
Trio: Enabling Sustainable and Scalable
Outdoor Wireless Sensor Network Deployments

Prabal Dutta†, Jonathan Hui†‡, Jaein Jeong†, Sukun Kim†,
Cory Sharp?, Jay Taneja†, Gilman Tolle†‡, Kamin Whitehouse†, and David Culler†‡

†UC Berkeley EECS Dept. ‡Arched Rock Corporation ?Moteiv Corporation
Berkeley, California 94720 San Francisco, California 94105 San Francisco, California 94105

ABSTRACT
We present the philosophy, design, and initial evaluation
of the Trio Testbed, a new outdoor sensor network deploy-
ment that consists of 557 solar-powered motes, seven gate-
way nodes, and a root server. The testbed covers an area
of approximately 50,000 square meters and was in contin-
uous operation during the last four months of 2005. This
new testbed in one of the largest solar-powered outdoor sen-
sor networks ever constructed and it offers a unique plat-
form on which both systems and application software can be
tested safely at scale. The testbed is based on Trio, a new
mote platform that provides sustainable operation, enables
efficient in situ interaction, and supports fail-safe program-
ming. The motivation behind this testbed was to evaluate
robust multi-target tracking algorithms at scale. However,
using the testbed has stressed the system software, network-
ing protocols, and management tools in ways that have ex-
posed subtle but serious weaknesses that were never discov-
ered using indoor testbeds or smaller deployments. We have
been iteratively improving our support software, with the
eventual aim of creating a stable hardware-software platform
for sustainable, scalable, and flexible testbed deployments.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations; C.3 [Special-Purpose and Application-
Based Systems]: Real-Time and Embedded Systems

General Terms
Management, Measurement, Performance, Design, Reliabil-
ity, Experimentation

Keywords
Sensor Networks, Testbed, Large-Scale, Long-Life, Detec-
tion, Target Tracking, Surveillance
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(a) Trio Mote (b) Multi-Target Tracking Application

Figure 1: The Trio platform and an experimental
multi-target tracking application that uses it.

1. INTRODUCTION
Experience shows that developing large-scale, long-lived,

outdoor sensor networks is challenging. Current simulators
like TOSSIM [12] and PowerTOSSIM [19] fail to capture
the complex physical phenomena that appear in real deploy-
ments. Indoor testbeds like MoteLab [23] and Mirage [4] use
real radio hardware that provides much greater communica-
tions realism but does not capture the nuances of outdoor
environments. Portable testbeds like EmStar [7] allow real-
istic outdoor experimentation but their wired backchannels
are a double-edged sword: on one hand they provide great
visibility but on the other hand, they limit the scale of the
deployment. Testing at realistic scales is important because
each order of magnitude increase in network size ushers in
a new set of unforeseen challenges. Outdoor sensor network
deployments like ZebraNet [14], GDI [20], Redwoods [22],
VigilNet [9], and ExScal [2] provide unparalleled realism but
these networks have achieved either large scale or long life,
but usually not both, as described in Section 2.

In this paper, we identify and begin to address the myriad
challenges of moving a testbed from the friendly confines of
the indoors to the unpredictable world outside. Our prin-
cipal hypothesis was that an outdoor testbed needed to be
scalable, sustainable, and fail-safe flexible to meet the test-
ing needs of system and application developers. To test
this hypothesis, we designed the Trio mote and deployed a
testbed of 557 Trio nodes over an area that covers approx-
imately 50,000 square meters. Our colleagues developed a
multi-target tracking (MTT) application to help evaluate
the testbed. Figure 1 shows Trio and the MTT application,
and Section 3 presents the system architecture.



Trio is a new, open experimental platform designed to bet-
ter address the requirements of a large-scale, long-lived, out-
door testbed. The Trio nodes reside in the lowest tier (Tier-
1) of the architecture. Trio provides support for application-
level experimentation through a sensor suite optimized for
detection and classification of humans and vehicles as well
as support for system-level experimentation through hard-
ware and firmware for fault-tolerant operation. Trio inte-
grates Telos [17], the eXtreme Scale Mote (XSM) [6], and
Prometheus [11], and improves upon their designs in sev-
eral ways. Trio addresses sustainable operation through a
solar-power based renewable energy supply with superca-
pacitor and Lithium-Ion battery storage elements, support
for efficient in situ maintenance and fail-safe operation, and
environmentally-hardened package design. Trio addresses
scalability by reducing the cost of human-in-the-loop oper-
ations. Fail-safe flexibility is addressed through the use of
the Deluge network reprogramming system, watchdog and
grenade timers, and one-touch recovery. The details of the
Trio sensor node are presented in Section 4.

