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Abstract—In simulation-based verification, we check the cor-
rectness of a given program by executing it on some input
vectors. Even for medium-size programs, exhaustive testing is
impossible. Thus, many errors are left undetected. The problem
of increasing the exhaustiveness of testing and decreasing the
number of undetected errors is the main problem of software
testing. In this paper, we present a novel approach to software
testing, which allows us to dramatically raise the probability
of catching rare errors in large programs. Our approach is
based on the cross-entropy method. We define a performance
function, which is higher in the neighborhood of an error or a
pattern we are looking for. Then, the program is executed many
times, choosing input vectors from some random distribution.
The starting distribution is usually uniform, and it is changed
at each iteration based on the vectors with highest value of
the performance function in the previous iteration. The cross-
entropy method was shown to be very efficient in estimating
the probabilities of rare events and in searching for solutions
for hard optimization problems. Our experiments show that the
cross-entropy method is also very efficient in locating rare bugs
and patterns in large programs. We show the experimental results
of our cross-entropy based testing tool and compare them to the
performance of ConTest and of Java scheduler.

I. INTRODUCTION

Software testing (also called simulation-based verification)
is a family of analyses that involve an automatic or semi-
automatic exploration of the state space of a program.
Simulation-based verification is traditionally used in order to
check the program with respect to some input vectors [2].
It is widely used today as a primary means for checking the
correctness of programs. Thus,in simulation-based verification,
the challenge of making the verification process as exhaustive
as possible is crucial. Each input vector induces a different
execution of the program, and a program is correct if it
behaves as required for all possible input vectors. In the
ideal world, a program would be tested on all input vectors.
This approach, however, is infeasible even for medium-size
programs, whereas today it is common to find programs with
a few million lines of code. To make matters worse, reuse of
components (that may have never been tested with the new
use in mind) makes it possible to assemble products orders of
magnitude larger, in the same time.

Since simulation-based verification is a technique that re-
places the infeasible task of checking all input vectors, it is
very important to increase the capability of simulation-based
verification to find errors and to make the testing process
as thorough as possible. The research in this area focuses
on several different directions, which we describe in more
detail in Section II. While the existing techniques have been

successful in specific applications, none of them has proven
successful in efficiently finding a large variety of rare bugs in
large programs. The problem is especially acute in concurrent
programs, which many have exponentially many possible
behaviors resulting from different possible schedulings of
threads.

In this paper we propose a new approach to testing of large
programs, which is based on the cross-entropy method. The
cross-entropy (CE) method is a generic approach to rare event
simulation [19]. It derives its name from the cross-entropy
or the Kullback-Leibler distance, which is a fundamental
concept of modern information theory [13]. It is an iterative
approach, and is based on minimizing the cross-entropy or the
Kullback-Leibler distance between probability distributions.
The CE method was motivated by an adaptive algorithm for
estimating probabilities of rare events in complex stochastic
networks [17]. Then, it was realized that a simple modification
allows to use this method also for solving hard combinato-
rial optimization problems, in which there is a performance
function associated with the inputs. The CE method involves
an iterative procedure, where each iteration consists of two
phases:

1) Generate a random data sample according to a specified
mechanism.

2) Update the parameters of the random mechanism based
on the data to produce a “better” sample in the next
iteration, where “better” is chosen according to the
predefined performance function.

A sample is evaluated according to a predefined performance
function. The procedure terminates when the “best” sample,
that is, a sample with the maximal value of the performance
function (or, if the global maximum is unknown in advance,
with a sufficiently small relative deviation), is generated. The
CE method is used in many areas, including buffer allocation
[1], neural computation [8], DNA sequence alignment [12],
scheduling [14], and graph problems [18].

In testing, in order to make the CE method applicable
we shift the focus from searching for bugs to focusing our
attention on the most error-prone areas of a program. The
following example helps to clarify the difference between
the approaches. Assume that we are given a program, which
we want to test for buffer overflow errors. A bug-oriented
testing tool searches for executions in which the buffer is
overflowed. These executions might be very rare and might
escape our testing efforts. In cross-entropy-based testing, we
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direct the execution to the areas in which the buffer reaches
its maximal capacity. The advantage of this approach is that
this area, while can be small, is not of negligible size, and
can be discovered during random testing. Also, if there exists
an erroneous execution in which the buffer is overflowed, it
surely occurs in this area.

