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Abstract
In this paper, we propose a new kind of S-super efficiency of vector optimization
problems with set-valued maps via Assumption (A), which unifies exact and
approximate super efficiency well known in the literature. Furthermore, we also
introduce the concept of nearly S-subconvexlikeness via Assumption (A) and discuss
some relations with other types of generalized convexity. Moreover, we establish
some scalarization theorems and Lagrange multiplier theorems of S-super efficiency
under the nearly S-subconvexlikeness.
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1 Introduction
Borwein and Zhuang introduced the concept of super efficient solutions of vector opti-
mization problems in normed linear spaces and established a scalarization theorem and
Lagrange multiplier theorem for super efficiency of convex vector optimization in [, ].
Then Zheng generalized the concept of super efficient points from normed spaces to real
locally convex topological vector spaces in []. With the development of set-valued anal-
ysis, some researchers studied the super efficient solutions for vector optimization prob-
lems with set-valued maps. Especially, Rong and Wu [] and Mehra [] investigated su-
per efficient solutions of vector optimization problems with set-valued maps in normed
spaces under the cone-convexlikeness and the nearly cone-convexlikeness of set-valued
maps, respectively. Qiu and Fu [] studied the connectedness of super efficient solution
sets of vector optimization problems with set-valued maps under the cone-convexlikeness.
Xia and Qiu [] studied the super efficiency under the nearly cone-subconvexlikeness of
set-valued maps.

On the other hand, the concepts of approximate solutions play an important role when
a vector optimization problem has no exact solutions. Kutateladze [] introduced the no-
tion of an approximate solution firstly. Then many researchers extended the notions of
approximate solutions of vector-valued optimization problems to set-valued optimization
problems. Rong and Wu [] introduced ε-weakly minimal solutions of vector optimiza-
tion problems. Ling [, ] introduced ε-super efficient solutions of vector optimization
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problems and established the scalarization theorem, the Lagrange multiplier theorem, the
ε-saddle points theorem, and the duality theorem for ε-super efficient solution under the
assumption of the nearly generalized cone-subconvextikeness for set-valued maps. Tuan
[] studied ε-Benson efficient solutions of vector optimization problems in locally convex
topological spaces.

Recently, Chicco et al. [] introduced the concepts of improvement sets and E-optimal
points and investigated the existence of this solution in R

n. Furthermore, Gutiérrez et
al. extended the notion of improvement sets and E-optimal points to a general (non-
necessarily Pareto) quasi-ordered linear space and obtained some necessary and sufficient
conditions for E-optimal solutions of vector optimization problems through scalarization
in []. Zhao et al. [–] investigated E-optimal solutions and E-Benson properly effi-
cient solutions of set-valued optimization problems based on improvement sets in real lo-
cally convex Hausdorff topological vector spaces. Gutiérrez et al. proposed (C, ε)-efficient
solutions via co-radiant sets, which extended and unified some known different notions
of approximate solution in [], and they obtained some characterizations of this kind of
approximate solution by linear scalarization in []. Under the assumption of generalized
subconvexlikeness and by using co-radiant sets, Gao et al. presented an alternative theo-
rem of set-valued maps, and then derived scalarization theorems and Lagrange multiplier
theorems for approximate solutions of vector optimization problems with set-valued maps
in []. Moreover, Flores-Bazán and Hernández proposed Assumption (A) and Assump-
tion (B) and obtained a complete scalarization in [].

Motivated by the work of [, –], in this paper, we introduce a kind of unified super
efficiency of vector optimization problems with set-valued maps, which is named S-super
efficiency via Assumption (A) in real locally convex Hausdorff topological vector spaces.
We also present the concept of nearly S-subconvexlikeness of set-valued maps. As appli-
cations, we establish some scalarization theorems and Lagrange multiplier theorems of
S-super efficiency for vector optimization problems with set-valued maps.

2 Preliminaries
In this paper, let X be a linear space, Y and Z be two real locally convex Hausdorff topo-
logical vector spaces with topological dual spaces Y ∗ and Z∗, respectively. For a subset
M of Y , we denote the topological interior, topological closure, complement and topo-
logical boundary of M by int M, cl M, C(M), and ∂M. For any  �= q ∈ Y , we denote
R++q = {rq | r > }. The family of the neighborhood of  in Y is denoted by N(). Let
the support functional of M at m be defined as

σM(ϕ) = sup
m∈M

{〈m,ϕ〉}, ϕ ∈ Y ∗.