The 557 Trio nodes in the testbed are organized into mul-
tiple routing trees, with each tree rooted at a gateway. Gate-
ways forward traffic between the 802.15.4 Trio network and
an 802.11 wireless backbone network. Each Trio node dy-
namically associates with the closest gateway based on rout-
ing cost. Gateways are physically distributed throughout
the mote tier and they support network scalability through
hierarchy: gateways can be added as the number of nodes
increase. Gateways support sustainable operation through
solar power and since they simply forward traffic statelessly,
flexibility is not required. The gateways sit in Tier-2 of
the system architecture along with 802.11 repeaters and an
access point which bridges the 802.11 network to an 802.3
Ethernet network. Section 5 presents the details of Tier-2,
the gateway tier, in our system architecture.

A single root server sits in Tier-3 and connects to all of
the gateways. The server maintains a TCP session with
each gateway while a daemon on the server multiplexes these
TCP sessions using gather-scatter communications and ex-
poses them as a single TCP session. This approach simplifies
client interaction by presenting a unified view of the network
and abstracting superfluous implementation details. The
server also runs network monitoring and management soft-
ware. This software allows active querying or passive moni-
toring of the network and stores the resulting data for online
or later offline analysis. The monitoring software supports
scalability by aggregating large amounts of information from
several sources into simple but informative graphics and ta-
bles. The management software supports flexibility by al-
lowing network programming and other control functions.
Section 6 discusses the software that runs on the server.

Multi-target tracking (MTT) was the first application to
use the Trio Testbed. A simple detection algorithm reported
detection events to clients, sitting in Tier-4, using collection
routing. Oh et al. ported their MTT algorithms [16] to
receive detection events via the root server. Using a 144-
node subset of the testbed, they demonstrated the ability
to disambiguate multiple crossing tracks that intersect in
space and time, as shown in Figure 1(b). The use of the
testbed for this application has highlighted problems with
our system software and has raised new challenges that we
would not have discovered in a small-scale or indoor setting.
Section 8 discusses these discoveries.

2. RELATED WORK
In Section 1, we hypothesized that sustainability and scal-

ability were necessary for achieving coverage over large ex-
tents of space and time, and flexibility was essential for a
testbed to be useful beyond a narrow application window.
This section reviews the scale, lifetime, and flexibility of ear-
lier systems but our review is neither exhaustive nor exact
since several deployments remain unpublished and published
work does not always provide exact statistics.

2.1 Deployments
While several deployments have realized aspects of the

large-scale, long-lived, sensor network vision, no single sys-
tem has integrated all of the pieces into a cohesive whole.
Figure 2 illustrates this point: sensor network deployments
have achieved either scale or lifetime, but usually not both.

Figure 2: Scale and lifetime of several earlier sen-
sor network deployments and the Trio testbed. An
ellipse indicates an uncertain estimate or variance.

ZebraNet is sustainable because of its renewable energy
supply and environmentally-hardened enclosure. However,
it uses an unscalable TDMA MAC with time-synchronized
and statically assigned timeslots. Since “ZebraNet only ex-
pects tens of nodes...this non-scalable solution is accept-
able.” [14] ZebraNet is also limited in its flexibility since
occasionally-connected, mobile nodes cannot be easily re-
programmed. Other than ZebraNet, none of the networks
presented in Figure 2 used a renewable energy supply, so
their lifetimes were limited to weeks or months.

Non-sustainable outdoor sensor network deployments have
resorted to one of three approaches to budgeting energy: “fill
the bank”, “count your pennies”, or a hybrid of the two.
PEG [18], LITeS [1], and ExScal [2, 3] primarily followed a
“fill the bank” approach in which some power management
existed but periodic battery replacement was an element of
the operational strategy. Unfortunately, this approach is un-
scalable since the level of effort required to manually replace
or recharge batteries grows with the number of nodes in the
network. VigilNet [9], GDI [20], and Redwoods [22] used
a “count your pennies” approach which requires meticulous
analysis of energy usage and a fine-grained allocation of the
available energy. This approach, primarily used for carefully



controlled, medium-term, outdoor deployments, does not
afford flexibility or experimentation: once the application
requirements are specified, the energy budget determined,
and the battery selected, it is difficult to increase sampling,
reporting, or communication rates without materially af-
fecting lifetime. All of the deployments shown in Figure 2
are application-specific to varying degrees. The main issue
with application specificity is that it is difficult to leverage
these systems for other purposes, as would be necessary for
a testbed. Except for ExScal and the Intel Developer’s Fo-
rum demo, these earlier networks are small to medium scale,
consisting of 100 or fewer nodes. At these scales, mainte-
nance and management overhead does not dwarf other activ-
ities. Larger scale deployments, however, must pay careful
attention to the maintenance and management issues that
affect scalability and their platforms must be designed ac-
cordingly [2, 6].