We argue that many common bugs and patterns which may
contain bugs have a natural performance function. For exam-
ple, in case of the buffer overflow, the natural performance
function for an execution gives the value which is equal to
the maximal size of the buffer in this execution. We describe
many more examples of common bugs and bug patterns and
their associated performance functions.

Our way of using CE method in testing is suitable for
programs with many points of non-deterministic decisions. In-
formally, such programs create a large control-flow graph with
many branching points, which allows us to view the testing
setting as a variation of a graph optimization problem. While a
serialized program can, in theory, have many points with non-
deterministic decisions (for example, statements conditional on
the result of coin-tossing), the most common example of such
programs is concurrent programs. In concurrent programs,
at each synchronization point the decision of which process
(or thread) makes the next step is made by the scheduler
and can be viewed as non-deterministic when analysing the
program. In this work, we focus on concurrent programs
and apply the CE method to errors related to concurrency
(such as a way of scheduling the threads that leads to buffer
overflow). Our work can, in theory, be extended to arbitrary
non-deterministic programs. However, we believe that testing
concurrent programs is the area in which CE method has the
maximal advantage.

We implemented our algorithm in a tool named ConCEnter,
which stands for “Concurrent Cross-Entropy based Error Re-
vealer”. We provide the details of implementation and the ex-
perimental results of running ConCEnter on several programs
with different bug patterns1. We compare the performance of
ConCEnter with the performance of ConTest, a randomized
testing tool for concurrent programs developed in IBM [9].
We show that ConCEnter performs better than ConTest by an
order of magnitude.

II. RELATED WORK

In this section, we briefly survey the existing work in the
area of improving the capability of simulation-based verifica-
tion to find bugs.

One direction is to focus on bugs that manifest themselves
under a heavy load on the system during runtime, such as
buffer overflows, timeouts, etc. The traditional method of
testing for these bugs is called stress-testing. The method
takes single-thread tests and creates stress tests by cloning
them many times and executing them simultaneously (see, for
example, [10]).

1The executable of ConCEnter with some test programs is available from
the authors on request.

Another approach to testing is to create random interference
in the scheduler which leads to randomized interleavings of
the thread executions (these tools are also called “noise mak-
ers”) [9], [22]. The interference is created by injecting noise
to the scheduler forcing the scheduler to create uncommon
interleavings, which are rare during usual execution. However,
a chance of finding a very rare bug is small, since the random
distribution (created by injecting noise) is not adjusted to a
specific pattern.

The most commonly used method to maximize the ex-
haustiveness of testing is coverage estimation. There is an
extensive research simulation-based verification community on
coverage metrics, which provide a measure of exhaustiveness
of a test [23]. Coverage metrics are used in order to monitor
progress of the verification process, estimate whether more
input sequences are needed, and direct simulation towards un-
explored areas of the program. Essentially, the metrics measure
the part of the design that has been activated by the input
sequences. For example, code-based coverage metrics measure
the number of code lines executed during the simulation. There
is a variety of metrics used in coverage estimation (see, for
example, [7], [15], [16], [23], [26]), and they play an important
role in the design validation effort [24]. Still, since there is
no special effort directed to a possibly erroneous pattern in
the code, rare bugs can remain in the code even after testing
reached a high coverage of it.

Existing testing methods that look for predefined patterns in
programs rely on heuristics specifically targeted to a pattern,
for example, delaying read/write instructions [3], or denying
the application certain services [25]. This approach is quite
efficient for finding predefined patterns, however, it requires a
different heuristic to be invented for each new bug.

An approach based on exploiting genetic algorithms [11] in
testing led to several prototypes of testing tools implementing
this idea (see, for instance, [20], [21]). These algorithms,
however, normally require a very long execution time, and
they have also been shown to be ineffective in finding rare
and hard-to-reproduce bugs.

