
A Relaxed-Ring for Self-Organising and Fault-Tolerant Peer-to-Peer Networks∗

Boris Mejı́as and Peter Van Roy
Université catholique de Louvain,

Louvain-La-Neuve, Belgium
{bmc|pvr}@info.ucl.ac.be

Abstract

There is no doubt about the increase in popularity of de-
centralised systems over the classical client-server archi-
tecture in distributed applications. These systems are devel-
oped mainly as peer-to-peer networks where it is possible
to observe many strategies to organise the peers. The most
popular one for structured networks is the ring topology.
Despite many advantages offered by this topology, the main-
tenance of the ring is very costly, being difficult to guarantee
lookup consistency and fault-tolerance all the time. By in-
creasing self-management in the system we are able to deal
with these issues. We model ring maintenance as a self-
organising and self-healing system using feedback loops.
As a result, we introduce a novel relaxed-ring topology that
is able to provide fault-tolerance with realistic assumptions
concerning failure detection. Limitations related to failure
handling are clearly identified, providing strong guarantees
to develop applications on top of the relaxed-ring architec-
ture. Besides permanent failures, the paper analyses tem-
porary failures and broken links, which are often ignored.

Index Terms — Decentralised systems, Peer-to-peer, Fault-
tolerance, Self-management, Feedback-loops

1. Introduction

Decentralised applications has rapidly increased their
popularity in the last years due to several factors and mo-
tivations. The increase of Internet bandwidth with a suf-
ficient reliability is already an important element. The
fact that home computers have augmented their comput-
ing power has decreased the dependency on big servers,
because clients are powerful enough to play the role of a
server for several tasks. These factors have allowed the in-
troduction of peer-to-peer networks. Such networks have
reduced the problem of traffic congestion and single point

∗This work is being funded and developed in the context of projects
EVERGROW (contract number:001935) and SELFMAN (contract num-
ber: 034084).

of failure as in the client-server architecture, making decen-
tralised applications popular.

Building decentralised applications requires several
guarantees from the underlay peer-to-peer network. Fault-
tolerance and consistent lookup of resources are crucial
properties that a peer-to-peer system must provide. Other
wished properties such as efficient routing, scalability and
full reachability, made that randomly connected peer-to-
peer networks moved towards structured overlay networks.
Many of these structured networks implements a Distribute
Hash Table (DHT). Among many of them - Pastry [16],
Tapestry [20], Kademlia [12], HyperCup [17], P-Grid [1]
- we focus on Chord [18], because it is quite representative
and it introduces a ring topology that has influenced many
other networks.

In Chord, peers are organised in a ring, having a set of
pointers to efficiently find any other peer in the network.
The resources of the system are distributed among the peers
where each one is responsible for a set of them. Perform-
ing a lookup for a resource must result in a consistent an-
swer, finding the right responsible. To add or remove a peer
from the network, the peer only needs to synchronise with
its direct neighbours. The network is self-organising, mean-
ing that peers will organise themselves in the ring topology
without needing manual reconfiguration.

Despite the self-organising nature of the ring architec-
ture, its maintenance presents several challenges in order
to provide lookup consistency at any time. Chord itself
presents temporary inconsistency when several peers join
the network concurrently. This problem occurs even in
fault-free scenarios. To fix these inconsistencies, a stabil-
isation protocol must be run periodically. The system must
also deal with peers gently leaving the network, which can
occur massively and concurrent to other joining events. The
most challenging issue though, is failure handling, where
peers just leave the network breaking the ring without fol-
lowing any protocol.

As we can see, ironically, the advantages of decentralised
systems with respect to the classical client-server architec-
ture, have the drawback of higher complexity due to the lack

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194718038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of a single point of control and synchronisation. Increas-
ing self-management of decentralised systems can help us
to reduce this new complexity. By self-management we
mean the ability of a system to maintain its functionality
despite changes in its environment. The system constantly
monitor itself triggering corrective actions when the current
state deviates from the desired one. In order to achieve self-
management, the use of feedback loops in the design of the
system appears as a straight forward approach.

We use feedback loops to model the ring-maintenance of
our peer-to-peer system, called P2PS [13], which also uses
a ring topology. As a result of this new design, we introduce
a novel relaxed-ring topology that simplifies the “join” al-
gorithm and greatly improves failure recovery. Having the
ability of handling failures, there is no need for a “leave”
algorithm, because this case is already covered by failure
recovery.

