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Abstract
A meshless method for the numerical solution of partial differential equations with
nonlinear inequality constraints is discussed in this paper. The original nonlinear
inequality problem is linearized as a sequence of linear equality problems, and then
discrete linear system of algebraic equations is formed. This meshless method only
requires nodes on the boundary of the domain, and it does not require any numerical
integrations. Numerical experiments indicate that this method is very effective for
nonlinear inequality problems and has good convergence rate and high
computational efficiency.
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1 Introduction
This paper concerns numerical solutions of the following elliptic boundary value problem
with nonlinear inequality constraints:

�u = , in �, ()

u = ū, on �D, ()

q = q̄, on �N , ()

u ≤ f , q ≤ g, (u – f )(q – g) = , on �R, ()

where � is a plane domain bounded by the boundary �, u is an unknown function, q :=
∂u/∂n is the normal derivative of u, n is the outward normal to �, ū is the given potential
on �D, q̄ is the given normal flux on �N , and f and g are prescribed functions on �R =
� – �D – �N .

The inequality constraint () is nonlinear and complementary. The nonlinear inequality
problem ()-() arises from many kinds of physical and industrial applications such as the
groundwater flow problem [, ], the electropaint process [, ], the contact problem [],
the free surface problem [] and the variational inequalities theory [, ]. The numerical
solution of this kind of problems can be obtained using the finite difference method and
the finite element method (FEM) [, , ]. However, these domain-type numerical tech-
niques require domain meshing which is usually arduous and computationally expensive.
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In problem ()-(), u and q alternate on �R in conjunction with nonlinear inequality con-
straint. To obtain the solution u in �, we first need to determine on which parts of �R the
boundary conditions u = f and q < g apply, and thus on the remaining parts the boundary
conditions u < f and q = g apply. Therefore, the primary focus in solving this problem is
on �R and thus, boundary-type numerical methods such as the boundary element method
(BEM) [, , –] are particularly suitable for the solution of such problems. The BEM
involves the generation of elements on the boundary surface and the computation of some
complex singular integrals on boundary elements. In some cases, these processes can also
be very difficult and computationally expensive, especially for free boundary and nonlin-
ear problems.

Boundary-type numerical methods reduce the computational dimensions of the orig-
inal problem by one and thus simplify the efforts involved in data preparation and CPU
time. In the past two decades, meshless (or meshfree) methods for numerical solutions
of partial differential equations have been developed for overcoming the meshing-related
drawbacks involved in the FEM and the BEM. Some boundary-type meshless methods
using meshless shape functions and boundary integral equations have been developed.
Among them are the boundary node method (BNM) [, ], the boundary point inter-
polation method (BPIM) [, ], the hybrid BNM [, ], the Galerkin BNM [, ], the
dual BNM [, ] and the boundary element-free method [–]. These boundary-type
meshless methods perform very well for the numerical solution of lots of linear problems.
However, maybe due to the issues associated with the handling of the nonlinear inequality
constraints, not many boundary-type meshless methods have been used to the nonlin-
ear inequality problems. Besides, these boundary-type meshless methods still involve the
computation of complex singular boundary integrals.

The aim of this paper is to develop a boundary-type meshless method for the numerical
solution of the nonlinear inequality problem ()-(). This method only requires boundary
nodes, and does not need any mesh for either interpolation or integration. Besides, no
integrations are involved in the whole solution process. Namely, the present method is
truly meshless, integration-free and boundary-only. As a result, this method is expected to
have higher computational speed and efficiency. Numerical experiments indicate that this
method is very effective for problems with nonlinear inequality constraints and has good
convergence rate and high computational efficiency. The following discussions begin with
a linearization of the nonlinear inequality problem in Section . Then, a detailed meshless
numerical implementation is presented in Section . Numerical experiments are provided
in Section . Finally, Section  contains some conclusions.

2 Linearization
To linearize efficiently the nonlinear inequality constraint (), let []

(q – g) – L
(
(q – g) – c(u – f )

)
= , on �R, ()

where c is an arbitrary but fixed positive constant, and L is an operator defined as

L(v) := min(, v), v ∈R. ()

From the numerical point of view, the alternative formulation given by Eq. () is very im-
portant for the numerical implementation.
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Eq. () indicates that q ≤ g . If q = g , then Eq. () indicates that (q – g) – c(u – f ) ≥ ,
and thus u ≤ f . Otherwise, if q < g , then (q – g) – c(u – f ) < , and thus recalling again
Eq. () leads to u = f . As a result, from Eq. () we can deduce the nonlinear inequality
constraint (). On the other hand, from constraint () we can deduce Eq. () immediately.
Summarizing, we have shown that the nonlinear inequality constraint () is equivalent to
Eq. ().

