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Abstract
In the article, we provide a monotonicity rule for the function [P(x) + A(x)]/[P(x) + B(x)],
where P(x) is a positive differentiable and decreasing function defined on (–R,R)
(R > 0), and A(x) =

∑∞
n=n0

anxn and B(x) =
∑∞

n=n0
bnxn are two real power series

converging on (–R,R) such that the sequence {an/bn}∞n=n0 is increasing (decreasing)
with an0 /bn0 ≥ (≤) 1 and bn > 0 for all n ≥ n0. As applications, we present new bounds
for the complete elliptic integral E (r) =

∫ π /2
0

√
1 – r2 sin2 t dt (0 < r < 1) of the second

kind.
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1 Introduction
The most commonly used monotonicity rule in elementary calculus is that f is increasing
(decreasing) on [a, b] if f : [a, b] → R is continuous on [a, b] and has a positive (negative)
derivative on (a, b), and it can be proved easily by the Lagrange mean value theorem. The
functions whose monotonicity we prove in this way are usually polynomials, rational func-
tions, or other elementary functions. But we often find that the derivative of a quotient
of two functions is quite messy and the process is tedious. Therefore, the improvements,
generalizations and refinements of the method for proving monotonicity of quotients have
attracted the attention of many researchers.

In , Biernacki and Krzyż [] (see also [], Lemma ., []) found an important crite-
rion for the monotonicity of the quotient of power series as follows.

Theorem . ([]) Let A(t) =
∑∞

k= aktk and B(t) =
∑∞

k= bktk be two real power series con-
verging on (–r, r) (r > ) with bk >  for all k. If the non-constant sequence {ak/bk} is increas-
ing (decreasing) for all k, then the function t �→ A(t)/B(t) is strictly increasing (decreasing)
on (, r).

In [], Cheeger et al. presented the monotonicity rule for the quotient of two functions.

Theorem . ([]) If f and g are positive integrable functions on R such that f /g is de-
creasing, then the function x �→ ∫ x

 f (t) dt/
∫ x

 g(t) dt is decreasing.
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Unaware of Theorem ., Anderson et al. [], Lemma . (see also [], Theorem .)
established l’Hôpital’s monotone rule that can be applied to a wide class of quotients of
functions.

Theorem . ([]) Let –∞ < a < b < ∞, f , g : [a, b] → R be continuous on [a, b] and dif-
ferentiable on (a, b), and g ′(x) 	=  on (a, b). If f ′(x)/g ′(x) is increasing (decreasing) on (a, b),
then so are the functions

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Pinelis [] provided the following monotonicity theorem.

Theorem . ([]) Let f and g be differentiable and g ′ never vanish on an open interval
(a, b) ⊂R. Then the following statements are true:

() If gg ′ >  on (a, b), lim supx↓a g(x)(f (x)/g(x))′/|g ′(x)| ≥  and f ′/g ′ is increasing on
(a, b), then (f /g)′ >  on (a, b).

() If gg ′ >  on (a, b), lim infx↓a g(x)(f (x)/g(x))′/|g ′(x)| ≤  and f ′/g ′ is decreasing on
(a, b), then (f /g)′ <  on (a, b).

() If gg ′ <  on (a, b), lim infx↑b g(x)(f (x)/g(x))′/|g ′(x)| ≤  and f ′/g ′ is increasing on
(a, b), then (f /g)′ <  on (a, b).

() If gg ′ <  on (a, b), lim supx↑b g(x)(f (x)/g(x))′/|g ′(x)| ≥  and f ′/g ′ is increasing on
(a, b), then (f /g)′ >  on (a, b).

Recently, Yang et al. [], Theorem ., established a more general monotonicity rule for
the ratio of two power series.

Theorem . ([]) Let A(t) =
∑∞

k= aktk and B(t) =
∑∞

k= bktk be two real power series con-
verging on (–r, r) and bk >  for all k, and HA,B = A′B/B′ –A. Suppose that for certain m ∈N,
the non-constant sequence {ak/bk} is increasing (decreasing) for  ≤ k ≤ m and decreasing
(increasing) for k ≥ m. Then the function A/B is strictly increasing (decreasing) on (, r) if
and only if HA,B(r–) ≥ (≤) . Moreover, if HA,B(r–) < (>), then there exists t ∈ (, r) such
that the function A/B is strictly increasing (decreasing) on (, t) and strictly decreasing
(increasing) on (t, r).