2.2 Platforms
Table 1 summarizes a number of sensor network platforms.

A sustainable platform requires a renewable energy supply
because without it, frequent manual intervention is neces-
sary to replace batteries. A flexible platform allows pro-
gramming at both the application and system levels. Flex-
ibility is a fundamental requirement for testbeds. Fail-safe
flexibility requires support for recovering from buggy and
possibly Byzantine programs, and is important when it is
difficult or impossible to manually recover and reprogram
nodes, as is the case for a large-scale, untethered testbed.

Table 1: Details of several sensor network platforms
(top) and the three Trio building blocks (bottom).

Platform Sustainable Flexible Fail-safe

ZebraNet [14] Yes No No
Redwoods [22] No No No

PEG [18] No Yes No
GDI [20] No Yes No

VigilNet [9] No Yes No
LITeS [1] No Yes No

Telos [17] No Yes No
XSM [6] No Yes Yes

Prometheus [11] Yes Yes No

None of the platforms presented in Table 1 support both
sustainable and fail-safe flexible operation. Therefore, con-
sidered individually, none of these platforms meet the needs
of large-scale, long-lived, outdoor testbed. However, by in-
corporating features of several different platforms, a single
platform can be constructed that provides all of the features
that we desire for an outdoor testbed node. Indeed, the Trio
platform takes exactly this evolutionary approach to plat-
form design rather than the more risky one of simultaneously
innovating in the areas of energy harvesting, processor/radio
design, sensing, and fault-tolerance.

The Trio platform is composed of the Telos [17], XSM [6],
and Prometheus [11] platforms. Trio directly integrates Te-
los into its design. From the XSM, Trio borrows and im-
proves upon the hardware grenade timer for fail-safe flexibil-
ity and sensing circuitry for acoustic, magnetic, and passive
infrared. Prometheus [11] provides the basis of the photo-
voltaic energy scavenging system in Trio but the Trio im-
plementation improves upon the original design by adding
support for fail-safe flexibility.

3. SYSTEM ARCHITECTURE
Our system is based on a four-tier hardware architecture

that consists of a mote tier (Tier-1), a gateway tier (Tier-2),
a server tier (Tier-3), and a client tier (Tier-4). In paral-
lel with this hardware architecture exists the software ar-
chitecture that consists of system software on the mote tier,
and middleware services and application software that is dis-
tributed across the mote, server, and client tiers. Figure 3
illustrates the testbed hardware architecture and Figure 4
illustrates the testbed software architecture.

Figure 3: The system hardware architecture consists
of four tiers: mote, gateway, server, and client.

Figure 4: The software architecture consists of sys-
tem software on the mote tier, and middleware ser-
vices and application software that is distributed
across the mote, server, and client tiers. The shad-
ing of the boxes correspond to the tier in which the
software runs.

The four hardware tiers serve different functions:

• Mote Tier. The mote tier consists exclusively of Trio
nodes that run embedded applications. This tier is re-
sponsible for sensing, local processing, and communi-
cations using an 802.15.4 wireless network.

• Gateway Tier. The gateway tier consists of gate-
ways, repeaters, and access points. Gateways are phys-
ically distributed throughout the mote tier and they
forward traffic between the 802.15.4 mote network and
the 802.11 backbone network. Repeaters simply re-
broadcast traffic and serve to extend the range of the



802.11 backbone network. The access point bridges
the 802.11 backbone network with an 802.3 Ethernet
network that is connected to a single root server.

• Server Tier. The server tier consists of a root server
which runs network monitoring processes, gathers statis-
tics on network behavior, multiplexes traffic from mul-
tiple gateways, and provides information on the health
of the network to system users.

• Client Tier. The client tier consists of one of more
desktop computers that run client-side applications.
These applications access the network via the server
tier which forwards traffic to and from the gateway
tier.

The software architecture tiers serve several functions:

• System Software. The system software includes a
bootloader, low-level device drivers, and operating sys-
tem services. We use a customized version of TOS-
Boot, the standard TinyOS bootloader, to initialize
the system hardware, check for abnormal termination,
and revert the system to a trusted code image called
the Golden Image. The device drivers include soft-
ware for managing the system peripherals, controlling
the energy suppy, and intelligently managing energy
transfer between the primary and secondary supplies.
Finally, the operating system services include timers,
storage, networking, and sensor stacks.