To tackle the equivalent equation () numerically, let

R(u, q) = (q – g) – L
(
(q – g) – c(u – f )

)
, on �R. ()

Then, it can be verified that (u, q) is a zero of R(u, q) =  if and only if (u, q) is the solution
of the following equation:

(q – g) + c(u – f ) = (q – g) + c(u – f ) – ωR(u, q), on �R, ()

where ω is a positive constant.
According to Eq. (), define

(
q(k) – g

)
+ c

(
u(k) – f

)
=

(
q(k–) – g

)
+ c

(
u(k–) – f

)
– ωR

(
u(k–), q(k–)), on �R,

or

q(k) + cu(k) = q(k–) + cu(k–) – ωR
(
u(k–), q(k–)), on �R, k = , , . . . . ()

Finally, the original nonlinear inequality problem ()-() is reduced to the following linear
equality problem:

�u(k) = , in �, ()

u(k) = ū, on �D, ()

q(k) = q̄, on �N , ()

cu(k) + q(k) = r(k–), on �R, ()

where k = , , . . . , u(k) and q(k) are the unknown functions at the kth iteration, and

r(k–) := q(k–) + cu(k–) – ωR
(
u(k–), q(k–)) ()

is known at the kth iteration.
In view of Eq. (), the iterative solution of the linear problem ()-() requires initial

values u() and q(). For doing this, assume initially that the boundary condition on �R is
u() = f , then obtain q() on �R by solving the following boundary value problem:

�u() = , in �, ()

u() = ū, on �D, ()

q() = q̄, on �N , ()

u() = f , on �R. ()
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3 Meshless numerical implementation
An integration-free and truly meshless method is developed in this section for the non-
linear inequality problem ()-().

According to the classical results of partial differential equation, the solution of the gov-
erning equations () and () can be represented as the following integral formulation:

u(k)(x) =
∫

�

σ (k)(y) ln |x – y|d�y, x ∈ �̄ = � ∪ �, k = , , , . . . , ()

where σ (k) is the unknown function defined on �.
To approximate σ (k), the boundary � is separated into N sub-domains �j with

⋃N
j= �j =

�. On each sub-domain �j, a boundary node xj is located at its middle. Then, we have N
nodes {xj}N

j= ⊂ �. Besides, σ (k) is approximated to be constant on each �j, and the value of
σ (k) at xj represents the approximate value of σ (k) on �j. Namely, σ (k)(y) ≈ σ (k)(xj) := σ

(k)
j

for all y ∈ �j. As a result, Eq. () can be discretized as

u(k)(x) =
N∑

j=

∫

�j

σ (k)(y) ln |x – y|d�y ≈
N∑

j=

σ
(k)
j

∫

�j

ln |x – y|d�y, x ∈ �̄. ()

Equation () has integrations over �j. A simple numerical quadrature is applied as

u(k)(x) ≈
N∑

j=

σ
(k)
j lj ln |x – yj|, x ∈ �̄, ()

where lj := mes(�j) is the arc length of �j.
When x and yj are close to each other or coincide, the logarithmical kernel ln |x – yj| in

Eq. () becomes nearly singular or singular. In this case, the values of this kernel cannot
be obtained accurately and directly. To tackle this issue and to establish an integration-free
and truly meshless method, yj is located in this paper a distance from � and corresponding
to the boundary node xj. As in [, ], the position of yj can be determined by a scale factor
d using the following equation:

yj = xj + dhnxj , ()

where h is the nodal spacing. The distribution of the points yj is determined uniquely by d.
As yj is located outside the domain, the kernel ln |x – yj| is always regular. And thus, the

solution of the linear problems ()-() and ()-() can be approximated as

u(k)(x) ≈
N∑

j=

η
(k)
j ln |x – yj|, x ∈ �̄, k = , , , . . . , ()

where η
(k)
j := σ

(k)
j lj is the jth unknown coefficient at the kth iteration. We can observe from

Eq. () that the approximate solution involves the nodes xj and yj only. Since xj can be
located on � without the use of �j, the sub-domain �j is not required.