The positive dual cone of M ⊆ Y is defined as

M+ =
{

y∗ ∈ Y ∗ | 〈y∗, y
〉 ≥ ,∀y ∈ M

}
,

and the strict positive dual cone of M is defined as

M+i =
{

y∗ ∈ Y ∗ | 〈y∗, y
〉

> ,∀y ∈ M \ {}}.
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The cone generated by the set M is defined as cone M =
⋃

α≥ αM.
Let K ⊆ Y and P ⊆ Z be nontrivial pointed closed convex cones with a nonempty topo-

logical interior. For any given x, y ∈ Y , x ≤K y ⇔ y – x ∈ K .
A set C is called a co-radiant set if λc ∈ C, ∀c ∈ C, ∀λ > . Moreover, we assume that C

is a proper pointed co-radiant set and int C �= ∅. We denote C(ε) = εC, ∀ε > , and

C() =
⋃

ε>

C(ε).

Definition . (see []) Let B be a nonempty convex subset of the cone K . B is a base of
K if K = cone B and  /∈ cl B.

Definition . (see []) Let M ⊆ Y be a nonempty set. y ∈ M is called a super efficient
point of M if for any given V ∈ N(), there exists U ∈ N() such that

cl
(
cone(M – y)

) ∩ (U – K) ⊆ V ,

and we denote it by y ∈ Se(M, K).

Definition . (see []) Let E be a nonempty subset in Y . E is called an improvement set
with respect to K if and only if  /∈ E and E + K = E.

The family of the improvement sets in Y is denoted by TY .

Definition . (see []) Let E ∈ TY and a nonempty set M ⊆ Y . y ∈ M is called an E-
super efficient point of M, if for any given V ∈ N(), there exists U ∈ N() such that

cl
(
cone(M + E – y)

) ∩ (U – K) ⊆ V .

Lemma . (see []) If M ⊆ Y and E ∈ TY , then
(i) E + int K = int E;

(ii) cl(cone(M + E)) = cl(cone(M + int E)).

Let B be a base of K and write

Bst =
{

y∗ ∈ Y ∗ | there exists t > , s.t.
〈
b, y∗〉 ≥ t,∀b ∈ B

}
.

Lemma . (see []) Let B be a base of K and y∗ ∈ Y ∗ \ {}. y∗ ∈ Bst if and only if there
exists a neighborhood U ∈ N() such that 〈u – b, y∗〉 ≤ , ∀u ∈ U , ∀b ∈ B.

Lemma . (see []) Let B be a base of K and y∗ ∈ Bst . Then y∗ ∈ K+.

Lemma . (see []) Let S be any nonempty set in a real topological linear space Y . Then

cl(cone S) = cl
(
cone(cl S)

)
.

Lemma . (see []) Let Y be a real locally convex Hausdorff topological vector space
and M, N ⊆ Y be two convex sets with nonempty topological interior. If M ∩ int N = ∅, then
there exists a hyperplane in Y separating M and N .
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Lemma . (see []) Let y∗ ∈ K+ \ {}, if y ∈ int K , then 〈y, y∗〉 > .

3 A kind of unified super efficiency
In this section, we propose a kind of unified super efficiency via Assumption (A) proposed
by Flores-Bazán and Hernández in [] and discuss some relations with other supper effi-
ciencies.

Assumption (A) (see []) Let K ⊆ Y be a proper (not necessarily closed or pointed)
convex cone with nonempty topological interior and S � Y be such that  ∈ ∂S and S +
int K = int S, or equivalently, S + int K ⊆ S, or equivalently, cl S + int K ⊆ S.

Several other conditions related to Assumption (A) have been considered in economic
theory and optimization.

Assumption (P) (see []) Let K ⊆ Y be a closed convex cone. A closed set S � Y satisfies
the free disposal Assumption (P) if S + K = S.

Assumption (PS) (see []) Let K ⊆ Y be a closed convex cone. A closed set S � Y
satisfies the strong free disposal Assumption (PS) if S + K \ {} = int S, or equivalently,
S + K \ {} ⊆ int S.