The foregoing monotonicity rules have been used very effectively in the study of special
functions [–], differential geometry [, ], probability [] and approximation theory
[]. The main purpose of the article is to present the monotonicity rule for the function
[P(x) +

∑∞
n=n

anxn]/[P(x) +
∑∞

n=n
bnxn] and to provide new bounds for the complete el-

liptic integral of the second kind. Some complicated computations are carried out using
Mathematica computer algebra system.

2 Monotonicity rule
Theorem . Let P(x) be a positive differentiable and decreasing function defined on (, r)
(r > ), let A(x) =

∑∞
n=n

anxn and B(x) =
∑∞

n=n
bnxn be two real power series converging on
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(–r, r). If an /bn ≥ (≤) , bn >  for all n ≥ n and the non-constant sequence {an/bn}∞n=n

is increasing (decreasing), then the function x �→ [P(x) + A(x)]/[P(x) + B(x)] is strictly in-
creasing (decreasing) on (, r).

Proof Let x ∈ (, r), and

I =
∞∑

n=n

[
nP(x) – xP′(x)

]
(an – bn)xn–,

I =
∞∑

n=n

nanxn–
∞∑

n=n

bnxn –
∞∑

n=n

anxn
∞∑

n=n

nbnxn–.

(.)

Then differentiating [P(x) + A(x)]/[P(x) + B(x)] gives

[
P(x) + B(x)

]
[

P(x) + A(x)
P(x) + B(x)

]′

=

(

P′(x) +
∞∑

n=n

nanxn–

)(

P(x) +
∞∑

n=n

bnxn

)

–

(

P(x) +
∞∑

n=n

anxn

)(

P′(x) +
∞∑

n=n

nbnxn–

)

= I + I. (.)

Note that I can be rewritten as

I =
∞∑

j=n

jajxj–
∞∑

i=n

bixi –
∞∑

i=n

aixi
∞∑

j=n

jbjxj–

=
∞∑

i=n

∞∑

j=n

jbibj

(
aj

bj
–

ai

bi

)

xi+j–

=
∞∑

j=n

∞∑

i=n

ibjbi

(
ai

bi
–

aj

bj

)

xi+j–

=



∞∑

i=n

∞∑

j=n

bibj(i – j)
(

ai

bi
–

aj

bj

)

xi+j–. (.)

If an /bn ≥ (≤) , bn >  for all n ≥ n and the non-constant sequence {an/bn}∞n=n is in-
creasing (decreasing), then we clearly see that

an ≥ (≤) bn (.)

for all n ≥ n and

∞∑

i=n

∞∑

j=n

bibj(i – j)
(

ai

bi
–

aj

bj

)

xi+j– > (<)  (.)

for all x ∈ (, r).
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It follows from P(x) is a positive differentiable and decreasing function on (, r) that

nP(x) – xP′(x) >  (.)

for all x ∈ (, r).
Therefore, [(P(x) + A(x))/(P(x) + B(x))]′ > (<)  for all x ∈ (, r) follows easily from (.)-

(.), and the proof of Theorem . is completed. �

3 Bounds for the complete elliptic integral of the second kind
For r ∈ (, ), Legendre’s complete elliptic integral [] of the second kind is given by

E(r) =
∫ π/



√

 – r sin(t) dt.

It is well known that E(+) = π/, E(–) = , and E(r) is the particular case of the Gaussian
hypergeometric function

F(a, b; c; x) =
∞∑

n=

(a)n(b)n

(c)n

xn

n!
(– < x < ),

where (a)n = �(a + n)/�(a) and �(x) =
∫ ∞

 tx–e–t dt (x > ) is the gamma function. Indeed,
we have

E(r) =
π


F
(

–



,



; ; r
)

=
π



∞∑

n=

(– 
 )n( 

 )n

(n!) rn. (.)

Recently, the bounds for the complete elliptic integral E(r) of the second kind have been
the subject of intensive research. In particular, many remarkable inequalities for E(r) can
be found in the literature [–]. Vuorinen [] conjectured that the inequality

E(r) ≥ π



(
 + r′/



)/

(.)

holds for all r ∈ (, ), where, and in what follows, r′ = (–r)/. Inequality (.) was proved
by Barnard et al. in [].

Very recently, the accurate bounds for E(r) in terms of the Stolarsky mean Sp,q(, r′) were
given in [, ]:

π


S/,/

(
, r′) < E(r) <




S/,/
(
, r′), (.)