From Eq. (), the normal derivative q(k)(x) := ∂u(k)(x)/∂nx can be approximated as

q(k)(x) ≈
N∑

j=

η
(k)
j

∂ ln |x – yj|
∂nx

, x ∈ �, k = , , , . . . . ()



Chen and Li Advances in Difference Equations  (2015) 2015:175 Page 5 of 13

To obtain the unknown coefficient η
(k)
j and to simplify the representation, we assume

that the first Nd boundary nodes {xi}Nd
i= belong to �D, the next Nn boundary nodes

{xi}Nd+Nn
i=Nd+ belong to �N and the remaining Nr = N – Nd – Nn boundary nodes {xi}N

i=Nd+Nn+

belong to �R.
At the initial stage k = , using Eqs. () and () and collocating boundary conditions

()-() yield

N∑

j=

η
()
j ln |xi – yj| = ū(xi), i = , , . . . , Nd, ()

N∑

j=

η
()
j

∂ ln |xi – yj|
∂nxi

= q̄(xi), i = Nd + , . . . , Nd + Nn, ()

N∑

j=

η
()
j ln |xi – yj| = f (xi), i = Nd + Nn + , . . . , N . ()

Equations ()-() contain a set of coupled N linear algebraic equations, which are solved
together for N unknowns η

()
j . Then, the initial values u()(xi) and q()(xi) at xi ∈ �R can

be approximated as

u()(xi) = f (xi), q()(xi) ≈
N∑

j=

η
()
j

∂ ln |xi – yj|
∂nx

, i = Nd + Nn + , . . . , N , ()

and thus r()(xi) can be computed using Eq. ().
Once u()(xi) and q()(xi) are found, the linear problem ()-() can be solved iteratively.

The details follow.
For k = , , . . . , using Eq. () and collocating the Dirichlet boundary condition () for

boundary nodes {xi}Nd
i= ⊂ �D yield

N∑

j=

η
(k)
j ln |xi – yj| = ū(xi), i = , , . . . , Nd. ()

Next, using Eq. () and collocating the Neumann boundary condition () for boundary
nodes {xi}Nd+Nn

i=Nd+ ⊂ �N yield

N∑

j=

η
(k)
j

∂ ln |xi – yj|
∂nxi

= q̄(xi), i = Nd + , . . . , Nd + Nn. ()

Finally, using Eqs. () and () and collocating the Robin boundary condition () for
boundary nodes {xi}N

i=Nd+Nn+ ⊂ �R yield

N∑

j=

η
(k)
j

(
c ln |xi – yj| +

∂ ln |xi – yj|
∂nxi

)
= r(k–)(xi), i = Nd + Nn + , . . . , N . ()
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Equations ()-() contain a set of coupled N linear algebraic equations and can be
represented in matrix form as

Aη(k) = b(k–), ()

where η(k) = (η(k)
 ,η(k)

 , . . . ,η(k)
N )T, A is the coefficient matrix, and

b(k–) =
[
ū, q̄, r(k–)]T, ()

with

ū =
(
ū(x), ū(x), . . . , ū(xNd )

)
, ()

q̄ =
(
q̄(xNd+), q̄(xNd+), . . . , q̄(xNd+Nn )

)
, ()

and

r(k–) =
(
r(k–)(xNd+Nn+), r(k–)(xNd+Nn+), . . . , r(k–)(xN )

)
. ()

After obtaining η
(k)
j from Eq. (), u(k)(x) at an internal point x ∈ � can be computed

approximately using Eq. (), and u(k)(x) and q(k)(x) at a boundary point x ∈ � can be ap-
proximated respectively using Eqs. () and (). Especially, u(k)(x) and q(k)(x) at boundary
nodes xi ∈ �R can be approximated as

u(k)(xi) ≈
N∑

j=

η
(k)
j ln |xi – yj|, q(k)(xi) ≈

N∑

j=

η
(k)
j

∂ ln |xi – yj|
∂nx

, ()

where i = Nd + Nn + , . . . , N .
At each iteration, Eq. () needs to be solved. To improve the computational efficiency,

an effectual approach for solving Eq. () would consist of computing the matrix

K = A–

at the initial stage and then computing the product η(k) = Kb(k–). Therefore, the system
matrix and its inverse in the present method only have to be computed once.

From the above analysis, we obtain the following detailed meshless algorithm for the
nonlinear inequality problem ()-().

. Choose a tolerance ε >  and N boundary nodes {xi}N
i= ⊂ �, and obtain {yj}N

j=
using Eq. ().

. Form the linear algebra system given by Eqs. ()-(), solve the system to obtain
η

()
j , and compute u()(xi) and q()(xi) using Eq. () for all nodes xi ∈ �R.