III. PRELIMINARIES

A. The Cross-entropy Method in Optimization Problems

The cross-entropy (CE) method was developed in order to
efficiently estimate probabilities of rare events, where an event
e is considered a rare event if its probability is very small, say,
smaller than 10−5. In this method, we are given a very large
probability space and a function S from this space to IR+,
and we say that e occurs on an input X (from the probability
space) if S(X) > γ for some predefined value γ ∈ IR+. Since
the space is very large, it is infeasible to search it exhaustively,
therefore the estimation of the probability l of e is made by
sampling. A straightforward way to estimate l is to draw a
random sample according to the given probability distribution
f on inputs, and then estimate l by examining the sample.
The problem is, that when e is a rare event, the sample might
have to be very large in order to estimate l accurately. A
better way is to draw the sample according to some other



probability distribution g that raises the probability of e. The
ideal probability distribution here would be gl, which gives
the probability 0 to inputs that do not contain e. The CE
method attempts to approximate gl. The distance between two
distributions that is used in this approximation is the Kullback-
Leibler “distance” (also called cross-entropy). The Kullback-
Leibler “distance” between g and h defined as:

D(g, h) = Eg ln
g(X)
h(X)

=
∫

g(x) ln g(x)dx−
∫

g(x) ln h(x)dx.

Note that this is not a distance in the formal sense, since
in general it is not symmetric. Since gl is unknown, the
approximation is done iteratively, where in iteration i we
draw a random sample according to the current probability
distribution fi and compute the (approximate) cross-entropy
between the fi and gl based on this sample. Then we construct
fi+1 by updating fi based on the cross-entropy result. The
reader is referred to Appendix for more formal explanation
and to the book on cross-entropy for the complete description
of the method [19].

Our method of testing large program is based on the
application of CE method to graph optimization problems.
In these problems, we are given a (possibly weighted) graph
G = 〈V,E〉, and the probability space is the set of paths
in G represented by the sets of traversed vertices. This setting
matches, for example, the definitions of the traveling salesman
problem and the Hamiltonian path problem in the context
of CE method. This is also the setting which we use in
our approach. Our goal is to find executions of the program
under test in which the system enters a predefined state. For
example, in order to test stack overflows, we are interested
in executions in which the stack occupancy is maximal.
As we explain in Section III-B, we represent the program
under test as a graph. Then, paths in this graph correspond
to executions of the program. We define S (which we call
a performance function) so that S(X) reaches its global
maximum on paths in which the system is brought to the state
we are testing. As we argue in Section IV-C, many common
bugs and bug patterns admit a natural performance function.
The probabilities can be assigned to edges or to vertices of the
graph (depending on how the sample is drawn). W.l.o.g, we
assume that the probabilities are assigned to edges. We start
with uniform probability distribution. In each iteration i, we
sort the sample Xi = {X1, . . . , XN} generated in this iteration
in ascending order of their performance function values. That
is, S(X1) ≤ S(X2) ≤ . . . ≤ S(XN ). For some q � 1, let

Q(Xi) = {X�(1−q)N�,X�(1−q)N+1�, . . . , XN}
be the best q-part of the sample. The probability update
formula in our setting is

f ′(e) =
|Q(e)|
|Q(v)| , (1)

where e ∈ E is an edge of G that originates in the vertex v,
Q(v) are the paths in Q(Xi) which go through v and Q(e)
are the paths in Q(Xi) which go through e. Intuitively, the

edge e “competes” with other edges that originate in v and
participate in paths in Q(v). We continue in the next iteration
with the updated probability distribution f ′. The procedure
terminates when a sample has a relative standard deviation
below a predefined threshold parameter (usually between 1%
and 5%).

Remark 3.1 (Smoothed updating): In optimization prob-
lems involving discrete random variables, such as graph opti-
mization problems, the following equation is used in updating
the probability function instead of Equation 1:

f ′′(e) = αf ′(e) + (1 − α)f(e), (2)

where 0 < α ≤ 1 is the smoothing parameter. Clearly, for
α = 1 we have the original updating equation. Usually, a value
of α between 0.4 and 0.9 is used. The main reason why the
smoothed updating performs better is that it prevents losing a
good sample forever (if one of its edges is assigned 0 in one
of the iterations).

B. Definitions

In this work we focus on finite multi-threaded programs.
Let t stand for the number of threads in the program. As all
executions of the program are finite, we can talk about the
unwound code of the program. That is, the code of each loop
is duplicated the maximum number of times it may run and all
function called are embedded in the code of the main function.

