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Abstract
The aim of this paper is to discuss the existence and uniqueness for a class of
fluid-particle interaction non-Newtonian models which describe the evolution of
particles dispersed in a viscous compressible non-Newtonian fluid. The strong
nonlinearity of the system and the singularity of the viscosity term bring about
difficulties. Also, we admit an initial vacuum.
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1 Introduction
In this paper, we consider the following non-Newtonian fluids system:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρu)x = ,

(ρu)t + (ρu)x – λ(|ux|p–ux)x + (P + η)x = –(η + βρ)�x, (x, t) ∈ �T ,

ηt + (η(u – �x))x = ηxx,

(.)

with the initial conditions

(ρ, u,η)|t= = (ρ, u,η), x ∈ �, (.)

together with the no-slip boundary conditions for the velocity and the no-flux condition
for the density of particles,

u|∂� = (ηx + η�x)|∂� = , t ∈ [, T], (.)

where ρ , u, η, P(ρ) = aργ , �(x) denote the fluid density, velocity, the density of particles in
the mixture, the pressure, and the external potential, respectively, a > , γ > , 

 < p < .
λ >  is the viscosity coefficient and β �=  is a constant, � is a one-dimensional bounded
interval, and for simplicity we only consider � = (, ), �T = � × [, T].

Fluid-particle interaction models arise in a lot of industrial procedures such as the
analysis of the sedimentation phenomenon. These procedures find their applications in
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biotechnology, medicine, mineral processing, and chemical engineering [–]. Such in-
teraction systems are also used in combustion theory, when modeling Diesel engines or
rocket propulsors [, ].

The coupled microscopic/macroscopic models describe the evolution of particles dis-
persed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe
the microscopic motion of the particles coupled to the equations for the fluid. Generally
speaking, at the microscopic scale, the cloud of particles is described by its distribution
function f (x, ξ , t), a solution to a Vlasov-Fokker-Planck equation. The fluid, on the other
hand, is modeled by macroscopic quantities, namely its density ρ(x, t) ≥  and its velocity
field u(x, t). If the fluid is compressible and isentropic, then (ρ, u) solves the compressible
Euler (inviscid case) or Navier-Stokes system (viscous case) of equations. With the dy-
namic viscosity terms taken into consideration, Carrillo et al. [] discussed the following
system:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + div(ρu) = ,

(ρu)t + div(ρu ⊗ u) + ∇(P(ρ) + η) – μ�u – λ∇ div u = –(η + βρ)∇�,

ηt + div(η(u – ∇�)) – �η = .

(.)

They obtained the global existence and asymptotic behavior of the weak solutions to (.)
following the framework of Lions [] and Feireisl et al. [, ]. In addition, Mellet and
Vasseur [] proved the global existence of weak solutions of equations by using the en-
tropy method on the asymptotic regime corresponding to a strong drag force and strong
Brownian motion.

In recent years, there has been an increasing recognition of the importance of non-
Newtonian flow characteristics displayed by most materials encountered in everyday life,
both in nature (gums, proteins, biological fluids such as blood, synovial fluid, etc.) and
in technology (polymers and plastics, emulsions, slurries, etc.) (see []). Since there has
been much research in the field of non-Newtonian flows, both theoretically and experi-
mentally, let us briefly recall the related results in the literature. Bellout et al. [] studied
the non-Newtonian fluids for space periodic problems and showed the Young measure-
valued solutions. In [], Guo and Zhu investigated the partial regularity of the generalized
solutions to the modified Navier-Stokes equations which describes the dynamics of the in-
compressible monopolar non-Newtonian fluids. Zhao et al. [] constructed the trajectory
attractor and global attractor for an autonomous two-dimensional non-Newtonian fluid.
Yuan and Xu [] obtained the existence and uniqueness of solutions for a class of non-
Newtonian fluids with singularity and vacuum. For other results we may refer to [–].

It is worth mentioning that most recently, Fang et al. [] got the global existence of
classical solutions of (.) in dimension one, namely p =  in (.). Compared with the
work of [], the strong nonlinearity of (.) brings us new difficulties in getting the upper
bound of ρ , which plays an important role throughout their proof. The second equation
of (.) is always with singularity and brings us another difficulty. Motivated by Cho et al.’s
[, ] work on the Navier-Stokes equations, we establish local existence and uniqueness
of strong solutions of (.).

Throughout the paper we assume that a = λ =  for simplicity. In the following sections,
we will use simplified notations for standard Sobolev spaces and Bochner spaces, such as
Lp = Lp(�), H

 = H
(�), C([, T]; H) = C([, T]; H(�)).
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1.1 Main results
Theorem . Let � ∈ C(�) and assume that the initial data (ρ, u,η) satisfy the fol-
lowing conditions:

 ≤ ρ ∈ H(�), u ∈ H
(�) ∩ H(�), η ∈ H(�),

and the compatibility condition

(|ux|p–ux
)

x –
(
P(ρ) + η

)

x – η�x = ρ(g + β�x), (.)

for some g ∈ L(�). Then there exist a T∗ ∈ (, +∞) and a unique strong solution (ρ, u,η)
to (.)-(.) such that

ρ ∈ L∞(
, T∗; H(�)

)
, ρt ∈ L∞(

, T∗; L(�)
)
,

u ∈ L∞(
, T∗; W ,p

 (�) ∩ H(�)
)
, ut ∈ L(, T∗; H

(�)
)
,

η ∈ L∞(
, T∗; H(�)

)
, ηt ∈ L∞(

, T∗; H(�)
)
,

√
ρut ∈ L∞(

, T∗; L(�)
)
,

(|ux|p–ux
)

x ∈ L(, T∗; L(�)
)
.