. Compute A, ū, q̄ and K, and set k = .
. Compute r(k–) and form b(k–), obtain η(k) by computing Kb(k–), and then obtain

u(k)(xi) and q(k)(xi) using Eq. () for all nodes xi ∈ �R.
. If e(u) :=

√∑
xi∈�R

(u(k)(xi) – u(k–)(xi))/
∑

xi∈�R
(u(k)(xi)) ≤ ε, stop the iterative

process and return η(k) for computing u(k)(x).
. Otherwise, update k to k + , and go to step .
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The iterative process continues until the stopping criterion e(u) ≤ ε is satisfied. In the
subsequent numerical examples, the tolerance is taken as ε = –. Obviously, the number
of iteration is determined uniquely by the stopping criterion.

From the above discussion, we can conclude that no elements are used and no integra-
tions are computed in the whole iterative process. Thus, the present numerical method is
integration-free and truly meshless.

4 Numerical experiments
4.1 Analysis of accuracy and convergence of our method
To demonstrate the accuracy and convergence of our meshless method, we consider the
following nonlinear inequality problem []:

⎧
⎪⎪⎨

⎪⎪⎩

�u = , in � = {a < ρ :=
√

x
 + x

 < b},
u = ū, on �D = {ρ = b},
u ≥ f , q ≥ g, (u – f )(q – g) = , on �R = {ρ = a},

where

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

–/a, x > ,

–(x
 – x

)/a, x ≤ , x ≥ –|x|,
, x < –|x|,

and ū and f = min(, u) are given by the following analytical solution:

u(x, x) =


ρ (v + w)
√

v – w sign(x), (x, x) ∈ � = {a < ρ < b},

where v =
√

(x
 – x

) + 
a (ρ – a) and w = (x

 – x
)( ρ

a + a

ρ ).
In computation, we use a = . and b = .. When  boundary nodes are used, the

numerical results for u and q on �R are shown in Figure . Here, the results are shown
as plots over the arc angle π t, t ∈ (, ). It is evident that the numerical solution is in
excellent agreement with the analytical solution.

Figure 1 Results for (a) u and (b) q on �R .
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Figure 2 Results for (a) u and (b) its derivatives on the inner circle ρ = 0.2.

Figure 3 Error and convergence.

Table 1 Number of iteration

N 32 64 128 256 512 1,024

BEM 56 91 141 203 263 319
Our method 20 28 37 48 54 47

The numerical results for u and its derivatives ∂u/∂x and ∂u/∂x on the inner circle
ρ = . are shown in Figure . It is again evident that the numerical solution agrees well
with the analytical solution.

For error estimation and convergence analysis, Figure  gives the log-log plot of the
L relative error norms of u on �R with respect to the boundary nodes number N . The
error of the BEM [] is also plotted for comparison. We can observe that the error of our
method is the least, and the experimental convergence rates obtained from the BEM and
our method are . and ., respectively.

The corresponding number of iteration and CPU time are tabulated in Tables  and ,
respectively. Table  indicates that the number of iteration of our method is little influ-
enced by the number of boundary nodes, and is much less than that of the BEM. Table 
indicates that our method is much faster than the BEM. When , boundary nodes are
used, the CPU time required in the BEM is about twenty-six times that in our method.
Therefore, the computing speed and efficiency of our method are higher than those of the
BEM.
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Table 2 CPU time (in seconds)

N 32 64 128 256 512 1,024

BEM 0.094 0.359 0.796 4.274 31.839 182.426
Our method 0.031 0.063 0.141 0.624 3.885 6.958

Figure 4 Schematic view of the groundwater flow problem.

Figure 5 Approximate solution on �R for the
groundwater flow problem.

4.2 Groundwater flow problem
This example involves a groundwater flow problem related to percolation in gently slop-
ing beaches (see Figure ). This real world physical problem concerns groundwater pass
through a sand beach where the seepage face between the saturated area and dry area ap-
proaches the upper surface of the sand beach, which is expected to be nearly horizontal
[]. Since the domain of interest is the saturated region, the aim in solving this problem is
to determine the number and positions of the separation points.

The mathematical model of this problem can be formulated as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u = , in � = (, ) × (, ),

u(, x) = , u(, x) = f (, x),  ≤ x ≤ ,

q(x, ) = ,  ≤ x ≤ ,

u ≤ f , q ≤ , (u – f )q = , (x, x) ∈ �R = { ≤ x ≤ , x = },

where f (x, x) = sin(x) –  depicts the surface profile.
When  boundary nodes are used on each side of the domain, Figure  depicts numer-

ical results of our method and the BEM [] for u on �R. Although no analytical solutions
exist for this physical problem, we can see that the results of our method are in excellent
agreement with those of the BEM.
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Table 3 CPU time (in seconds) for the groundwater flow problem

N 32 64 128 256 512 1,024

BEM 0.188 0.328 2.012 14.274 93.069 673.173
Our method 0.047 0.078 0.156 0.499 2.043 8.814

Figure 6 The right-hand side of the electropainting model.

