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Abstract

This work compares seven regression algorithms implemented in artificial neural networks (ANNs) supported by 14
power-quality features, which are based in higher-order statistics. Combining time and frequency domain estimators
to deal with non-stationary measurement sequences, the final goal of the system is the implementation in the future
smart grid to guarantee compatibility between all equipment connected. The principal results are based in spectral
kurtosis measurements, which easily adapt to the impulsive nature of the power quality events. These results verify
that the proposed technique is capable of offering interesting results for power quality (PQ) disturbance classification.
The best results are obtained using radial basis networks, generalized regression, and multilayer perceptron, mainly
due to the non-linear nature of data.
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Introduction
With the consequent unstoppable increase of electronic
equipments demanding electricity, consumers expect
uninterrupted availability and quasi perfect power quality
(PQ). For that reason, PQ is being the object of continuous
interest by researchers and developers, due to its influence
over and from the loads, and the recent potential inclusion
in the modern smart grid (SG).
In this frame, an adequate PQ assures the necessary

compatibility between all equipment connected to the
grid [1]. The terms of this compatibility gather several
aspects: sustainable power with low losses and high qual-
ity and security of supply and safety, being at the same
time economically efficient, reliable, and resilience [2,3].
Certainly, the future SG would introduce transformative

technologies to meet these design requirements, inte-
grating intelligence into end-use devices as the key to
satisfying the demand response. In parallel, the industry
would design ways to incorporate automatic end-use-load
participation into the model so that customers are not
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bothered by these programs and decisions, and so their
lifestyles are not inconvenienced [4].
Due to the above arguments, the role of smart meters

and sensors is the first being revised in the present and
future SG. These automated meters (AM) used a two-way
communicating infrastructure and centralized manage-
ment, as well as new features such as the following: outage
management, demand response, automatic load shedding,
distribution automation, and the ability to enable and
commute alternative energy sources.
Provided with this scenario, this research integrates arti-

ficial neural networks (ANNs) and advanced signal pro-
cessing techniques based in higher-order statistics (HOS)
in order to be implemented into an automated smart
meter for PQ event detection and classification, within
the frame of a SG with a high distribution penetration
of renewable sources. Seven regression algorithms are
tested based on an hybrid time-frequency battery of char-
acteristics, specially designed to deal with non-stationary
measurement time series.
The feature extraction stage from PQ disturbances is

based on HOS, idea which has been proven to be effi-
cient in several works. Indeed, since PQ events are sudden
changes in the power line, the HOS are potentially use-
ful to characterize each type of electrical anomaly both
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in time and frequency domains. As a novelty, the present
research exploits the combination of time and frequency
domain features, to deal with the inherent non-stationary
associated to the electrical anomalies, with the goal to
improve the performance of the ANN and tomake feasible
the integration in an smart meter.
Regarding backgrounds of HOS applications in this

field, in the time domain, several notable works are wor-
thy, e.g., Bollen et al. introduced new advanced statistical
features to PQ event detection [5]. In the same direction,
Gu and Bollen [6] found relevant characteristics associ-
ated to PQ events in the time and frequency domains.
The work by Ribeiro et al. is also remarkable [7], which
extracted new time-domain features based in cumulants.
The same authors performed the classification of single
and multiple disturbances using HOS in the time domain
and Bayes’ theory-based techniques [8]. HOS techniques
and estimators have also been implemented to specifically
detect sags and swells [9].
The categorization of PQ anomalies had been formerly

performed by Nezih and Ece in the work [10], where they
proved that HOS and quadratic classifiers improve the
second-order-based methods. The same authors previ-
ously achieved performance in second-order computing,
using 2-D wavelets and compression techniques [11,12];
finding, despite the promising results, the limits of the
procedure and quantifying its heavy computational cost.
Alienated to this work, the researches of Poisson et al.
and Santoso et al. [13,14] also reported a wavelet-based
method, finding the potential and the drawbacks of the
technique so that to implement it in an intelligent meter.
The direct antecedent of the present research in the

