
Boulaire et al. Complex Adaptive Systems Modeling  (2015) 3:1 
DOI 10.1186/s40294-015-0007-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
RESEARCH Open Access
Dynamic agent composition for large-scale
agent-based models
Fanny Boulaire1*, Mark Utting2,3 and Robin Drogemuller1
* Correspondence:
Fanny.Boulaire@qut.edu.au
1Queensland University of
Technology, Gardens Point – P
Block level 8, Brisbane Qld 4000,
Australia
Full list of author information is
available at the end of the article
©
A
m

Abstract

Purpose: This paper describes dynamic agent composition, used to support the
development of flexible and extensible large-scale agent-based models (ABMs). This
approach was motivated by a need to extend and modify, with ease, an ABM with
an underlying networked structure as more information becomes available. Flexibility
was also sought after so that simulations are set up with ease, without the need to
program.

Methods: The dynamic agent composition approach consists in having agents,
whose implementation has been broken into atomic units, come together at
runtime to form the complex system representation on which simulations are run.
These components capture information at a fine level of detail and provide a vast
range of combinations and options for a modeller to create ABMs.

Results: A description of the dynamic agent composition is given in this paper, as well
as details about its implementation within MODAM (MODular Agent-based Model), a
software framework which is applied to the planning of the electricity distribution
network. Illustrations of the implementation of the dynamic agent composition are
consequently given for that domain throughout the paper. It is however expected that
this approach will be beneficial to other problem domains, especially those with a
networked structure, such as water or gas networks.

Conclusions: Dynamic agent composition has many advantages over the way
agent-based models are traditionally built for the users, the developers, as well as
for agent-based modelling as a scientific approach. Developers can extend the
model without the need to access or modify previously written code; they can
develop groups of entities independently and add them to those already defined to
extend the model. Users can mix-and-match already implemented components to
form large-scales ABMs, allowing them to quickly setup simulations and easily
compare scenarios without the need to program. The dynamic agent composition
provides a natural simulation space over which ABMs of networked structures are
represented, facilitating their implementation; and verification and validation of
models is facilitated by quickly setting up alternative simulations.

Keywords: Agent-based model; Dynamic composition; Large-scale; Electricity
distribution network
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Background
Agent-based modelling (ABM) has been used successfully over the last decade to model

different aspects of the electricity sector. Its use was initially mainly for the analysis

of power market design for large-scale electricity systems when deregulation hap-

pened (North et al. 2002; Batten et al. 2006; Weidlich 2008). These models aimed at

investigating the interactions between the physical infrastructure at the transmission

level (high voltage networks), and the economic behaviour of market participants to

help engineer markets in the electricity sector. The application of ABM to the electricity

distribution network (medium and low voltage networks) is not as widespread as that of

the transmission networks, but is becoming more studied, especially as new technologies

(rooftop solar panels, batteries, …) are appearing on the market and transforming the way

electricity is consumed, produced and traded (Cai et al. 2011; Institute for Energy and

Transport 2014).

Agent-based modelling has seen a rise in popularity for its capacity to provide some

insight as to how a system responds to changes from the entities’ responses and inter-

actions and the environment, by capturing information at a fine level of detail over

space and time using simple rules (Klügl and Bazzan 2012; Macal et al. 2006). It is

therefore particularly suited to model the electricity grid which is currently going

through a phase of transformation. The way the grid is going to be used is changing,

with consumers now also becoming producers and installing new technologies that are

changing the flows of electricity on the networks. Communication between the different

network assets will become more prominent, impacting further its management but also

providing many opportunities. Information about where, how and when these changes

are going to happen is important as averages are not sufficient to inform planners

appropriately.

Within this context, we have developed a modelling and simulation (M&S) applica-

tion to answer questions relating to the planning of the future grid and to assess the

impact of the integration of decentralised generators (DGs) on a distribution grid

owned by Ergon Energy (Ergon Energy 2013). This M&S application supports the net-

work planning process by providing an understanding of the evolution of the network

in terms of load and voltages, over space and time, and finding the most economical

solution in terms of network upgrades. The full platform uses two modelling

techniques: agent-based modelling (Castiglione 2006) and particle swarm optimisation

(PSO) (del Valle et al. 2008). The ABM approach was chosen for a few reasons. One is

its capacity to capture the information at a fine level of detail both geographically and

over time, allowing customers behaviours in relation to their usage of new technologies

to be represented and linked to the network structure with accuracy. Another one is

that in this application context, the past is no predictor of the future, because very little

is known about the impact of the large-scale integration of DGs on distribution net-

works. By capturing the functioning of the different entities and their relationships to

one another, insight into what might happen using simple rules can be gained. In our

M&S application, ABM is used to run a large number of scenarios of possible futures,

and its output (load duration curves at any node on the network) is passed to the PSO

module. This module evaluates which network assets can be installed or upgraded to

ensure safe, reliable and economical delivery of electricity. Details on the overall M&S

application can be found in (Boulaire et al. 2012b).
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This paper focuses solely on the ABM part of the M&S application; more specifically

on the technical aspect in building a large-scale agent-based model in regards to the

requirements of the project. The following requirements were defined, where the model

needed to:

a) Take into account the physical characteristics of the network (assets and their

connections) as well as the different actors and the environment, influencing the

flows on the network;

b) Be able to represent the evolution of the system over many years (long-term

planning) but with a fine level of detail that captures how the different elements

operate over half-hourly periods;

c) Deal with large and varied datasets coming from corporate databases to

populate the model - in terms of configuration of the network and

characteristics of its elements, and also allow for different data types

for the output of the simulation;

d) Be able to evolve along with the changes in the network and the consumers market
a. With the addition of new technologies over time, as they became available;

b. and different ways in using them, e.g. comparing behavioural or policy impact

depending on how the technology is used;

e) Allow creating various scenarios with ease so that simulations can be set up on a

daily basis by power engineers, who are not programmers.

