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Abstract

Background: When comparing diseased and non-diseased patients in order to
discriminate between the aspects associated with the specific disease, it is often
observed that the diseased patients have more variability than the non-diseased
patients. In such cases Quadratic discriminant analysis is required which is based on
the estimation of different covariance structures for the different groups. Having
different covariance matrices means the Canonical variate transformation cannot be
used to obtain a visual representation of the discrimination and group separation.

Results: In this paper an alternative method is proposed: combining the different
transformations for the different groups into a single representation of the sample
points with classification regions. In order to associate the differences in variables
with group discrimination, a biplot is produced which include information on the
variables, samples and their relationship.

Keywords: Quadratic discriminant analysis, Canonical variate analysis, Biplots
Background
The biplot is a useful graphical method of exploring relationships in data. As the prefix

‘bi-’ suggests, both the samples and variables of a data matrix is represented in a biplot.

The simplest form of a biplot is the Principal component analysis (PCA) biplot which

optimally represents the variation in a data matrix [1]. By representing the variables on

a calibrated axes [2], sample values can be read-off the axes to reveal relationships

between samples and variables.

Another popular plot is a Canonical variate analysis (CVA) plot representing the op-

timal linear discrimination between samples from different groups, based on the

assumption of equal within group variance [3]. By ensuring an aspect ratio of 1:1 is

maintained and adding the original variables as calibrated biplot axes, rather than

representing the canonical variates which are a mixture of the original variables, a

CVA biplot is obtained. The assumption of equal within class variance allows for a sin-

gle canonical transformation of all samples in all groups to a single canonical space in

which the CVA biplot is constructed.

When different groups of observations have different covariance structures, the ca-

nonical transformation is not optimal for group separation. For normally distributed
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data, the theoretical equivalent of Linear discriminant analysis (LDA) in the presence of

different group covariance matrices is Quadratic discriminant analysis (QDA).

Varying covariance structures is often found when comparing diseased to healthy pa-

tients. The variables affected by the disease have certain typical values in healthy pa-

tients. When disease sets in, the values change and change in different ways for

different patients and to a different extent depending on the severity of the disease.

The result is that a lot more variability is observed for the diseased patients. In an effort

to understand the effect of the disease, the differences in groups are analysed by dis-

criminant analysis. Since the covariance matrices differ, QDA can be used, but a visual

representation can shed more light on the exact relationships contributing to the differ-

ences between health and disease.

In this paper a QDA biplot is suggested to visually represent the optimal separation

based on respiratory pathogens in a cohort of children with suspicion of Pulmonary

Tuberculosis (TB) infection. In section 2 the known and established methodology of

LDA and Canonical Variate Analysis (CVA) biplots is reviewed. Section 3 deals with

QDA and the QDA biplot is introduced in section 4. An example is given in section 5

before, the QDA biplot is applied to the data set of respiratory pathogens in children

with TB in section 6.
Linear discriminant analysis
We observe a set of n samples or observations on p variables, represented in the data

matrix X:n × p which we can assume without loss of generality is centred around the

origin so that 1 ' X = 0 '. Of these observations, nj belong to class j, with a total of J clas-

ses observed and
XJ

j¼1

nj ¼ n . The class membership can be represented in a matrix

G:n × J with gij = 1 if sample i belongs to class j and 0 otherwise.

Fisher [4] defined LDA as a transformation that maximises the between class variance

relative to the within class variance. This is closely related to CVA and multivariate

analysis of variance (MANOVA) where the total variance is decomposed into a between

class variance and within class variance part: T = B +W, where T = X ' X, W = X ' [I −G

(G 'G)− 1G ']X, B = X ' G 'GX and X = (G 'G)− 1G ' X. Fisher’s transformation to the

canonical space is given by the vectors m:p × 1 which successively maximise the ra-

tio (m'Bm) / (m'Wm). The vectors m form the columns of a matrix M which defines

the transformation to canonical variates U = X M where M is the eigenvector

solution to the equation BM=WMΛ subject to M'WM = I so that M ' BM = Λ and

W = (MM ')− 1.