Definition 3.2 (PL): Program location (PL) is a line num-
ber in unwound code of the program.

Definition 3.3 (CFGi): A control flow graph (CFGi) of
thread i (i ∈ [t]) is a directed graph Gi = 〈Li, Ei, µi〉 where
Li is the set of all program locations in the unwound code
of the thread, Ei is the set of edges such that 〈v, u〉 ∈ Ei if
a statement at location u can be executed immediately after
the statement at location v, and µi ∈ L is the initial program
location of the thread.

Definition 3.4 (PLV): Program location vector (PLV) �v is
a t dimensional vector such that for each i ∈ [t] vi ∈ Li.
At each moment m during the execution of the program, we
say that the execution is at PLV �v if for each i ∈ [t] vi is the
next program location to be executed in thread i.

Clearly, the set of all PLVs is equal to the cross product of
the Lis.

Definition 3.5 (JCG): The joint control graph (JCG) of the
tested program is a graph 〈V,E〉 whose vertices are the PLVs.
There is an edge in the JCG between vertices u and w if there
exists an execution path in which w is the immediate successor
of u.
Note that at each moment only one thread can make a move.
Therefore, the branching degree of each vertex is at most t.
Since the code is unwound, every statement in it is executed
at most once and the statements are executed in the increasing
order of their program locations. Therefore, JCG is a finite
directed acyclic graph (DAG). The source vertex of the JCG is
a PLV which is composed of the initial PL µi for each thread
i.



Definition 3.6 (PF): Probability function PF : V (JCG)×
[t] �→ [0, 1] such that the probability sum over the outgoing
edges of each vertex is 1.

This function defines for each vertex v and each of its
outgoing edges ei the probability of the thread i to advance
when the execution reaches v. If not all threads are enabled
at v, we take the relative probabilities of the enabled ones. If
Ten ⊆ [t] is the set of the enabled threads at this moment then
the relative probabilities are:

RP (v, i) .=

{
PF (v,i)∑

j∈Ten
PF (v,j)

if i ∈ Ten

0 otherwise

Definition 3.7 (Visible thread state): A visible thread state
(VTS) s of a thread i is the pair 〈v, σ, τ〉 where v ∈ Li denotes
the current PL, σ denotes the valuation of all local variables,
and τ denotes the valuation of the global variables accessed
by the statement at program location v.

Intuitively, the set of visible thread states are all possible
states of the system as visible by the thread when it accesses
various parts of this system.

We assume that correct locking policy was implemented
in the program (this can be checked statically). Therefore,
any VTS that can be reached by any program execution, can
be also reached by some program execution when context
switches are allowed only at locking or unlocking statements.
Thus, under such context-switch policy the only vertices of
the JCG which may have more than one successor are those
PLVs with program locations of lock or unlock statements.
Then, all vertices with a single successor can be collapsed
without losing any synchronization information, and therefore
we can assume that the JCG graph contains only program
locations of locking/unlocking statements 2. This restriction
on the context-switch policy was introduced in [4], [5].

For a single execution of the program, we call the sequence
of vertices of JCG that it visits an execution path in JCG.

IV. CROSS-ENTROPY FOR TESTING

A. Algorithm

The algorithm starts with choosing the performance function
S according to the state of the system to which we want
to converge (we list some of the more natural performance
functions in Section IV-C). A concurrent program is viewed
as a JCG, which is a product of DAGs of its threads. Each
DAG corresponds to the unwound program of a thread. The
JCG is not constructed in advance - edges between PLVs are
discovered during the execution of the algorithm.

Essentially, the algorithm simulates a random walk on the
control graph of the program by deciding, at each synchroniza-
tion point, which thread makes the next step3. The structure
of the algorithm is presented in Figure 1, and we also describe
it in more detail below.

1) The probability distribution table contains probability
distribution on edges and is updated at each iteration.

2We assume a single statement per program location.
3Recall that we assume that all nodes are synchronization points.

Updater

Stopper Decider

Evaluator

Instrumentation

under test
program

Probability

distribution
table

Fig. 1. The structure of our algorithm

Initially, the edges are unknown, so the table is empty,
assuming uniform distribution.