Further to these model requirements, goals were identified for its implementation:

• An independent author (a developer that is adding new agents) does not need to

modify previously written code;

• The models need to be assembled following a “code-free” approach, where

o A model user does not need to read or modify the Java code

∎ Behaviours of agents can be added/changed without coding – both at the

beginning when setting up the model, and during the run,

∎ A user can try different models without going into the code, but simply by

combining different aspects of the model

o There is no need for recompiling when adding agents to the model

Two early implementations of our M&S application, based on Repast (Argonne

National Laboratory 2014) and MASON (Luke et al. 2005), exposed various

shortfalls with building large-scale models using existing model building ap-

proaches in regards to our needs. These are summarised in Table 1. The limita-

tions, requirements and goals mentioned above, led to the development of

MODAM (MODular Agent-based Model), a framework that builds flexible and

extensible large-scale ABMs, using dynamic agent composition. This approach

consists in having the agents built at runtime by bringing together the physical

representation of the elements (assets) and their different behaviours that will

specify their actions.

The solutions implemented in MODAM, in response to the shortfalls identified are

also given in Table 1, and are discussed further in the paper.



Table 1 Shortfalls of existing model building approaches and software systems, and
MODAM solutions

Shortfalls of existing model building approaches
and software systems

MODAM solutions

• Central simulation class is responsible for • Decentralised factories create the physical
properties of an agent (assets) and its
behavioural properties (behaviours) separatelya. Instantiating all agents;

b. Defining relationships between instantiated agents;

c. Reading the data used to build agents and relationships
(if the model is data-driven);

a. Several asset factories create assets and
the relationships between them;

b. Several behaviour factories attach
behaviours to assets;

d. Complex option handling done as centralised code.

c. Each asset factory can be independently
parameterised with data providers;

d. Each factory handles its own options.

• Each agent is a single class. • Separation of assets and behaviours allows

a. Variation of behaviour requires many subclasses; a. Mix-and-match construction of agents at
runtime;

b. Each agent is created independently of others. b. Gathering certain entities in groups.

• Non deterministic order of agents’ execution • Deterministic simulation runs for each
random seed (reproducibility of results)
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The MODAM framework enforces the separation of assets and behaviours, and com-

bines this key idea with several other techniques (data providers, factories, interfaces,

channels (runtime data attributes), use of reflection by a module manager) to fully sup-

port the dynamic composition of agents. Because we are building large-scale ABMs

where thousands of agents are represented and for which we have sufficiently accurate

knowledge, data is used to populate the model, defining the way the agents are in rela-

tion to one another as well as their properties. Assets and behaviours are created within

components according to their type, and data providers are called on to populate the

individuals’ entities, with the model coming together at runtime. This facilitates setting

up large-scale simulations and has the additional property of not requiring the user to

program. This approach builds on the vision set by (Hamill 2010) of having a library of

building blocks for agent-based models. These building blocks would capture a specific

environment, or agent, or group of agents and by bringing them together a modeller can

set up a simulation more easily, which is especially interesting for the non-programmer.

This approach, dynamic agent composition, is the key contribution of this paper.

This paper describes this approach, to building flexible and extensible large-scale

ABMs. First, the dynamic agent composition is motivated in Section 3 using an ex-

ample of the implementation of an electric vehicle agent. An overview of the approach

is then given in Section 4, followed in Section 5 by more details describing the asset

and behaviour models, and a description of how these elements come together at run-

time to create a simulation. Section 6 discusses the challenges and the benefits in using

this method. Finally, our work is put in relation to other work in the domain of

agent-based modelling, and composition.

References to applications of the electricity sector are made throughout this paper to

illustrate the use of the dynamic agent composition in a concrete manner. More details

of the electricity models and simulation results can be found in (Boulaire et al. 2013a;

Boulaire et al. 2012a; Boulaire et al. 2012b).
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Motivating example of a dynamic agent composition
Before formalising what is meant by dynamic agent composition, this section motivates

this approach by introducing a simple example of an electric vehicle (EV) agent. This

EV agent is to be used within the context of planning the electricity grid, to understand

how the increasing number of vehicles and the way they are used will impact the

current infrastructure.

An EV is a mobile agent, which is not bound by its geographic characteristics. It can

however have properties of location that will indicate where it connects to the grid to

charge. It can be considered as a mobile battery, which can be limited to recharge only,

but is also able to discharge to support the premise consumption it is attached to, if

needed. It has a state of charge which is the amount of energy that is left in the battery,

and from which charging requirements are calculated. Therefore it has similar proper-

ties to a battery with a few additional ones.

Following from this, an EV has at least two main properties, from the network view-

point, that influence its behaviour: driving characteristics, and a charging regime. These

need to be accounted for when implementing the rules within the EV agent. Figure 1

gives a schematic representation of the composition of an agent, which is made of an

electric vehicle asset to which two behaviours are added. The asset includes all the

physical and data attributes of the vehicle, such as location, battery capacity, state of

charge, maximum charge rate.

While these two behaviours need to be described within the rules, each of them can

have multiple implementations. For example, we can think of two implementations for

the driving characteristics:

� The location parameter is informed by whether or not the vehicle is at a premise,

using a Boolean variable that is set to true for the timesteps after which the EV has

reached the premise. This time of arrival can be randomly chosen from a

probability distribution curve derived from typical home arrival times. Similarly, its

charging state is randomly set from probability distribution curves of typical vehicle

trips;

� The location parameter is informed by a traffic simulation system that knows where

and when the vehicle has arrived. Its charging state is calculated from the traffic

simulation system that knows the exact trip the EV did for the day.
Figure 1 Illustration of the options for an electric vehicle with charging behaviour and driving
behaviours.
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Similarly, we can also have two implementations for the charging regime:

� The EV can charge at any time of the day, as soon as the signal is set for it (e.g. as

soon as the vehicle arrives at the premise);

� The EV charges only during set periods of time, which can be defined by a policy

setting (set) or informed from communication with a central controller (dynamic).

For each behaviour type, only two options are presented here, but we can imagine

many more alternative behaviours.

If the behaviours and the static information were implemented in one same agent

class, these alternative behaviours could be implemented by subclassing an electric ve-

hicle agent class for example, or by calling behaviour objects defined in other classes.