The CVA biplot is constructed from the first r, usually r = 2, sometimes r = 3, col-

umns of M, denoted by Mr and the sample points is given by Z = XMr with class

means Z = XMr. For more detail on the construction of the CVA biplot and fitting the

biplot axes, see Gower and Hand [2] or Gower, Lubbe and le Roux [5].

Note that no assumption on the distribution of the data is made to derive the canon-

ical transformation. However, if the data is normally distributed, such that X|G = j ~

normal(p, μj, ΣW), the discrimination function derived at based on equal prior probabil-

ity of belonging to each of the classes and equal misclassification costs for all classes is

equivalent to Fisher’s LDA. The prior probabilities, i.e. the probability of belonging to
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class j, prior to observing the p variables in X, is denoted by πj=P(G=j)s where the

discrete random variable G should not be confused with the indicator matrix G.

It is shown in Appendix A that classification of a sample is to the nearest canonical

mean in the CVA biplot when the prior probabilities are equal and for unequal prior

probabilities, a quantity of log(πj) is simply added to the distance to the j-th class

mean.

Quadratic discriminant analysis
It is assumed that the samples are random realisations from the underlying probability

distributions X|G = j ~ normal(p, μj, Σj) where the common within class covariance

matrix ΣW is now replaced with J covariance matrices Σj.

Where in LDA a sample is classified to class k where

k ¼ argmax
j

log πj
� �

−
1
2

n−Jð Þ u − uj
� �0

u − uj
� �� �

it is shown in Appendix B that classification of a sample is now to class k where

k ¼ arg max
j

log πj
� �

−
1
2

x − xj
� �0S−1

p x − xj
� �þ log Sj

�� ��h i� �

¼ arg max
j

log πj
� �

−
1
2
ϕ2
j xð Þ

� �

Where classification for LDA was in terms of Euclidean distance in the canonical

space, (u − uj) ' (u − uj), in QDA the classification function is of a similar structure, but

now in terms of a function ϕ2
j xð Þ.

QDA biplot
First a simplified version is considered. Let J = 2 groups and the prior probabilities be

equal π1 ¼ π2 ¼ 1
2 . In LDA an observation x is transformed to the canonical space,

u ' = x 'Mr and will be classified to class 1 if (u − u1) ' (u − u1) < (u − u2) ' (u − u2) and to

class 2 otherwise. The equivalent QDA classification rule will be: classify to class 1 if

ϕ2
1 xð Þ < ϕ2

2 xð Þ . Making two different transformations x→ϕ2
1 xð Þ and x→ϕ2

2 xð Þ yields

representations in two different one-dimensional spaces. However, plotting ϕ2
2 xð Þ vs ϕ2

1

xð Þ gives a two-dimensional scatter plot with the classification boundary defined by the

line y = x. Since QDA is specifically applicable in cases with very different covariance

structures, it will often be a feature of this plot that one group is spread out while the

other is extremely concentrated, typically close to the decision boundary. A better rep-

resentation can be obtained by scaling each vector ϕ2
j xð Þ to unit standard deviation.

The different dimensions for plotting is already obtained by different transformations,

therefore a scaling factor unique to each dimension will not add to the complexity of

the representation.

Returning to the problem of J different classes, a different transformation is per-

formed for each group. This creates J ‘new’ variables ϕ̂2
j xð Þ−φj

� �
=sj; j ¼ 1; …; J . Let

these be represented in a matrix Φ:n × J. In order to make a two-dimensional biplot, a

principal component analysis on Φ gives the best two-dimensional representation of

the J variables from with the transformations. The samples are represented by the first
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two principal components’ scores in the biplot. To construct the classification regions,

each point z : 2 × 1 in the biplot space is classified to class k if ϕ̂2
k xð Þ < ϕ̂2

h xð Þ for h = 1,

…, J; h ≠ k. The values ϕ̂ 0 ¼ ϕ̂2
1 xð Þ … ϕ̂2

J xð Þ
h i

is obtained through back projection

as described in Appendix C.