work by J.J.G. de la Rosa et al. [15], in which they
performed a mixed study involving the time-domain vari-
ance, skewness, and kurtosis, and they obtained conse-
quences combined with the spectral kurtosis (SK), and
over a set of real-life measurements, some of them with

mixed PQ perturbations. The same authors proposed a
preliminary criteria for seven types of disturbances based
on the former estimators [16]. In a previous work [17],
they designed an offline case-based reasoner based on
time-domain HOS estimators. Furthermore, the authors
used also HOS features in classification techniques for
characterization of electrical PQ signals [18].
The present paper is designed as follows. The next

section summarizes the main advances in the field, pay-
ing special attention at the applications of ANN for
PQ analysis, and reasoning the contribution of HOS to
the feature extraction stage and the architecture. Then,
Section Higher-order statistics for PQ monitoring: an
enhancement proposal over the DWT exposes the advan-
tages of HOS for PQ monitoring and the state-of-the art.
In Section Proposed methodology: the HOS-based ANN,
the procedure is detailed in order to expose the results
later in Section Results; finally, conclusions are drawn in
Section Conclusions.

ANN for PQ analysis: towards the HOS paradigm
The present paper postulates non-stationary signal pro-
cessing with higher-order statistics in the time and fre-
quency domains in order to extract a battery of features
to be processed via ANNs with regression algorithms.
ANNs have been used for classification purposes in myr-
iads of works and have proved the utility for a long time
[19]; Figure 1 shows a generic architecture, indicating how
the input pattern is processed via the neurons to provide
with the output vector, in order to introduce the concrete
architecture in the present work.
The performance of the potential PQ monitoring sys-

tem and consequently the ANN is directly related to the
pre-processing and feature extraction techniques used.
The main goal of the feature extraction is to represent
the data set in a new feature space in which the proba-
bility to distinguish classes is higher than the one in the
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Figure 1 Generic ANN structure which postulates the feature extraction stage previous to the ANN.
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original space. Therefore, the identification of efficient
pre-processing and feature extraction techniques is a key
issue [20].
Some works have shown that the best performance for

non-stationary signals is achieved combining time and
frequency characteristics obtained in the feature extrac-
tion stage via wavelet transforms (WT), on the hypotheses
that WT performance is suitable for the analysis of tran-
sient signals with easy computation. Three works are
worth to be cited as they are directly concerned with our
research, involving ANN and PQ analysis. In the first one
to mention, Angrisani et al. presented a wavelet network
for automated transient detection; basically, it was based
in an extended perceptron which incorporated wavelet
nodes [21]. They proposed a unique structure based on
the introduction of wavelet nodes in the traditional ANN,
in the neurons of the first layer, and was applied success-
fully to typical transients in the PQ analysis. The number
of nodes was fixed to 12, and this number was related to
the time location of the perturbation. The network has to
be pre-conditioned in order to detect concrete transient
signals.
In the same former line, using the WT as a preprocess-

ing tool for ANN, the second work by Iñigo Monedero
et al. [22] developed a neural perceptron-based (three
hidden layers) real-time first system prototype, which
was trained using a disturbance generator for pseudo-
synthetic waveforms. They obtained a performance of
89% success combining simulated and real-time data. The
perturbations were classified in frequency, voltage, and
harmonics, and the topology of the ANN (number of hid-
den neurons and number of outputs) was highly moveable
depending on the PQ event under study.
The third and most recent paper, by Martin Valtierra-

Rodriguez et al. [23] involves a new dual neural-network-
based methodology to detect and classify single and combined
PQ disturbances, consisting, on the one hand, of an
adaptive linear network for harmonic and inter-harmonic
estimation that allowed computing the root-mean-square
voltage and THD indices, from which it is possible to
detect and classify sags, swells, outages, and harmonics. A
complementary feed-forward neural network was used for
pattern recognition using the horizontal and vertical his-
tograms of a specific voltage waveform to classify spikes,
notching, flicker, and oscillatory transients. The comple-
mentary action of these neural networks allows the detec-
tion and classification even with simultaneous electrical
anomalies, both in noisy and noise less scenarios.
Apart from the difficulties in implementing a real-time