In this example, this would result in four agents that the user could choose from, which

is equivalent to our implementation. However, when increasing the number of behaviours’

options, using the dynamic agent composition would result in lesser implementation

needs compared to subclassing existing agents implemented in one class.

Having that flexibility in combining the behaviours is important. Comparison of the

impact of behaviours of agents is then facilitated by simply swapping a behaviour with

another one.

Further, if a behaviour can be used by two asset types, this separation avoids writing

extra code and enables reuse. This is the case for the charging regime in our example,

which can be used not only to describe charging characteristics of an electric vehicle

but also of a battery, whether it is privately owned or is grid operated. This property of

reusability is important as it reduces the development time, and the risk of possible im-

plementation mistakes.

In addition to these properties of flexibility and reusability, having the asset and the

behaviours separated also offers ease in extending the model. Indeed, there is no need

to modify the code of an agent if a new behaviour type is to be added, even if that be-

haviour is defined by an independent author. This is quite interesting, especially when

more information becomes available as the project evolves, or when information/data

changes, e.g. due to new applications.

Finally, data is also used to populate the agents’ properties, both for assets and behav-

iours, which offers additional flexibility in the definition of the agents. For example,

projections of EV uptake can be used to create x EV assets in year 1 of the simulation,

x’ in year 2, etc., and additional data to specify the properties of these assets. Behaviours

can be associated to these assets following different percentages of expected behav-

ioural profiles of their users passed in the data (e.g. y% of the population are expected

to charge at anytime, and y’ % at a set time). These behaviour percentages can also be

varied to see the impact an incentive might have on the overall network (e.g. y’ could

be increased to find the percentage at which users should be encouraged to sign up to

a tariff incentive, that would benefit the grid).

These different elements are brought together at runtime, creating agents and the

agent-based model through a linking mechanism. This dynamic composition of the

agents offers great flexibility and extensibility of the ABM, and means that a modeller

does not necessarily need to program; they can just combine assets, behaviours and

data to create an ABM. Details are given in the following sections.
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Method
Overview of the dynamic agent composition

This section defines the dynamic agent composition and the different types of composi-

tions that are possible, enabling flexibility, extensibility and reusability in the definition

of an agent. Then an overview of how a large-scale ABM is built, using this compos-

ition, is given.

Definition of dynamic agent composition

We define dynamic agent composition as the process of bringing together at runtime

the following distinct entities:

� An asset - the physical properties of an agent (static information);

� One or many behaviours - the rules the asset is subject to, to make its decisions

(dynamic information);

� Data

where an agent is defined as:

Agent ¼ Asset þ Behaviours

and the data is used to populate either or both the asset and the behaviour attributes.
Data is not a requirement, but offers greater flexibility and facilitates the creation of

large-scale models. Combinations of these three entities are then held in a component,

or module, for their implementation.

Figure 2 shows graphically this dynamic agent composition.

Here, when we mention one asset or one behaviour, we mean one class of asset and

behaviour rather than an instance of an asset or behaviour. An asset class will typically

have attributes and setter/getter methods to populate and access their values, while a

behaviour class will contain the rules, held in start(), step(), stop() methods.

Data can be used not only to populate the asset and behaviour attributes, but also to

determine how many of these are to be created, as well as what their relationship to

one another is. Consequently, data reading is not happening at the individual agent level

but at a higher level, the factory level, where data is used to populate the individual agents.

More detail is given in section 5.

This type of breakdown of the agent into asset and behaviour is especially suited to

our domain application, where the physical structure of the distribution network, which

is quite static, is to be represented along with the way electricity is consumed or flows

over it, which is dynamic. While changes in the infrastructure can happen with upgrades

and extension of the network, these are quite slow compared to the dynamic behaviour of
Figure 2 Dynamic agent composition.
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the usage of electricity which is the model’s state variable, whether it is described as a load,

a voltage or a current in the simulations. The assets are likely to be used differently for

reasons independent of the asset characteristics, although still within their properties’

limits, such as when new policies are implemented that affect user behaviours. Being able

to easily change the behaviour facilitates their quick assessment on the system as a whole.

Agent composition types

Many types of agent compositions can be done, which shows the properties of extensi-

bility, flexibility and reusability in building an agent-based model. Figure 3 illustrates

many of these compositions.

The base case when extending an agent-based model consists of creating a new

agent, which means creating a new asset and its associated behaviours. With the agent

composition, an agent-based model can be extended by simply defining new behaviours

and applying them to an existing asset, increasing the number of available agent types.

This is illustrated with Behaviour B1 for example, which also has alternative implemen-

tations (B1’, and many up to B1n).

In addition to extensibility, this example illustrates flexibility, as it is possible to

choose any of the available behaviours for a new agent type.

Reusability is illustrated with behaviour B2 which can be used by both Asset A1 and

Asset A2. In this case, the two assets have very distinct properties; however, one of

their distinct features is that they have in common a set of rules to describe an aspect

of their behaviour. This could be for example the case for batteries and electric

vehicles, which could both be using the same rules for charging control algorithms.

In these three cases of agent composition, an independent author does not need to

modify previously written code. New classes can be created, implementing interfaces to
Figure 3 Example of the properties of extensibility, flexibility and reusability when creating agents.
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specify whether they are assets or behaviours, and these can then be called at simula-

tion setup to compose the required agent.

Figure 3 shows that an agent is composed of an asset and one or many behaviours.

The opposite is also possible, where a behaviour can operate over one or many assets,

and update their state at once, within one timestep. Such an example can be found

when implementing a global voltage analysis algorithm (load flow (Morton 2003))

which runs over a group of assets, and updates the assets’ voltage at each timestep.

This is such that the group of assets over which the analysis is happening needs to be

balanced, and therefore have a central place of calculation, considering all the assets at

once.

Building the agent-based model

When defining an agent-based model, many agents are created and put in relation to

one another to form the system over which they will evolve. Using dynamic agent com-

position, bringing the different assets, behaviours and data together will define a model.

Figure 4 illustrates building blocks, or modules, holding these three entities (assets,

behaviours and data) where MODAM is the framework that glues them together to

form an agent-based model. These modules might contain information relating to

many asset or behaviour types at once, or individual ones, depending on the needs.