2 A priori estimates for smooth solutions
In this section, we will prove the local existence of strong solutions. Because equation
(.) always possesses a singularity, we overcome this difficulty by a regularized process,
then taking the limiting process back to the original problem. First of all, we consider the
following system:

ρt + (ρu)x = , (.)

(ρu)t +
(
ρu)

x –
[(

εu
x + 

u
x + ε

) –p


ux

]

x
+ (P + η)x = –(η + βρ)�x, (.)

ηt +
(
η(u – �x)

)

x = ηxx, (.)

with the initial and boundary conditions,

(ρ, u,η)|t= = (ρ, u,η), x ∈ �, (.)

u|∂� = (ηx + η�x)|∂� = , t ∈ [, T], (.)

and u ∈ H
(�) ∩ H(�) is the smooth solution of the boundary value problem

⎧
⎨

⎩

[( εu
x+

u
x+ε

)
–p

 ux]x – (P(ρ) + η)x – η�x = ρ(g + β�x),

u() = u() = .
(.)

By using the iterative method step by step, the nonlinear coupled system admits a smooth
solution (see Section ). Provided that (ρ, u,η) is a smooth solution of (.)-(.) and ρ ≥
δ, where  < δ �  is a positive number. We denote M =  + μ + μ–

 + |ρ|H + |g|L .
First we obtain the estimate of |uxx|L . From (.), we have

uxx =
(

εu
x + 

u
x + ε

) p
 (u

x + ε)[(P(ρ) + η)x + η�x + ρ(g + β�x)]
(εu

x + )(u
x + ε) – ( – p)( – ε)u

x
.
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Then

|uxx|L ≤ 
p – 

∣
∣
∣
∣

(
u

x + ε

εu
x + 

)– p

∣
∣
∣
∣
L∞

∣
∣
(
P(ρ) + η

)

x + η�x + ρ(g + β�x)
∣
∣
L

≤ 
p – 

(|ux|L∞ + 
)– p


(∣
∣
(
P(ρ) + η

)

x + η�x + ρ(g + β�x)
∣
∣
L

)

≤ 
p – 

(|uxx|L + 
)– p


(
aγ |ρ|γ –

L∞ |ρx|L + |ηx|L + |η|L∞|�x|L

+ |ρ|L∞|g|L + β|ρ|L∞|�x|L
)
.

Using Young’s inequality, we have

|uxx|L ≤ C,

where C is a positive constant, depending only on M.
Next, we introduce an auxiliary function,

�(t) = sup
≤s≤t

(
 +

∣
∣ρ(s)

∣
∣
H +

∣
∣u(s)

∣
∣
W ,p


+

∣
∣√ρut(s)

∣
∣
L +

∣
∣ηt(s)

∣
∣
L +

∣
∣η(s)

∣
∣
H

)
.

Then we estimate each term of �(t) in terms of some integrals of �(t), apply arguments
of Gronwall-type, and thus prove that �(t) is locally bounded.

2.1 Estimate for |ρ|H1

First we need the following estimates for u and η. By virtue of (.)

[(
εu

x + 
u

x + ε

) –p


ux

]

x
= ρut + ρuux + (P + η)x + (η + βρ)�x.

Then, we have

|uxx| ≤ 
p – 

(
u

x + ε
)– p


∣
∣ρut + ρuux + (P + η)x + (η + βρ)�x

∣
∣.

Taking the L norm and using Young’s inequality, we get

|uxx|p–
L ≤ C

(
 + |ρut|L + |ρuux|L +

∣
∣(P + η)x

∣
∣
L +

∣
∣(η + βρ)�x

∣
∣
L

)

≤ C
(
 + |ρ| 


L∞|√ρut|L + |ρ|L∞|u|L∞|ux|

p

Lp |ux|– p


L∞

+ |ρ|γ –
L∞ |ρx|L + |ηx|L + |η|L∞|�x|L + |ρ|L∞|�x|L

)

≤ C
[
 + |ρ| 


L∞|√ρut|L +

(|ρ|L∞|u|L∞|ux|
p

Lp

) (p–)
p– + |ρ|γ –

L∞ |ρx|L

+ |ηx|L + |η|L∞|�x|L + |ρ|L∞|�x|L
]

+


|uxx|p–

L

≤ C�
(+p)(p–)

p– γ (t) +


|uxx|p–

L . (.)

Hence, we deduce that

|uxx|L ≤ C�
γ

p– (t). (.)
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From (.), taking the L norm, we get

|ηxx|L ≤ ∣
∣ηt +

(
η(u – �x)

)

x

∣
∣
L

≤ |ηt|L + |ηx|L |u|L∞ + |ηx|L |�x|L∞ + |η|L |uxx|L + |η|L∞|�xx|L

≤ C�
γ

p– (t). (.)

Multiplying (.) by ρ , integrating over �, we have




d
dt

∫

�

|ρ| ds +
∫

�

(ρu)xρ dx = .

Integrating by parts, using the Sobolev inequality, we deduce that

d
dt

∣
∣ρ(t)

∣
∣
L ≤

∫

�

|ux||ρ| dx ≤ |uxx|L |ρ|L . (.)

Differentiating (.) with respect to x, and multiplying it by ρx, integrating over �, and
using the Sobolev inequality, we have

d
dt

∫

�

|ρx|dx = –
∫

�

[



ux(ρx) + ρρxuxx

]

(t)dx

≤ C
[|ux|L∞|ρx|L + |ρ|L∞|ρx|L |uxx|L

]

≤ C|ρ|H |uxx|L . (.)