Assumption (B) (see []) Assume that  �= q ∈ Y and S � Y is a proper (not necessarily
closed) set such that  ∈ ∂S and cl(C(–S)) + R++q ⊆ int(C(–S)).

Obviously, the condition  ∈ ∂S can be assumed after a translation whenever S �= Y .
Moreover, when  ∈ ∂S, int S �= ∅, and int K �= ∅, it is clear that (PS) ⇒ (P) ⇒ (A) ⇒ (B).
But the converses may not be true. In the following, we give three examples to illustrate
them, respectively.

Example . Let Y = R
, K = {(x, y) ∈ R

 | y ≥ }, S = K . Then S + int K = int S and
S + K = S. Therefore, S satisfies Assumption (A) and Assumption (P). S cannot satisfy
Assumption (PS) since S + K \ {} = S �= int S.

Example . Let Y = R
, K = {(x, y) ∈ R

 | y ≥ –x}, S = C(–K) ∪ {}. Then S + int K =
int S = {(x, y) ∈ R

 | y > –x}, S + K = K �= S = {(x, y) ∈ R
 | y > –x} ∪ {}. Hence, we see that

S satisfies Assumption (A) and cannot satisfy Assumption (P).

Example . Let Y = R
, K = {(x, y) ∈ R

 | y ≥ } ∪ {(x, y) | y ≥ x}, and S = C(–K) ∪ (K ∩
(–K)). Then S + int K = Y �= int S and therefore S cannot satisfy Assumption (A). It is obvi-
ous that S satisfies Assumption (B).

Remark . Let S = K be a pointed closed convex cone. Then S + int S = int S. It follows
that S satisfies Assumption (A). Let S = E ∈ TY . From Lemma .(i), we can see that S
satisfies Assumption (A).

Remark . Let C be a convex co-radiant set. Then we can easily verify that C(ε) +
int C() = int C(ε), which implies that C(ε) satisfies Assumption (A).
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Assumption (A) holds for a wide class of (not necessarily closed) sets including these
classical models. Now, we introduce a new notion of super efficiency named S-super effi-
ciency via Assumption (A) in a real locally convex Hausdorff topological vector space and
discuss some relations with other super efficiencies.

Definition . Assume that S satisfies Assumption (A) with respect to K and M ∈ Y . We
say y ∈ M is a S-super efficient point of M if and only if for any given V ∈ N(), there exists
U ∈ N() such that

cl
(
cone(M + S – y)

) ∩ (U – K) ⊆ V .

The set of S-super efficient points of the set M is denoted by OS
Se(M, K).

Remark . It follows from Definition . that y ∈ OS
Se(M, K) if and only if, for any given

V ∈ N(), there exists U ∈ N() such that

cone(M + S – y) ∩ (U – K) ⊆ V .

Remark . Let S = E be an improvement set. From Lemma .(i), S satisfies Assump-
tion (A). Then from Lemma .(ii), the S-super efficiency reduces to E-super efficiency
proposed by Zhou and Yang in [].

Remark . Let S = ε +K where K is a pointed closed convex cone. Then we can easily see
that S satisfies Assumption (A) and hence S-super efficiency reduces to ε-super efficiency
as proposed by Ling in [].

Remark . Let K ⊆ Y be a point closed convex cone with nonempty topological interior
and S = K . Then S-super efficiency reduces to the classical super efficiency. In fact, since K
is a convex cone, we have K + int K = int K , and  ∈ ∂K . Then it satisfies Assumption (A).
Assume that y is a S-super efficiency point of set-valued map, and from Lemma . we
have

cl cone(M + S – y) ∩ (U – K)

= cl cone(M + K – y) ∩ (U – K) ⊆ V ⇒ cl cone(M – y) ∩ (U – K) ⊆ V ,

which implies that y is a super efficient point.

Theorem . Let S satisfy Assumption (A) with respect to K , M ⊆ Y , B be a base of K , and
y ∈ OS

Se(M, K). Then there exists U ∈ N() such that

cl
(
cone(M + S – y)

) ∩ (U – B) = ∅.