Now the plot provides a representation of the samples and classification regions. The

term biplot refers to the simultaneous representation of two features of a data set, usu-

ally the samples and the variables. The plot can be enhanced to form a biplot, by add-

ing information on the variables. Already in 1978 Kruskal and Wish [6] suggested a

regression method for adding linear relationships between the samples and variables in

a two dimensional display. The construction of p>2 variables in the display with biplot

axes, rather than vectors is discussed in detail in Gower and Hand [2], Greenacre [7]

and Gower, Lubbe and le Roux [5].

An example
To illustrate the QDA biplot a simulated data set will be used. In section 3 it was men-

tioned that QDA is derived for data from J different normal distributions. Here we will

use J=3 groups with different means and covariance matrices and 50 samples in each

group.

μ0
1 ¼ 1 1 1 1½ �; μ0

2 ¼ −1 2 3 4½ �; μ0
3 ¼ 1 1 5 5½ �

Σ1 ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775; Σ2 ¼

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

2
664

3
775; Σ3 ¼

1 0:7 0:7 0:7
0:7 1 0:7 0:7
0:7 0:7 1 0:7
0:7 0:7 0:7 1

2
664

3
775

The QDA biplot is given in Figure 1. Since simulated data was used, the features of
the data are known and it is clear that these features are well represented in the QDA

biplot. We have μ
0
1 ¼ 1 1 1 1½ � which has the lowest values for variables 2, 3 and

4 than Groups 2 and 3. From the biplot we see that group 1 has lower values for all

variables except variable 1. Group 2 has more variation that the other two groups

which is consistent with the diagonal values of Σ2, and lies between Groups 1 and 3.

Orthogonally projecting onto the axes of variables 3 and 4, it is clear that Group 3 has

the highest values, consistent with μ33 = μ34 = 5.

In the example above, the data was simulated from a normal distribution so it is

known that the QDA methodology is applicable to the specific data set. However, the

application of respiratory pathogens contains only indicator variables with 0 = absence

and 1 = presence of the pathogen. Before applying the QDA biplot on this data set, the

simulated data set is converted into indicator variables with all values less than the me-

dian zero and all values larger than or equal to the median being made one. Categoris-

ing the data will lead to a loss of information, but we expect some degree of similarity

in location and spread between the normally distributed data set and the indicator vari-

able data set. The degree to which the QDA biplots of the two data sets represent the

same location, spread and separation features will give an indication of how well the

QDA biplot performs in cases where the data does not follow a normal distribution.

The QDA biplot of the indicator variable data set is given in Figure 2. With four vari-

ables which can each only take on one of two values (0 or 1), there is only 24 = 16
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Figure 1 QDA biplot of simulated data from a normal distribution.
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different response patterns possible. In the simulated data set, 15 of the 16 patterns oc-

curred at least once. All identical patterns will be on the same point in the biplot. For

each point the symbol displayed is found by majority vote. The same problem with dif-

ferent response patterns does not occur in the application in section 6 since a total of

15 pathogens yields 16,384 different response patterns.

In the QDA biplot in Figure 2 it is clear that the majority of the samples appear in

their correct classification regions. This was also the case in Figure 1. The small dif-

ferences in variable 2 disappear with the course coding and the three groups appear

to be similar on variables 1 and 2. Group 1 has the lowest values (most zero’s) for

variables 3 and 4 while Group 3 has the highest values (most one’s) for variables 3

and 4. Again Group 2 appears to be located between Groups 1 and 3. It is comfort-

ing to see that the primary location, spread and separation features of the data set

did not change between Figures 1 and 2, although converting the data to indicator

variables did lead to a loss of information. Moore [8] evaluates discrimination pro-

cedures for binary data. Here the focus is on obtaining a visualisation of how the

variables relate to the different groups when separating groups with differences in
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Figure 2 QDA biplot of simulated indicator data.
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covariance structure. The comparison of Figures 1 and 2 shows that the biplot re-

mains a useful tool for exploring the variables contributing to differences between

groups with unequal covariance matrices.
Application: Distribution of respiratory pathogens in a cohort of children
with suspicion of pulmonary tuberculosis infection
In this section the QDA biplot will be illustrated with the data set that inspired the

development of the plot. Medical researchers were interested in examining the

distribution of respiratory pathogens detected in respiratory specimens from chil-

dren presenting for care with symptoms suggestive of pulmonary tuberculosis. The

children are classified into one of three groups: definite-TB (microbiologically

confirmed), non-TB (microbiologically confirmed) and possible-TB (microbiologic-

ally excluded). Detailed microbiological methods are published elsewhere (In Press).