From (.)and (.), by Gronwall’s inequality, it follows that

sup
≤t≤T

∣
∣ρ(t)

∣
∣
H ≤ |ρ|H exp

{

C
∫ t


|uxx|L ds

}

≤ C exp

(

C
∫ t


�


p– γ (s) ds

)

, (.)

we can also get the following estimates. Using (.) we obtain

∣
∣ρt(t)

∣
∣
L ≤ ∣

∣ρx(t)
∣
∣
L

∣
∣u(t)

∣
∣
L∞ +

∣
∣ρ(t)

∣
∣
L∞

∣
∣ux(t)

∣
∣
L ≤ C�(t), (.)

where C is a positive constant, depending only on M.

2.2 Estimate for |ηt|L2 and |η|H1

Multiplying (.) by η, integrating the resulting equation over �T , using the boundary
conditions (.) and Young’s inequality, we have

∫ t



∣
∣ηx(s)

∣
∣
L ds +



∣
∣η(t)

∣
∣
L

≤
∫∫

�T

(|ηuηx| + |η�xηx|
)

dx ds

≤ 


∫ t



∣
∣ηx(s)

∣
∣
L ds + C

∫ t


|ux|Lp |η|H ds + C

∫ t


|η|H + C

≤ 


∫ t



∣
∣ηx(s)

∣
∣
L ds + C

(

 +
∫ t


�(t) ds

)

. (.)
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Multiplying (.) by ηt , integrating (by parts) over �T , using the boundary conditions
(.) and Young’s inequality, we have

∫ t



∣
∣ηt(s)

∣
∣
L ds +



∣
∣ηx(t)

∣
∣
L

≤
∫∫

�T

∣
∣η(u – �x)ηxt

∣
∣dx ds

≤ 


∫ t



∣
∣ηxt(s)

∣
∣
L ds + C

∫ t


|η|H |ux|Lp ds + C

∫ t


|η|H ds + C

≤ 


∫ t



∣
∣ηxt(s)

∣
∣
L ds + C

(

 +
∫ t


�(t) ds

)

. (.)

Differentiating (.) with respect to t, multiplying the resulting equation by ηt , integrating
(by parts) over �T , we get

∫ t



∣
∣ηxt(s)

∣
∣
L ds +



∣
∣ηt(t)

∣
∣
L

=
∫∫

�T

(
η(u – �x)

)

tηxt dx ds

≤ C +
∫∫

�T

(|ηtuηxt| + |ηt�xηxt| + |ηxutηt| + |ηuxtηt|
)

dx ds

≤ C
(

 +
∫ t



(|ηt|L |ux|Lp + |ηt|L + |ηx|L |ηt|L + |η|H |ηt|L
)

dx
)

+



∫ t


|ηxt|L +




∫ t


|uxt|L

≤ C
(

 +
∫ t


�(s) ds

)

. (.)

Combining (.)-(.) and (.), we get

|η|H + |ηt|L +
∫ t



(|ηx|L + |ηt|L + |ηxt|L
)
(s) ds ≤ C

(

 +
∫ t


�(s) ds

)

. (.)

2.3 Estimate for |u|W1,p
0

Using (.), we rewrite (.) as

ρut + ρuux –
[(

εu
x + 

u
x + ε

) –p


ux

]

x
+ (P + η)x = –(η + βρ)�x. (.)

Multiplying (.) by ut , integrating (by parts) over �T , we have

∫∫

�T

ρ|ut| dx ds +
∫∫

�T

(
εu

x + 
u

x + ε

) –p


uxuxt dx ds

= –
∫∫

�T

(
ρuux + Px + ηx + (η + βρ)�x

)
ut dx ds. (.)
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We deal with each term as follows:

∫

�

(
εu

x + 
u

x + ε

) –p


uxuxt dx =



∫

�

(
εu

x + 
u

x + ε

) –p
 (

u
x
)

t dx

=



d
dt

∫

�

(∫ u
x



(
εs + 
s + ε

) –p


ds
)

dx,

∫ u
x



(
εs + 
s + ε

) –p


ds ≥
∫ u

x


(s + )

–p
 ds =


p
[(

u
x + 

) p
 – 

]
,

–
∫∫

�T

Pxut dx ds =
∫∫

�T

Puxt dx ds =
d
dt

∫∫

�T

Pux dx ds –
∫∫

�T

Ptux dx ds.

From (.) we have

Pt = –γ Pux – Pxu, (.)

–
∫∫

�T

η�xut dx ds = –
d
dt

∫∫

�T

η�xu dx ds +
∫∫

�T

ηt�xu dx ds.

Substituting the above into (.), using the Sobolev inequality and Young’s inequality, we
obtain

∫ t



∣
∣√ρut(s)

∣
∣
L ds +

∣
∣ux(t)

∣
∣p
Lp

≤
∫∫

�T

(|ρuuxut| +
∣
∣γ Pu

x
∣
∣ + |Pxuux| + |ηtux| + |ηt�xu| + |βρ�xut|

)
dx ds

+
∫

�

(|Pux| + |ηux| + |η�xu|)dx + C

≤ C +
∫ t



(|ρ|L |u|L∞|ux|
p

Lp |ux|– p


L∞ |ut|L∞ + γ |P|L |ux|

p

Lp |ux|– p


L∞ |uxx|L

+ aγ |ρ|γ –
L∞ |ρx|L |ux|Lp |uxx|L + |ηt|L |ux|

p

Lp |ux|– p


L∞ + |ηt|L |�x|L |u|L∞

+ β|ρ| 

L∞|�x|L |√ρut|L

)
ds + |P|

L
p

p–
|ux|Lp + |η|

L
p

p–
|ux|Lp + |η|

L
p

p–
|�x|Lp |u|L∞

≤ C
(

 +
∫ t



(|ρ|L |ux|+p
Lp |uxx|–p

L + |P|L∞|ux|
p

Lp |uxx|– p


L

+ |ρ|γ –
L∞ |ρx|L |ux|Lp |uxx|L + |ηt|L |ux|

p

Lp |uxx|– p


L + |ηt|L |ux|Lp + |ρ|L∞

)
ds

)

+ |P|
p

p–

L
p

p–
+ |η|

p
p–

L
p

p–
+




∫ t



∣
∣√ρut(s)

∣
∣
L ds +



∣
∣ux(t)

∣
∣p
Lp . (.)