While assets and behaviours are defined individually in their own class, the modules

enable them to be grouped together to form sub-systems.

In Figure 4, we can see four modules that contain information relating to assets

describing the network: the network assets module (which contains lines, buses,

transformers, switches, etc.), solar photovoltaic (PV), battery and EV assets modules.

Four modules are also available for the description of the behaviours, where some

can contain many behaviours (e.g. the network behaviours), and others share their

behaviours across assets (e.g. the battery behaviour for EVs and batteries). Finally,

many datasets are represented that inform the assets or the behaviours, and that can

be interchanged or used in combination depending on the need of the model or the
Figure 4 The MODAM framework is the foundation of the ABM model; it connects the different
parts of the model. Here a network model describing the network elements and their behaviour is
defined. Photovoltaic (PV), electric vehicle (EV) and battery modules have been added to understand how
they can support or hinder the functioning of the network. This can be extended in many ways – for
example, a ‘New Technology’ model could be defined and added to the tool to represent any new
technology that might impact the network.
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availability of the information. For example, for the solar PVs, the assets can be

described using known information about their location and their characteristics

(that can be used to initialise simulations from the end of the observation period), or

using solar PV penetration rates (when making predictions about the future of ex-

pected placement and rating of the panels). Similarly, datasets can be used to inform

the behaviours, as is the case for solar PV behaviours, which can use a weather model

to calculate the output of the solar panels at individual locations taking into account

the passage of clouds, or using historical data of solar PV output.

Having described the theoretical framework of the dynamic agent composition, the

following section describes how it was implemented.

Results
Implementation of the dynamic agent composition

Our M&S application was developed using the Eclipse IDE (The Eclipse Foundation

2012) which is a widely-used open source platform made of a base workspace and an

extensible plug-in system for customizing the environment. Using Eclipse on top of

OSGi (Open Service Gateway initiative) and Eclipse plugins, which have strong support

for modularity, supported our requirement of a flexible and extensible model environ-

ment, and was a natural fit to the definition of our components, or modules, which can

each be implemented within their own plugin.

This section describes how our agents are created, using different approaches to the

implementation of the assets and behaviours models, and how the data is used to popu-

late them. But first, a UML diagram of the main interfaces used in the MODAM frame-

work is presented in Figure 5; this diagram will be used to support our explanations

throughout this section. As a first introduction, an interface named IABMState is at the

centre of the framework and holds all the elements for a simulation. It sets a scheduler

(IScheduler), so has access to the simulation time (ISimTime), and has access to assets

(IAsset) which may have one or many behaviours (IBehaviour) associated with them.

These assets and behaviours are created by factories (IAssetFactory and IBehaviourFac-

tory) which are populated by data providers (IDataProvider). Each asset has a demand

object (IDemand) that contains an extensible set of named values that can be set; these

are the state variables of the simulation. Finally, the scheduler schedules the behaviours

which update the demand at each time step during the simulation. More details for

each of these entities are given throughout this section.
Figure 5 UML diagram of the MODAM framework.
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Implementation of an agent

Assets and behaviours are implemented in different ways, according to their

requirements.

The assets data model - use of EMF

EMF (Eclipse Modeling Framework (Steinberg et al. 2008)), one of the many available

plugins of the Eclipse platform, is a modelling framework that facilitates building code

based on structured data models. Particularly well suited to the requirements of our

application domain, where the physical infrastructure is to be represented, EMF was

chosen to develop a data model describing the assets and their relationship to one another.

EMF has the advantage that the implementation of the objects specified in an ecore model,

described in XMI (XML Metadata Interchange), can have their classes automatically

generated, facilitating the implementation of the model within an application.

In addition to this, EMF can handle extension of models, a feature that was of par-

ticular interest to us. Any object declared in a data model can be extended or refer-

enced by any other that has been defined in a new child model. Any EMF model can

thus be created in a separate plugin and extend one or many models allowing the over-

all model to keep on expanding. Child models can be in distinct plugins, which makes

it possible to choose one model over another at any time, if it describes the problem

better, allowing for flexibility in the M&S application.

In our implementation, a few models were defined, which all extend a base model

where two entities are defined: IAsset and IDemand, along with their properties. These

entities are implemented as interfaces, as shown in Figure 5. Any other EMF model ex-

tending this one can then implement these interfaces, and define others as required.

One of the main features of the IAsset interface is that it contains two properties (in

and out) that define an in-out relationship that specify a directed graph over the assets,

to represent the networked structure of our domain problem. In addition, each IAsset

has a string as a unique ID, as well as a longitude and latitude to give its geographical

location. Additional attributes can easily be added to assets, or to particular subclasses

of assets, simply by extending the EMF model. This generates new subclasses of IAsset

that have additional private fields plus getter and setter methods. This is highly custom-

isable, but because it involves code generation and compilation, it is best used for

relatively static models and is not sufficiently dynamic to support the kind of runtime

composition of behaviours that we want.

Where dynamic composition of behaviours is required, a model designer can use the

MODAM data channels feature, which is provided by an IDemand object associated

with each asset. This provides an expandable set of named real-valued attributes for

each asset. During the model initialisation phase, the behaviour factories register the

channel names that they wish to use, and the MODAM framework maps these to inte-

ger indices, so the set of variable channels depends upon which behaviours are included

in the model. As the model runs, behaviours can read and write the channel values of

any asset. This allows behaviours written by different authors to communicate via data

channels simply by using a common name for a channel. It also allows MODAM to

provide a generic graphing and logging facility that can graph and save any channels

from any set of assets. This can be used for visualisation in Google Earth to provide a

platform for stakeholders’ engagement.
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Two EMF models have been implemented so far in our M&S application that both

extend this base model, and have been used together to define the overall asset model.

The first model contains the different assets that define a base network, as captured in

Figure 4, in the Network Assets module, as well as solar PV and batteries. The second

one contains one asset that describes the way a premise would consume electricity

depending on the tariff it is subject to. This second model was implemented to test our

hypothesis that it is possible to extend the data model using EMF and that this can be

done within other plugins. This implementation was successful and the tariff asset was

easily added to the model and integrated within the agent-based model.

