delettre et al. [25] have proposed a data concealment
security component in order to ensure the confidentiality

of the data stored in cloud. Tao et al. [26] also provide con-
fidentiality through fully homomorphic encryption, which
performs functions on encrypted data stored in the cloud
via an encryption proxy. In a distinctive approach, pre-
sented in [27], Ferreti et al. get rid of the encryption proxy,
making the operations on encrypted data much faster.
Bracci et al. [28] propose to provide adequate encryp-
tion and key management support by using a real use
case of Vitaever, i.e., a home health-care SaaS application
deployed on Amazon AWS. Sanka et al. [29] propose sym-
metric key sharing between CSP and the user by using the
Diffie-Hellman key exchange protocol. The authors make
a lot of assumptions, which can be potentially harmful in
the real-world scenario.
Wang et al. [30] and Tribhuwan et al. [31] make use

of homomorphic tokens to achieve data correctness. The
only essential security service this covers is the integrity of
the data in cloud. NETDB2 Multi-Shares (NETDB2 MS)
[32] ensures privacy in database-as-a-service and is based
on multi-service providers and the secret sharing algo-
rithm instead of encryption used by the existing NetDB2
service. This new model circumvents the high cost of data
encryption and decryption.
All the aforementioned works are commendable in their

own right; however, all of them offer focused solutions
for data security in cloud environment, mainly providing
one security service at a time, for instance, confidentiality.

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 14 of 17

We, however, are looking for more holistic solutions that
incorporate all the basic security requirements.

5.2 Security-as-a-service solutions for cloud databases
A few fairly recent attempts have been made to present
a more inclusive solution for data security in cloud. A
three-dimensional approach to securing data in cloud is
presented in [33], wherein data is categorized on the
basis of a priority rating, which incorporates confiden-
tiality, integrity, and availability. Sood [34] extends this
system by adding data protection via the 128-bit SSL
encryption and strengthening the authentication mecha-
nism. Mohamed et al. [35] propose a similar data secu-
rity model for cloud environments, having three layers,
where each layer handles specific security tasks: authen-
tication, data encryption, data integrity and user privacy,
and fast data recovery. Islam et al. [36] present an agent-
based framework for providing confidentiality, integrity,
and authenticity to data storage in cloud.
Akin to what we are proposing for cloud, Yamany et al.

[37] presented an intelligent service-oriented architecture
security framework, which includes authentication and
security service (NSS), as well as the authorization ser-
vice (AS), based on theWS-* security standards. Similarly,
Song et al. [38] proposed a generic framework of data-
protection-as-service (DPaaS), which integrates various
protection modules including access control, key man-
agement, and logging, to provide a combined multi-tier
protection mechanisms for the current cloud. This, like
[37], is just a concept that aims to provide integrity, pri-
vacy, confidentiality, and fine-grained access control in
cloud. In particular, these methods do not target NoSQL
databases. Hussain et al. [39] introduce security-as-a-
service (DB-SECaaS), a user-centric architecture that pro-
vides security services for cloud computing on its different
levels (SaaS, PaaS, and IaaS).
The papers, mentioned in this subsection, aim to pro-

vide multiple security services through one solution,
which is essentially our goal as well. However, most of
them are merely concepts and do not discuss implemen-
tation details. Also, they are not sensitive to the security
requirements of document-oriented databases in cloud,
which is our domain of interest.

5.3 Document-oriented database security
Based on the research we have conducted, we have found
that document-oriented databases are increasingly incor-
porating more and more security mechanisms to ensure
data security. Table 4 provides a comparison of the basic
security features provided by some of the more popular
document-oriented NoSQL databases, i.e., CouchDB [40],
MongoDB [41], and RavenDB [42], with DB-SECaaS.
From Table 4, we can conclude that even the most pop-

ular of the document-oriented databases cannot provide

comprehensive security in the most efficient manner.
Authorization mechanisms need to be more fine-grained,
not only based on roles but also on resources. But on the
whole, they are all lacking in one or more aspects of secu-
rity and this needs to be addressed if document-based
databases in cloud are to be widely adopted.