To estimate (.), combining (.) we have the following estimates:

∫

�

∣
∣P(t)

∣
∣

p
p– dx =

∫

�

∣
∣P()

∣
∣

p
p– dx +

∫ t



∂

∂s

(∫

�

P(s)
p

p– dx
)

ds

≤
∫

�

∣
∣P()

∣
∣

p
p– dx +

p
p – 

∫ t



∫

�

aγργ –P(s)
p

p– (–ρxu – ρux) dx ds



Song et al. Boundary Value Problems  (2016) 2016:108 Page 8 of 17

≤ C + C
∫ t


|ρ|γ –

L∞ |P|
p

p–
L∞ |ρ|H |ux|Lp ds

≤ C
(

 +
∫ t


�


p– +γ +(s) ds

)

, (.)

following the same method, we get

∫

�

∣
∣η(t)

∣
∣

p
p– dx ≤ C

(

 +
∫ t


�


p– +(s) ds

)

. (.)

Combining (.)-(.) yields

∫ t



∣
∣√ρut(s)

∣
∣
L (s) ds +

∣
∣ux(t)

∣
∣p
Lp ≤ C

(

 +
∫ t


�

γ
p– (s) ds

)

, (.)

where C is a positive constant, depending only on M.

2.4 Estimate for |√ρut|L2

Differentiating (.) with respect to t, we get

ρutt + ρuuxt + ρtut + ρtuux + ρutux + (P + η)xt

=
[(

εu
x + 

u
x + ε

) –p


ux

]

xt
– (ηt + βρt)�x.

Multiplying the result equation by ut , integrating over �, we derive




d
dt

∫

�

ρ|ut| dx +
∫

�

[(
εu

x + 
u

x + ε

) –p


ux

]

t
uxt dx

=
∫

�

[
(ρu)x

(
u

t + uuxut
)

– (P + η)tuxt – (ηt + βρt)�xut
]

dx. (.)

Note that

∫

�

[(
εu

x + 
u

x + ε

) –p


ux

]

t
uxt dx

=
∫

�

[(
εu

x + 
u

x + ε

)– p


ux

]
(εu

x + )(u
x + ε) – ( – p)( – ε)u

x
(u

x + ε) u
xt dx

≥ (p – )
∫

�

(
u

x + 
) p–

 |uxt| dx.

Let

ζ =
(
u

x + 
) p–

 ,

from (.), it follows that

∣
∣ζ –∣∣

L∞ =
∣
∣
(
u

x + 
) –p


∣
∣
L∞ ≤ C

(|uxx|
–p


L + 

) ≤ C�
γ

p– (t).
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Combining (.), (.) can be rewritten as

d
dt

∫

�

ρ|ut| dx +
∫

�

|uxt| dx

≤ 
∫

�

ρ|u||ut||uxt|dx +
∫

�

|ρx||u||ux||ut|dx +
∫

�

ρ|u||ux||ut|dx

+
∫

�

γ P|ux||uxt|dx +
∫

�

|Px||u||uxt|dx +
∫

�

|ηt||�x||ut|dx

+
∫

�

|βρx||u||�x||ut|dx +
∫

�

|βρ||ux||�x||ut|dx =
∑

j=

Ij. (.)

Using the Sobolev inequality, Young’s inequality, (.), (.), and (.), we obtain

I ≤ |ρ| 

L∞|u|L∞|√ρut|L |ζuxt|L

∣
∣ζ –∣∣

L∞ ≤ C�
γ

p– (t) +


|uxt|L ,

I ≤ |ρx|L |u|L∞|ux|Lp |ux|– p


L∞ |ut|L∞ ≤ |ρx|L |ux|Lp |uxx|– p


L |ζuxt|L
∣
∣ζ –∣∣

L∞

≤ C�
γ

p– (t) +


|uxt|L ,

I ≤ |ρ|
L

p
p–

|u|L∞|ux|Lp |ux|L∞|ut|L∞ ≤ |ρ|L∞|ux|Lp |uxx|L |ζuxt|L
∣
∣ζ –∣∣

L∞

≤ C�
γ

p– (t) +


|uxt|L ,

I ≤ C|P|L |ux|L∞|ζuxt|L
∣
∣ζ –∣∣

L∞ ≤ C�
γ

p– (t) +


|uxt|L ,

I ≤ |Px|L |u|L∞|ζuxt|L
∣
∣ζ –∣∣

L∞ ≤ C�
γ

p– (t) +


|uxt|L ,

I ≤ |ηt|L |�x|L |ut|L∞ ≤ C|ηt|L |ζuxt|L
∣
∣ζ –∣∣

L∞ ≤ C�
γ

p– (t) +


|uxt|L ,

I ≤ β|ρx|L |u|L∞|�x|L |ut|L∞ ≤ C|ρx|L |ux|Lp |ζuxt|L
∣
∣ζ –∣∣

L∞

≤ C�
γ

p– (t) +


|uxt|L ,

I ≤ β|ρ|L |ux|L∞|�x|L |ut|L∞ ≤ C|ρ|L |uxx|L |ζuxt|L
∣
∣ζ –∣∣

L∞

≤ C�
γ

p– (t) +


|uxt|L .