The main contribution of this work is the design of a
peer-to-peer network as a self-managing system, introduc-
ing a relaxed-ring topology that is able to provide fault-
tolerance with realistic assumptions concerning failure de-
tection. The use of feedback loops for modelling the system
can be reused not only in other decentralised systems, but
also in software design in general.

Section 2 gives a more detailed introduction to peer-to-
peer networks using ring topology, describing some existing
solutions for ring maintenance. Section 3 briefly introduces
feedback loops for self-managing systems and how they can
be applied to software design. The result of applying feed-
back loops to the ring maintenance is given in section 4 with
a detailed description of the relaxed-ring. After a deep anal-
ysis of failure handling, the paper provides conclusions for
this work.

2. Peer-to-Peer Rings

Peer-to-peer networks appear as the evident framework
for working with decentralised systems. Looking at the his-
tory of peer-to-peer systems, we find Napster[15] as the
icon of the first generation. Napster uses a hybrid architec-
ture with a centralised directory storing the location of the
resources of the systems. Thus, the client-server strategy
was needed in order to find other peers.

A second generation characterised by Gnutella [8] and
FreeNet [6] removed the servers from the topology becom-
ing the first real peer-to-peer network. Peers build an over-
lay network on top of the Internet, being able to route with
its own topology. No structure is used for the network be-
cause peers are connected randomly to other peers. There-
fore, no strong guarantees can be provided with respect to
reachability, availability and time to find items. Unfortu-
nately, these kind of network have limited scalability and
induce a huge amount of traffic [11].

Figure 1. Structured overlay network using
ring topology

Structured overlay networks - see introduction for refer-
ences - appear as the third generation of peer-to-peer sys-
tems, claiming self-organisation of the network with fault-
tolerance in addition to the guarantees that cannot be found
in the second generation.

Figure 1 depicts a structured overlay network using ring
topology and providing a DHT with election of fingers
based on the Tango [3] algorithm. This structure was first
introduced by Chord [18]. Every peer is identified with a
hash key, and it is connected to a successor and a prede-
cessor respecting the order of the keys in clockwise direc-
tion. The DHT is used for storing and finding items in the
network using basically two operations: put(key, value) to
store a value with a certain key, and get(key) to recover the
value. Every peer is responsible for all keys between its pre-
decessor’s identifier and itself, excluding the predecessor to
avoid overlapping. When lookup for a key is triggered from
any point of the ring, consistency must be guaranteed. We
define this as follows:

Def. Lookup consistency implies that at any time there
is only one responsible for a particular key k, or the respon-
sible is temporary not available.

As we mentioned already, ring maintenance is costly and
it is not trivial to guarantee correctness. This is because the
state of the ring is updated concurrently without having any
centralised point of synchronisation. Chord’s algorithms for
ring maintenance, handling joins and leaves, present well
known problems of temporary inconsistency, where more
that one peer appears to be the responsible for a key. For



this reason, Chord needs to trigger periodic stabilisation in
order to fix the inconsistencies. Existing analyses [7] con-
clude that the problem comes from the fact that joins and
leaves are not atomic operations. We also raise the issue that
these operations always need the synchronisation of three
peers, which is hard to guarantee with asynchronous com-
munication, which is inherent to distributed programming.

Existing solutions [9, 10] introduce locks in the algo-
rithms in order to provide atomicity to join and leave op-
erations. Locks are also hard to manage in asynchronous
systems, and that is why these solutions only work on fault-
free systems, which is not realistic.

A better solution is provided by DKS [7], simplifying
the locking mechanism and proving correctness of the algo-
rithms in absent of failures. Even when this approach offers
strong guarantees, we consider locks extremely restrictive
for a dynamic network based on asynchronous communica-
tion. Every lookup request involving the locked peers must
be suspended in presence of join or leave in order to guar-
antee consistency. Leaving peers are not allowed to leave
the network until they are granted with the relevant locks.
Given that, peers crashing can be seen as peers just leaving
the network without respecting the protocol of the locking
mechanism breaking the guarantees of the system.

Another critical problem for performance is presented
when a peer crashes while some joining or leaving peer is
holding its lock. The situation is worse when the peer hold-
ing the relevant lock is the one that crashes. Under this con-
siderations, we can observe that locks in distributed systems
can hardly present an efficient fault-tolerant solution.

3. Feedback Loops

Taken from system theory, feedback loops can be ob-
served not only in existing automated systems, but also in
self-managing systems in nature. Several examples of this
can be found in [19], where feedback loops are introduced
as a designing model for self-managing software. The loop
consists out of three main concurrent components interact-
ing with the subsystem. There is at least one agent in charge
of monitoring the subsystem, passing the monitored infor-
mation to a another component in charge of deciding a cor-
rective action if needed. An actuating agent is used in order
to perform this action in the subsystem. Figure 2 depicts
the interaction of these three concurrent components in a
feedback loop. These three components together with the
subsystem forms the entire system. It has similar properties
to PID-controllers, with the difference that the evolution of
a running software application is measured discretely.