5.4 Discussion
We have reviewed the above mentioned papers, most
of which provide specific solutions for cloud security.
Some focus on specific security services, like confiden-
tiality or availability, while others aim to mitigate specific
risks or threats that exist in the environment. None of
them provide a holistic security solutions for NoSQL
databases, and those that tackle this problem have cer-
tain weaknesses or have not been implemented and just
propose a concept. Not to mention, none of them aims
to provide security for NoSQL databases in the cloud.
Another notable attribute of most solutions is the tight
coupling of security with the underlying database, which
restricts the solution from being applied to any other
database.
In order to overcome the identified weaknesses, we

have implemented a security-as-a-service system over
document-oriented NoSQL in cloud, which provides
authentication, fine-grained authorization, as well as
encryption, using well-established industry standards.
In contrast to most solutions, ours is generic; and
its layered architecture support any document-oriented
database.

6 Conclusions
Document-oriented NoSQL in cloud adds the advan-
tages of cloud computing—like scalability, inexpensive-
ness, and pay-per-use—to the benefits of document-based
databases storage capacity for large volumes of data. On
the other hand, however, the security weaknesses of cloud
and document-basedNoSQL also add up, outweighing the
advantages. The proposed solution tends to enhance the
security of document-based NoSQL databases in cloud
and to, consequently, increase its adoption in enterprises.
With these motivations, we have developed the DB-
SECaaS system that protects the underlying document-
oriented database in cloud by providing authentication,
fine-grained authorization, and data encryption services.
In order to implement the DB-SECaaS, we used the Javax
cryptographic libraries, and well-known industry stan-
dards SAML 2.0 and XACML 3.0. We separately ana-
lyzed the major functional modules, i.e., the fine-grained
authorization service and the encryption service, accord-
ing to the NIST-defined standards. We used Scyther to
further evaluate the security of our DB-SECaaS system.
We also included a list of the potential security attacks
that our system helps in mitigating. In addition, we have

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 15 of 17

Table 4 Comparison of security services provided by some popular document-oriented NoSQL databases with DB-SECaaS

Security service MongoDB security [41] CouchDB security [40] RavenDB security [42, 43] DB-SECaaS

Authentication Authentication in MongoDB
can be incorporated using
password-based challenge
and response protocol or
x.509 certificates.
Additionally, MongoDB
supports various other
third-party authentication
mechanisms to integrate
with existing authentication
infrastructure.

Apart from basic username-
password authentication,
CouchDB also provides
Cookie authentication,
which generates a one-time
token that can be used in
the next request. By default,
a token is valid for 10min.

RavenDB comes with a
built-in authentication
functionality, and it supports
two types of authentication:
Windows authentication
and OAuth authentication.
An appropriate mechanism
is chosen by examining the
incoming request headers
and by default all actions
except read-only are being
authenticated.

DB-SECaaS provides strong
authentication using the
FIPS 196 challenge-response
protocol, which is designed
to mitigate attacks such as
reply. An additional layer
of security using security
assertion markup language
(SAML) is included to
validate the identity of the
user and the various services
participating in the system.
The three major modules
of authentication service, i.e.,
IDM, CA, and SA, provide
the authentication using
standardized technologies
and help in validating users
and modules that interact
with DB-SEC system.

Authorization MongoDB allows role-based
access control wherein
access is granted or denied
based on the roles assigned
to a user. Access can also be
granted based on action and
resource. MongoDB provides
numerous built-in roles and
users can create specific roles
customized to clients’
requirements.

By default, everyone is given
administrative privileges,
which allows them to do
anything with the databases.
However, privileges can
be customized in order to
restrict the operations that
they are allowed to perform.

Any anonymous user can
perform read-only
operations. But other
functions require
authentication. Admin has
the privilege to carry out all
operations.

DB-SECaaS offers
authorization at the
granularity of attribute
and document level of the
database (fine-grained),
based on XACML 3.0. The
fine-grained XACML policies
restrict the access level of
users to ensure that a user
can only perform certain
operations on a certain data,
if and only if is allowed to do
so.

Encryption (in transit) MongoDB provides support
for SSL to make sure that
only the intended recipient
receives a transaction.

CouchDB, as of version 1.1.0,
comes with built in SSL
support.

RavenDB allows the usage of
SSL.

The data is completely
wrapped into SAML queries
to provide protection during
transit.

Encryption (at rest) MongoDB provides
encryption of data at rest by
incorporating the
proprietary data encryption
solution provided by
Gazzang [44]. Gazzang
encrypts data in real time
and offers advanced key
management solutions.

No support for encryption of
data at rest.

RavenDB provides support
for data encryption. By
default, it uses the AES-128
encryption algorithm, but
that can be changed if
needed. It applies to all
documents and to all
indexes.