Substituting Ij (j = , , . . . , ) into (.), and integrating over (τ , t) ⊂ (, T) over the time
variable, we have

∣
∣√ρut(t)

∣
∣
L +

∫ t


|uxt|L (s) ds ≤ ∣

∣√ρut(τ )
∣
∣
L +

∫ t


�

γ
p– (s) ds. (.)

To obtain the estimate of |√ρut(t)|L , we need to estimate limτ→ |√ρut(τ )|L . Multiplying
(.) by ut and integrating over �, we get

∫

�

ρ|ut| dx

≤ 
∫

�

(

ρ|u||ux| + βρ|�x| + ρ–
∣
∣
∣
∣

[(
εu

x + 
u

x + ε

) –p


ux

]

x
+ (P + η)x + η�x

∣
∣
∣
∣

)

dx.
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According to the smoothness of (ρ, u,η), we obtain

lim
τ→

∫

�

(

ρ|u||ux| + βρ|�x| + ρ–
∣
∣
∣
∣

[(
εu

x + 
u

x + ε

) –p


ux

]

x
+ (P + η)x + η�x

∣
∣
∣
∣

)

dx

=
∫

�

(

ρ|u||ux| + βρ|�x|

+ ρ–


∣
∣
∣
∣

[(
εu

x + 
u

x + ε

) –p


ux

]

x
+ (P + η)x + η�x

∣
∣
∣
∣

)

dx

≤ |ρ|L∞|u|L∞|ux|L + β|ρ|L∞|�x| + |g|L + β|�x|L ≤ C.

Therefore, taking the limit on τ in (.), as τ → , we conclude that

∣
∣√ρut(t)

∣
∣
L +

∫ t


|uxt|L (s) ds ≤ C

(

 +
∫ t


�

γ
p– (s) ds

)

, (.)

where C is a positive constant, depending only on M.
Combining the estimates of (.), (.), (.), (.), (.), (.), (.), and the defi-

nition of �(t), we conclude that

�(t) ≤ C exp

(

C̃
∫ t


�

γ
p– (s) ds

)

, (.)

where C, C̃ are positive constant, depending only on M. This means that there exist a
time T >  and a constant C, such that

ess sup
≤t≤T

(|ρ|H + |u|W ,p
 ∩H + |η|H + |ηt|L + |√ρut|L + |ρt|L

)

+
∫ T



(|√ρut|L + |uxt|L + |ηx|L + |ηt|L + |ηxt|L
)

ds ≤ C, (.)

where C is a positive constant, depending only on M.

3 Proof of the main theorem
In this section, the existence of strong solutions can be established by a standard argu-
ment, we construct the approximate solutions by using the iterative scheme, derive uni-
form bounds and thus obtain solutions of the original problem by passing to the limit. Our
proof will be based on the usual iteration argument and some ideas developed in [, ].
Precisely, we first define u =  and assuming that uk– was defined for k ≥ , let ρk , uk , ηk

be the unique smooth solution to the following problems:

ρk
t + ρk

x uk– + ρkuk–
x = , (.)

ρkuk
t + ρkuk–uk

x + Lpuk + Pk
x + ηk

x = –
(
ηk + βρk)�x, (.)

ηk
t +

(
ηk(uk– – �x

))

x = ηk
xx, (.)

with the initial and boundary conditions

(
ρk , uk ,ηk)|t= = (ρ, u,η), (.)
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uk|∂� =
(
ηk

x + ηk�x
)|∂� = , (.)

where

Lpuk = –
[(

ε(uk
x) + 

(uk
x) + ε

) –p


uk
x

]

x
.

With the process, the nonlinear coupled system has been reduced to a sequence of de-
coupled problems and each problem admits a smooth solution. The following estimates
hold:

ess sup
≤t≤T

(∣
∣ρk∣∣

H +
∣
∣uk∣∣

W ,p
 ∩H +

∣
∣ηk∣∣

H +
∣
∣ηk

t
∣
∣
L +

∣
∣
√

ρkuk
t
∣
∣
L +

∣
∣ρk

t
∣
∣
L

)

+
∫ T



(∣
∣
√

ρkuk
t
∣
∣
L +

∣
∣uk

xt
∣
∣
L +

∣
∣ηk

x
∣
∣
L +

∣
∣ηk

t
∣
∣
L +

∣
∣ηk

xt
∣
∣
L

)
ds ≤ C, (.)

where C is a generic constant depending only on M, but independent of k.
In addition, we first find ρk from the initial problem

ρk
t + uk–ρk

x + uk–
x ρk =  and ρk|t= = ρ,

with smooth function uk–, obviously, there is a unique solution ρk on the above problem
and also by a standard argument, we obtain

ρk(x, t) ≥ δ exp

[

–
∫ T



∣
∣uk–

x (·, s)
∣
∣
L∞ ds

]

> , for all t ∈ (, T).

Next, we will prove that the approximate solution (ρk , uk ,ηk) converges to a limit
(ρε , uε ,ηε) in a strong sense. To this end, let us define

ρ̄k+ = ρk+ – ρk , ūk+ = uk+ – uk , η̄k+ = ηk+ – ηk ,

then we easily verify that the functions ρ̄k+, ūk+, η̄k+ satisfy the system of equations

ρ̄k+
t +

(
ρ̄k+uk)

x +
(
ρkūk)

x = , (.)

ρk+ūk+
t + ρk+ukūk+

x +
(
Lpuk+ – Lpuk)

= –ρ̄k+uk
t – ρkūkuk

x – ρ̄k+ukuk
x –

(
Pk+

x – Pk
x
)

– η̄k+
x –

(
η̄k+ + βη̄k+)�x, (.)