The goal of the feedback loop is to keep a global prop-
erty of the system stable. In the simplest cases, this property
is represented by the value of a parameter. This parameter
is constantly monitored. When a perturbation is detected,

Figure 2. Basic structure of a feedback loop
(taken from [19])

a corrective action is triggered. A negative feedback will
make the system reacts in the opposite direction to the per-
turbation. Positive feedback increases the perturbation.

Taking an air-conditioning as example, we can see the
room where the system is installed as the subsystem. A
thermometer constantly monitors the temperature in the
room giving this information to a thermostat. The thermo-
stat is the component in charge of computing the correct-
ing action. If the monitored temperature is higher than the
wished temperature, the thermostat will decide to run the
air-conditioning to cool it down. That action corresponds
to the actuating agent.

Since every component executes concurrently, the model
fits very well for modelling distributed systems. There are
many alternatives for implementing every component and
the way they interact. They can represent active objects, ac-
tors, functions, etc. Depending on the chosen paradigm, the
communication between components can be done for in-
stance by message passing or event-based communication.
The communication may also be triggered by pushing or
pulling, resulting on eager or lazy execution.

Independent of the strategy used for communication, it is
important to consider asynchronous communication as the
default when distributed systems are being modelled.

As a rule for using feedback loops in the design of a sys-
tem, actuators and monitors appear as verbs, while the sub-
system and the computing component appear as substan-
tives, as in the air-conditioning example. The reason why it
is not like this in Figure 2, is because that is a description of
the model, and not the model applied to a system.

4. Self-Organising and Self-Healing Relaxed-
Ring

Section 2 described the problem of guaranteeing consis-
tent lookup while multiple joins, leaves and failures occur
in a peer-to-peer network using ring architecture. As a solu-
tion to this problem we design a novel topology based on a
relaxed-ring. This topology also allows as to provide failure
recovery using imperfect failure detectors and handling bro-
ken links which are often ignored. The relaxed-ring topol-



Figure 3. Branch created due to connection
problems between peers p and q

ogy is part of the new version of P2PS [5], implemented
with Mozart-Oz programming system [14].

During this section we will use the terms peer and node
indistinctly to refer to an independent process running with
its own address space, i.e., a network node. We also use the
term pointer as a network reference to a node. The terms
key and identifier represent keys from the DHT, and they
are used to identify peers.

The algorithms of the relaxed-ring are designed using
feedback loops, and the description of their implementation
is given using event-driven notation. As any overlay net-
work built using ring topology, in our system every peer has
a successor, predecessor, and fingers to jump to other parts
of the ring in order to provide efficient routing. The ring
provides a DHT with key-distribution formed by integers
from 0 to N growing clockwise.

Range between keys, such as (p, q] follows the key dis-
tribution clockwise, so it is possible that p > q, and then
the range goes from p to q passing through 0. Parentheses
‘(’ and ‘)’ excludes a key from the range and, ‘[’ and ‘]’
includes it.

As we previously mentioned, one of the problem we
have observed in existing ring maintenance algorithms is
the need for an agreement between three peers to perform
a join/leave action. We provide an algorithm where every
step only needs the agreement of two peers, which is guar-
anteed by a point-to-point communication. In the specific
case of a join, instead of having one step involving 3 peers,
we have two steps involving 2 peers. The lookup consis-
tency is guaranteed between every step and therefore, the
network can still answer lookup requests while simultane-
ous peers are joining the network. Another relevant dif-
ference with the mentioned related work, is that we do not
rely on graceful leaving of peers, because anyway, we have
to deal with leaves due to network and node failures. For
efficiency, a graceful leaving peer could communicate its
departure to its neighbours in order to avoid the timeout in
failure detection.

Our first invariant is that every peer is in the same ring
as its successor. Therefore, it is enough for a peer to have

Figure 4. Messages and pointers update dur-
ing a join

connection with its successor to be considered inside the
network. Secondly, the responsibility of a peer starts with
the key of its predecessor plus 1, and it finishes with its own
key. Therefore, a peer does not need to have connection
with its predecessor, but it must know its key. These are
two crucial properties that allow us to introduce the relax-
ation of the ring. When a peer cannot connect to its prede-
cessor, it forms a branch from the core ring. When there
are no branches, and every peer is connected bidirectionally
with its successor and predecessor, then we have a “perfect
ring”.