• Middleware Services. The middleware services in-
clude network programming, routing, time synchroniza-
tion, remote procedure calls, network management, and
reliable data collection.

• Application Software. The application software in-
cludes localization and detection software which run on
the mote tier; network management and visualization
software that runs on the server tier; and localization,
detection, fusion, tracking, and visualization software
that run on the client tier.

4. TIER-1: THE TRIO NODE
The Trio node, shown in Figure 5, is designed for long-

lived operation with minimal physical maintenance. Trio
itself is based on Telos [17], which supports low-power oper-
ation and remote reprogrammability, a necessity for flexible,
long-lived applications. The Trio grenade timer and sensor
suite are based on the XSM [6] and include passive infrared
motion sensors, a magnetometer, and a microphone. The
Prometheus solar charging system [11] provided the basis
for a renewable energy supply.

4.1 Sustainable Operation
Sustainable operation is supported in two ways: through a

renewable energy supply and by environmentally hardening
the Trio enclosure.

4.1.1 Renewable Energy
Trio circumvents the typical lifetime limitation resulting

from a non-rechargeable battery by including a renewable
energy supply based on the Prometheus solar charging sys-
tem [11] for maintenance-free self-charging. We modified

Figure 5: A Trio node and its key components.

the original Prometheus design to improve its performance
and ensure fail-safe operation. A Trio node with a depleted
capacitor or battery starts to wake up after solar energy
charges the supercapacitor enough to produce a supply volt-
age of 1.8 V, the minimum operating voltage for the MSP430
processor and CC2420 radio. However, initializing sensor
modules and writing to flash requires a higher supply volt-
age. A component of our Prometheus driver enforces hys-
teresis and waits to wake up the rest of the system until
the supply voltage has risen past 2.75 V, which is enough
to power the sensors and write to the flash memory. The
application program is only started once the system voltage
exceeds 2.75 V.

4.1.2 Environmental Hardening
One of the key design challenges was to harden the Trio for

an outdoor environment without hampering sensor perfor-
mance or node maintainability. Several components of Trio
(e.g. solar cell, passive infrared sensor, microphone, buzzer,
and user/reset switches) are exposed to the environment for
sensing, solar energy harvesting, and user input. We made
these components weather-resistant so that Trio nodes could
operate under varying weather conditions. To facilitate node
programming, the USB port is also left exposed, though it
must be sealed for long-term weather resistance. We had
originally planned to mold a custom elastomer plug to seal
the USB port but ended up using cellophane tape which
we eventually discovered was a poor substitute. We used
camera tripods to elevate the nodes, allowing Trio to avoid
ground moisture, better detect objects using its passive in-
frared sensors, and obviate the need to mow the grass under
the nodes. However, placing the node on a tripod led to an
unexpected issue of bird droppings accruing on the nodes.

When the droppings cover part of the solar module on the
Trio node, the amount of power that the solar module can
provide diminishes. Solar cell modules are constructed from
multiple solar cells typically connected in series. If any cell
in the module is partially covered, then the output of the
entire module is reduced by the proportion of the individual
cell that is covered. Since each cell is very thin (3.4 cm by
0.4 cm), even a small bird dropping can reduce the output
power of the solar cell by half or more. To dissuade birds
from using Trios as perches, we mounted clear plastic spikes
on top of the nodes. Since shadows from the plastic spikes
can cause a similar loss of power, we also oriented the nodes
so that the solar cells face south.



4.2 Efficient Physical Interaction
The Trio node supports scalable operation through effi-

cient physical interaction. Trio exposes user and reset but-
tons, which allows efficient interaction with the node. The
reset button provides two simple functions: reset and recov-
ery. If the reset button is depressed once, the node resets.
If, however, the reset button is quickly pressed and released
three times in a row, then the active program reverts to
the trusted Golden Image. The node also provides audible
feedback about certain states and state transitions. When a
node’s capacitor voltage drops below a safe operating volt-
age, the node chirps every few seconds. If the node collects
enough energy to operate, it chirps three times in quick suc-
cession as the application is started. These audible cues
allow operators to passively gauge system status.

4.3 Fail-safe Flexibility
Since Trio can be programmed wirelessly using the Deluge

network programming system, it is possible to program Trio
with a buggy or even Byzantine program. Deluge is included
in the Trio platform software, so network programming is
automatically compiled into every application that uses the
Trio libraries. The external flash can be used to store up to
seven programs and simple Deluge commands can be issued
to switch between the programs.

