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1 Introduction

In this manuscript, we investigate the sufficient conditions of the existence of solutions for
the following fractional Langevin equation subject to the generalized nonlocal fractional
integral conditions of the form:

DPL(DP2 + LM)x(t) =f(t,x(2)), O0<t<T,

p}qu o pi o (1.1)
20)=0,  x(n) = Yy fy G ds = i o 19x(E),
where DPi denote the Riemann-Liouville fractional derivative of order p;, i = 1,2, 0 <
puLp2 <1,1<p +p, <2, A is a given constant, ?[% are the generalized fractional inte-
gral of orders g; > 0, p; > 0, n, & arbitrary, with n,§; € (0, T), o; € R, which are satisfied
(2.3)foralli=1,2,...,nand f: [0, T] x R — R is a continuous function.

The subject of fractional differential equations has recently evolved as an interesting and
popular field of research; see the interesting paper [1]. In fact, fractional derivatives pro-
vide an excellent tool for the description of memory and hereditary properties of various
materials and processes. More and more researchers have found that fractional differ-
ential equations play important roles in many research areas, such as physics, chemical
technology, population dynamics, biotechnology, and economics. For examples and re-
cent developments of the topic, see [2—-16] and the references cited therein.

In fractional calculus, the fractional derivatives are defined via fractional integrals. There
are several known forms of fractional integrals, which have been studied extensively for
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their applications. Two of the best known fractional integrals are the Riemann-Liouville
and the Hadamard fractional integral.

A new fractional integral, called generalized Riemann-Liouville fractional integral,
which generalizes the Riemann-Liouville and the Hadamard integrals into a single form,
was introduced in [17]. See Definition 2.3 below. The corresponding fractional deriva-
tives were introduced in [18]. The Mellin transforms of both the fractional integral and
derivatives were studied in [19]. This integral is now known as the ‘Katugampola frac-
tional integral’ see for example [20], pp.15,123. The existence and uniqueness results for
the Caputo-Katugampola derivative are given in [21]. For some recent work with this new
operator and similar operators, for example, see [22—-25] and the references cited therein.

The Langevin equation (first formulated by Langevin in 1908 to give an elaborate de-
scription of Brownian motion) is found to be an effective tool to describe the evolution
of physical phenomena in fluctuating environments [26]. For instance, Brownian motion
is well described by the Langevin equation (or generalized Langevin equation) when the
random fluctuation force is assumed to be white noise (or non-white noise). For systems in
complex media, the ordinary Langevin equation does not provide a correct description of
the dynamics. As a result, various generalizations of Langevin equations have been offered
to describe dynamical processes in a fractal medium. One such generalization is the gen-
eralized Langevin equation which incorporates the fractal and memory properties with
a dissipative memory kernel into the Langevin equation. For some new developments on
the fractional Langevin equation, see, for example, [27-32].

In this paper we study the boundary value problem (1.1) with generalized fractional
integral boundary conditions. Several new existence and uniqueness results are proved
by using a variety of fixed point theorems (such as the Banach contraction principle, the
Krasnoselskii fixed point theorem, the Leray-Schauder nonlinear alternative, and Leray-
Schauder degree theory).

The rest of the paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel. In Section 3 we present our existence and uniqueness
results. Examples illustrating the obtained results are presented in Section 4.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [2, 3]
and present preliminary results needed in our proofs later.

Definition 2.1 [3] The Riemann-Liouville fractional integral of order p > 0 of a continu-
ous function f : (0,00) — R is defined by

1

IPf(t) = F—(p)

/ t(t — sl (s)ds,
0

provided the right-hand side is point-wise defined on (0, 00), where I' is the gamma func-
tion defined by I'(p) = |, 0°° e=SsP1 ds.

Definition 2.2 [3] The Riemann-Liouville fractional derivative of order p > 0 of a contin-
uous function f : (0,00) — R is defined by

_ 1 d ! ! n-p-1
Dpf(ﬂ—m(a) /O(t—s) P=f(s)ds, nm-1<p<n,
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where n = [p] + 1, [p] denotes the integer part of a real number p, provided the right-hand

side is point-wise defined on (0, 00).

Lemma 2.1 [3] Let p >0 and x € C(0,T) N L(0, T). Then the fractional differential equa-

tion DPx(t) = 0 has a unique solution

x(t) = Zcitp‘i,
i=1
and the following formula holds:

TPDPx(t) =x(t) + Y cit?™,
i=1

wherec; R, i=1,2,...,n,andn-1<p<n.

Lemma 2.2 ([3], p.71) Let o > 0 and 8 > 0. Then the following properties hold:

T —a)f (1) = %(r _a)fret,

Definition 2.3 [18] The Katugampola fractional integral of order g > 0 and p > 0, of a
function f(¢), for all 0 < £ < 00, is defined as

Pt )
T Jo w—sa

PIf(t) =

’

provided the right-hand side is point-wise defined on (0, 00).