Proof Since B is a base of K ,  /∈ cl B. Therefore, there exists a convex balanced neighbor-
hood V ∈ N() such that  /∈ B + V . Write V = 

 V . Clearly,

(–B) ∩ (V + V) = ∅. (.)
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From (.) and the fact that V is balanced, it is easy to prove that

(V – B) ∩ V = ∅. (.)

By y ∈ OS
Se(M, K) and V ∈ N(), there exists a convex neighborhood U ∈ N() such that

cl
(
cone(M + S – y)

) ∩ (U – K) ⊆ V.

Write U = U ∩ V. Clearly, U is a convex neighborhood in N(). Since U ⊆ U, it follows
that

cl
(
cone(M + S – y)

) ∩ (U – K) ⊆ V. (.)

Since U ⊆ V, it follows from (.) that

(U – B) ∩ V = ∅. (.)

Clearly,

cl
(
cone(M + S – y)

) ∩ (U – B) ⊆ U – B. (.)

By (.), we obtain

cl
(
cone(M + S – y)

) ∩ (U – B) ⊆ cl
(
cone(M + S – y)

) ∩ (U – K) ⊆ V. (.)

Using (.), (.), and (.), we have cl(cone(M + S – y)) ∩ (U – B) = ∅. �

4 Scalarization theorems
Theory and practice of vector optimization have always been closely related to scalariza-
tion procedures. The one most widely used is probably the linear scalarization, by which
the properly efficient points can be characterized (under convexity assumptions) as the
solutions of a linearly scalarized problem.

In this section, we establish scalarization theorems of S-super efficiency for a vector
optimization problem with set-valued maps. Let F : I ⇒ Y and G : I ⇒ Z be two set-valued
maps. Consider the following vector optimization problems with set-valued maps:

(VP) min F(x)

s.t. x ∈ D =
{

x ∈ I | G(x) ∩ (–P) �= ∅}
.

The corresponding scalar optimization problem of (VP) is defined as follows:

(VP)ϕ min
〈
F(x),ϕ

〉

s.t. x ∈ D,

where ϕ ∈ Y ∗ \ {}.
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Definition . Let S � Y satisfy Assumption (A) with respect to K , x ∈ D is a S-super
efficient solution of (VP) if and only if there exists y ∈ F(x) such that y ∈ OS

Se(F(D)). The
point pair 〈x, y〉 is called a S-super efficient element of (VP).

Definition . A point x ∈ D is called an optimal solution of (VP)ϕ with respect to S
which satisfies Assumption (A) with respect to K , if there exists y ∈ F(x) such that

〈y – y,ϕ〉 ≥ σ–S(ϕ), ∀x ∈ D,∀y ∈ F(x).

The point pair (x, y) is called a S-optimal point of (VP)ϕ .

Definition . Let D ⊆ Y and S � Y satisfy Assumption (A) with respect to K . The set-
valued map F : D ⇒ Y is called nearly S-subconvexlike on D if and only if cl(cone(F(D)+S))
is a convex set in Y .

Remark . If S = E ∈ TY , then nearly S-subconvexlikeness coincides with nearly E-
subconvexlikeness as proposed by Zhao et al. in [].

Remark . If C is a convex co-radiant set, ε ≥ , and S = C(ε), then nearly S-
subconvexlikeness coincides with nearly C-subconvexlikeness as in [].

Remark . If S = K is a pointed closed convex cone, then nearly S-subconvexlikeness
coincides with nearly K-subconvexlikeness as in [].

Theorem . Let B be a base of K and S satisfy the Assumption (A) with respect to K .
Suppose that the following conditions hold:

(i) (x, y) is a S-super efficient element of (VP);
(ii) F – y is nearly S-subconvexlike on D.

Then there exists ϕ ∈ Bst such that (x, y) is a S-optimal element of (VP)ϕ .

Proof By condition (i) and the proof of Theorem ., there exists a convex neighborhood
in N(), such that

cl
(
cone

(
F(D) + S – y

)) ∩ (U – B) = ∅.

Since F – y is nearly S-subconvexlike on D, cl(cone(F(D) + S – y)) is a convex set in Y .
Clearly, U – B is a nonempty open convex set in Y . By Lemma ., there exists ϕ ∈ Y ∗ \ {}
such that

〈y,ϕ〉 ≥ 〈y,ϕ〉, ∀y ∈ cl
(
cone

(
F(D) + S – y

))
,∀y ∈ U – B. (.)