Several mechanisms are used to support fail-safe operation
and recover from buggy or Byzantine programs. A watch-
dog timer ensures that software is making progress, tasks
are executing, and interrupts are being handled. A grenade
timer ensures that a node can recover from Byzantine ap-
plications by periodically transferring control to a trusted
kernel. A USB override allows even the trusted code to
be reprogrammed if necessary. A hardware override on the
power system ensures that the system always reverts to the
solar power supply in the event the battery dies during op-
eration.

4.3.1 Watchdog Timer
A watchdog timer on the Telos microcontroller must be

cleared periodically by the application to keep the micro-
controller from resetting itself. The watchdog timer is reset
in an interrupt context to ensure that timer interrupts are
still firing. Sitting above the hardware watchdog timer is a
software watchdog which checks if the scheduler is still exe-
cuting: the hardware watchdog is only reset if the software
watchdog tasks are executed to completion at some rate.

4.3.2 Grenade Timer
A grenade timer can be started by the bootloader and be

used to periodically reset the node and force trusted code to
run. If the grenade timer fires unexpectedly, the TOSBoot
bootloader will detect this condition and automatically load
the Golden Image, reverting the node to a known good state
from which new code can be downloaded. The hardware
grenade timer can be configured and started by TOSBoot to
recover from Byzantine programs, but we turned this feature
off for our experimentation because it results in periodic
node resets.

4.3.3 Power Switch Override
An analog SPDT switch is used to switch between the

supercapacitor and battery power supplies. In the original
Prometheus design, the input pin that controls the power

switch floats until the node wakes up and sets it. In the event
the pin is set to use the battery, and the battery becomes
depleted, the node will become inoperable and only manual
intervention can recover it. Trio fixes this problem with a
small hardware change: a pull-down resistor attached to the
pin ensures that the switch is set to use the capacitor after
each reset or power cycle. This change ensures that the Trio
node will eventually run if there is enough sunlight. We also
diode-OR connected the supercapacitor and battery to the
analog switch power line to ensure that the switch has power
if either supply has power.

4.3.4 USB Override
Trio exposes a USB port which can be used to program

or power the node. The USB port allows the node, includ-
ing the trusted bootloader, to be reprogrammed without
disassembly. When the Trio is plugged into USB, the plat-
form drivers automatically charge the system’s supercapaci-
tor and Lithium battery. Hence, even if a node has depleted
its energy buffers, simply plugging the node into USB will
replenish the supercapacitor and battery.

5. TIER-2: A NETWORK OF GATEWAYS
In a large-scale deployment, a gateway tier with high-

bandwidth, wireless backbone spread throughout the net-
work can serve several purposes: it can partition the traf-
fic to lessen the overall network utilization; it can provide
points for traffic observation; and it can support scalability
through hierarchy. Hierarchy allows a large sensor network
to be partitioned into multiple smaller networks that oper-
ate in parallel.

Figure 6: Gateway node and network architecture.

Figure 6 shows a gateway node and the backbone network
architecture. The backbone network consists of a gateway
node that forwards mote traffic to and from the 802.11 back-
bone network, optional 802.11 repeaters, and an 802.11 ac-
cess point that connects this network to the root server.

A gateway node includes three major components: a Te-
los mote, a Telos-to-Ethernet gateway that forwards mes-
sages from the attached Telos mote to the Ethernet inter-
face (Moteiv Tmote Connect), and an 802.3-to-802.11 bridge
that forwards messages from the Tmote Connect to the
802.11 network. A 9 dBi omnidirectional antenna extends
the gateway radio range. We tested the link throughput at
200 m and measured a packet yield exceeding 90%.



5.1 Sustainable Operation
With long-term sustainability in mind, we designed the

gateway nodes to operate on solar power. The power sup-
ply for a gateway node consists of a solar panel, a charg-
ing controller, a gel cell battery, and a DC-DC converter.
We chose a large, 17 Ahr gel cell battery to store solar en-
ergy because it simplified charging and provided the capac-
ity needed to last through cloudy days. The gateway power
system only required basic over-charge protection, provided
by an off-the-shelf battery charging controller (Sunguard-4
by Morningstar). To determine the required output of the
solar panel, we estimated the energy supply and usage for
a gateway node using the following heuristic: the energy
a solar panel provides on the surface of the Earth for one
day is approximately five times the maximum power out-
put, Pmax, observed from the solar panel [8]. Suppose that
a gateway node has an average power draw of Pavg. Since
the energy supply should be greater than the energy usage
for one day, the following inequality holds: Pmax×5 hours ≥
Pavg × 24 hours.