S/,
(
, r′) < E(r) <

π


S/,

(
, r′), (.)

where Sp,q(a, b) = [q(ap – bp)/(p(aq – bq))]/(p–q).
In this section, we shall use Theorem . to present new bounds for the complete elliptic

integral E(r) of the second kind. In order to prove our main result, we need three lemmas,
which we present in this section.
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Lemma . (see [], Lemma ) Let n ∈ N and m ∈ N ∪ {} with n > m, ai ≥  for all
 ≤ i ≤ n, anam >  and

Pn(t) = –
m∑

i=

aiti +
n∑

i=m+

aiti.

Then there exists t ∈ (,∞) such that Pn(t) = , Pn(t) <  for t ∈ (, t) and Pn(t) >  for
t ∈ (t,∞).

Lemma . (see [, ]) The double inequality


(x + a)–a <

�(x + a)
�(x + )

<


x–a

holds for all x >  and a ∈ (, ).

Lemma . Let n ∈N, p(n), p(n), p(n) and wn be defined by

p(n) = n + ,n + ,n – ,n + ,, (.)

p(n) = ,n + ,n + ,,n – ,,n

– ,,n + ,,n – ,,, (.)

p(n) = n + ,n – ,n + ,n

+ ,,n – ,,n + ,, (.)

wn = –np(n)
(




)

n–
+ p(n)

(



)

n–
+

np(n)
n – 

(



)

n–
, (.)

respectively. Then wn ≥  for all n ≥ .

Proof Let p(n), p(n), p(n), αn and βn be defined by

p(n) = n – ,n + ,n – ,n + ,, (.)

p(n) = n – ,n – ,,n – ,,n + ,,n

– ,,n + ,,n – ,,, (.)

p(n) = n – ,n + ,n + ,n – ,,n

+ ,,n + ,, (.)

αn =
p(n)

n(n + )

(



)

n–
, (.)

βn =
(n – )p(n)

(n – )(n – )

(



)

n–
, (.)

respectively.
Then from (.)-(.) and elaborated computations we get

w = w = w = w = , (.)
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w =
,,


> , (.)

wn+

(n + )p(n + )
–

(n – /)wn

np(n)

=
p(n + )

(n + )p(n + )

(



)

n–
–

(n – /)p(n)
np(n)

(



)

n–

+
p(n + )

(n – )p(n + )

(



)

n–
–

(n – /)p(n)
(n – )p(n)

(



)

n–

=
[

(n – /)p(n + )
(n + )p(n + )

–
(n – /)p(n)

np(n)

](



)

n–

+
[

(n – /)p(n + )
(n – )p(n + )

–
(n – /)p(n)

(n – )p(n)

](



)

n–

=
p(n + )p(n)

n(n + )p(n)p(n + )

(



)

n–

+
(n – )p(n + )p(n)

(n – )(n – )p(n)p(n + )

(



)

n–

=
p(n + )

p(n)p(n + )
(αn + βn), (.)

αn

βn
=

(n – )(n – )p(n)
n(n – )(n + )p(n)

( 
 )n–

( 
 )n–

, (.)

α

β
= –

,,
,,

, (.)

( 
 )n–

( 
 )n–

(
αn+

βn+
–

αn

βn

)

=
(n – )(n – )(n – /)p(n + )
n(n + )(n + )(n – /)p(n + )

–
(n – )(n – )p(n)
n(n – )(n + )p(n)

= –
(n – )(n – )(n – )(n – )(n + ,n + ,n + n – ,)

n(n – )(n – )(n + )(n + )p(n)p(n + )

× (
,n – ,n – ,,n + ,,n – ,,,n

+ ,,,n – ,,,n

+ ,,,n – ,,,
)

= –
(n – )(n – )(n – )(n – )(n + ,n + ,n + n – ,)

n(n – )(n – )(n + )(n + )p(n)p(n + )

× [
–,,, – ,,,(n – ) – ,,,(n – )

– ,,,(n – ) – ,,,(n – )

– ,,,(n – )

– ,,(n – ) – ,(n – ) + ,(n – )]. (.)

From Lemma . and (.) together with the facts that p(n) >  and p(n + ) >  for
n ≥ , we clearly see that there exists n >  such that the sequence {αn/βn}∞n= is increasing
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for  ≤ n ≤ n and decreasing for n ≥ n, which implies that

αn

βn
≥ min

{
α

β
, lim

n→∞
αn

βn

}

. (.)