processor in the smart grid frame, the main disadvantage
of the above procedures lies in the fact that accuracy and
repeatability are highly compromised by the second-order
estimators (WT and VRMS) used in the feature extraction
stage. Drawbacks arise when the data are corrupted by

noise; specially when the number of samples of the signal
window is reduced, and the resolution and repeatability
are degraded. This facts are dramatically increased if the
tests are performed over synthetic signals of controlled-
lab experiences, where predictability is tacitely supposed.
In the real-world experiences, the system should be pre-
pared for unpredictable phenomena, both in the time and
in the frequency domains. As explained hereinafter, this
goal is accomplished by statistical parameters of an order
higher than two.

Higher-order statistics for PQmonitoring: an
enhancement proposal over the DWT
During the last decade, some researches [7,15,24] have
demonstrated the usage of HOS features for PQ moni-
toring. The motivation of HOS in PQ analysis is twofold.
By one side, as HOS measurements are correlations that
involve powers higher than two [25], the HOS informa-
tion for Gaussian signals is null, as Gaussian processes
are described up to the second order. As many measure-
ment noises are Gaussian or symmetrically distributed,
the HOS may be less degraded by the background noise
than the second-order calculations. Secondly, the capa-
bility to reveal non-linear characteristics from the data,
which is important for pattern recognition scenarios, in
concrete to target PQ events, waveforms which exhibit
high time variability, like impulsiveness of peakedness.
The usage of HOS as a feature extraction technique

for PQ monitoring systems is very promising, and several
recent works presented good results with respect to both
detection and classification tasks. The most similar work
was recently committed by Liu et al. [26]; transients were
classified according to the features extracted via the SK
and using ANNs. They workedwith simulated signals over
the five types of synthetic perturbations.
Formerly, it had been shown that combining techniques

allows efficient classification of single and simultane-
ous disturbances, and more, the usage of the second-
and fourth-order HOS features, for a specific lag chosen
from Fisher’s discriminant ratio (FDR) criterion, has been
enough to deal with the majority of the disturbances
considered [24].
Regarding specifically signal processing issues, some

results show that HOS are capable of detecting distur-
bances even using short acquisition time windows, which
represents an important characteristic for several power
system applications such as protection, signal segmen-
tation, and disturbance localization. Being specific, the
results shown that the detection of disturbances can be
accomplished in less than a quarter of cycle, which is
excellent for protection application, where speed and
accuracy need to be combined to guarantee selectivity and
reliability during the occurrence, for example, of a fault in
a system [24,25].
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Regarding the HOS that has been used in the present
research, it is worth remarking that we have made use of a
combination in the time and the frequency domains. The
ensemble of Equation 11, whose rigorous mathematical
treatment is in the appendix, constitutes indirect mea-
surements of the variance, skewness, and kurtosis that has
been used in the present paper, along with the SK, which
is used to locate the transients in the frequency domain.
With the aim of motivating the performance of HOS

over second-ordermethods, a comparison has been devel-
oped via the discrete wavelet transform (DWT), which
is a promising technique for PQ analysis according to
the literature (e.g., [21]). Without the further necessity of
expanding expressions, in this section, we recall that every
finite energy signal s(t) can be decomposed over a wavelet
orthogonal basis according to:

s(t) =
+∞∑

j=−∞

+∞∑
k=−∞

〈s,ψj,k〉ψj,k . (1)

Each partial sum, indexed by k, in Equation 1 represents
the detail variations at the scale a = 2j (at each level j, the
scale is increased by a factor of two):

dj(t) =
+∞∑

k=−∞
〈s,ψj,k〉ψj,k s(t) =

+∞∑
j=−∞

dj(t). (2)

The approximation of the signal s(t) can be progres-
sively improved by obtaining more levels, with the aim of
recovering the signal selectively. For example, if s(t) varies
smoothly, we can obtain an approximation by removing
fine scale details, which gather information regarding the
high frequencies or rapid variations of the signal. This is
done by truncating the sum in Equation 1 at the scale
a = 2J :

sJ (t) =
+∞∑
j=J

dj(t). (3)