Figure 3 shows a fraction of a relaxed ring where peer t
is the root of a branch, and where the connection between
peers p and q is broken. We say that p and t belongs to the
core ring, and that q, r and s are part of a branch.

4.1. The join algorithm

Thinking about the peer-to-peer network as self-
managing system, the network is the subsystem we want
to monitor, because we want it to keep is functionality de-
spite the changes that can occur. The structure of the ring
is the global property that needs to be kept stable. New
peers joining, and current peers leaving or failing represent
perturbations to the ring structure. Therefore, these events
must be monitored.

Messages sent during the process of joining, and the up-
date of the predecessor and successor pointers are shown in
figure 4. In the example, node q wants to join the network



Figure 5. Join algorithm as a feedback loop

having r as successor candidate. Peer r is a good candidate
because it is the responsible for key q. Node q send a join
request to r. Whereas event join triggered by peer q is a
perturbation, event join ok is a correcting action provid-
ing negative feedback. It is negative because it is an action
that goes in the opposite direction of the perturbation. After
join ok is triggered, a branch is created. Then, a second
correcting action is needed to entirely close the ring. This
action is represented by the event new succ sent from peer
q to p.

Figure 5 describes the feedback loop that keeps the struc-
ture of the relaxed-ring stable. The monitoring agents are
in charge of detecting perturbations in the network. Cor-
recting actuators can be seen as three different actions: up-
date routing table (successor and predecessor), trigger event
(correcting ones) and forward request (in case a peer wants
to join in the wrong place). The routing table does not only
include predecessor and successor. It also includes fingers
for efficient routing and resilient sets for failure recovery.

Every peer is independently monitoring the network, and
the correcting action performing the ring maintenance is
running concurrently in every peer. Every event triggered
by a peer is monitored by the destination peer, unless there
is a failure in the communication. In that case, a crash event
will be triggered and treated by the failure recovery mecha-
nism.

Algorithm 1 describes one implementation of the feed-
back loop. Every event is handled by the computing com-
ponent running in every peer. This component decides
which correction has to be performed. In event join, the
messages goto and try later represent the forwarding of
the request. The request can be accepted when the join-
ing peer is a betterPredecessor. This is the case when
q ∈ (pred, self ]. As part of the joining process, there is an
update of the routing table. This update is done explicitly by
assigning the corresponding pointer pred and the pred list.

Operator send is a reliable point-to-point send. If the
receiver presents a failure before the message arrives, the
sender is notified.

Triggering correcting events is represented by the mes-

sage join ok, which will be monitored by the joining peer.
Handling event join ok also shows how the routing table
is updated by assigning pointer succ and set succ list. A
second correcting event is triggered: new succ. The set
named succ list is used later for failure recovery. This set
represents the list of peers that follows after the current suc-
cessor. This peers can be contacted in order to fix the ring
when the successor is suspected of having a failure.

Algorithm 1 Join step 1 - adding a new node
1: upon event 〈 join | q 〉 do
2: if succ = nil then
3: send 〈 try later | self 〉 to q
4: else
5: if betterPredecessor(q) then
6: oldp := pred
7: pred := q
8: predlist := {oldp} ∪ {predlist}
9: send 〈 join ok | oldp, self, succlist 〉 to q

10: else if (q < pred) then
11: send 〈 goto | pred 〉 to q
12: else
13: send 〈 goto | succ 〉 to q
14: end if
15: end if
16: end event

17: upon event 〈 join ok | p, r, sl 〉 do
18: succ := r
19: succlist := {r} ∪ sl
20: if (pred = nil) ∨ (p ∈ (pred, self)) then
21: pred := p
22: send 〈 new succ | self, succ, succlist 〉 to p
23: end if
24: end event

Note that the algorithm is divided into two steps. Like
this, we do not need the synchronisation of three peers per-
forming an atomic operation. Instead, two correcting ac-
tions are triggered in order to fix the perturbation. Algo-



rithm 2 describes the implementation of the second action
where the ring is closed again. This is achieved by updating
pointer succ and set succ list, which are part of the routing
table. A notification event join ack is triggered to improve
the knowledge of the system about its global state, but it is
not strictly needed.