Since  ∈ cl(cone(F(D) + S – y)), it follows that

〈y,ϕ〉 ≤ , ∀y ∈ U – B.

From Lemma ., ϕ ∈ Bst .
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By (.), ϕ is bounded below on cl(cone(F(D) + S – y)). Since cl(cone(F(D) + S – y)) is a
cone in Y , it follows from (.) that

〈y,ϕ〉 ≥ , ∀y ∈ cl
(
cone

(
F(D) + S – y

))
.

Clearly

〈y,ϕ〉 ≥ , ∀y ∈ F(D) + S – y.

Hence

〈y,ϕ〉 + 〈s,ϕ〉 ≥ 〈y,ϕ〉, ∀x ∈ D,∀y ∈ F(x),∀s ∈ S.

Then we have

〈y,ϕ〉 – 〈y,ϕ〉 ≥ σ–S(ϕ), ∀x ∈ D,∀y ∈ F(x),

which implies that (x, y) is a S-optimal element of (VP)ϕ . �

Remark . Theorem . is a generalization of Corollary . in [], Theorem . in [],
Theorem . in [], and Theorem . in [].

Theorem . Let B be a bounded base of K and S satisfy Assumption (A) with respect
to K . If there exists ϕ ∈ Bst such that (x, y) is a S-optimal element of (VP)ϕ , then (x, y) is a
S-super efficient element of (VP).

Proof Suppose that (x, y) is not a S-super efficient element of (VP). Therefore, y /∈
OS

Se(F(D)). By Remark . there exists V ∈ N(), such that

cone
(
F(D) + S – y

) ∩ (U – K) � V, ∀U ∈ N().

Thus, for any U ∈ N(), there exists aU ∈ U , λU ≥ , bU ∈ B, such that

aU – λU bU ∈ cone
(
F(D) + S – y

)
(.)

and

aU – λU bU /∈ V. (.)

For V, there exists V ∈ N() such that

V – V ⊆ V; (.)

without loss of generality, we may assume that {aU | U ∈ N()} ⊆ V. Clearly, limU aU = .
For any U ∈ N(), it follows from (.) and (.) that λUbU /∈ V. Since B is bounded, there
exists λ >  such that

λB ⊆ V, λ ∈ [,λ].
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It is easy to check that λU > λ for any U ∈ N(). It follows from (.) that there exist
rU > , yU ∈ F(D) and sU ∈ S, such that

aU – λU bU = rU (yU + sU – y). (.)

Since (x, y) is an S-optimal element of (VP)ϕ , it follows from (.) that

〈aU – λU bU ,ϕ〉 =
〈
rU (yU + sU – y),ϕ

〉
= rU〈yU + sU – y,ϕ〉 ≥ , ∀U ∈ N(),

i.e.,

〈aU ,ϕ〉 ≥ λU〈bU ,ϕ〉, ∀U ∈ N().

Because ϕ ∈ Bst , there exists t > , such that

〈b,ϕ〉 ≥ t, ∀b ∈ B.

Then we obtain

〈aU ,ϕ〉 ≥ λU t > λt > , ∀U ∈ N(). (.)

Limiting (.), we have  = limU〈aU ,ϕ〉 ≥ λt > . This is a contradiction. Therefore, (x, y)
is a S-super efficient element of (VP). �

5 Lagrange multipliers theorems
In this section, we establish Lagrange multipliers theorems of S-super efficiency under the
nearly S-subconvexlikeness. Let L(Z, Y ) be the set of all linear continuous operators from
Z to Y . A subset L+(Z, Y ) of L(Z, Y ) is defined as

L+(Z, Y ) =
{

T ∈ L(Z, Y ) | T(D) ⊆ K
}

.

The Lagrange set-valued map of (VP) is defined by

L(x, T) = F(x) + T
(
G(x)

)
, ∀(x, T) ∈ D × L+(Z, Y ).

Consider the following vector optimization problem:

(UVP)T min L(x, T)

s.t. (x, T) ∈ D × L+(Z, Y ).