Details corresponding to indexes j < J are not consid-
ered in Equation 3.
Hereinafter, a simple experience is exposed illustrating

the limitations of the method based in the DWT, in case
DWT coefficients were selected to be used as features.
The wavelet decomposition tree has been expanded up
to level 7 using the mother wavelet sym8. The idea in
the background literature is to study the distribution of
the signal energy for each level of the tree, which acts as
a filter bank. As stated and proved in myriads of refer-
ences (e.g., [27]), low index levels point rapid fluctuations
of the signal, whereas slow variations are associated to
higher (or deeper) decomposition branches. The differ-
ence between the energy of the perfect power signal and
the energy of the PQ event under test has been studied for

each level. The energy expression that we have considered
is the traditional 2-norm, according to Equation 4:

E(s) :=
N∑
i=1

‖si‖2, (4)

where s is theN-point vector signal and si, their associated
components. Figure 2 shows the processing results for six
prototypes. The limitations of the DWT can be concluded
via a simple analysis of the graphs. Firstly, as the DWT
analysis consists of a selective filtering, sag and swells
cannot be distinguished. Secondly, mixed PQ events are
also difficult to separate because the constant incremental
energy does not indicate whether a transient is coupled or
not. Finally, an eventual noisy environment would mask
results in the case of the oscillatory transient (this has
been extensively proved).
At the light of the second-order analysis, a more robust

set of features is required in order to process real-life
measurements. This is achieved via HOS.

Proposedmethodology: the HOS-based ANN
The final goal of this work is the implementation in
the future SG to guarantee compatibility between all
equipment connected. Data used in this work have been
simulated using MATLAB software. The data set gener-
ated by the simulation consists of 550 samples including
the different studied disturbance kinds, which cover the
following disturbances: oscillatory transient, impulsive
transient, interruption, harmonic permanent distortion,
harmonic temporal distortion, sag, sag plus oscillatory
transient, and swell. Each signal comprises a 20K-point
synthetic time-domain register with a duration of 1 s (20
KHz sampling frequency). An additive normal noise pro-
cess (1% of the amplitude of the signal) has been added in
order to achieve a more realistic behavior. Figure 3 shows
an example of these signals as well as healthy signal that
are utilized in this paper.
The classification techniques used to classify the PQ

disturbances are based on regression algorithms. These
techniques are multiple linear regression (MLR), adap-
tive linear neuron (LIN), multilayer ANNs (BP1 and BP2),
radial basis function (RBF) network, exact radial basis
(ERB), and generalized regression network (GRN). Every
model has been intelligently adapted to meet the objective
of PQ classification because each has different character-
istics. Table 1 shows the selected parameters correspond-
ing to the architecture and activation function of each
model used. The final design of each model has been
obtained by the optimization of the parameters shown in
this table.
Data used to realize the classification are based on

representative coefficients obtained from the PQ distur-
bances referred above. These coefficients are acquired



Palomares Salas et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:16 Page 5 of 11

0 1 2 3 4 5 6 7
489

490

491

492

ΔE

Sag

0 1 2 3 4 5 6 7
−2

−1

0

1

Oscillatory transient

0 1 2 3 4 5 6 7
440

445

450

ΔE Sag plus oscillatory transient

0 1 2 3 4 5 6 7
−374

−373.5

−373

Swell

0 1 2 3 4 5 6 7
−60

−50

−40

−30

−20

Decomposition level

ΔE Harmonics

0 1 2 3 4 5 6 7
−0.1

0

0.1

0.2

0.3

Decomposition level

Pure power line

Figure 2 DWT analysis for different PQ events. From top to bottom and left to right: sag, oscillatory transient, sag plus oscillatory transient, swell,
harmonics, and pure power signal. The energy difference is depicted vs. the decomposition level. In the case of additive noise, the method does not
guarantee success in the feature extraction stage.