Lemma 2.3 Let constants p,q >0 and p > 0. Then the following formula holds:

L(EE) gprea

PP = — L
r(P*quJrl)) p1

(2.1)

Proof From Definition 2.3, we have

prag - P o / F_sTs
T(q) Jo (tP—sr)1

_ pl1 Pre 1 u i
Mg p Jo Q-u)i

) pl™1 twﬂqB(p_,. 0 q)
T(g) p o’
e T(EF)

= BTy
p? T(=ZEF)

V4
o

This completes the proof. d



Thaiprayoon et al. Advances in Difference Equations (2015) 2015:374 Page 4 of 16

For convenience we set

Q= F(pl) 171+192—1,

. ['(p1+p2)
Q Xn: a;T(py) F(’%j’”’_l) grpppil (2.2)
2 = vy .. . )
7 T(p1 + py) T (A22d00) ol
and
Q=Q, -2 #0. (2.3)

Lemma 2.4 Let 0 <p1,ps <1, 1<pi+p2<2,4,p;>0,1n&€(0,T),a; €R forall i =
1,2,...,nand h € C([0, T],R). Then the problem

D’ (D”2 + A)x(t) =h(t), 0<t<T, (2.4)
x0)=0,  x(n) =) af'Tx(), (2.5)
i=1

has a unique solution given by

o = I'(p) et
x - F(pl +p2) Q

|:RL1p1+p2h(77) = AreIP?x(n)

= P (g 1PV h(s) — ARLzmx(s))@i)}

i=1
+ RL[P1+P2h(t) - ARLIpzx(t). (26)

Proof Applying Lemma 2.1 to equation (2.4), we obtain
(D2 + 0)a(t) = TP h(t) + et ™,
which gives

r
#(8) = TPt = AT a(t) + o — P oty e,
r (Pl + 172)

for ¢1,c; € R. It is easy to see that the condition x(0) = 0 implies that ¢, = 0.
Thus

x(t) = PP () — WTP(t) + ¢ %tmz-l. 27)
1 2

Combining the generalized fractional integral of order ¢; > 0, p; > 0 with (2.7), we have

Pi[Tix(t) = Pi% (Ip1+p2 h(s) - kIpzx(s))(t)

T'(p1) r (pi”pf:p"’l) P12+ pigi—1
1

Ta C(py + p2) F(P1+P2+Zi‘qz'+pr1) pi‘ﬁ
L

(2.8)
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Using the second condition of (2.5) to (2.8), we get
TP P2p(n) — AIPx(n) + 1€

= > U (TP P2 h(s) - AT x(8)) (€) + 1.

i=1
Solving the above equation for finding a constant c;, we obtain
1 n
a=g5 |:Ip1+1’2h(n) - 1IP2x(n) - Z a5 (IPP2 (s) — )\Ipzx(s))(éi)i|.
i=1

Substituting the constant ¢; into (2.7), we have (2.6) as desired. O

3 Main results

Let C = C([0, T],R) denote the Banach space of all continuous functions from [0, T] to
R endowed with the norm defined by ||| = sup,c(o 77 [%(£)|. Throughout this paper, for
convenience, we choose the notations Z%f (s, x(s))(y) and *I*f (s, x(s))(y) defined by

Z 1 Y z—1
Tf29)0) = 5 |, 09 (o6 s,

pIE [V s (s, x(5))

p1Zf(S,x(s))(y)=F(z) O —s)

’

wherez>0and y € [0, T].
To prove our results, in view of Lemma 2.4, we define an operator Q : C — C by

P1+p2-1
0x0) = s [Iwmf(s,x(s»(n) ~3TP(5)0)

= Y@l (TPPS (5,x(9)) (1) — /\Ipzx(S)(r))(éi)}

i=1

+ TPV (5, x(5)) () — AIP2x(s)(2). (3.1)

It should be noticed the boundary value problem (1.1) can be transformed into a fixed point
problem x = Qx. Consequently the problem (1.1) has solutions if and only if the operator
Q has fixed points. In the following subsections we investigate sufficient conditions for
the existence of solutions for the boundary value problem (1.1) by using a variety of fixed
point theorems.

To simplify the notations, we use in the following constants A(u) for u = p; and u =0,

where
Tw+P2 C(p1) TP1+p2-1 n¥r2
Au) = +
Fl+u+p)) Tlpi+pa) Q] L1 +u+po)
n u+pr+0;q; 1"(”"‘172""01')
1 g 2
i - —— . 3.2
2 '“"[m vutp) i (TN &2
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3.1 Existence and uniqueness result via Banach’s fixed point theorem
Theorem 3.1 Assume that:

(Hi) there exists a constant L > 0 such that |f(¢,u) — f(¢,v)| < Llu — v|, for each t € [0, T]
and u,v € R.

If

LA(p) + |A|A(0) <1, (3.3)

where A(p1), A(0) are defined by (3.2), then the problem (1.1) has a unique solution on
[0, T1.

Proof To accomplish this result, we consider a fixed point problem x = Qx, where the
operator Q is defined as in (3.1). By applying the Banach contraction mapping principle,
we will show that Q has a unique fixed point.