The behaviours – use of the strategy pattern

Assets and behaviours are implemented independently; however, each behaviour has a

reference to its asset in order to retrieve the necessary state variables and make its deci-

sions during a simulation. The implementation of the behaviours’ information and rules

is contained in the start(), step() and stop() methods of its class that extend an IBeha-

viour interface. The start() method belonging to the corresponding asset allows initia-

lising the behaviour, while the stop() ends it; the step() method updates the behaviour at

every timestep.

To obtain flexibility in the behaviour implementation, we used the strategy pattern

(Gamma 2009), using interfaces and defining classes that implement the start(), step(),

and stop() methods. Any number of classes can implement the IBehaviour interface,

and be called at runtime to specify which behaviour is to be used. One advantage of

this approach is that a new plugin can easily define new behaviours, as long as access

to the interface is provided; there is no need to access a behaviour class previously

defined, only the interface.

Building an agent-based model

Building an agent-based model requires bringing together the assets and the behaviours

that form agents and relate them to one another to form the complex system over

which they will evolve. This is done within factories, using data from corporate data-

sets, as explained below.

Factories

Assets and behaviours are created separately, which is done automatically through the

use of the factory pattern. A plugin can contain one or more asset factories that can

control which assets need to be created; many factories can be defined for a given type

of asset creation for example, with slight variations depending on the aim of the factory.

The same is true for the behaviours.

These factories implement the IAssetFactory and IBehaviourFactory, depending on

whether assets or behaviours need to be implemented. Using the factory pattern en-

sures that the action and interactions of the agents are taken care of in a consistent

manner.

To answer our goal of flexibility, each factory typically creates assets or behaviours

for one specific type of asset or type of behaviour. This means that each asset defined

in an EMF model can implement its own IAssetFactory; similarly each behaviour type

can implement its own IBehaviourFactory. It is however also possible to have a factory
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that will define many different entities and put them in relation to one another if

judged appropriate; this is most likely to happen for the assets only, and is not rec-

ommended for the behaviours. An example of this is for the network asset module

which contains one factory implementing IAssetFactory where lines, buses, switches,

transformers and premises are created and related to one another, as assets form the

underlying directed graph over which behaviours act.

Factories and data to populate the model

In each of these factories, data can be used to populate the assets and the behaviours.

Different types of data can be used, that can define the number of assets to be created,

how they are in relation to one another, or what their properties are. One of the re-

quirements of our ABM was that the distribution network be built from corporate data.

This means that different types of datasets needed to be handled, and that allowance be

made for new types of dataset formats to be input to the simulation. For this, an interface

called IDataProvider is accessible by both the IBehaviourFactory and the IAssetFactory

during the model instantiation and is implemented by different readers that access various

data formats.

Data offers flexibility in setting up simulations as it can be used to represent different

areas of study, to compare different trajectories of possible futures by setting different

methods of technology uptake, or different methods to describe behaviours. For ex-

ample a demand behaviour which is associated to a premise and represents its electri-

city consumption for every half-hour of a day can be set using three types of data in

our implementation: half-hourly profile data from a sample of premises, half-hourly

profile data from some feeders, and profiles derived from a weather-driven model of

consumption. Any of these methods can be chosen to populate the behaviour of a

premise consumption individually, and can also be combined using weights to obtain a

desired proportion of profile methods.

Depending on the provenance of the data, the format will change, which is handled

by different implementations of the same interfaces, providing flexibility in composing

the agent-based model. As an example, two types of networks can be used in our

current implementation of the agent-based model: a three phase urban network and a

SWER (Single Wired Earth Return) network, with data coming from different corporate

databases with different formats.

How the ABM comes together

Large-scale agent-based models can be built using dynamic agent composition, either:

� Via explicit Java code, or

� Via command line configuration or GUI, and the use of an automated model

builder.

When using explicit Java code, the programmer needs to instantiate the factories, link

them to the desired data providers, and execute the factories to build the model. How-

ever, this process was automated to answer our goal of code-free construction of agent-

based models. This automation is the subject of another paper, but we are giving here

an overview of the automation here. A Module Manager automatically discovers the



Boulaire et al. Complex Adaptive Systems Modeling  (2015) 3:1 Page 14 of 23
plugins and weaves them together. This means that it finds all the available plugins in

the registry and enables those chosen by the user. If there are missing plugins, these

are found and added automatically. The assets and behaviours are then created with

the required data by the Module Manager who instantiates and parameterises the asset

and behaviour factories. Each factory handles its own options that have been given in

the command line or GUI panel (parameters, and data). Then methods are called on

these factories to populate the assets and behaviours with the required data, using

reflection, by just knowing the type of interface they implement.
Discussion
Dynamic agent composition: challenges and responses

While the concept of dynamic agent composition is quite simple, its application to the

implementation of large-scale agent-based models with an underlying networked

structure has its challenges. These are described below with a discussion about the

way we responded to them.
Ordering of the assets’ creation

Extending an existing structure, which can be represented by a directed graph, such as

the electricity grid where the nodes are assets and the edges their connections, requires

a notion of reference. This can be challenging especially as the assets may be defined in

separate factories, in separate plugins, and come together to form the complex system

only at runtime. For example, if adding battery assets (B), they need to be created and

attached to the relevant node (N) (e.g. a premise) in the network. This means that N

need to have been created first, and put in relation to the other assets in the initial

network. Only then will the battery asset factories be called to create B and attach them

to the right nodes N.

To satisfy this requirement of reference over the assets, precedence of the creation of

some assets over others was determined. This requires the asset factories to be ordered.

If the assets are all created within one factory, their ordering can be handled by the

developer within that factory. However, if the assets are defined in independently devel-

oped factories, there is a need to mention the order in which the assets need to be

created, and consequently the order in which the factories are being called, which can

be automatically ordered by the Module Manager. This type of dependency is one of

the consequences of aiming at creating an extensible framework, and is the equivalent

of inheritance in object programing.