by a process of feature extraction which is based on the
combination of higher-order statistics in time and fre-
quency domains. The HOS have been computed using
a 400-points sliding window (which corresponds to a
signal period), with a shift of 10 points over a vector
of 20,000 points. After extraction stage, a total of 14

characteristic features are selected, nine of whom corre-
spond to time domain and the remaining five to frequency
domain. The coefficients selected in the first one cor-
respond to the maxima and minima and stable in the
second-, third-, and fourth-order cumulants at zero lags
(directly related to the variance, skewness, and kurtosis).
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Figure 3 Example of healthy signal and different disturbances studied.
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Table 1 Parameters of the ANNs

ANN LIN BP1 BP2 RBF ERB GRN

Hidden layers - 1 2 1 1 1

Neurons hidden layer 1
- [4 to 10] [4 to 10] [1 to 150] [1 to 150] [1 to 150]

Neurons hidden layer 2
- - [2 to 5] - - -

TF - S S G G G

TF output L L L L L L

Training algorithm WH LM LM k k k

Spread - - - [1 to 20] [1 to 20] [1 to 20]

LM, Levenberg Marquardt; WH, Widrow Hoff; S, sigmoid; G, Gaussian; L, linear; k, k-means; TF, transfer function.

On the other hand, the coefficients selected in the sec-
ond one correspond to the frequency of extreme value
of SK, bandwidth of dome, extreme value of SK, num-
ber of peaks in SK, and dome very targeted (between
0 and 1). The abstract graphic of this work with the
proposed methodology can be seen in Figure 4 where
it specifies the feature extraction module. In order to
illustrate the capability of the SK to discriminate PQ
disturbances, we have selected a practical example con-
sisting of an oscillatory transient coupled to the power
sine wave. The analysis result is depicted in Figure 5. The
time-domain variance increases when it bumps into the
transient; this behavior is independent of the transient fre-
quency. Similarly, the time-domain skewness and kurtosis
detect slight variations. The real detection takes place in
the frequency domain; the SK produces a real enhance-
ment in 2,000 Hz, along with the high-resolution bump
(narrow peak).
The resulting data after carrying out the feature extrac-

tion is a matrix of dimension 550 × 14 (samples ×

features). Then, the building of the models is performed
by following two steps in order to efficiently classify
the disturbances. First, data are normalized so that they
are in the interval [−1, 1], for a faster computation
[28]. And second one, we divide randomly the data set
into three subsets: training, evaluation, and test sets.
The training and validation sets, with 70% and 15% of
data, respectively, were used for ANN model building;
and the third set, with the last 15%, was used to test
on the out-of-sample set the classification power of a
model.
For comparison purposes, the classification criterion is

based on the parameter hit rate (HR), that is defined as
follows:

HR = NC
NT

× 100% (5)

where NT is the number of test samples and NC is the
number of correct disturbance recognition.
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Figure 5 An example of mixed analysis in the time and frequency domains. An oscillatory transient is detected in the time domain by the
second-, third-, and fourth-order statistics, and its frequency is clearly targeted by the spectral kurtosis.

Results
Once the assessed models were configured and opti-
mized, they are used in the out-of-sample set. Because
the database is small, we choose randomly two test sets,
and in each of them, 100 experiments are launched by
model. This is realized to achieve statistically meaning-
ful results which rule out the random factors influencing
the ANNs.
For each model, we have performed three analysis in

function of the features used: HOS in the time domain
(HOSt), the SK, and the mixed (time and frequency
domains) analysis (HOSt +SK). In all of them, the HR was
calculated for each model on the 200 offline tests, observ-
ing the arithmetic mean. The obtained results showing
the percentage of effectiveness for classifying disturbances
are presented in Table 2. In most models, results obtained
in the mixed analysis are better than in the other analy-
ses except isolated results. These exceptions represent the
27.27% of the cases presented in Table 2, where the 14.28%
of them correspond to (HOSt) features, and the remaining
12.99% correspond to SK features.
As can be seen, the algorithms based on linear models

are worse than those based on non-linear schemes. The

best models both individually and collectively are ERB,
GRN, and BP1.