Algorithm 2 Join step 2 - Closing the ring
1: upon event 〈 new succ | q, olds, sl 〉 do
2: if (succ = olds) then
3: oldsucc := succ
4: succ := q
5: succlist := {q} ∪ sl
6: send 〈 join ack | self 〉 to oldsucc
7: send 〈 upd succlist | self, succlist 〉 to pred
8: end if
9: end event

10: upon event 〈 join ack | op 〉 do
11: if (op ∈ predlist) then
12: predlist := predlist \ {op}
13: end if
14: end event

It is important to signalise that the routing algorithm
of Chord or DKS [2] cannot be used in the relaxed-ring.
The algorithm would create cycles due to the introduc-
tion of branches in the ring topology. The routing algo-
rithm of the relaxed-ring works as follows. A peer i must
choose the closest peer j to the key k from its routing ta-
ble. The routing table also consider predecessors for rout-
ing. The distance function between two keys is given by
d(k, j) = (j − k)modN , where N is the highest value of
the key domain. If the relaxed-ring is a perfect ring, the
routing algorithm behaves like in Chord and DKS, converg-
ing to the responsible of the key in logf (N) hops, where f
is the amount of fingers per peer. In presence of branches,
it converges in logf (N) to the root of the branch where the
responsible is connected. In the worse case, the routing al-
gorithm still have to traverse the branch. This gives a com-
plexity of logf (N) + B, where B is the size of the branch.
If there is good connectivity, the size of branches tend to
zero, behaving like Chord. If the connectivity is bad, rout-
ing will take a bit longer when a branch is involved, but
the network will work correctly. This is an advantage with
respect to Chord or DKS, because they will not behave cor-
rectly if connectivity is bad, because they relay on perfect
predecessor-successor relationship.

Given the join and routing algorithms, the relaxed-ring
guarantees consistent lookup at any time in presence of mul-
tiple joining peers. To prove this guarantee, let us assume
the contrary. Then, there are two peers p and q responsible
for key k. In order to have this situation, p and q must have

the same predecessor j, sharing the same range of respon-
sibility. This means that k ∈ (j, p] and k ∈ (j, q]. The join
algorithm updates the predecessor pointer upon events join
and join ok. In the event join, the predecessor is set to a
new joining peer j. This means that no other peer was hav-
ing j as predecessor because it is a new peer. Therefore, this
update does not introduce any inconsistency. Upon event
join ok, the joining peer j initiates its responsibility hav-
ing a member of the ring as predecessor, say i. The only
other peer that had i as predecessor before is the succes-
sor of j, say p, which is the peer that triggered the join ok
event. This message is sent only after p has updated its pre-
decessor pointer to j, and thus, modifying its responsibility
from (i, p] to (j, p], which does not overlap with j’s respon-
sibility (i, j]. Therefore, it is impossible that two peers has
the same predecessor.

4.2. Resilient information

During the join algorithm we have mentioned predlist
and succlist for resilient purposes. The basic failure recov-
ery mechanism is triggered by a peer when it detects the
failure of its successor. When this happens, the peer will
contact the members of the successor list successively. The
objective of the predlist is to recover from failures when
there is no predecessor that triggers the recovery mecha-
nism. This is expected to happen only when the tail of a
branch has crashed. Section 4.3 gives more details about
the recovery algorithms. Initially, we do not use extra fin-
gers for recovery because it is not efficient. They may help
to solve network partitioning, but we delegate this kind of
recovery to upper

Algorithm 3 describes how the update of the successor
list is propagated while the list contains new information.
The predecessor list is updated only during the join algo-
rithm and upon failure recoveries. layers of P2PS.

Algorithm 3 Update of successor list
1: upon event 〈 upd succlist | s, sl 〉 do
2: newsl := {s} ∪ sl \ getLast(sl)
3: if (s == succ) ∧ (succlist 6= newsl) then
4: succlist := newsl
5: send 〈 upd succlist | self, succlist 〉 to pred
6: end if
7: end event

4.3. Failure recovery

Instead of designing a costly protocol for peers leaving
the network, leaving peers are treated as network nodes hav-
ing a failure. Like this, solving problem of failure recovery
will also solve the issue of leaving the network.



Figure 6. Failure recovery as a feedback loop

Observing the relaxed-ring as a self-managing system,
we identify that the crash of a peer also introduces pertur-
bations to the structure of the ring. Therefore, crashes must
be monitored. In order to provide a realistic solution, per-
fect failure detectors cannot be assumed. Perfect failure de-
tectors are strongly complete and strongly accurate. Being
complete means that every crashed node is detected. Be-
ing accurate means that a node being suspected of failure
is effectively in failure. In reality, broken links and nodes
with slow network connection are very often, generating a
considerable amount of false suspicions. Because of this,
not only crashed events must be monitored, but also “I am
alive” messages. When these two events are appear as per-
turbations, the network must update routing tables and trig-
ger correcting events.