In order to solve this problem, partial ordering of asset factories is used where an

attribute (Predecessors) allows defining which other factories need to be called before

this one. Predecessors that are not included in the current model are ignored, so that

maximum flexibility is allowed. For example, if factory F has predecessors A and B, it is

possible to run models with any combination of F, A and B. If only A and F are part of

the model, then F will automatically be run after A, while B is ignored.

Because of the separation of the Assets and the Behaviours, this ordering is only

necessary on the assets which describe the underlying network structure of the model.

Behaviour factories are called after all the asset factories, in any order, since behaviour

creations are independent of each other - they communicate only via the assets.
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Ordering of the agents’ execution

In a “classic” agent-based implementation, agents are often instantiated and scheduled

in a central location, e.g. in Repast all the agents are defined in a class implementing

ContextBuilder (Collier 2014), and in MASON (Luke et al. 2005) in a class extending

SimState. This means that it is possible to not only create the agents in a given order

but also order the agents execution within a time step in relation to other agents. The

same capabilities needed to be available with our dynamic composition. As mentioned

previously, ordering the behaviours’ creation is not important in MODAM, only the

ordering of the assets’ creation is. However, ordering the execution of the behaviours

(i.e. within one step of a simulation) is extremely important, and is necessary to enable

deterministic simulation results, which is one of our M&S application requirements

for verification purposes.

When talking about scheduling of agents, we do not mean that there exists a central

planner that will decide on the actions of the agents but rather on the timing of these

actions, which corresponds to the execution of the behaviours. The actions themselves

are still undertaken in an autonomous manner by the various behaviours. At the start

of the simulation, a global scheduler analyses the dependencies between the behaviours

and sorts them into a safe execution order.

Each BehaviourFactory creates a set of behaviours, and groups them into named

behaviour groups, which are used to help order the execution of the behaviours within

one timestep. One or many behaviour groups can be defined within a single factory.

For example, a BatteryBehaviourFactory could create two types of battery behaviours

with different battery control algorithms but that can be executed within the same time

step with no specific order. In this case, both kinds of battery behaviours will be

assigned the same group. However, if one type of behaviours needs to be executed be-

fore the other within the same timestep, an order needs to be specified. For example, if

the premise batteries need to be executed first, followed by the grid battery to support

the network voltage, then two groups, a PremiseBattery group and a GridBattery group,

would be created. This would then allow the ordering to be fully managed by the user

who can specify when these groups of behaviours need to be executed. The ordering of

the behaviour groups is set through an argument in the command line, followed by the

name of the behaviour factory.

An example of behaviour group ordering is given in Figure 6. It shows three

behaviour groups, two of which can be run in parallel (BehaviourGroup A and

BehaviourGroup B), that is with no particular order, with the third one requiring

its behaviour to be called after both of them. In each of them we have three

behaviours: BehaviourGroup A and C have their behaviours ordered sequentially,

and BehaviourGroup B has two behaviours that are ordered sequentially (b1 and

b2) and one that can be called anytime (b3). In the example given in Figure 6,

the ordering argument in the command line looks like:

−order ¼ down BehaviourGroup Að Þ up BehaviourGroup Bð ÞÞ ; up BehaviourGroup Cð Þjð

where up stands for bottom-up, and down for top-down ordering; | shows that Beha-
viourGroup A and BehaviourGroup B can be ordered in parallel, and the semi-colon (;)

is to show sequential ordering.



Figure 6 Example of ordering of behaviours within and amongst behaviour groups.
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State of the agents at a global scale

Because agents can be developed independently and only come together at runtime to

create the agent-based model, keeping track of the state variables can be challenging.

Indeed, with a fragmented approach, it is expected that different types of state variables

are defined by the developers; however, they still need to be accessed within the ABMState

to allow tracking the state of the system, and also for other agents to be able to access

their value to make their own decisions. To remedy this challenge, we used channels, as

explained above, which are effectively globally-named and are typically used as state vari-

ables of the simulation. This has the additional advantage that being global variables, they

do not necessarily need to be state variables but can also be used for other purposes, such

as environmental observation (e.g. local temperature, humidity) or globally observable

behaviour attributes (e.g. battery charging strategy).

Explosion of the number of assets and behaviours options

The flexibility in separating Assets and Behaviours can have its downfall. It can quickly

become very difficult to know what types of assets and behaviours are currently imple-

mented and which ones are able to come together to form meaningful agents. In

addition, knowing what types of parameters or data providers are settable from the

command line can also quickly become overwhelming.

One of the principles to follow in this case is that, just because it is possible to break

down the system into many simpler components does not mean that it should be done.

In some cases, it might be advantageous to keep some groups of assets together, or

have many rules within one behaviour especially if it will not be reused elsewhere in

the future. This concerns mainly the implementation of the factories, and still implies

the separation of assets and behaviours, however many assets or behaviours can be cre-

ated and put in relation within one factory. An example of this, previously mentioned

in this paper, is the asset network factory, which creates many different types of assets

(lines, buses, switches, transformers, and premises) and puts them in relation to one

another. This implementation was chosen because information about these assets and
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their connections were available at once, and contained in files. Also, within the context

of our domain application, this represents the current configuration of the distribution

network over which transformations will happen. While a factory was defined in this

way, it would still have been possible to create each set of assets independently and

create the network using partial order.

Despite using this principle, it is still expected that a large number of factories and

datasets will be defined and it can be difficult to keep track of which ones are available.

This can be supported by good documentation of the software. To facilitate this, we

automated the process of documentation, so that as the model is growing, so is the

documentation. Documentation is not only useful for the programmer who would like

to add a new plugin for example, but also for the user who will not have access to the

code, and who will not want to have to go through it. We have used annotations on

asset and behaviour factories and on the methods within the classes that are used for

input parameters. These annotations are discovered automatically by the documenta-

tion generator, and used to generate consistent documentation for the parameters and

required data providers of each factory.

Finally, as the model grows, so will the command line. To prevent having too many

parameters to define, and also build on previous simulation runs, it is possible to use a

configuration file previously saved, to which additional factories, data providers and pa-

rameters are specified. This further extends our goal of flexibility in setting up ABM

simulations.