The two major modules KD
and encryption as a service
helps in performing the
encryption and decryption of
the data stored in collection
on the request of privileged
user.

also defined classes of data security for document-based
databases and have found that our system provides data
security of class 3. After a thorough evaluation of our
DB-SECaaS system, we conclude that the mechanisms
for providing major security features are effective and
afford optimal protection to document-oriented NoSQL
databases. Using the Scyther security verification tool,
the authentication, authorization, and encryption com-
ponents of the proposed framework are tested against
possible attacks with promising results. The Scyther tool
introduces adversaries that can compromise agents during
the run of the protocol learning their keys or the ran-
dom numbers generated. It can verify a protocol against

adversaries that range from the usual model in symbolic
analysis, the Dolev-Yao, to much more powerful adver-
saries. Thus, the successful verification of DB-SECaaS
using Scyther definitely raises the level of trust in its
security aspects.
In the future, we plan focus on the performance of DB-

SECaas so that it can provide protection while minimizing
its latency. We also aim to incorporate new security fea-
tures into the system, including auditing, which involves
the tracking of a database user’s actions. This would
elevate the security level of the database to class 4 (as
per Table 1). Using the DB-SECaaS system, enterprises
can host their critical data in document-based NoSQL

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 16 of 17

databases on the cloud securely, where the owner of the
data would be able to control access to their data.

Authors’ contributions
YG has penned the majority of this manuscript and has been involved in the
process of the initial system design and its evolution to its current stage. RM
has made key contributions in this research article, initially, by proposing the
concept and then providing continuous support to the first author during all
stages of the paper drafting. She was involved in the paper conception and
provided major feedbacks till the final version of the paper. MAS has provided
constant guidance and supervision through every iteration of this article. AR
developed a formal model of the proposed protection system and analyzed it
using the Scyther tool. OH supervised the work of Abid and ascertained the
correctness of his formal models. Moreover, he also reviewed the text in the
paper. All authors read and approved the final manuscript.

Author details
1School of Electrical Engineering and Computer Science (SEECS), National
University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
2University of New South Wales (UNSW), NSW, Sydney, Australia. 3VisionIT,
Detriot, MI, USA.

Competing interests
The authors declare that they have no competing interests.

Received: 17 October 2015 Accepted: 28 June 2016

References
1. R Cattell, Scalable SQL and NoSQL data stores. ACM SIGMOD Record.

39(4), 12–27 (2011)
2. J Han, E Haihong, G Le, J Du, in Pervasive Computing and Applications

(ICPCA), 2011 6th International Conference On. Survey on NoSQL database
(IEEE, Port Elizabeth, South Africa, 2011), pp. 363–366

3. B Ritchie, An introduction to document databases (2010). http://weblogs.
asp.net/britchie/archive/2010/08/12/document-databases.aspx.
Accessed 29 May 2016

4. Apache, CouchDB (2015). http://couchdb.apache.org/. Accessed 16 May
2016

5. H Rhinos, RavenDB (2015). https://ravendb.net/. Accessed 14 May 2016
6. 10gen., MongoDB (2015). http://www.mongodb.org/. Accessed 29 May

2016
7. MongoDB., MongoLab (2015). https://mongolab.com/welcome/.

Accessed 28 May 2016
8. RavenDB, RavenHQ (2015). http://ravenhq.com/. Accessed 14 May 2016
9. IBM, Cloudant. Web page (2015). https://cloudant.com/. Accessed 28 May

2016
10. McAfee, Data loss by the numbers (2015). http://docs.media.bitpipe.com/

io_10x/io_108016/item_630596/wp-data-loss-by-the-numbers.pdf.
Accessed 28 May 2016

11. TrendMicro, MongoHQ data breach a cautionary tale for startups (2015).
http://blog.trendmicro.com/mongohq-data-breach-cautionary-tale-
startups/. Accessed 29 May 2016

12. Forbes, iCloud data breach: hacking and celebrity photos (2015). http://
www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-
hacking-and-nude-celebrity-photos/. Accessed 20 May 2016

13. W Post, A Snapchat security breach affects 4.6 million users. Did Snapchat
drag its feet on a fix? (2015). http://www.washingtonpost.com/blogs/the-
switch/wp/2014/01/01/a-snapchat-security-breach-affects-4-6-million-
users-did-snapchat-drag-its-feet-on-a-fix/. Accessed 28 May 2016

14. S Wakid, Entity Authentication Using Public Key Cryptography. (National
Institute of Standards and Technology (NIST), Gaithersburg, Maryland,
1997), pp. 1–52