Assume that I(x) = F(x) × G(x) is the set-valued map with I : D ⇒ Y × Z. I(x) is nearly
S × P-subconvexlike on D if and only if cl(cone(I(D) + S × P)) is a convex set in Y × Z.

Theorem . Let B be a bounded base of K and S satisfy Assumption (A) with respect to K .
Let x ∈ D and  ∈ G(x). Suppose the following conditions hold:

(i) (x, y) is a S-super efficient element of (VP);
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(ii) I(x) is nearly S × P-subconvexlike on D, where

I(x) =
(
F(x) – y

) × G(x);

(iii) cl(cone(G(D) + P)) = Z.
Then there exists T ∈ L+(Z, Y ) such that

(a) –T(G(x) ∩ (–P)) ⊆ (int K ∪ {}) \ int S;
(b) (x, y) is a S-super efficient element of (UVP)T .

Proof (a) Since (x, y) is a S-super efficient element of (VP), from Theorem ., there exists
a convex neighborhood U ∈ N(), such that

cl
(
cone

(
F(D) + S – y

)) ∩ (U – B) = ∅.

Then

cone
(
F(D) + S – y

) ∩ (U – B) = ∅.

Then it is easy to prove that

cone
(
I(D) + S × P

) ∩ (
(U – B) × (– int P)

)
= ∅.

Since (U – B) × (– int P) is an open convex set in Y × Z,

cl
(
cone

(
I(D) + S × P

)) ∩ (
(U – B) × (– int P)

)
= ∅.

By condition (ii), cl(cone(I(D) + S × P)) is a nonempty convex set in Y × Z. Then from
Lemma . there exists (y∗, z∗) ∈ (Y ∗ × Z∗) \ {(∗

Y , ∗
Z)}, for any λ ≥ , x ∈ D, (y, z) ∈ F(x) ×

G(x), s ∈ S, p ∈ P, and (u, p′) ∈ (U – B) × (– int P) such that

λ
〈
y – y + s, y∗〉 + λ

〈
z + p, z∗〉 ≥ 〈

u, y∗〉 +
〈
p′, z∗〉.

Then

λ
〈
y – y + s, y∗〉 + λ

〈
z, z∗〉 +

〈
u′, y∗〉 +

〈
p′′, z∗〉 ≥ , (.)

where p′′ = λp – p′ ∈ P + int P = int P, u′ = –u ∈ B – U .
Let λ =  in (.), we have

〈
u′, y∗〉 +

〈
p′′, z∗〉 ≥ , ∀(

u′, p′′) ∈ (B – U) × int P.

Because P is a cone in Z,

〈
u′, y∗〉 ≥ , ∀u′ ∈ B – U , and

〈
p′′, z∗〉 ≥ , ∀p′′ ∈ int P.

So, from Lemma ., y∗ ∈ Bst , z∗ ∈ P+. Fixing u′ and p′′ in (.), we have

〈
y – y + s, y∗〉 +

〈
z, z∗〉 +


λ

(〈
u′, y∗〉 +

〈
p′′, z∗〉) ≥ . (.)
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Let λ → +∞ in (.), it follows that

〈
y – y + s, y∗〉 +

〈
z, z∗〉 ≥ , ∀x ∈ D,∀(y, z) ∈ F(x) × G(x),∀s ∈ S; (.)

we can prove that y∗ �= . Otherwise, z∗ �= , then

〈
z, z∗〉 ≥ , ∀x ∈ D, z ∈ G(x).

From z∗ ∈ P+, we have z∗ ∈ cl(cone(G(D) + P))+. By condition (iii), z∗ ∈ Z+. Then z∗ = ,
which is a contradiction. Hence, y∗ �= . From y∗ ∈ Bst , there exists k ∈ int K , which satisfies
〈k, y∗〉 = .

Define the map T : Z ⇒ Y as follows:

T(z) =
〈
z, z∗〉k, ∀z ∈ Z. (.)

Then T ∈ L+(Z, Y ). Since  ∈ G(x), y ∈ F(x) ⊆ F(x) + T(G(x)). Setting x = x and y = y in
(.), we have

〈
–s, y∗〉 ≤ 〈

z, z∗〉 ≤ , ∀s ∈ S, z ∈ G(x) ∩ (–P). (.)