Among other analyses, QDA was performed on the definite and no-TB groups since

the possible-TB patients are actually unclassified members of the former two

groups. The principal interest of the researchers is to associate some pathogens with

the clinical manifestation of definite-TB and some with no-TB. The QDA biplot is

given in Figure 3. The method of orthogonal parallel translation of the biplot axes

as detailed in Gower, Lubbe and le Roux [5] was applied to move the biplot axes out

of the way of the samples to obtain a clearer plot.
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on prior probabilities proportional to the sample size.
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Since the primary interest of this analysis is not classification, the biplot

is a useful tool to visualize how the variables relate to the definite and

no-TB groups. Pathogens 2 to 9 are all associated with TB while pathogens

10, 11, 13 and 14 are associated with the no-TB group. Pathogens 1, 12

and 15 seem to have a mixture of definite and no-TB patients. The spread of

the sample points from zero on the left towards higher pathogen values

in a triangle shape show that for the definite-TB group some patients have

little, if any, of the pathogens while some others have some combination

of pathogens 2 to 8. Pathogen 9 is the exception which seems to be

negatively correlated with pathogens 2 to 8. Similarly, some no-TB patients

have few or no of pathogens 10, 11, 13 or 14 while others have a combin-

ation of these.

In a pilot study, the visual aid of the biplot provides an easily understandable

aid to which pathogens relate to which of the two groups. Actually a total of 33

pathogens were measured, but those not really contributing to the discrimin-

ation between definite-TB and no-TB are not shown here.
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Conclusion
In cases where the variance between groups differs, QDA should be applied with the

estimation of different covariance matrices for different groups. A transformation based

on the optimal classification of samples from normal distributions is suggested to con-

struct a QDA biplot. In the biplot both the samples, with classification regions, and ori-

ginal variables are represented, showing the relationships between different groups and

the various variables.

Through a simple simulation, it was verified that the main characteristics of the plot

remains intact, even if the assumption of normality is not justified.

The QDA biplot is not designed in the first place for optimal classification of sam-

ples, as this can be performed algebraically with many software programmes. The main

purpose of the QDA biplot is to provide a visual representation of the relationships be-

tween samples in a specific group and the variables measured.

Appendix A: Linear Discriminant Analysis
For classification of an object the posterior probability of belonging to each of the

J groups is calculated, πj|x = πjfX|G(x|G = j), and the sample is classified to the

group with largest posterior probability, arg maxj πj xj . The posterior probabilities

needs to be estimated from the observed data and for the methodology applied in

sections 3 and 4, it is important to look at the log odds of the estimated posterior

probabilities. Using the estimates xj and pooled sample covariance matrix Sp a

sample is classified to

class J if log
π̂ jjx
π̂ J jx

	
< 0; j ¼ 1; …; J−1




class k if log
π̂ jjx
π̂ J jx


 	
< log

π̂kjx
π̂ J jx


 	
; j ¼ 1; …; J−1; j≠k

where the log odds can be written as

g



π̂ jjx
π̂ J jx

	
¼ log

πj

πJ


 	
þ log

2πð Þ−
p
2 Sp
�� ��−

1
2exp −

1
2

x−xj
� �0

S−1p x−xj
� �� �

2πð Þ−
p
2 Sp
�� ��−

1
2exp −

1
2

x−xJð Þ0S−1p x−xJð Þ
� �

0
BBBBB@

1
CCCCCA

¼ log
πj

πJ


 	
−
1
2

δ2 x; xj; Sp
� �

−δ2 x; xJ ; Sp
� � �

with δ2 x; xj; Sp
� � ¼ x−xj

� �0
S−1
p x−xj
� �

.