It follows from Lemma . that

�( 
 )(n – 

 )–/

�( 
 )

<
( 

 )n–

( 
 )n–

=
�( 

 )
�( 

 )
�(n – 

 + 
 )

�(n – 
 + )

<
�( 

 )(n – 
 )–/

�( 
 )

(.)

for all n ≥ .
From (.), (.), (.), (.), (.) and (.) we get

αn

βn
≥ α

β
> – (.)

for all n ≥ .
Therefore, Lemma . follows easily from (.)-(.) and (.) together with the facts

that p(n) > , p(n + ) >  and p(n + ) >  for n ≥ . �

Theorem . The double inequality

(π – )


J
(
r′) –

π – 


< E(r) <
π


J
(
r′) (.)

holds for all r ∈ (, ), where

J
(
r′) =

r′ + r′√r′ + r′ + 
√

r′ + 
(r′ + 

√
r′ + )

. (.)

Proof Let r ∈ (, ), x = r, P(x), f(r), f(r) and F(r) be defined by

P(x) = , – ,x, (.)

f(r) = ,
(
 – r)( – r)/ + 

(
r – r + 

)(
 – r)/

– 
(
r – r + 

)(
 – r)/ – r + ,r + ,, (.)

f(r) = r – r + , (.)

F(r) =
 – J(r′)

 – E(r)/π
, (.)

respectively.
Then from (.) and (.)-(.) we have

f(r) = , + ,r – r + ,

(


∞∑

n=

(– 
 )n

n!
rn –

∞∑

n=

(– 
 )n–

(n – )!
rn

)

+ 

(


∞∑

n=

(– 
 )n–

(n – )!
rn – 

∞∑

n=

(– 
 )n–

(n – )!
rn + 

∞∑

n=

(– 
 )n

(n!
rn

)
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– 

( ∞∑

n=

(– 
 )n–

(n – )!
rn – 

∞∑

n=

(– 
 )n–

(n – )!
rn + 

∞∑

n=

(– 
 )n

n!
rn

)

= , – ,r – r + ,
∞∑

n=

(n – 
 )(– 

 )n–

n!
rn

– 
∞∑

n=

(n – n – )(– 
 )n–

n!
rn

– 
∞∑

n=

(n – n + )(– 
 )n–

n!
rn

= , – ,r + ,r – ,
∞∑

n=

(n – 
 )( 

 )n–

n!
rn

+



∞∑

n=

(n – n – )( 
 )n–

n!
rn

+



∞∑

n=

(n – n + )( 
 )n–

n!
rn,

f(r) – f(r)

= ,r – ,r –



∞∑

n=

(n – n + )( 
 )n–

n!
rn

–



∞∑

n=

(n – n – )( 
 )n–

n!
rn + ,

∞∑

n=

(n – 
 )( 

 )n–

n!
rn

= ,r – ,r +
∞∑

n=

unrn,

where

un =
(n – )

n!

(



)

n–

–
(n – n – )

n!

(



)

n–
–

(n – n + )
n!

(



)

n–
, (.)

 –

π
E(r)

= –
∞∑

n=

(– 
 )n( 

 )n

(n!) rn =
∞∑

n=

( 
 )n–( 

 )n

(n!) rn,

f(r)
(

 –

π
E(r)

)

= 
(
r – r + 

) ∞∑

n=

( 
 )n–( 

 )n

(n!) rn

= ,r – ,r +
∞∑

n=

vnrn,



Yang et al. Journal of Inequalities and Applications  (2017) 2017:106 Page 9 of 13

where

vn =
p(n)
(n!)

(



)

n–

(



)

n–
(.)

and p(n) is defined by (.).

J
(
r′) =

(r′ + r′√r′ + r′ + 
√

r′ + )(r′ – 
√

r′ + )(r′ – r′ + )
(r′ + 

√
r′ + )(r′ – 

√
r′ + )(r′ – r′ + )

=
f(r)

f(r)
,

F(r) =
f(r) – f(r)

f(r)( – 
π
E(r))

=
P(x) +

∑∞
n= un+xn

P(x) +
∑∞

n= vn+xn . (.)