η̄k+
t +

(
ηkūk)

x +
(
η̄k+(uk – �x

))

x = η̄k+
xx . (.)

Multiplying (.) by ρ̄k+, integrating over � and using Young’s inequality, we obtain

d
dt

∣
∣ρ̄k+∣∣

L ≤ C
∣
∣ρ̄k+∣∣

L

∣
∣uk

x
∣
∣
L∞ +

∣
∣ρk∣∣

H

∣
∣ūk

x
∣
∣
L

∣
∣ρ̄k+∣∣

L

≤ C
∣
∣uk

xx
∣
∣
L

∣
∣ρ̄k+∣∣

L + Cξ

∣
∣ρk∣∣

H

∣
∣ρ̄k+∣∣

L + ξ
∣
∣ūk

x
∣
∣
L

≤ Cξ

∣
∣ρ̄k+∣∣

L + ξ
∣
∣ūk

x
∣
∣
L , (.)

where Cζ is a positive constant, depending on M and ζ for all t < T and k ≥ .
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Multiplying (.) by ūk+, integrating over �, and using Young’s inequality, we obtain

d
dt

∫

�

ρk+∣∣ūk+∣∣ dx +
∫

�

(
Lpuk+ – Lpuk)ūk+ dx

≤ C
∫

�

(∣
∣ρ̄k+∣∣

(∣
∣uk

t
∣
∣ +

∣
∣ukuk

x
∣
∣
)∣
∣ūk+∣∣ + ρk∣∣ūk∣∣

∣
∣uk

x
∣
∣
∣
∣ūk+∣∣ +

∣
∣Pk+ – Pk∣∣

∣
∣ūk+

x
∣
∣

+
∣
∣η̄k+∣∣

∣
∣ūk+

x
∣
∣ +

∣
∣η̄k+ + βρ̄k+∣∣

∣
∣�xūk+∣∣

)
dx

≤ C
(∣
∣ρ̄k+∣∣

L

∣
∣uk

xt
∣
∣
L

∣
∣ūk+

x
∣
∣
L +

∣
∣ρ̄k+∣∣

L

∣
∣uk

x
∣
∣
Lp

∣
∣uk

xx
∣
∣
L

∣
∣ūk+

x
∣
∣
L

+
∣
∣ρk∣∣



L

∣
∣
√

ρkūk∣∣
L

∣
∣uk

xx
∣
∣
L

∣
∣ūk+

x
∣
∣
L +

∣
∣Pk+ – Pk∣∣

L

∣
∣ūk+

x
∣
∣
L

+
∣
∣η̄k+∣∣

L

∣
∣ūk+

x
∣
∣
L +

∣
∣ρ̄k+∣∣

L

∣
∣ūk+

x
∣
∣
L +

∣
∣η̄k+∣∣

L

∣
∣ūk+

x
∣
∣
L

)
. (.)

Let

σ (s) =
(

εs + 
s + ε

) –p


s,

then

σ ′(s) =
(

εs + 
s + ε

)– p
 (εs + )(s + ε) – ( – p)( – ε)s

(s + ε) ≥ p – 

(s + ε)
–p


.

We estimate the second term of (.) as follows:
∫

�

(
Lpuk+ – Lpuk)ūk+ dx =

∫

�

∫ 


σ ′(θuk+

x + ( – θ )uk
x
)

dθ
∣
∣ūk+

x
∣
∣ dx

≥
∫

�

[∫ 



dθ

|θuk+
x + ( – θ )uk

x|–p
L∞ + 

]
(
ūk+

x
)

≥ C–
∫

�

∣
∣ūk+

x
∣
∣ dx. (.)

Using (.), (.), and Young’s inequality, (.) can be rewritten as

d
dt

∫

�

ρk+∣∣ūk+∣∣ dx + C–
∫

�

∣
∣ūk+

x
∣
∣ dx

≤ Bξ (t)
∣
∣ρ̄k+∣∣

L + C
(∣
∣
√

ρkūk∣∣
L +

∣
∣η̄k+∣∣

L
)

+ ξ
∣
∣ūk+

x
∣
∣
L , (.)

where Bξ (t) = C( + |uk
xt(t)|L ), for all t ≤ T and k ≥ . Using (.) we derive

∫ t


Bξ (s) ds ≤ C + Ct.

Multiplying (.) by η̄k+, integrating over �, and using (.) and Young’s inequality, we
have




d
dt

∫

�

∣
∣η̄k+∣∣ dx +

∫

�

∣
∣η̄k+

x
∣
∣ dx

≤
∫

�

∣
∣η̄k+∣∣

∣
∣uk – �x

∣
∣
∣
∣η̄k+

x
∣
∣dx +

∫

�

(∣
∣ηk∣∣

∣
∣ūk∣∣

)

x

∣
∣η̄k+∣∣dx
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≤ ∣
∣η̄k+∣∣

L

∣
∣uk – �x

∣
∣
L∞

∣
∣η̄k+

x
∣
∣
L +

∣
∣ηk

x
∣
∣
L

∣
∣ūk∣∣

L∞
∣
∣η̄k+∣∣

L +
∣
∣ηk∣∣

L∞
∣
∣ūk

x
∣
∣
L

∣
∣η̄k+∣∣

L

≤ Cξ

∣
∣η̄k+∣∣

L + ξ
∣
∣η̄k+

x
∣
∣
L + ξ

∣
∣ūk

x
∣
∣
L . (.)