This means that a sample is classified to group k where

Sp ¼
X

j
nj−1
� �

SjX
j
nj−1
� � ¼ X

0
X−X 0G G

0
G

� �−1
G0XX

j
nj−1
� � ¼¼ 1X

j
nj−1
� �W
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and
� � � �
k ¼ argmax
j

log πj
� �

−
1
2
δ2 x; xj; Sp
� � ¼ argmax

j
log πj

� �
−
1
2

n−Jð Þ x−xj
� �0

W −1 x−xj
� �

¼ argmax
j

log πj
� �

−
1
2

n−Jð Þ x−xj
� �0

MM0 x−xj
� �� �

¼ argmax
j

log πj
� �

−
1
2

n−Jð Þ u−uj
� �0

u−uj
� �� �

so that classification is to the nearest canonical mean in the CVA biplot, barring an

additive factor depending on the prior probability. Should the prior probabilities all be

equal, classification is simply to the nearest class mean in the CVA biplot.

Appendix B
For classification a sample is classified to the group with largest posterior probability

where a sample is classified to

class J if log
π̂ jjx
π̂ J jx

	
< 0; j ¼ 1; …; J−1




class k if log
π̂ jjx
π̂ J jx

	
< log

π̂kjx
π̂ J jx


 	
; j ¼ 1; …; J−1; j≠k




where the log odds can be written as

log



π̂ jjx
π̂ J jx

	
¼ log

πj

πJ


 	
þ log

2πð Þ−
p
2 Sj
�� ��−

1
2exp −

1
2

x− xj
� �0

S−1j x− xj
� �� �

2πð Þ−
p
2 SJj j−

1
2exp −

1
2

x− xJð ÞS−1J x− xJð Þ
� �

0
BBBBB@

1
CCCCCA

¼ log
πj

πJ


 	
−
1
2

log
Sj
�� ��
SJj j


 	
þ δ2 x; xj; Sj

� �
−δ2 x; xJ ; SJð Þ

� �

with δ2 x; xj; Sj
� � ¼ x− xj

� �0
S−1
j x− xj
� �

.

Define ϕ2
j xð Þ ¼ δ2 x; xj; Sj

� �þ log Sj
�� ��, then

log
πjjx
πJ jx

	
¼ log

πj

πJ


 	
−
1
2

ϕ2
j xð Þ−ϕ2

J xð Þ
n o


and the sample x is classified to the group with largest posterior probability,

arg maxj log πj
� �

− 1
2ϕ

2
j xð Þ

n o
.

Appendix C: Back projection in PCA
Although PCA is always performed on a centred data matrix, it was argued in section 4

that the values in the matrix
ϕ2
1 x 1ð Þ
� �

… ϕ2
J x 1ð Þ
� �

⋮ ⋱ ⋮
ϕ2
1 x nð Þ
� �

… ϕ2
J x nð Þ
� �

2
4

3
5 : n� J should also be standar-

dised by dividing each column by its standard deviation. Let φ : J × 1 and s : J × 1 repre-

sent the column means and sample standard deviations then PCA is performed on the

matrix
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Φ ¼
ϕ2
1 x 1ð Þ
� �

… ϕ2
J x 1ð Þ
� �

⋮ ⋱ ⋮
ϕ2
1 x nð Þ
� �

… ϕ2
J x nð Þ
� �

2
4

3
5−1 φ1 … φJ

� �0
@

1
A s−11 0 … 0

⋮ ⋱ … 0
0 0 … s−1J

2
4

3
5

with singular value decomposition

Φ ¼ UDV 0

The principal component scores for the first two dimensions is obtained from the

first two columns of the matrix V, v1 v2½ � ¼ V 2 : J � 2:

Z : n� 2 ¼ ΦV2

and the back projections is given by

Φ̂ ¼ ZV 0
2 ¼ ΦV 2V

0
2

as shown in Gower and Hand [2]. To obtain the back projected value for the unscaled,

uncentred ϕ2
j x ið Þ
� �

-value, the operations are reversed to give

ϕ̂2
j x ið Þ
� � ¼ ϕ̂ ijsj þ φj

where ϕ̂ ij is the ij -th element of the matrix Φ̂. z’V2
’ diag(s1,…, sJ) + φ
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