Algorithm 4 Failure recovery
1: upon event 〈 crash | p 〉 do
2: succlist := succlist \ {p}
3: predlist := predlist \ {p}
4: crashed := {p} ∪ crashed
5: if (p = succ) ∨ (p = succ candidate) then
6: succ := nil
7: succ candidate := getFirst(succlist)
8: send 〈 join | self 〉 to succ candidate
9: else if (p == pred) then

10: if (predlist 6= ∅) then
11: pred candidate := getLast(predlist)
12: end if
13: end if
14: end event

15: upon event 〈 alive | p 〉 do
16: crashed := crashed \ {p}
17: end event

In the relaxed-ring architecture we reuse the join event
as correcting agent for stabilising the relaxed-ring. If the
network become stable, the join ok event will be moni-
tored. This negative feedback can be observed in figure 6.

Algorithm 4 describes an implementation of the feed-
back loop. If a failure is detected, the crash event is trig-
gered. The detected node is removed from the sets succlist
and predlist, and added to a crashed set. If the detected
peer is the successor, the recovery mechanism is triggered.
The succ pointer is set to nil to avoid other peers joining
while recovering from the failure. A successor candidate
is taken from the successors list. The function getF irst
returns the peer with the first key found clockwise, and re-
moves it from the set. It returns nil if the set is empty. Note
that as every crashed peer is immediately removed from the
resilient sets, getF irst always returns a peer that appears to
be alive at this stage. The successor candidate is contacted
using the join message, triggering the same algorithm as
for joining. This action generates an interaction between the
two feedback loops. If the successor candidate also fails, a
new candidate will be chosen. This is verified with the if
condition.

When the detected peer p is the predecessor, no recovery
mechanism is triggered because p’s predecessor will con-
tact the current peer. The algorithm decides a predecessor
candidate from the predlist to recover from the case when
the tail of a branch is the crashed peer. We will not explore
this case further in this paper because it does not violate our
definition of consistent lookup. To solve it, it is necessary
to set up a time-out to replace the faulty predecessor by the
predecessor candidate.

When a peer recovers from a temporary failure, the alive
event is triggered. This can be implemented by using watch-
ers or using a fault stream attached to the distributed entities
[4]. To handle the alive event is enough to remove the peer
from the crashed set. This will terminate any pending re-
covery algorithm. The faulty peer will trigger by itself the
corresponding recovery events with the relevant peers.

Having now the knowledge of the crashed set, al-
gorithm 5 gives a complete definition of the function
betterPredecessor used in algorithm 1. Since the join
event is used both for a regular join and for failure recovery,
the function will decide if a predecessor candidate is better
than the current one if it belongs to its range of responsibil-



Algorithm 5 Verifying predecessor candidate
1: function betterPredecessor(q) is
2: if (q ∈ (pred, self )) then
3: return (true)
4: else
5: return (pred ∈ crashed)
6: end if
7: end function

ity, or if the current pred is detected as a faulty peer.

Figure 7. Failure recovery triggered in the
ring and in a branch

Knowing the recovery mechanism of the relaxed-ring,
let us come back to our joining example of figure 4 and
check what happens in cases of failures. If q crashes after
the event join, peer r still has p in its predlist for recovery.
If q crashes after sending new succ to p, p still has r in its
succlist for recovery. If p crashes before event new succ,
p’s predecessor will contact r for recovery, and r will in-
form this peer about q. If r crashes before new succ, peers
p and q will contact simultaneously r’s successor for recov-
ery. If q arrives first, everything is in order with respect to
the ranges. If p arrives first, there will be two responsible
for the ranges (p, q], but one of them, q, is not known by
any other peer in the network, and it fact, it does not have a
successor, and then, it does not belong to the ring. Then, no
inconsistency is introduced in any case of failure.

Figure 7 shows the recovery mechanism triggered by a
peer when it detects that its successor has a failure. The
figure depicts two equivalent situations. The above one cor-
responds to a regular crash of a node in a perfect ring. The
situation bellow shows that a crash in a branch is equivalent
as long as there is a predecessor that detects the failure.

Figure 8 shows two simultaneous crashes together with a
new peer concurrently joining the network. If the recovery
join message arrives first, the ring will be fixed before the
new peer joins, resulting in a regular join. If the new peer
starts the first step of joining before the recovery, it will
introduce a temporary branch because of its impossibility of
contacting the faulty predecessor. When the recovery join

Figure 8. Simultaneous crashes together with
a join event

message arrive, the recovering peer will be forwarded to the
new peer. The contact of these two peers will finally fix the
ring and removing the branch.