Collecting (.), (.), and (.), we obtain

d
dt

(∣
∣ρ̄k+(t)

∣
∣
L +

∣
∣
√

ρk+ūk+(t)
∣
∣
L +

∣
∣η̄k+(t)

∣
∣
L

)
+

∣
∣ūk+

x (t)
∣
∣
L +

∣
∣η̄k+

x
∣
∣
L

≤ Eξ (t)
∣
∣ρ̄k+(t)

∣
∣
L + C

∣
∣
√

ρkūk∣∣
L + Cξ

∣
∣η̄k+∣∣

L + ξ
∣
∣ūk

x
∣
∣
L , (.)

with Eζ (t) depending only on Bζ (t) and Cξ , for all t ≤ T and k ≥ . Using (.), we have

∫ t


Eξ (s) ds ≤ C + Cξ t.

Integrating (.) over (, t) ⊂ (, T) with respect to t, using Gronwall’s inequality, we have

∣
∣ρ̄k+(t)

∣
∣
L +

∣
∣
√

ρk+ūk+(t)
∣
∣
L +

∣
∣η̄k+(t)

∣
∣
L +

∫ t



∣
∣ūk+

x (t)
∣
∣
L ds +

∫ t



∣
∣η̄k+

x
∣
∣
L ds

≤ C exp(Cξ t)
∫ t



(∣
∣
√

ρkūk(s)
∣
∣
L +

∣
∣ūk

x(s)
∣
∣
L

)
ds. (.)

From the above recursive relation, choose ξ >  and  < T∗ < T such that C exp(Cξ T∗) < 
 ,

using Gronwall’s inequality, we deduce that

K∑

k=

[

sup
≤t≤T∗

(∣
∣ρ̄k+(t)

∣
∣
L +

∣
∣
√

ρk+ūk+(t)
∣
∣
L +

∣
∣η̄k+(t)

∣
∣
L

)

+
∫ T∗



∣
∣ūk+

x (t)
∣
∣
L dt +

∫ T∗



∣
∣η̄k+

x (t)
∣
∣
L dt

]

< C, (.)

where C is a positive constant, depending only on M.
Therefore, as k → +∞, the sequence (ρk , uk ,ηk) converges to a limit (ρε , uε ,ηε) in the

following strong sense:

ρk → ρε in L∞(
, T∗; L(�)

)
, (.)

uk → uε in L∞(
, T∗; L(�)

) ∩ L(, T∗; H
(�)

)
, (.)

ηk → ηε in L∞(
, T∗; L(�)

) ∩ L(, T∗; H(�)
)
. (.)

By virtue of the lower semi-continuity of various norms, we deduce from the uniform
estimate (.) that (ρε , uε ,ηε) satisfies the following uniform estimate:

ess sup
≤t≤T

(∣
∣ρε

∣
∣
H +

∣
∣uε

∣
∣
W ,p

 ∩H +
∣
∣ηε

∣
∣
H +

∣
∣ηε

t
∣
∣
L +

∣
∣
√

ρεuε
t
∣
∣
L +

∣
∣ρε

t
∣
∣
L

)

+
∫ T∗



(∣
∣√ρ

εuε
t
∣
∣
L +

∣
∣uε

xt
∣
∣
L +

∣
∣ηε

x
∣
∣
L +

∣
∣ηε

t
∣
∣
L +

∣
∣ηε

xt
∣
∣
L

)
ds ≤ C. (.)
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Since all of the constants do not depend on ε, there exists a subsequence (ρεj , uεj ,ηεj ) of
(ρε , uε ,ηε), that, without loss of generality, we denote (ρε , uε ,ηε). Let ε → , then we obtain
the following convergence:

ρε → ρδ in L∞(
, T∗; L(�)

)
, (.)

uε → uδ in L∞(
, T∗; L(�)

) ∩ L(, T∗; H
(�)

)
, (.)

ηε → ηδ in L∞(
, T∗; L(�)

) ∩ L(, T∗; H(�)
)
, (.)

and also

ess sup
≤t≤T

(∣
∣ρδ

∣
∣
H +

∣
∣uδ

∣
∣
W ,p

 ∩H +
∣
∣ηδ

∣
∣
H +

∣
∣ηδ

t
∣
∣
L +

∣
∣
√

ρδuδ
t
∣
∣
L +

∣
∣ρδ

t
∣
∣
L

)

+
∫ T∗



(∣
∣√ρ

δuδ
t
∣
∣
L +

∣
∣uδ

xt
∣
∣
L +

∣
∣ηδ

x
∣
∣
L +

∣
∣ηδ

t
∣
∣
L +

∣
∣ηδ

xt
∣
∣
L

)
ds ≤ C. (.)

For each small δ > , let ρδ
 = Jδ ∗ ρ + δ, Jδ is a mollifier on �, and uδ

 ∈ H
(�) ∩ H(�) is a

smooth solution of the boundary value problem

⎧
⎨

⎩

Lpuδ
 = (P(ρδ

) + ηδ
)x + ηδ

�x + ρδ
(gδ + β�x),

uδ
() = uδ

() = ,
(.)

where gδ ∈ C∞
 and satisfies |gδ|L ≤ |g|L , limδ→+ |gδ – g|L = .