Table  gives the CPU time for various numbers of boundary nodes. We can find that
the CPU time required in our method is much less than that required in the BEM.

4.3 An electropaint process
This example involves the simulation of the electropaint process [, ]. This problem de-
scribes the coating process of a metal surface with paint and thus is important in painting
the car body. This realistic industrial problem can be modeled as the following boundary
value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u = , in � = (, .) × (, ),

u = , on �D = { ≤ x ≤ ., x = },
q = , on �N = {x = ,  ≤ x ≤ },
u ≥ , q ≥ –ε, u(q + ε) = , on �R = � – �D – �N ,

where u is the electric potential and ε is the critical current necessary for paint deposi-
tion. Figure  depicts the sketched geometric configuration. In this problem, �R can be
considered as the workpiece to be painted. On �R, the painted subregions are unknown
in advance. Therefore, we need to decide the painted subregions and the corresponding
paint thickness.

For various ε, Figure  gives the numerical results of our method and the BEM [] when
 boundary nodes are used. Here, the results are shown as plots over the arc-length s,
and s = , s = ., s = . and s =  correspond to the vertexes (, ), (., ), (., ) and
(, ), respectively. We can observe that the results of our method match those of the BEM.
Besides, Table  displays the CPU time. Again, the CPU time required in our method is
much less than that required in the BEM.

Paint distributions for various ε are depicted in Figure . Figure (a) and Figure (a)
indicate that the workpiece is completely painted with the vertex (., ) receiving the least
amount of paint for a small ε. If ε is increased, Figures (b)-(c) and Figures (b)-(c) indicate
that the paint film near the vertex (., ) becomes thinner and eventually unpainted. With
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Figure 7 Numerical results for (a) ε = 0.4, (b) ε = 0.5, (c) ε = 0.55, (d) ε = 0.7.

Table 4 CPU times (in seconds) for the electropainting problem

N 120 240 480 960 1,920

BEM 1.404 4.867 20.499 91.403 462.795
Our method 0.047 0.078 0.281 1.528 9.501

a higher ε, Figure (d) and Figure (d) indicate that both the vertex (., ) and the top
boundary are unpainted. Therefore, although no analytical solutions exist for this realistic
industrial problem, the reliability of our method can be assessed based on the reasonable
physical characteristics obtained. Additionally, we can see that the results of our method
match those given in [, ].

4.4 Problem in a half-oval torus domain
The example considers a real world physical problem corresponding to the model inves-
tigated in [, ]. The model of the problem in the dimensionless variables is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u = , in � = {.x
 + x

 < ., x
 + x

/ > ., x ≥ },
u = , on �D = {.x

 + x
 < ., x ≥ },

q = , on �N = {. < |x| < ., x = },
u ≥ f , q ≥ g, (u – f )(q – g) = , on �R = {x

 + x
/ > ., x ≥ },

where f (x, x) =  and g(x, x) = –..
The numerical results for our method with N =  are shown in Figure . Here, the

results are shown as plots over the arc angle π t, t ∈ (, .). We can see that the results
are indistinguishable from those in [, ].
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Figure 8 Paint distributions of the electropainting problem for (a) ε = 0.4, (b) ε = 0.5, (c) ε = 0.55,
(d) ε = 0.7.

Figure 9 Results for (a) u and (b) q on �R .

5 Conclusions
Meshless methods for partial differential equations with linear equality constraints are
now well established. Unfortunately, presumably because nonlinearity and inequation si-
multaneously exist, the research on meshless methods for problems with nonlinear in-
equality constraints is scarce. In this paper, a meshless method is presented to deal with the
numerical solution of partial differential equations with nonlinear inequality constraints.
In this numerical method, the nonlinear inequality constraints are linearized naturally and
efficiently, then the original nonlinear inequality problem is transformed into a sequence
of linear equality problems. The meshless method in this paper inherently has some de-
sirable numerical merits such as truly meshless, boundary-only and integration-free. Nu-
merical examples are presented for some partial differential equations with nonlinear in-
equality constraints. The numerical results show that the present meshless method has
the merits of good convergence rate, and higher computational accuracy and efficiency
over the traditional mesh-based methods such as the BEM.
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