2) The program is instrumented by adding callbacks at
synchronization points. This enables the algorithm to
stop the execution at these points and decide which
edge is going to be traversed next (that is, which thread
makes a move). At this point, the algorithm gathers the
knowledge of the edges of JCG and stores it.

3) At each iteration, the algorithm performs the following
tasks:

a) The istrumented program is executed a number
of times that is sufficient to collect a meaningful
sample (the number of executions depends on the
size of JCG). Executions are forced to perform
scheduling decisions according to the current prob-
ability distribution on edges. Stopping the execu-
tion and deciding which thread is allowed to run
next is performed by separate components in our
implementation.

b) The executions are used in order to compute the
new probability distribution (see Equation 1 and
Equation 2). We discuss the choice of the param-
eters q and α in Section V.

4) The algorithm terminates when the collected sample
of the current iteration has a sufficiently small relative
standard deviation (between 1% and 5%, as discussed
in Section III-A).

B. Heuristics for improving performance

Dealing with unwinding: To generate the full JCG of the
unwound program (without actually generating the unwound
code), a program location is composed from the line number in
the original (not unwound) code and an additional parameter,
which reflects the unwinding. This parameter is a vector of
values of loop counters for all loops the program is currently
in. The example in Figure 4.1 illustrates why a single counter
is not enough to determine the program location uniquely.

Example 4.1: The program block in Figure 2 contains
nested loops. The values of maxI and maxJ are received
from other thread and define the number of iterations of each
loop. Consider two cases: (1) maxI = 1 and maxJ = 2,



assert(maxI ≤ 10);
assert(maxJ ≤ 10);
for(i = 0; i ≤ maxI; i + +)

for(j = 0; j ≤ maxJ ; j + +)
foo(i, j);

Fig. 2. An example of nested loops

and (2) maxI = 2 and maxJ = 1. Consider the second call
to foo(i, j). In each of these cases, this call will appear in
a different place in the unwound program, but the value of a
single counter in both cases would be the same.

For the general case, we present a better parameter, using
which, a 1-1 mapping can be created for any inner iterative
structure of the program. This parameter will take the form of
a stack. Each time the thread execution reaches a loop it pushes
a new counter with value 0 on top of the stack, before entering
the loop. Each time the execution starts a new iteration of a
loop it increases the value of the top counter on the stack.
Each time the execution exits the loop scope we pop the top
counter of the stack. The same idea can be applied to function
calls. Currently we do not test programs with recursion, though
the method can be applied to recursive programs after minor
changes.

Modulo reduction: In practice, the JCG of the unwound
program can be huge even for medium-size programs. The
problem with this is twofold. First, the graph itself may be
two big to fit in the memory and to search efficiently. Second
and more important, the set of execution samples generated
at each iteration of the algorithm may be too sparse when
projected on the JCG. In such case, the probability is updated
only for a small fraction of the nodes. The consequence is
that the algorithm converges to an arbitrary local maximum,
instead of the target global maximum. We solve both problems
by introducing the modulo reduction, in which the counters in
program locations are computed modulo some small integer.
The modulo reduction creates a modulo joint control graph
(MJCG) form the original JCG. Each vertex of JCG is mapped
to a vertex of MJCG by taking the modulo value of all its
counters. The modulo reduction decreases the size of the
graph significantly, however, it does not preserve the desired
1-1 mapping to unwound program locations. Our experiments
show that with some fine tuning, it is possible to find the
optimal modulo parameter, in which the many-to-one mapping
does not confuse the CE computation, and yet, the MJCG is
dense enough to allow the CE method to converge to a global
(and not local) maximum.

C. Applications

In this section we show that CE method is useful for testing.
The necessary prerequisite of using the CE method to find
a rare pattern or bug is the ability to define a performance
function for this pattern. We show that many (if not the
majority) of potential problems in programs admit a natural
performance function, and thus can be discovered using the
CE method. As an easy example, consider searching for

buffer overflows. Using the CE method, we can direct the
executions of the program to areas where the buffer occupancy
is maximized. The natural metrics for this problem is the
number of elements in the buffer. The following is a partial
list of other common patterns in programs, often associated
with bugs, for which there exist natural metrics, and which,
therefore, can be found using the CE method.