We deduce that (ρδ , uδ ,ηδ) is a solution of the following initial boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρu)x = ,

(ρu)t + (ρu)x – λ(|ux|p–ux)x + (P + η)x = –(η + βρ)�x,

ηt + (η(u – �x))x = ηxx,

(ρ, u,η)|t= = (ρδ
, uδ

,ηδ
),

u|∂� = (ηx + η�x)|∂� = ,

where ρδ
 ≥ δ, 

 < p < .
By the proof of Lemma . in [], there exists a subsequence {uδj

 } of {uδ
}, as δj → +,

uδ
 → u in H

(�) ∩ H(�), –(|uδj
x|p–uδj

x)x → –(|ux|p–ux)x in L(�), Hence, u satisfies
the compatibility condition (.) of Theorem .. By virtue of the lower semi-continuity of
various norms, we deduce that (ρ, u,η) satisfies the following uniform estimate:

ess sup
≤t≤T

(|ρ|H + |u|W ,p
 ∩H + |η|H + |ηt|L + |√ρut|L + |ρt|L

)

+
∫ T∗



(|√ρut|L + |uxt|L + |ηx|L + |ηt|L + |ηxt|L
)

ds ≤ C, (.)

where C is a positive constant, depending only on M. The uniqueness of the solution
can also be obtained by the same method as the above proof of convergence, we omit the
details here. This completes the proof.
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Appendix
In this section, for the sake of completeness, we give a slightly more particular result for
the previous case.

Lemma A. Let u ∈ H
(�) ∩ H(�), ρ ∈ H(�), η ∈ H(�), � ∈ C(�), g ∈ L(�), uε



is a solution of the boundary value problem

⎧
⎨

⎩

[( ε(uε
x)+

(uε
x)+ε

)
–p

 uε
x]x – (P(ρ) + η)x – η�x = ρ(g + β�x),

uε
() = uε

() = .
(A.)

Then there are a subsequence {uεj
 }, j = , , , . . . , of {uε

} and u ∈ H
(�)∩H(�) such that,

as εj → ,

uεj
 → u in H

(�) ∩ H(�),
[(

εj(u
εj
x) + 

(uεj
x) + εj

) –p


uεj
x

]

x
→ (|ux|p–ux

)

x in L(�).

Proof According to (A.), we have

uε
xx =

(
ε(uε

x) + 
(uε

x) + ε

) p
 ((uε

x) + ε)((P(ρ) + η)x + η�x + ρ(g + β�x))
(ε(uε

x) + )((uε
x) + ε) – ( – p)( – ε)(uε

x) .

Then

∣
∣uε

xx
∣
∣
L ≤

∣
∣
∣
∣

(
ε(uε

x) + 
(uε

x) + ε

)– p

∣
∣
∣
∣
L∞

∣
∣
(
P(ρ) + η

)

x + η�x + ρ(g + β�x)
∣
∣
L

≤ (∣
∣uε

x
∣
∣
L∞ + 

)– p

∣
∣
(
P(ρ) + η

)

x + η�x + ρ(g + β�x)
∣
∣
L ,

then we get

∣
∣uε

xx
∣
∣
L ≤ C

(
 +

∣
∣
(
P(ρ) + η

)

x + η�x + ρ(g + β�x)
∣
∣
L

) 
p– ≤ C.

Therefore, by the above inequality, as εj → ,

uεj
 → u in C


 (�),

uεj
xx → uxx in L(�) weakly.

Thus, we see that {uεj
x} is a Cauchy subsequence of C 

 (�), for all α > , we find N , as
i, j > N , we have

∣
∣uεi

x – uεj
x

∣
∣
L∞(�) < α.

Now, we prove that {uε
xx} has a Cauchy sequence in L norm.
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Let

φi = φ
((

uεi
x

)) =
(

εi(uε
x) + 

(uεi
x) + εi

) p
 ((uεi

x) + εi)

(εi(uεi
x) + )((uεi

x) + εi) – ( – p)( – εi)(uεi
x) .

For all α > , there exists N , as i, j > N , we can deduce that

∣
∣uεi

xx – uεj
xx

∣
∣
L(�) ≤ |φi – φj|L∞(�)

∣
∣
(
P(ρ) + η

)

x + η�x + ρ(g + β�x)
∣
∣
L(�).

With the assumption, we obtain

∣
∣
(
P(ρ) + η

)

x + η�x + ρ(g + β�x)
∣
∣
L(�) ≤ C,

where C is a positive constant, depending only on |ρ|H(�), |g|L(�), and |η|H(�). Use the
following inequality:

|φi – φj|L∞(�) ≤
∣
∣
∣
∣

∫ 


φ′(θ

(
uεi

x
) + ( – θ )

(
uεj

x
))dθ

((
uεi

x
) –

(
uεj

x
))

∣
∣
∣
∣
L∞(�)

, (A.)

where  < θ < .
By a simple calculation, we can get φ′(s) ≤ 

p– ( + s– p
 ), where C depends only on p, then

|φi – φj|L∞(�) ≤ 
p – 

∣
∣
∣
∣

(

 +
∫ 



(
θ
(
uεi

x
) + ( – θ )

(
uεj

x
))dθ

)
((

uεi
x

) –
(
uεj

x
))

∣
∣
∣
∣
L∞(�)

≤ 
p – 

∣
∣uεi

x – uεj
x

∣
∣
L∞(�)

∣
∣uεi

x + uεj
x

∣
∣
L∞(�)

+


( – p)(p – )
∣
∣uεi

x – uεj
x

∣
∣

–p


L∞(�)

∣
∣uεi

x + uεj
x

∣
∣

–p


L∞(�) ≤ α.

Substituting this into (A.), we have

∣
∣uεi

xx – uεj
xx

∣
∣
L∞(�) < α,

then there is a subsequence {uεj
xx} and {uε

xx}, such that

{
uεj

xx
} → χ in L(�).

By the uniqueness of the weak convergence, we have

χ =
{

uε
xx

}
.

Since (P(ρ) + η)x + η�x + ρ(g + β�x) are independent of ε, in the same way we obtain,
as εj → ,

[(
εj(u

εj
x) + 

(uεj
x) + εj

) –p


uεj
x

]

x
→ (|ux|p–ux

)

x in L(�).

This completes the proof of Lemma A.. �
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