Each of the two major components of a gateway node
has an advertised maximum power draw of 5 W at 5 V. To
support the total power draw Pavg of 10 W, Pmax should be
greater than or equal to 48 W. We chose a 50 W solar panel
from Kyosera to supply power for the gateway node.

5.2 Supporting Scale Through Hierarchy
We deployed seven gateway nodes to support 557 Trio

sensor nodes. Because the diameter of the network was
larger than the 200 m range of the gateway nodes, 802.11
repeaters with higher-gain antennas were placed at strate-
gic locations in the field. The backbone network required
basic IP routing, and management was performed through
the web consoles of both the Tmote Connect and the 802.3-
to-802.11 bridge. Each gateway node was assigned an IP
address on the same subnet as the access point. Any com-
puter in the same subnet can receive data packets from a
gateway node by running the TinyOS SerialForwarder tool.
Packet streams from all of the gateway nodes are combined
using a multiplexing version of SerialForwarder running on
the root server. An application that needs to communicate
with multiple gateways connects directly to the server’s Seri-
alForwarder, saving the application from maintaining multi-
ple packet forwarding connections. This unified stream was
also made available to processes running on the server itself,
which we used to run the network management toolchain
described in the next section.

6. TIER-3: THE ROOT SERVER
The Trio testbed consists of a total of 557 Trio nodes dis-

tributed over an area of approximately 50,000 square me-
ters. The testbeds large scale and remote location makes it
difficult to monitor the nodes directly and raises the need
for remotely-accessible tools to manage the network. To this
end, the Golden Image and the management framework that
runs alongside testbed applications on the mote includes the
Nucleus network management system, a second-generation
version of SNMS [21].

6.1 Network Health Monitoring
In its most basic usage scenario, the Nucleus query system

enables a testbed user to determine which nodes are run-
ning at any particular time. The Nucleus query server that

runs on the root server provides an XML-RPC interface,
and that interface is used by a monitoring daemon that pe-
riodically injects queries into the network, collects responses,
and records statistics. The monitoring daemon tracks which
nodes are running, which nodes had been running but have
stopped responding, and which nodes have never run. The
monitoring daemon also marks a node as awake if a gateway
overhears a protocol message containing a source address,
like Drain and Deluge. Passive health monitoring provides
frequent data on the nodes near the gateways in between
infrequent periodic queries. The daemon then provides this
collected health information to a PHP-based web applica-
tion which fuses this data with previously measured GPS
coordinates for each node and produces real-time network
health maps that can be accessed remotely. Our team found
these maps to be invaluable during our experimentation be-
cause it allowed us to visually identify network problems. A
typical network health map is shown in Figure 7.

Figure 7: Nucleus Network Health Map. This map
shows the health of the Trio nodes deployed at Rich-
mond Field Station.

6.2 Power Monitoring
In addition to ensuring that the network is running, a user

of the testbed should be able to verify that it is running sus-
tainably. The monitoring daemon uses Nucleus to query the
Prometheus logic running on each node, periodically collect-
ing measured battery and capacitor voltage, along with flags
indicating whether the node is charging its battery or run-
ning on it. This information is also displayed on the map
provided by the web management console for online viewing,
and is logged on the server for offline charting and analysis.
Nucleus enabled us to study the behavior of Prometheus at
scale, and Deluge enabled us to respond by installing fixes
to the logic itself.

6.3 Monitoring Network Programming
The monitoring daemon also collects information from

Deluge, enabling us to track the progress of an image through
the network and visually identify nodes that are unable to



acquire the image. Low battery voltages can prevent Del-
uge from writing data to the flash storage, which leads to
low-voltage nodes requesting new data but never saving it.
This Deluge “tension” can create hotspots of traffic within
the network that impede the flow of application and man-
agement data. The health maps enabled us to identify the
tense nodes and reboot them or simply shut them off. This
tension also exposed a previously unknown failure mode for
the epidemic protocols in use.

6.4 Monitoring and Control of Applications
The Nucleus management framework, or an alternate visi-

bility and debugging system called PyTOS [24], can provide
remote monitoring and control of an application running on
the testbed. Even though executing a new application stops
the Golden Image from running, maintaining the ability to
query nodes and build health maps is highly desirable. The
event detection application that we studied on this testbed
included PyTOS, which the team working on that applica-
tion found useful for exporting data and exposing functions
for remote control. Though management traffic can conflict
with an application being tested, perpetually available man-
agement is fundamental to the successful operation of our
long-lived outdoor testbed.