• Discovering data races: the function is the number of
shared resources accessed during the execution.

• Testing error paths: the function is the number of error
paths taken during the execution.

• Incorrect use of synchronization primitives: the function
is the number of calls to mutually exclusive functions in
an execution.

• Bugs caused or related to wait-notify situations: the
function is the number of lost notifies.

• Testing recovery from multiple failures of threads/tasks:
the function is the number of canceled threads/tasks.

• Simulation of the environment that triggers many excep-
tions: the function is the number of generated exceptions.

• Not releasing resources properly or exhaustion of re-
source pools: the function is the number of allocated
resources minus the number of released ones.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The algorithm we describe in Section IV-A is implemented
in Java and tested on several examples that we constructed.
In this section, we briefly describe the implementation details
and present our experimental results.

A. Implementation

The cross-entropy-based testing tool ConCEnter is written
in Java. Its structure is reflected in Figure 1, and we briefly
describe each part of it below.

• Instrumenter is an instrumentation tool that adds call-
backs at synchronization points, i.e., immediately before
and after each synchronized block.

• Decider receives a node v of the JCG of the program
under test and chooses which thread is allowed to run
next according to current relative probabilities RP (v) on
the control graph edges.

• Stopper: on callbacks from the instrumented code it stops
the currently running thread using a mutex designated for
this thread. Then, it calls notify() on the mutex of the
thread that can make the next step (based on Decider’s
decision).

• Evaluator collects the edges of the JCG traversed by the
execution path. At the end of each execution it computes
the S value of the execution.

• Updater updates the probability distribution table for the
next iteration based on the computations of Evaluator.

During the execution, Decider and Evaluator collect big
amounts of data. To minimize the sizes of the memory buffers
for this data, it is periodically written to files.



B. Experimental Results

We performed several experiments on different metrics and
different types of bugs. The tests were written in Java version
1.5.0 and executed on a 4 CPU machine 64bit “Dual Core
AMD Opteron(tm) Processor 280” with clock rate of 2.4GHz
and 1MB cache size each. The total memory of the machine
is 8GB. The operation system it runs is GNU/Linux 2.4.21-
37.ELsmp.

We constructed several examples of programs with bugs that
admit a natural performance function. The programs and bugs
introduced in them are as follows.

1) Buffer overflow and underflow in a standard producer-
consumer program. The test program consists of four
threads (2 producers and 2 consumers) running concur-
rently. The buffer size is 5, and each thread can perform
10 push or pop operations.

2) Buffer overflow in a scenario similar to the previous case
but with the buffer size 45 and 25 operations for each
thread.

3) Buffer overflow and underflow similar to test 1 but with
modulo parameter.

4) Stack overflow in a program with two types of threads,
A and B, and two threads of each type. The pseudo-
code of a thread is presented In Figure 3. Each thread
performs 10 operations, and the size of the stack is 36.
We note that in this test, buffer overflows are very rare
(the probability of experiencing a bufer overflow in a
random execution under uniform distribution on edges
of the JCG is O(1/2n), where n is the size of the buffer),
since the buffer is filled up only in executions in which
thread types continuously alternate.

myName = A; // or B
for(i = 0; i < 10; i + +)

synchronized(buffer) {
if((top of stack)== myName)

pop();
else

push(myName);
} // end loop

Fig. 3. The pseudo-code of the stack overflow example with two types of
processes

5) Deadlocks. The test program has 10 mutexes and three
locking threads. Most of the time, a correct locking
policy is enforced (mutexes are numbered and the lock-
ing is attempted only in the order of their numbering).
However, in a small percentage of the executions, a
thread locks mutex 8 before locking mutex 7 and thus
can cause deadlock.