Conclusions
In this paper, seven regression algorithms have been
applied and compared for PQ disturbances classification.
The novel aspect is the introduction of new represen-
tative coefficients based on HOS in time and frequency
domains. These coefficients are the inputs used in the
classification algorithms to verify the occurrence or not of
single or multiple disturbances in the electric signals.
The data used to test the proposed method were gen-

erated by the MATLAB software. The PQ disturbances
considered are the most common on the supply. The best
models both individually and collectively are obtained
employing radial basis networks, generalized regression,
and multilayer perceptron. The overall hit rates obtained
are 94.70%, 79.59%, and 74.17%, respectively. This is con-
sistent with non-linearity of the used data and emphases
of the non-linearity that provide the HOS.
Once the obtained results demonstrate that the pro-

posedmethod can effectively classify different kinds of PQ
disturbances, is necessary to do more training and tests
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Table 2 Regression algorithms for ANNs

MLR LIN BP1 BP2 RBF ERB GRN

HOSt + SK HOSt SK HOSt + SK HOSt SK HOSt + SK HOSt SK HOSt + SK HOSt SK HOSt + SK HOSt SK HOSt + SK HOSt SK HOSt + SK HOSt SK

Harmonic
permanent
distortion

42.45 15.22 0.00 0.00 0.00 0.00 85.89 59.88 88.00 78.30 49.61 70.00 54.94 52.87 100.00 100.00 83.22 100.00 69.39 1.83 0.00

Harmonic
temporal
distortion

34.14 29.44 4.70 10.54 0.00 1.30 74.56 60.73 17.12 70.00 59.91 24.82 42.17 53.02 1.79 93.00 79.71 80.58 48.41 33.77 0.00

Impulsive
transient

65.71 14.18 6.91 53.40 0.00 3.82 82.84 53.23 56.52 81.44 56.37 55.42 38.59 19.85 42.22 96.39 80.38 82.85 100.00 10.00 0.00

Impulsive
transient by
more than
one point

59.50 23.95 43.47 94.36 17.66 57.47 83.79 49.20 68.25 81.75 55.27 73.43 68.02 16.94 77.51 95.97 81.19 79.46 100.00 12.35 100.00

Oscillatory
transient

14.88 82.34 4.47 5.99 98.58 3.22 75.23 24.12 52.14 77.29 25.81 58.24 83.60 45.02 39.01 96.93 79.55 79.84 90.16 95.39 2.90

Interruption 25.81 19.14 48.67 18.64 14.60 56.59 84.29 88.81 33.22 81.34 88.20 33.20 95.69 100.00 31.72 91.04 80.26 79.98 96.36 86.74 58.19

Sag 0.3%
to 0.5%

21.43 20.74 12.41 40.51 38.88 21.23 67.49 54.49 29.60 69.70 59.02 33.37 38.93 60.64 23.49 90.11 79.76 78.38 64.80 14.52 39.83

Sag 0.5%
to 0.75%

36.48 43.36 38.86 44.83 46.79 47.71 53.03 42.57 47.49 58.81 35.85 45.67 33.42 28.32 41.62 89.91 79.61 79.08 87.70 88.14 59.29

Swell 1.25%
to 1.5%

31.13 27.31 35.67 18.89 17.92 8.57 84.02 76.86 43.56 78.64 84.36 45.18 40.06 39.42 27.85 99.66 80.36 79.50 94.90 50.42 0.00

Sag +
oscillatory

0.00 0.00 0.00 0.00 0.00 0.00 43.93 14.13 24.37 51.66 11.95 25.62 18.64 8.89 100.00 88.68 80.28 80.71 27.40 0.00 0.00

Healthy
signal

0.00 0.00 0.00 0.00 0.00 0.00 80.83 12.07 78.50 74.91 25.20 63.00 99.98 0.00 51.00 100.00 95.28 100.00 96.35 0.00 0.00

Global 30.14 25.06 17.74 26.11 21.31 18.17 74.17 48.74 48.98 73.05 50.14 48.00 55.82 38.63 48.75 94.70 81.78 83.64 79.59 35.74 23.66

Number of simulations: 200. HOSt , higher-order statistics in time domain; SK, spectral kurtosis.
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to find an ANN classifier with better characteristics than
obtained in this research.