There are failures more difficult to handle than the ones
we have already analysed. Figure 9 depicts a broken link
and the crash of the tail of a branch. In the case of the
broken link (inaccuracy), the failure recovery mechanism is
triggered, but the successor of the suspected node will not
accept the join message. The described algorithm will even-
tually recover from this situation when the failure detector
reaches accuracy. This will happen when the link is recover
from the failure, and the alive event is monitored.

Figure 9. Broken link and failure of the tail of
branch

In the case of the crash of the node at the tail of a branch,
there is no predecessor to trigger the recovery mechanism.
In this case, the successor could use one of its nodes in the
predecessor list to trigger recovery, but that could introduce
inconsistencies if the suspected node has not really failed.
If the tail of the branch has not really failed but it has a
broken link with its successor, then, it becomes temporary
isolated and unreachable to the rest of the network. Having
unreachable nodes means that we are in presence of network
partitioning, which will be discussed in section 4.5.

With respect to failure handling, the relaxed-ring guar-
antees that simultaneous failures of nodes never introduce
inconsistent lookup as long as there is no network partition.
To prove this guarantee, we must consider that every failure
of a peer is eventually detected by its successor, predeces-
sor and other peers in the ring having a connection with the
faulty node. The successor and other peers register the fail-



Figure 10. Peers p and r detect failure of q, fixing the ring with an interaction of feedback loops

ure in the crashed set, and remove the faulty peer from the
resilient sets predlist and succlist, but they do not trig-
ger any recovery mechanism. Only the predecessor triggers
failure recovery when the failure of its successor is detected,
contacting only one peer from the successor list at the time.
Then, there is only one possible candidate to replace each
faulty peer, and then, it is impossible to have two responsi-
ble for the same range of keys.

4.4. Combining feedback loops

The interaction between feedback loops is an interesting
issue to analyse because big systems are expected to be de-
signed as a combination of several loops. Let us consider
a particular section of the ring having peers p, q and r con-
nected through successor and predecessors pointers. Figure
10 describes how the ring is perturbed and stabilised in the
presence of a failure of peer q. Only relevant monitored and
actuating actions are included in the figure to avoid a bigger
and verbose diagram.

Initially, the crash of peer q is detected by peers p and
r (1). Both peers will update their routing tables remov-
ing q from the set of valid peers (2b). But, since p is q’s
predecessor, only p will trigger the correcting event join
(2a). This first iteration corresponds to a loop from the fail-
ure recovery mechanism. The join event will be monitored
by peer r (3), starting an iteration in the join maintenance
loop. The correcting action join ok will be triggered (4a)
together with the corresponding update of the routing table
(4b). Then, the event join ok will be monitored (5) by the
failure recovery component in order to perform the corre-
spondent update of the routing table (6). Since the join ok
event is also detected by the join loop, both loops will con-
sider the network stable again.

4.5. Limitations

Figure 11 depicts a temporary network partition that can
occur in the relaxed-ring topology. Previously, we have
analysed cases where there is only one peer that triggers
the recovery mechanism. In the case of the failure of the
root of a branch, peer r in the example, there are two re-
covery messages triggered by peers p and q. If message
from peer q arrives first to peer t, the algorithm handle the
situation without problems. If message from peer p arrives
first, the branch will be temporary isolated behaving as a
network partition. This situation introduces a temporary in-
consistency. This limitation is not unique to the relaxed-ring
topology. It is related to the proof given by Ghodsi in [7],
where it is not possible to provide at the same time con-
sistency, availability and partition-tolerance in presence of
network partitioning. The limitation of the particular case
of the relaxed-ring is well defined in the following theorem.

Figure 11. The failure of the root of a branch
triggers two recovery events

Theorem 4.1 Let r be the root of a branch, succ its suc-
cessor, pred its predecessor, and predlist the set of peers
having r as successor. Let p be any peer in the set, so that
p ∈ predlist . Then, the crash of peer r may introduce



temporary inconsistent lookup if p contacts succ for recov-
ery before pred. The inconsistency will involve the range
(p, pred], and it will be corrected as soon as pred contacts
succ for recovery.

Proof 1 There are only two possible cases. First, pred con-
tacts succ before p does it. In that case, succ will consider
pred as its predecessor. When p contacts succ, it will redi-
rect it to pred without introducing inconsistency. The sec-
ond possible case is that p contacts succ first. At this stage,
the range of responsibility of succ is (p, succ], and of pred
is (p′, pred], where p′ ∈ [p, pred]. This implies that succ
and pred are responsible for the range (p′, pred], where in
the worse case p′ = p. As soon as pred contacts succ it
will become the predecessor because pred > p, and the
inconsistency will disappear.