In each test, we fine-tuned the parameters q (the best part
of the sample), α (the smoothing parameter), and the modulo
parameter to achieve the fastest convergence to the global
maximum. The results of ConCEnter are compared with the
results of running ConTest and Java scheduler on the same

Buffer Overflow/Underflow
ConCEnter ConTest Java

scheduler
% successful 100% unstable 99%

executions
runtime 15 sec 10 sec for 3 sec

2000 tests

Buffer Overflow with a large buffer
ConCEnter ConTest Java

scheduler
% successful 100% from 0.02% 99%

executions to 30%
runtime 20 sec 30 sec for 3 sec

5000 tests

Buffer Overflow with MJCG
ConCEnter ConTest Java

scheduler
% successful 100% unstable 99%

executions
runtime 15 sec 10 sec for 3 sec

2000 tests

Stack Overflow with A and B threads
ConCEnter ConTest Java

scheduler
% successful 90% � 2.5% 0%

executions
runtime 75 sec < 40 sec 2 sec

Deadlock
ConCEnter ConTest Java

scheduler
% successful 90% at most 1 out ≈ 0%

executions of 5000 tests
runtime 20 min 300 sec 2 sec

Fig. 4. Experimental results

examples. We summarize the results in Table 4. In all examples
ConCEnter converged in less than 20 iterations.

We also studied the influence of various CE method param-
eters on the performance of ConCEnter on the example of test
3 (stack overflow with A and B threads). In our experiments,
we did not see a significant influence of q and α parameters
on the performance of ConCEnter. The conclusion is that the
modulo parameter is the parameter that seems to have a crucial
role in the performance of ConCEnter. It seems that there is
a lower and an upper bound for it, between which ConCEnter
performs well. If the modulo parameter is smaller than its
lower bound, then MJCG loses too much information and thus
the CE method does not converge. If, on the other hand, the
modulo parameter is larger than its upper bound, then MJCG
is too sparse and CE method converges to a local maximum.
We summarize these results in Table 5. The runs that did not
converge neither to the global nor to the local maximum, did
not converge at all after 40 iterations.



modulo
# samples % convergence to

per global local
iteration maximum maximum

none 100, 200, 0 100%
400

2 200 30% 70%
2 400 15% 0%
3 100 20% 55%
3 200 55% 25%
3 400 75% 10%
4 100 5% 80%
4 200 50% 45%
4 400 85% 5%
8 100, 200, 0 100%

400, 1000

Fig. 5. Influence of modulo parameter

VI. CONCLUSIONS AND FUTURE WORK

We showed a way to find rare bugs in large programs using
the CE method by describing an algorithm that adapts the set-
ting of testing of a program to the setting of the combinatorial
optimization problem and performs an iterative procedure of
CE method for a given performance function. We listed many
interesting (potentially buggy) patterns in programs which
have natural performance functions. We implemented a testing
tool based on the CE method, called ConCEnter. We described
the structure of ConCEnter and presented experimental results
of running it on several patterns. We compared the perfor-
mance of ConCEnter to this of ConTest, an IBM testing tool.
In future work, we will apply ConCEnter to other patterns. We
will also investigate other, more sophisticated ways to use CE
method in testing. Mainly, we are interested in the following
directions:

• Fine-tuning ConCEnter parameters. Our experiments
show that in many cases choosing the best parameters for
a given performance function is hard. It is interesting to
devise an automatic method to find optimal parameters.

• Finding the second best. Our method converges towards
some parts of interleaving space where the performance
function is maximized locally or globally. There may be
other areas where the performance function is maximized.
We would like to develop a method to find these other
arias which where not covered in previous executions of
the algorithm.

• Increasing the modulo in a part of the graph. The
parameter that defines the modulo reduction seems to be
critical to the convergence of the method and it is hard
to find the value which will be optimal to all nodes of
the JCG. The best strategy here is probably to define
a different modulo value for each node. We guess that
this can be done by analyzing the graph of previous
executions.

• Coverage. As mentioned above, increasing test coverage
is one of most widely used methods of program verifica-

tion. In testing, a huge effort is made to create tests which
cover more of the program. We intend to use CE method
with “find the second best” technique to iteratively create
execution paths which increase coverage.