Appendix
Time-domain cumulants and higher-order spectra
Time-domain HOS
Higher-order cumulants are being used extensively to
deduce newly statistical features from the data of non-
Gaussian measurement time series [29-33]. To reach a
compact expression, nomenclature is first introduced.
Let us consider {x(t)} be an rth-order stationary real-

valued random process; the rth-order cumulant is defined
as the joint rth-order cumulant of the random variables
x(t), x(t+τ1),. . . , x(t+τr−1). This compacted notation is
expressed via Equation 6:

Cr,x(τ1, τ2, . . . , τr−1) = Cum[x(t), x(t+τ1), . . . , x(t+τr−1)]
(6)

where τ1, τ2, . . . , τr−1 are time shifts, and the nth shifting
is a multiple of the data acquisition sampling period, Ts,
and is usually expressed as τn = n · Ts.
Cumulants, defined in the Equation 6, are estimated

by using the well-known Leonov-Shiryaev formula, which
expresses the compact relationship among the cumulants
of stochastic signals and their moments [9]. In this sense,
the expressions for the second-, third-, and fourth-order
cumulants for a real, random, and zero-mean (central
cumulants) time series x(t) can be estimated via:

C2,x(τ ) = E{x(t) · x(t + τ)} (7a)

C3,x(τ1, τ2) = E {x(t) · x(t + τ1) · x(t + τ2)} (7b)

C4,x(τ1, τ2, τ3) = E{x(t) · x(t + τ1) · x(t + τ2) · x(t + τ3)}
− C2,x(τ1)C2,x(τ2 − τ3)

− C2,x(τ2)C2,x(τ3 − τ1)

− C2,x(τ3)C2,x(τ1 − τ2)

(7c)

where E{∗} is the expected value operator. Then, looking
at Equation 7, each cumulant is easily interpreted as a cor-
relation between the original time series and its associated
time-shifted versions, being the computational result of an
rth-order cumulant is the rth degree of similarity among
the aforementioned time series.
Considering a finiteN-sample vector, signal vector x(n),

n = 0, · · · ,N − 1, the following expressions, Equations 8,
9, and 10 describe the three unbiased estimates for the
second-, third-, and fourth-order cumulants, respectively:

Ĉ2,x(k) = 1
N

N−1∑
n=0

[x(n)] [x(n + τ)] , (8)

Ĉ3,x(k, l) = ˆCum[x(n), x(n + k), x(n + l)]

= 1
N

N−1∑
n=0

x(n)x(n + k)x(n + l)
(9)

Ĉ4,x(k, l,m) = ˆCum[x(n), x(n + k), x(n + l), x(n + m)]

= 1
N

N−1∑
n=0

x(n) · x(n + k)∗ · x(n + l)∗ · x(n + m)∗

− 1
N2

[N−1∑
n=0

x(n) · x(n + k)∗
][N−1∑

n=0
x(n + l)∗ · x(n + m)∗

]

− 1
N2

[N−1∑
n=0

x(n) · x(n + l)∗
] [N−1∑

n=0
x(n + k)∗ · x(n + m)∗

]

− 1
N2

[N−1∑
n=0

x(n) · x(n + m)∗
][N−1∑

n=0
x(n + k)∗ · x(n + l)∗

]
(10)

where k, l,m ∈[−χ , . . . ,−1, 0, 1, . . . ,+χ ] and n =
0, 1, . . . ,N − 1; χ is the index of the maximum time shift
(lag) between samples of a record. The biased expres-
sions are estimates over the real terms in the summations
of expressions 8, 9, and 10. These expressions establish
the correlation between the original signal and its time-
shifted versions for the three orders of comparison. The
second-order version is the classical auto-correlation, the
third-order one account with the symmetry of the signal,
and the fourth-order cumulant quantifies the impulsive-
ness in the time domain.
Avoided time shifting, τ1 = τ2 = τ3 = 0 in Equation 7,

leads to the simplest computational expressions for cumu-
lants, in Equation 11:

γ2,x = E{x2(t)} = C2,x(0) (11a)

γ3,x = E{x3(t)} = C3,x(0, 0) (11b)

γ4,x = E{x4(t)} − 3(γ2,x)2 = C4,x(0, 0, 0). (11c)

The ensemble of Equation 11 constitutes indirect mea-
surements of the variance, skewness, and kurtosis. If x(t)
is symmetrically distributed, its skewness is zero (but
not vice versa, improbable situations); if x(t) is Gaussian
distributed, its kurtosis is necessarily zero (but not vice
versa). Standardization (statistical normalization) makes
estimators shift and scale invariant. Standardized quan-
tities are defined as γ4,x/(γ2,x)2 and γ3,x/(γ2,x)3/2, for
kurtosis and skewness, respectively.

Frequency-domain HOS
Poly-spectra are defined to be the Fourier transforms
of the higher-order cumulant sequences. The rth-order



Palomares Salas et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:16 Page 10 of 11

spectra are defined as the (r-1)-dimensional Fourier trans-
forms of the rth-order cumulants, according to:

Sr,x
(
f1, f2, . . . , fr−1

) =
τ1=+∞∑
τ1=−∞

· · ·
τr−1=+∞∑
τr−1=−∞

Cr,x(τ1, τ2, . . . , τr−1)

× exp
[−j2π

(
f1τ1 + f2τ2 + · · · + fr−1τr−1

)]
.
(12)

The power spectrum is the decomposition of the sig-
nal power in the frequency domain. When this concept is
extended to higher orders, as suggested by Equation 12,
the result is called a poly-spectrum. Power spectrum, bi-
spectrum, and tri-spectrum are specific cases (particular
poly-spectra) of Equation 12, with r = 2, 3, and 4, respec-
tively. Only power spectrum is real, and the others are
complex magnitudes.
The more common higher-order spectra are the bi-

spectrum and the tri-spectrum. The first one identifies
contributions to a signal’s skewness as a function of
frequency pairs, meanwhile the tri-spectrum refers to
contributions to a signal’s kurtosis as a function of fre-
quency triplets. For this reason, poly-spectra output mul-
tidimensional data structures which comprise redundant
information, distributed inmulti-dimensional geometries,
often called tensors. As a consequence, their computa-
tion may be impractical in many cases, and to extract the
desired information, one-dimensional slices of cumulant
sequences and spectra and bi-frequency planes are con-
sidered [34,35]. To show this, in the following sections,
we present two particular cases of the third- and fourth-
order spectra, respectively: a 3-D bi-spectrum application
and the performance of an estimator of the fourth-order
spectrum for zero time lags, the spectral kurtosis (SK).
Ideally, the spectral kurtosis is a representation of the

kurtosis of each frequency component of a process (or
data from a measurement instrument xi). For estimation
issues, we will considerM realizations of the process; each
realization containingN points; i.e., we consequently con-
sider M measurement sweeps, each sweep with N points.
The time spacing between points is the sampling period,
Ts, of the data acquisition unit. The SK unbiased indirect
estimator is given by Equation 13:

ĜN ,M
2,X = M

M − 1

⎡⎢⎣ (M + 1)
∑M

i=1
∣∣Xi

N (m)
∣∣4(∑M

i=1
∣∣Xi

N (m)
∣∣2)2 − 2

⎤⎥⎦ (13)

where m indicates the frequency index and ĜN ,M
2,X indi-

cates the value of the kurtosis for this Fourier frequency.
This expression offers an indirect calculation of the SK,
as it is obtained directly from the Fourier transforms,
and it supposes low computational burden. The graphical

representation of the SK allows the identification of non-
Gaussian frequency components. The higher the peak the
more variable is the amplitude associated to this Fourier
component.
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