Benefits in using a dynamic agent composition

Benefits in having a clear structure of large-scale agent-based models, through the

application of the dynamic agent composition, can be identified from the point of view

of the software developers for which it was initially designed. Additional benefits can

be identified from the perspective of the clients, or users, as well as for agent-based

modelling as a scientific approach. These are discussed below.

Benefits from the point of view of the software developers

The dynamic agent composition was adopted to answer shortfalls initially identified

when using existing model building approaches and software systems such as Repast

and MASON, see Table 1. This approach enabled flexibility and extensibility of both

the model definition and its implementation.

Thanks to the distinction between Assets and Behaviours it is easy to change the be-

haviour of the entities represented in the model. This sometimes needs to happen not

only during the model creation but also during the simulation run where they can be

added to an existing asset. In ((North and Macal 2007), chapter 7), the authors explain

four model growth paths when building agent-based models: the addition of compatible

behaviours, contentious behaviours, compatible agents and contentious agents. These

four model growth paths are fairly common, and are supported by the dynamic agent

composition approach.

Further, the separation into Assets and Behaviours allows gathering certain entities

into groups, when relevant, where all assets that are in relation to one another can be

defined at once, while different behaviours can be tried separately over each of them

without additional development time. This mix-and-match of entities to create agents
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can be done at runtime without the need to modify any code; only the command line

argument will be altered.

Additionally, having the data separated from the assets and behaviours also makes it

easier and faster to extend the model. For example, if a different network is to be

modelled, only the asset classes will need to be informed by different data. A new data

reader might be implemented if the data format is different; the rest of the code

describing the asset and behaviour properties will remain the same. This new data

provider will then be called with its associated file at simulation setup, the rest of the

command argument remaining the same. This simplifies handling complex options as

these are only set in the command line and do not need to be defined in a central class

within the code.

Finally, this separation of the agent’s aspects into assets, behaviours and data, allows

starting an implementation of a model without needing access to all the required infor-

mation, whether it is data, assets or even a rule that defines the agents’ behaviour. This

enables an agile implementation (Thomas and Hansmann 2010; Dingsøyr et al. 2010)

of the agent-based model. Also, because the dynamic agent composition is imple-

mented in plugins, it is possible for independent authors to contribute to the model in

parallel, which can greatly increase implementation time.

Benefits from the point of view of the users

MODAM was also developed to answer requirements from the users’ perspective,

which the dynamic agent composition enabled.

Various scenarios can be created with ease by simply changing parameters values,

data defining the underlying structure of the network but also behaviours. Having the

behaviours independent of the assets makes it easy to add and remove behaviours and

assess their impact on the system by setting multiple simulation runs. Further, inde-

pendent teams can have different implementations of a behaviour, providing customisa-

tion of their model to better answer the needs of their analyses. In both cases, there is

no need to get into the code; the user can simply bring the building blocks together, by

specifying them in the command line.

It is also possible to have a mix of behaviour methods to inform a specific type of

assets. For example, if it is expected that a given proportion of the population will

behave in a certain way, and the rest in another when using a given asset, these two

behaviour types can be applied to the model with varying levels by simply calling on

these two behaviours and setting a proportion parameter in the command line. This

allocation can be done evenly over the population, or be influenced by known factors

such as demographic or geographic characteristics. This has the advantage to represent

more accurately how the system might evolve if these proportions are known. When

unknown, sensitivity analyses over these allocation levels can be performed to find out

what mix would be best for the system. This might be useful for educators, for ex-

ample, who are trying to bring behavioural change and need to find out the population

size to target. Simply varying behaviour calls and parameters values without coding will

enable them to quickly set up scenarios.

Finally, the use of data to populate the agents offers the advantage of accurately

representing a system, which is not widely done especially for large-scale ABMs, and

can be of great benefit for the user. Indeed, many large-scale ABMs are currently
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developed using taxonomies of agents and probability distributions to represent the

system. While such an approach can still be taken using MODAM, we are able to use

specific data of the domain of study, which offers the additional benefit of greater

fidelity to the system represented. For our electricity network, our asset factories

constructed assets based on a data file extracted directly from the Ergon Energy data-

base, so had access to the real attributes of each asset, and their connection to one an-

other. This was a requirement of our client, who is interested in knowing as accurately

as possible what is likely to happen on their network at specific locations.

Benefits from the point of view of ABM as a scientific approach

Taking the dynamic agent composition approach when developing MODAM also

highlighted advantages in terms of agent-based modelling as a scientific approach.

The separation of an agent into asset and behaviours creates a natural simulation

space over which ABMs of networked structures are represented. Indeed, the assets

and their connections form a complex network representing the overall structure,

which becomes the space over which the behaviours interact with one another. In many

simulations such as the Schellings’ model (Schelling 1971), a grid is defined as a 2D

matrix, over which the behaviours will evolve and get information to make their deci-

sion. Here, the idea is similar where the environment is represented by a scale-free

network made of the assets which are publicly available within the model and allow

every entity to know their relationship to one another. The behaviours are not bound

by structure directly but access the underlying network through their asset. The behav-

iours only contain private data on which they make their decisions. The assets hold the

state variables of the ABM simulation which are modified by the behaviours as they

make their decisions. While the assets’ connections form a network of their own, refer-

ences to their geo-location (longitude and latitude) are maintained, allowing displaying

the network using spatial information software.

MODAM allows replicability of simulations results, thanks to its deterministic cap-

ability through each random seed. While independence of the execution of the agents

is still ensured through randomisation of their decisions output, having a deterministic

order of their execution allows replicability of the experiment and reproducibility of the

results.

Finally, MODAM facilitates model comparisons and validation of behavioural sub

models. Indeed, data can be used to set the parameters of sub models, that some

behaviours use to inform their decisions. As an example, our implementation of solar

PV behaviours can be informed by historical solar PV output data or weather data, see

Figure 4. The weather data is used to populate a weather-driven model of expected

electrical output of solar PV subject to weather with the passage of clouds, while the

historical solar PV data simply gives the electrical output of specific solar PVs recorded

over a period of time. Because these two approaches require different data input, two

data readers were written to be used by each method. When the user chooses their

preferred behaviour method, the required data provider will then be called upon. This

has the advantage of extending the model, but also offers model comparison and valid-

ation of the behavioural sub models. Indeed, the weather-driven solar PV output model

could be validated by comparing its output with the actual observations of solar PV out-

put. The dynamic agent composition therefore has the additional benefit that validation
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of models can be done easily by setting two simulations and simply changing the datasets

and data providers, and comparing their outputs.