Theorem 4.1 clearly states the limitation of branches
in the system. This helps developers to identify scenarios
where special failure recovery must be taken into account.
Since the problem is related to network partitioning, there
seems to be no easy solution for it. An advantage of the
relaxed-ring is that the issue is well defined and easy to de-
tect, improving the guarantees provided by the system in
order to build fault-tolerant applications on top of it.

5. Conclusions

Decentralised systems in the form of peer-to-peer net-
works presents many advantages over the classical client-
server architecture. Even though, the complexity of a de-
centralised system is higher, requiring the increase of self-
management. In this paper we show how feedback-loops,
taken from existing self-managing systems, can be applied
in the design of a peer-to-peer network. The result is a novel
relaxed-ring topology for fault-tolerant and self-organising
networks. The system is able to monitor and correct itself,
keeping the ring structure stable despite the changes due to
regular operations of due to network and node failures.

The topology is derived from the simplification of the
join algorithm requiring the synchronisation of only two
peers at each stage. As a result, the algorithm introduces
branches to the ring. These branches can only be observed
in presence of connectivity problems between peers, and
help the system to work in realistic scenarios. The ability
to handle failures removes the need for a leave algorithm,
because it is just a special case in the failure recovery mech-
anism.

Related work is discussed along the paper, but it is spe-
cially analysed in section 2. The guarantees and limitations
of the relaxed-ring of P2PS are clearly identified and for-
mally stated in section 4. These specifications provide help-
ful indications to developers in order to build fault-tolerant
applications on top of this structured overlay network.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for
P2P information systems. Sixth International Conference
on Cooperative Information Systems (CoopIS 2001), Lec-
ture Notes in Computer Science, 2172:179–194, 2001.

[2] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. Dks
(n, k, f): A family of low communication, scalable and
fault-tolerant infrastructures for p2p applications. In CC-
GRID ’03: Proceedings of the 3st International Symposium
on Cluster Computing and the Grid, page 344, Washington,
DC, USA, 2003. IEEE Computer Society.

[3] B. Carton and V. Mesaros. Improving the scalability of
logarithmic-degree dht-based peer-to-peer networks. In
M. Danelutto, M. Vanneschi, and D. Laforenza, editors,
Euro-Par, volume 3149 of Lecture Notes in Computer Sci-
ence, pages 1060–1067. Springer, 2004.

[4] R. Collet and P. V. Roy. Failure handling in a network-
transparent distributed programming language. In Advanced
Topics in Exception Handling Techniques, 2006.

[5] DistOz Group. P2PS: A peer-to-peer networking library for
Mozart-Oz. http://gforge.info.ucl.ac.be/projects/p2ps, 2007.

[6] FreeNet. http://freenet.sourceforge.net, 2003.
[7] A. Ghodsi. Distributed k-ary System: Algorithms for Dis-

tributed Hash Tables. PhD dissertation, KTH — Royal In-
stitute of Technology, Stockholm, Sweden, Dec. 2006.

[8] Gnutella. http://gnutella.com, 2003.
[9] X. Li, J. Misra, and C. G. Plaxton. Active and concurrent

topology maintenance. In DISC, pages 320–334, 2004.
[10] X. Li, J. Misra, and C. G. Plaxton. Concurrent maintenance

of rings. Distributed Computing, 19(2):126–148, 2006.
[11] E. P. Markatos. Tracing a large-scale peer to peer system: an

hour in the life of gnutella. In 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2002.

[12] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric, 2002.

[13] V. Mesaros, B. Carton, and P. Van Roy. P2PS: Peer-to-peer
development platform for mozart. In P. Van Roy, editor,
MOZ, volume 3389 of Lecture Notes in Computer Science,
pages 125–136. Springer, 2004.

[14] Mozart Community. The Mozart-Oz programming system.
http://www.mozart-oz.org, 2007.

[15] Napster. Open source napster server, 2002.
[16] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-

ized object location, and routing for large-scale peer-to-peer
systems. Lecture Notes in Computer Science, 2001.

[17] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hypercup
– hypercubes, ontologies and efficient search on p2p net-
works, 2002.

[18] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.

[19] P. Van Roy. Self management and the future of software
design. In Formal Aspects of Component Software (FACS
’06), September 2006.

[20] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A global-scale overlay for
rapid service deployment. IEEE Journal on Selected Areas
in Communications, 2003.