15. F MALER, OASIS security assertion markup language (SAML) (2013).
http://www.oasis-open.org/committees/security. Accessed 28 May 2016

16. E Rissanen, Oasis eXtensible access control markup language (XACML)
version 3.0. OASIS Committee Specification 1. (OASIS 2010), 1–150. http://
docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf,
Accessed 24 July 2016

17. CJF Cremers, Scyther: semantics and verification of security protocols.
(Eindhoven University of Technology, Eindhoven, Netherlands, 2006)

18. Scyther, Evaluation tool (2015). http://www.cs.ox.ac.uk/people/cas.
cremers/scyther/. Accessed 1 May 2016

19. VC Hu, D Ferraiolo, DR Kuhn, Assessment of access control systems. (US
Department of Commerce, National Institute of Standards and
Technology, 2006). http://csrc.nist.gov/publications/nistir/7316/NISTIR-
7316.pdf. Accessed 24 July 2016

20. VC Hu, KA Kent, Guidelines for access control system evaluationmetrics.
(Citeseer, US Department of Commerce, United States of America, 2012)

21. E Barker, W Barker, W Burr, W Polk, M Smid, in NIST Special Publication.
Recommendation for key management-part 1: general (revised (Citeseer,
US Department of Commerce, United States of America, 2006)

22. A Biere, A Cimatti, EM Clarke, O Strichman, Y Zhu, Bounded model
checking. Handb. Satisfiability. 185, 457–481 (2009)

23. A Rauf, DB-SECaaS: A cloud based protection system for
document-oriented NoSQL databases (2015). http://save.seecs.nust.edu.
pk/projects/DB-SECaaS/. Accessed 24 July 2016

24. D Dolev, AC Yao, On the security of public key protocols. Inf. Theory IEEE
Trans. 29(2), 198–208 (1983)

25. C Delettre, K Boudaoud, M Riveill, in Computers and Communications
(ISCC), 2011 IEEE SymposiumOn. Cloud computing, security and data
concealment (IEEE, Kerkyra, Greece, 2011), pp. 424–431

26. L Tao, Y Xiaojun, W Jianmin, in Proceedings of the Fourth Asia-Pacific
Symposium on Internetware. Protecting data confidentiality in cloud
systems (ACM, Qingdao, China, 2012), p. 18

27. L Ferretti, M Colajanni, M Marchetti, in Cyberspace Safety and Security.
Supporting security and consistency for cloud database (Springer,
Melbourne, Australia, 2012), pp. 179–193

28. F Bracci, A Corradi, L Foschini, in Computers and Communications (ISCC),
2012 IEEE SymposiumOn. Database security management for healthcare
SaaS in the Amazon AWS cloud (IEEE, Cappadocia, Turkey, 2012),
pp. 000812–000819

29. S Sanka, C Hota, M Rajarajan, in Internet Multimedia Services Architecture
and Application (IMSAA), 2010 IEEE 4th International Conference On. Secure
data access in cloud computing (IEEE, Bangalore, India, 2010), pp. 1–6

30. C Wang, Q Wang, K Ren, N Cao, W Lou, Toward secure and dependable
storage services in cloud computing. Serv. Comput. IEEE Trans. 5(2),
220–232 (2012)

31. M Tribhuwan, V Bhuyar, S Pirzade, in Advances in Recent Technologies in
Communication and Computing (ARTCom), 2010 International Conference
On. Ensuring data storage security in cloud computing through two-way
handshake based on token management (IEEE, Kottayam, India, 2010),
pp. 386–389

32. MA ALzain, E Pardede, in System Sciences (HICSS), 2011 44th Hawaii
International Conference On. Using multi shares for ensuring privacy in
database-as-a-service (IEEE, Kauai, Hawaii, 2011), pp. 1–9

33. P Prasad, B Ojha, RR Shahi, R Lal, A Vaish, U Goel, in Computer Research and
Development (ICCRD), 2011 3rd International Conference On.
Three-dimensional security in cloud computing, vol. 3 (IEEE, Shanghai,
China, 2011), pp. 198–201

34. SK Sood, A combined approach to ensure data security in cloud
computing. J. Netw. Comput. Appl. 35(6), 1831–1838 (2012)

35. EM Mohamed, HS Abdelkader, S El-Etriby, in Informatics and Systems
(INFOS), 2012 8th International Conference On. Enhanced data security
model for cloud computing (IEEE, Cairo, Egypt, 2012), p. 12