It follows from (.), (.), (.) and elaborated computations that

u

v
= , (.)

un+ –
vn+

vn
un = –

(n – )
(n + )p(n)(n + )!

wn, (.)

where wn is defined by (.).
It is not difficult to verify that

p(n) = n – ,n + ,n – ,n + , >  (.)

for all n ≥ .
From Lemma ., (.), (.) and (.) we know that

vn >  (.)

for all n ≥ , and the sequence {un/vn}∞n= is decreasing.
Equation (.) implies that

P(x) >  (.)

for x ∈ (, ), and P(x) is decreasing on (, ).
It follows from Theorem ., (.) and (.) together with the monotonicity of the

sequence {un/vn}∞n= and the function P(x) on (, ) that the function F(r) is strictly de-
creasing on (, ) and

lim
r→–

F(r) < F(r) < lim
r→+

F(r) (.)

for all r ∈ (, ).
Note that (.), (.) and (.) lead to the conclusion that

lim
r→–

F(r) =
 – J(+)

 – E(–)/π
=

 – /
 – /π

=
π

(π – )
, lim

r→+
F(r) = . (.)
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Therefore, Theorem . follows from (.), (.) and (.). �

Remark . Let

λ(r) =
π


S/,/

(
, r′), μ(r) =




S/,/
(
, r′), (.)

λ(r) =



S/,
(
, r′), μ(r) =

π


S/,

(
, r′), (.)

λ(r) =
(π – )


J
(
r′) –

π – 


, μ(r) =
π


J
(
r′), (.)

where J(r′) is defined by (.). Then simple computations lead to

λ
(
–)

=
π


= . . . . , μ

(
+)

=



= . . . . , (.)

λ
(
+)

=



= ., μ
(
–)

=
π


= . . . . , (.)

λ
(
+)

=
π


= μ

(
+)

= . . . . , (.)

λ
(
–)

= , μ
(
–)

=
π


= . . . . . (.)

From (.), (.), (.) and (.)-(.) we clearly see that there exists small enough
δ ∈ (, ) such that the lower bound given in (.) for E(r) is better than the lower bound
given in (.) for r ∈ (δ,  – δ), the lower bound given in (.) for E(r) is better than the
lower bound given in (.) for r ∈ (, δ), the upper bound given in (.) for E(r) is better
than the upper bound given in (.) for r ∈ (, δ), and the upper bound given in (.) for
E(r) is better than the upper bound given in (.) for r ∈ (δ,  – δ).

Corollary . Let J(r′) be defined by (.). Then the double inequality

π


J
(
r′) –

(
π


– 
)

< E(r) <
π


J
(
r′) (.)

holds for all r ∈ (, ).

Proof Let F(r) be defined by (.) and

A(r) = J
(
r′) –


π
E(r). (.)

Then we clearly see that

A
(
+)

= J
(
–)

–

π
E
(
+)

= , A
(
–)

= J
(
+)

–

π
E
(
–)

=
π – 

π
, (.)

A(r) =
[

 –

π
E(r)

][

 –
 – J(r′)

 – 
π
E(r)

]

=
[

 –

π
E(r)

]
[
 – F(r)

]
. (.)

From (.) and the proof of Theorem . we know that F(r) is strictly decreasing on
(, ) and A(r) is strictly increasing on (, ). Therefore, inequality (.) follows from
(.) and (.) together with the monotonicity of A(r) on the interval (, ). �
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Corollary . Let J(r′) be defined by (.). Then the double inequality




J
(
r′) < E(r) <

π


J
(
r′) (.)

holds for all r ∈ (, ).

Proof Let A(r) be defined by (.) and

B(r) =
J(r′)

π

E(r)
. (.)

Then we clearly see that

B
(
+)

=
J(–)


π

E(+)
= , B

(
–)

=
J(+)


π

E(–)
=

π


, (.)

B(r) =



π
E(r)

[

J
(
r′) –


π
E(r)

]

+  =
A(r)

π
E(r)

+ . (.)

From (.) and the proof of Corollary . we know that both A(r) and B(r) are strictly
increasing on (, ). Therefore, inequality (.) follows from (.) and (.) together
with the monotonicity of B(r) on the interval (, ). �

Remark . From Corollaries . and . we have

∣
∣
∣
∣E(r)–

π


J
(
r′)

∣
∣
∣
∣ <

π


– = . . . . ,
∣
∣
∣
∣
E(r) – π

 J(r′)
E(r)

∣
∣
∣
∣ <

π


– = . . . . .

for all r ∈ (, ), which implies that both the absolute and relative errors using π J(r′)/ to
approximate E(r) are less than .%.

4 Conclusions
In this paper, we find a monotonicity rule for the function [P(x) +

∑∞
n=n

anxn]/[P(x) +
∑∞

n=n
bnxn]. As applications, we present new bounds for the complete elliptic integral

E(r) =
∫ π/



√
 – r sin t dt ( < r < ) of the second kind, and we show that our bounds

are sharper than the previously known bounds for some r ∈ (, ).
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