• Partial Replay. It is often important to replay a previous
execution of the program (for example, in order to
reproduce a bug). Unfortunately, full replay is very hard
or even impossible to achieve in practice. It seems that
using the CE method with the performance function that
reaches its maximal value on the execution we are trying
to replay can produce an execution that resembles it to a
high extend.
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APPENDIX

Here we present the more formal explanation of CE method.
The main ideas behind the CE algorithm are as follows. Let X
be a space of vectors. Let {f(·; v)} be a family of probability
density functions (pdfs) on X ,where v is a parameter vector.
Let S : X → IR+ be a function that gives each vector in X a
non-negative value. In the general version of the CE method,
we estimate the probability

l = Pu(S(X) ≥ γ) = EuI{S(X)≥γ} (3)

for some γ ∈ IR - under input f(·;u) pdf. If this probability is
very small, say, smaller than 10−5, we say that {S(X) ≥ γ}
is a rare event. A straightforward way to estimate l is to draw
a random sample X1, . . . , XN from X according to f(·;u),
and then estimate l by examining the sample. The problem
is, that when l is a rare event, the sample might have to be
very large in order to estimate l accurately. A better way is to
draw the sample according to some other probability density
function g that raises the probability of S(X) ≥ γ. Using the
density g we can rewrite equation 3 as

l =
∫

I{S(X)≥γ}
f(x;u)
g(x)

g(x)dx = EgI{S(X)≥γ}
f(x;u)
g(x)

.

The g called importance sampling density. An unbiased esti-
mator of l is

l̂ =
1
N

N∑
i=1

I{S(Xi)≥γ}
f(Xi;u)
g(Xi)

, (4)

where l̂ called importance sampling (IS) estimator.
The best g to estimate l is

g∗(x) =
I{S(x)≥γ}f(x;u)

l
(5)

by using this change of measure in equation 4 we get

l = I{S(x)≥γ}
f(Xi;u)
g(Xi)

for all i. The g∗ function depends on l which is unknown. It
is convenient to choose g from the {f(·; v)} family. The idea
is to choose tilting parameter v such that distance between g∗

and f(· : v) is minimal. For this purpose the CE method uses
Kullback-Leibler “distance” (also called cross-entropy). The
Kullback-Leibler “distance” between g and h defined as:

D(g, h) = Eg ln
g(X)
h(X)

=
∫

g(x) ln g(x)dx−
∫

g(x) ln h(x)dx.

Minimizing the Kullback-Leibler “distance” between g∗ in
equation 5 and f(·; v) is equivalent to solving the maximiza-
tion problem

maxv

∫
g∗(x) ln f(x; v)dx,

since the the value of
∫

g∗(x) ln g∗(x)dx is constant. Substi-
tuting g∗ from equation 5 we obtain equivalent maximization
problem

maxv

∫
I{S(x)≥γ}f(x;u)

l
ln f(x; v)dx,

which is equivalent to

maxvD(v) = maxvEuI{S(x)≥γ} ln f(x; v),

and using importance sampling again with a change measure
f(·;w) we can write

maxvD(v) = maxvEwI{S(x)≥γ}
f(x;u)
f(x;w)

ln f(x; v).

The optimal solution is

v∗ = argmaxvEwI{S(x)≥γ}
f(x;u)
f(x;w)

ln f(x; v)

and can be estimated by following stochastic program

maxvD̂(v) = maxv
1
N

N∑
i=1

I{S(Xi)≥γ}
f(Xi;u)
f(Xi;w)

ln f(Xi; v),

(6)
where X1, . . . , XN is a random sample from f(·;w).

The CE method in each iteration solves Equation 6 based on
the solution of previous iteration. We demonstrate the solution
in one iteration by example, which is very similar to the use
of the cross-entropy method in the paper.

Let �X be a random vector (X1, . . . , XN ) ∼ Ber(p), and
parameter v = p. The probability density function is

f( �X; p) =
N∏

i=1

pXi
i (1 − pi)1−Xi ,

and since each Xj can only be 0 or 1, we have

∂

∂pj
ln f(X; p) =

Xj

pj
− 1 − Xj

1 − pj
=

Xj − pj

(1 − pj)pj
.

We can compute the maximum in Equation 6 by setting
the first derivatives with respect to pj equal to zero, for
j = 1, . . . , N :

∂

∂pj

N∑
i=N

I{S(Xi)≥γ} ln f(Xi; p) =

=
1

(1 − pj)pj

N∑
i=N

I{S(Xi)≥γ}(Xij − pj) = 0,

where Xij is Xj in sample i.
Thus, we have

pj =
∑N

i=N I{S(Xi)≥γ}Xij∑N
i=N I{S(Xi)≥γ}

.