36. MR Islam, M Habiba, in Computer and Information Technology (ICCIT), 2012
15th International Conference On. Agent based framework for providing
security to data storage in cloud (IEEE, Chittagong, Bangladesh, 2012),
pp. 446–451

37. HFE Yamany, MA Capretz, DS Allison, Intelligent security and access
control framework for service-oriented architecture. Inf. Softw. Technol.
52(2), 220–236 (2010)

38. D Song, E Shi, I Fischer, U Shankar, Cloud data protection for the masses.
Computer. 45(1), 39–45 (2012)

39. M Hussain, HM Abdulsalam, Software quality in the clouds: a cloud-based
solution. Clust. Comput. 17(2), 389–402 (2014)

40. CouchDB, The definitive guide “Security” (2015). http://guide.couchdb.
org/draft/security.html. Accessed 18 May 2016

41. MongoDB, MongoDB security guide (2015). http://docs.mongodb.org/
master/MongoDB-security-guide.pdf. Accessed 28 May 2016

http://weblogs.asp.net/britchie/archive/2010/08/12/document-databases.aspx
http://weblogs.asp.net/britchie/archive/2010/08/12/document-databases.aspx
http://couchdb.apache.org/
https://ravendb.net/
http://www.mongodb.org/
https://mongolab.com/welcome/
http://ravenhq.com/
https://cloudant.com/
http://docs.media.bitpipe.com/io_10x/io_108016/item_630596/wp-data-loss-by-the-numbers.pdf
http://docs.media.bitpipe.com/io_10x/io_108016/item_630596/wp-data-loss-by-the-numbers.pdf
http://blog.trendmicro.com/mongohq-data-breach-cautionary-tale-startups/
http://blog.trendmicro.com/mongohq-data-breach-cautionary-tale-startups/
http://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
http://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
http://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
http://www.washingtonpost.com/blogs/the-switch/wp/2014/01/01/a-snapchat-security-breach-affects-4-6-million-users-did-snapchat-drag-its-feet-on-a-fix/
http://www.washingtonpost.com/blogs/the-switch/wp/2014/01/01/a-snapchat-security-breach-affects-4-6-million-users-did-snapchat-drag-its-feet-on-a-fix/
http://www.washingtonpost.com/blogs/the-switch/wp/2014/01/01/a-snapchat-security-breach-affects-4-6-million-users-did-snapchat-drag-its-feet-on-a-fix/
http://www.oasis-open.org/committees/security
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://www.cs.ox.ac.uk/people/cas.cremers/scyther/
http://www.cs.ox.ac.uk/people/cas.cremers/scyther/
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://save.seecs.nust.edu.pk/projects/DB-SECaaS/
http://save.seecs.nust.edu.pk/projects/DB-SECaaS/
http://guide.couchdb.org/draft/security.html
http://guide.couchdb.org/draft/security.html
http://docs.mongodb.org/master/MongoDB-security-guide.pdf
http://docs.mongodb.org/master/MongoDB-security-guide.pdf

Ghazi et al. EURASIP Journal on Information Security (2016) 2016:16 Page 17 of 17

42. RavenDB, Bundle: encryption (2015). http://ravendb.net/docs/article-
page/2.0/Csharp/server/extending/bundles/encryption. Accessed 14
May 2016

43. RavenDB, authentication & authorization (2015). http://ravendb.net/docs/
article-page/2.0/Csharp/server/authentication. Accessed 14 May 2016

44. Z Gazzang (2015). http://www.gazzang.com/products/zncrypt. Accessed
20 May 2016

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://ravendb.net/docs/article-page/2.0/Csharp/server/extending/bundles/encryption
http://ravendb.net/docs/article-page/2.0/Csharp/server/extending/bundles/encryption
http://ravendb.net/docs/article-page/2.0/Csharp/server/authentication
http://ravendb.net/docs/article-page/2.0/Csharp/server/authentication
http://www.gazzang.com/products/zncrypt

	Abstract
	Keywords

	Introduction
	The DB-SECaaS system
	Authentication service
	Fine-grained authorization service
	Collection confidentiality service
	Document-oriented NoSQL database

	Execution flow of the DB-SECaaS
	Policy creation phase
	Authentication phase
	Authorization phase
	Encryption phase

	Security evaluation
	Evaluation of the authorization service
	Evaluation of encryption service
	Formal analysis
	Model description
	Formal verification results

	Related work
	Focused security solutions for cloud databases
	Security-as-a-service solutions for cloud databases
	Document-oriented database security
	Discussion

	Conclusions
	Authors' contributions
	Author details
	Competing interests
	References