7. TIER-4: CLIENT APPLICATIONS
We created this testbed for a large-scale study of multi-

target tracking algorithms developed by our colleagues at
UC Berkeley [16]. During the weeks leading up to the demon-
stration of these algorithms, our colleagues exercised the
testbeds network reprogramming functionality by installing
a new version of their application nearly every day, adher-
ing to a familiar “deploy first, develop later” mentality that
would usually require a wired testbed. The network manage-
ment component was invaluable in ensuring that every node
in their portion of the network was running prior to starting
each experiment. On August 30th, Oh et al. demonstrated,
in front of a large audience, real-time tracking of three peo-
ple crossing paths through the center of the testbed field.
The success of this application, and the subsequent four
months of testbed operation, demonstrates that our system
is functional and usable. This short section is included for
completeness but for additional details about the applica-
tion, we refer the interested reader to Oh et al. [15] and
Chen et al. [5].

8. DISCUSSION
In this section, we highlight some of the insights and chal-

lenges that emerged during the development, deployment,
operation, management, and maintenance of the Trio sen-
sor network testbed.

8.1 Experiences with Renewable Energy
Renewable energy, in the form of a solar power supply,

has been both the benediction and bane of this experience.
Our most pleasant discovery was how renewable energy fun-
damentally simplifies system operation, management, and
maintenance, enabling the familiar “deploy first, develop
later” approach used with wired testbeds. Unfortunately,
the dynamics of solar power and the logistics of node initial-
ization raised many new concerns and exposed several pre-
viously unknown weaknesses in our network protocols and
management strategies.

8.2 Limited Availability
Our testbed can be operated at 100% duty-cycle during

only a few hours in the middle of day when direct sun-
light is present. However, a duty-cycle ranging from 20%
to 40%, depending on the time of year, allows continuous
operation. This availability limitation stems from several
factors: our own limited appreciation for subtleties of solar
energy harvesting, the high power draw and lack of a low-
power TinyOS MAC layer for the CC2420 radio, and several
oversights in the design of the Prometheus solar energy har-
vesting system. We did not fully consider the many factors
which affect solar energy harvesting. These factors include
seasonal and daily variation in solar power, the angle of incli-
nation of the solar cell, the effect of dirt and bird droppings
on the solar cell, the importance of maximizing power trans-
fer from the solar cell, and the policy surrounding energy
transfer between the primary and secondary energy stores.

8.3 Emergency Battery Daemon
A consequence of limited availability – that is, operating

with a power deficit – is that we cannot rely on the battery
to supply enough power at all times. This realization led us
adopt a policy that prevents Prometheus from switching to
the battery automatically in times of low energy availabil-
ity. Because Prometheus no longer switches automatically
from capacitor to battery, we added a component called the
Battery Daemon that enabled us to manually manage this
switchover. The Battery Daemon uses Drip to disseminate
a command that directs each node to acquire a short lease.
While holding the lease, a node can switch to battery when
either the capacitor voltage runs low or, with a different
command, until the lease expires. Figure 8 shows a day in
which the Battery Daemon was running.

Figure 8: The proportion of nodes using the bat-
tery over the course of a day in which the Battery
Daemon was running.

Note that the percentage of nodes using the battery rises
in the afternoon from 0% at 13:30 hours to just under 70%
at 16:30 hours, which corresponds with the setting sun. The
Battery Daemon is turned off at 16:30 hours. This leasing
mechanism allows us to extend the lifetime of the network
while reducing our chances of accidentally draining the bat-
teries, as would be the case if the charging logic automati-



cally switched to the battery source anytime the capacitor
voltage became depressed.

When the battery daemon is not active, partially-occluded
sunlight causes the nodes to quickly exhaust their capacitors
and go to sleep. These nodes then remain asleep for a longer
time until their capacitors have been charged again. When
running the epidemic algorithms in Deluge and Drip on top
of these frequently rebooting nodes, we discovered new pro-
tocol failure modes.

8.4 Epidemic Protocol Failures
The Golden Image includes Deluge [10] and Drip [21],

both of which use the Trickle algorithm [13]. In these proto-
cols, one node can send an advertisement message that con-
tains out-of-date metadata, which causes neighboring nodes
to generate traffic in order to update the advertising node.
When exercising the protocols at scale, we noticed that our
unstable solar power supply led to nodes powering down,
losing their saved metadata, and sending out-of-date adver-
tisements when power was restored. During times of low or
occluded sunlight, these reboots occured frequently enough
that the excess update traffic created network hotspots. This
excess traffic noticeably slowed down network programming
time and disrupted network monitoring and management
operations. The power instability present in this testbed
has exposed several problems in our network and transport
protocols that we would not have, and indeed had not, dis-
covered on a stable indoor testbed.