Finally, MODAM was developed in Java using open-source frameworks (Eclipse,

EMF) and standards (OSGi), ensuring that it is soundly constructed, but also enabling

it to be reproduced or extended by interested users.

Related work
Agent-based modelling, a bottom-up modelling technique, describes autonomous

agents and their relationships at a fine level of detail with the view of capturing the dy-

namics of a complex system (Macal and North 2010; Bonabeau 2002). Many toolkits

are available to support the development of agent-based models (Nikolai and Madey

2009; Berryman 2008; Railsback et al. 2006; Najlis et al. 2001; North 2013; Luke et al.

2005) with most containing the following features: agents, a scheduler, an interaction

space, random number streams, logging and a user interface (North 2013). In these

toolkits, agents are generally made up of a unique identifier, behaviours that can be

activated and attributes that can be modified. Both the static information and the

behaviours are then held in one place, often defined within a class, because object-

oriented programing is well suited for agent-based modelling implementation. While

held in one class, however, behaviour implementations might still be the result of the

composition of behaviours extending others, as is the case for example for the JADE

architecture (Bellifemine et al. 2007), where these are extending behaviour classes

(Bellifemine et al. 2010). However, these behaviours still are to be added within an

agent’s implementation, whose architecture is partly hidden, and which requires coding

to define the agent. The dynamic agent composition presented in this paper distin-

guishes itself from these ones as behaviours can be combined without the need to

access the agent’s code. The behaviours are combined with an asset to form an agent,

which can be done by a non-programmer, through a command line, and this compos-

ition of the agent happens at runtime.

Our dynamic approach of composing the agents rather follows some of the principles

described in MALEVA (Briot et al. 2006) where composability of behaviours is de-

scribed. While similarities exist between our conceptual frameworks, with behaviours

being composed to form a more complex one, they differ in some aspects. MALEVA

uses connectors and has output interfaces so that the output of one behaviour is the

input of another one to form a chain of complex behaviours. This is not our chosen

approach as we are rather more interested in alternative behaviours. While we can use

many behaviours to compose one, we do not have this element of precedence of the

way the behaviour is executed. Further, our composition concentrates on bringing asset

characteristics and behaviours together to form an agent rather than bringing behav-

iours together, whose need arose from the requirements of growing models, especially

when dealing with large-scale ABMs. Because our behaviours communicate via the as-

sets, we also have more flexibility to mix-and-match of the different combinations than

MALEVA. Our approach is rather closer to the one specified in (Bae et al. 2012) where

a hierarchy of models composed of an action model, an agent model and a multi-

agents model has been defined. This is done so that agent-based models can be built

incrementally and in a flexible manner, which goal is the same as ours. The authors

have presented a formal specification using DEVS (Discrete Event System Specification)
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formalism (Zeigler 1976), which they have applied to show that two models could be

formalised independently and brought together. It is unclear however that more than

two models could be brought together easily, and how large the agent-based models

can be. Also, to our knowledge, there is currently no implementation platform to

support this specification.

Growing large-scale ABMs is not well documented in the literature, which mainly

concentrates on the speed of execution of simulations rather than the modelling needs.

However, Parry, in (Parry 2012) differentiates two problems when increasing the scale

of a multi-agent system, which includes the computational resources but also the in-

crease in difficulty with a growing agent-based model. Despite this distinction, most of

the paper however focusses on how to deal with large-scale simulations which suggests

optimising existing code, considering simple solutions such as upgrade of the hardware

or evaluating the suitability of the chosen scaling solution on a simplified version of the

model. Other approaches to dealing with large-scale simulation requirements is the use

of alternative computational techniques, such as considering distributed or parallel

implementations of the agent-based model. To this end, simulation toolkits now offer

parallel and distributed implementations of their initial implementations as is the case

for Repast and MASON for example (Cordasco et al. 2013; Collier 2013), amongst

many others. These allow running larger simulations while still getting reasonable exe-

cution time, as described in (Parker 2007), where an epidemic simulation runs up to 6

billion agents using a distributed simulation. While the focus of this paper is not on

large-scale simulations but rather large-scale model, such challenge is also at the heart

of our problem. For this, we have implemented a parallel implementation of our ABM

scheduler, as described in (Boulaire et al. 2013b), however, this is not the subject of this

paper.

Conclusion
This paper has defined dynamic agent composition, a novel approach to build large-

scale ABMs. This approach had for goal to extend, with ease, an agent-based model

with an underlying networked structure. Also, it aimed at having it flexible so that

many scenarios could be created using large corporate databases, without the need for

a programmer to build the simulations. By breaking down the model into components

containing the data, the assets and the behaviour descriptions, and providing a mech-

anism to bring them together at runtime to compose the agent-based model, this was

achieved.

This approach has many advantages over the way agent-based models are traditionally

built for the user as well as the developer. Developers can extend the model without the

need to access or modify previously written code; they can develop groups of assets and

behaviours independently and add them to those already defined to extend the model.

The model can then evolve as new agents need to be modelled, which facilitates the

models to be used and extended after previously-defined goals are modified. Users can

mix-and-match already implemented asset and behaviour components to form large-

scales ABMs. This allows them to quickly setup simulations and easily compare various

scenarios without the need to program.

Further, using data extracted from corporate databases to populate the ABM enables

to represent accurately the physical infrastructure over which the agents evolve. This
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aspect of our approach contributes to the application of ABMs to the electricity

domain as most ABMs use taxonomies or probability distribution to represent the

network under study.

Future work includes continued expansion of the model to include more asset types

as well as behaviours of assets’ usage, such as small-scale generators other than solar

PVs, and electric vehicles with different charging methods. While currently applied to

the electricity distribution grid only, it is expected this approach can be used more

broadly and be of benefit to other applications, especially those that have a networked

structure, such as water or gas networks.
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