Then

–T(z) = –
〈
z, z∗〉k ∈ int K ∪ {}, ∀z ∈ G(x) ∩ (–P).

In the following, we prove that

–T(z) /∈ int S, ∀z ∈ G(x) ∩ (–P). (.)

Otherwise, there exists z̃ ∈ G(x) ∩ (–P) such that –T(z̃) ∈ int S. From S satisfying Assump-
tion (A), there exists s ∈ S, k ∈ int K such that

–T(z̃) – s = k ∈ int K .

From Lemmas . and ., we have y∗ ∈ K+ \ {}, then 〈–T(z̃) – s, y∗〉 > , i.e., 〈–s, y∗〉 >
〈z̃, z∗〉, which contradicts (.). Then (.) is true. Therefore, –T(G(–x) ∩ (–P)) ⊆ int K ∪
{} \ int S.

(b) Since  ∈ G(x), from (.) and (.) we have

〈
y + T(), y∗〉 =

〈
y, y∗〉 ≤ 〈

y + s, y∗〉 +
〈
z, z∗〉

=
〈
y + s, y∗〉 +

〈
z, z∗〉〈k, y∗〉

=
〈
y + s, y∗〉 +

〈〈
z, z∗〉k, y∗〉

=
〈
y + T(z) + s, y∗〉 (∀x ∈ D,∀y ∈ F(x),∀z ∈ G(x),∀s ∈ S

)
.

Then we have

〈(
y + T(z)

)
–

(
y + T()

)
, y∗〉 ≥ 〈

–s, y∗〉 (∀x ∈ D,∀y ∈ F(x),∀z ∈ G(x),∀s ∈ S
)
,
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i.e.,

〈(
y + T(z)

)
–

(
y + T()

)
, y∗〉 ≥ σ–S

(
y∗) (∀x ∈ D, y ∈ F(x), z ∈ G(x)

)
.

It follows that (x, y) is a S-optimal element of the problem

min
〈
L
(
x, T , y∗)〉 subject to x ∈ D.

According to Theorem ., (x, y) is a S-super efficient element of (UVP)T . �

Remark . Theorem . is a generalization of Theorem  in [], Theorem . in [],
Theorem . in [], Theorem . in [], Theorem . in [], and Theorem . in [].

Theorem . Let S � Y satisfy Assumption (A) with respect to K and x ∈ D, y ∈ F(x). If
there exists T ∈ L+(Z, Y ) such that (x, y) is a S-super efficient element of (UVP)T , then (x, y)
is a S-super efficient element of (VP).

Proof Since (x, y) is a S-super efficient element of (UVP)T , for any neighborhood V ∈ N(),
there exists a neighborhood U ∈ N() such that

cl

(
cone

(⋃

x∈D

(
F(x) + T

(
G(x)

)
+ S – y

)))
∩ (U – K) ⊆ V . (.)

Let x ∈ D. Taking z ∈ G(x)∩ (–P), we have –T(z) ∈ int K ∪{}. Then  ∈ T(G(x)) + (int K)∪
{}. Hence, from S satisfying Assumption (A), we have

F(x) + S – y ⊆ F(x) + S + T
(
G(x)

)
+

(
int K ∪ {}) – y

= F(x) + T
(
G(x)

)
+ S – y.

It follows that

cl
(
cone

(
F(D) + S – y

)) ⊆ cl

(
cone

(⋃

x∈D

(
F(x) + T

(
G(x)

)
+ S – y

)))
.

From (.), we have

cl
(
cone

(
F(D) + S – y

)) ∩ (U – K) ⊆ V .

Then (x, y) is a S-super efficient element of (VP). �

Remark . When S = K \ {}, Theorem . reduces to Theorem . in []. Furthermore,
the condition T(G(x) ∩ (–P)) = {} is removed.

In this paper, we established scalarization theorems and Lagrange multiplier theorems of
S-super efficiency under the assumption of nearly S-subconvexlikeness. It will be a future
study to use the main results to derive the S-super saddle point theorem, S-super duality
results including weak duality, and strong duality theorems of the vector optimization
with set-valued maps. We believe that the results have both potential consequences for
theoretical and numerical investigations in vector optimization problems.
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