8.5 Variability at Scale
Figure 8 illustrates significant variance across the nodes in

their solar energy harvesting and an almost linear growth in
the percentage of nodes using the battery in the afternoon
from 0% at 13:30 hours to just under 70% at 16:30 hours.
These results are surprising because all nodes in our testbed
run the same software and are oriented in the same way with
the solar cells facing south. Of course, some nodes forward
more traffic than others but in these experiments, all nodes
that were running had their radios turned on as well. The
reason for the wide variance in the times at which nodes
switched from capacitor to battery is unknown but we plan
to further analyze the data to see if there are spatio-temporal
patterns underlying these trends.

Several months after the initial deployment, and several
days after letting the network remain unused, we tracked
the battery and capacitor voltages over the course of one
day. Figure 9 shows the mean and spread in battery volt-
ages, and Figure 10 shows the mean and spread in capacitor
voltages, recorded by the management software during this
experiment. The cluster of solid lines before 08:00 hours
at 3.7 V come from four powered nodes. The vertical gaps
are the result of occasional failures of the packet forward-
ing daemons. Battery voltages below 2.5 V are anomalous
readings, as are the arcing traces of capacitor voltages above
3.7 V, which we are unable to explain.

9. CONCLUSIONS
This paper presents our early experiences with a large-

scale, long-lived, outdoor sensor network testbed. We de-
ployed a network of 557 motes, seven gateways, two re-
peaters, and a root server over an area of approximately
50,000 square meters. This network was operational for the
last four months of 2005. In the course of using and manag-

Figure 9: Battery voltages. Each dot represents a
distinct sample.

Figure 10: Capacitor voltages. Each dot represents
a distinct sample.

ing the testbed, we have discovered many subtle but serious
flaws with the network management, power management,
and networking software. While these flaws have severely
limited the hour-to-hour availability of the testbed, they
have not eliminated it altogether because the testbed itself
supports fail-safe reprogramming of the support software.

Despite the many challenges with using a renewable en-
ergy source, we have found the experience liberating in many
ways: even though the system can only operate at a 20% to
40% duty-cycle, we no longer worry about energy replenish-
ment at a node level. The predictability of daily operation,
cloudy winter days notwithstanding, coupled with the flexi-
ble yet fail-safe properties of the platform, have enabled us
to use the untethered, outdoor testbed in ways we did not
anticipate when we started this project. Several researchers
have used the testbed to evaluate various aspects of sensor
network operation. At the system programming level, the
testbed was used to develop and evaluate a suite of pro-
gramming tools. At the management level, we have used
the deployment to evaluate network management tools. At



the application level, intrusion detection, distributed tar-
get tracking, and multi-target tracking algorithms have been
evaluated. At the middleware services level, the testbed has
been used to evaluate collection, dissemination, and network
programming algorithms. At the operating system and de-
vice driver level, we have explored several battery charging
algorithms and many questions surrounding the firmware,
kernel, and application boundaries.

Although we succeeded in executing the target-tracking
application described earlier, we must now turn to improv-
ing the stability of the testbeds own management software.
A wireless outdoor testbed depends on support software
in a way that an indoor testbed with wired backchannels
does not, and the demands on this software actually turn
out to be quite complex. The Golden Image, normally
considered to be a small “trusted” piece of code, includes
environmentally-responsive energy management, an epidemic
command protocol, an epidemic bulk dissemination proto-
col, an adaptive collection routing layer, a query system,
and a storage manager for binary images – a full operat-
ing system. We have discovered unexpected problems with
this large software stack, but the point remains: we can still
program and manage the network, which means that these
problems should be repairable without tearing it down and
starting over.

We have been improving both the performance of the
support software and the availability of the testbed itself
through an iterative process with the eventual goal of en-
abling a stable hardware-software platform for sustainable
and scalable operation. To this end, the future work is clear:
the system software, and in particular, the TinyOS 802.15.4
radio stack, must be adapted to support low-power oper-
ation, the middleware services must be improved to better
handle intermittent connectivity and fluctuating power, and
the power management algorithms must work across a broad
set of scenarios which arise in practice. A wireless outdoor
testbed depends on system software and middleware services
in a way that an indoor testbed with wired backchannels
does not. These new dependencies have exposed weaknesses
in existing software and have outlined promising new re-
search directions.
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