First of all, we let sup,(o 1) [f(£,0)| = M < 0o and choose

- MA(p)
T 1-LA(p) - [AA0)

Now, we show that OB C Bg, where Bg = {x € C: ||x|| < R}. For any x € Bg, we have

|(Qx)(8))|

‘ F(p) +p2-1

Tovpn) @ [Ip”’”f (5:(5)) (1) = AZ”(5)(n)

= I (TP (5, x(5)) () — AP 296(8)(1))(&)}

i=1

n IP1+P2f(5,x(s))(t) - )»Ipzx(s)(t)‘

p1+p2—1
< I'(p) ¢
Cp+pa) (9

|:Ip1+p2 ([f (s,2()) = f(5,0)| + |f(5,0)|) (1)

+ TP ()| () + ) Ll 1% (ZPH72([f (5, 2(5) = £ (5, 0)] + [ (5,0 ]) (x)

i=1
+|A|Z7 |x(5)|(f))(%_i):| + I ((f (s, %(5)) = f(5,0)] + [f(5,0)[) (&) + [AIZ2 |x(s)| (&)

I'(p1) P1pa-1
" T+p) 19

[(Lllxll + M) (ZP21) (n) + (1Ll (Z721) ()

£ ) lol 1% (L ]| + M) (ZP721) (7) + IKIIIxII(I”Zl)(T))(Ei)}

i=1

+ (Lllxll + M) (ZP721) (2) + | 2|l (Z721) (2)

I(p) #7271 (LR + M)nPrp2 |A|RnP2
< +
Fpi+p) Q] \ T'Q+pi+py) TL+p2)
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+ Z et l||: LR + M) (Pi]@itpl*'PZ)(;’:l) (|1 lp2) (Pilqi sz)(é_-i):|>

C'l+p1+p2)
(LR + M)tPr*P2 |L|RtP2
+ +
FQ+pr+p) TQA+po)
F(p1) tr+p2-1 (LR + M)ppr+p2 |A|Rn?2
+
T Ti+p) 19 Fl+pi+pa) T(l+p2)

(LR + M) é_-iPlJrPZ*Piqi F(I%?*W)
+Z| i

F(l +p1 +p2) p;h F(pﬁpz*;fiqﬁpi)

AR grredi T (B ] (LR + M)tP1*P2 | A|RtP2
. 1o, + +
F1+p2) pf (RIS Fl+pr+p2)) TQ+p2)

< (LR + M)A(p1) + |A|RA(0).

This implies that || Qx| < R for x € Bg. Therefore, Q maps bounded subsets of By into
bounded subsets of Bp.
Next, we let x,y € C. Then for ¢ € [0, T], we have

|(Qx)(8) - (@)

L) T e (115, x5) — £ (5,96) [} () + AT x5) = 365) )
T L(pr+p2) 1€

3 el 19 (T2 ([f (5,5%(5)) — (5,5(5)) ) (0) + 11172 () - y(6)| (1)) &) }

i=1
+ IPP2(|f (s,2(5)) = f (5, 7(5))| ) (£) + M| ZP>|x(s) — ¥(5)|(£)
<LA()lx =yl +[Alllx -yl A(0)

= [LA@) + M A©)] % -y,

which implies that || Qx — Qy|| < [LA(p1) + A A(0)]|x —y||. As [LA(p1) + A A(0)] <1, Qs
a contraction. Therefore, by the Banach contraction mapping principle, we deduce that Q
has a fixed point which is the unique solution of problem (1.1). The proof is completed.

O

3.2 Existence result via Leray-Schauder’s nonlinear alternative
Theorem 3.2 (Nonlinear alternative for single valued maps) [33] Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C, and 0 € U. Suppose that F : U — C is
a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either
(i) F has a fixed point in U, or
(ii) thereisa u € dU (the boundary of U in C) and & € (0,1) with u = §F(u).

Theorem 3.3 Assume that:

(Hy) there exists a continuous nondecreasing function Y : [0,00) — (0, 00) and a function
B € C([0, T1,R*) such that

[f(t, u)| < /S(t)T(|u|) foreach (t,u) € [0,T] x R;
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(H3) there exists a constant M > 0 such that

M
IBIT (M)A (py) + [AIMAO

>1,
)

where A(p1) and A(0) are defined by (3.2).
Then the problem (1.1) has at least one solution on [0, T.
Proof Let the operator Q be defined by (3.1). We first show that Q maps bounded sets

(balls) into bounded sets in C([0,T],R). For a constant R > 0, we set the ball B = {x €
C([0, T],R) : ||x|| <R} to be a bounded ball in C([0, 7], R). Then for ¢ € [0, T] we have

(Qx0)(0)|

- C(p1) th1+p2-1
F(pl +p2) Q

|:IP1+P2f(S’x(S))(n) = AIP2x(s)(n)

= Y@ TIPS (5,x(9)) () - ?»I”zx(S)(f))(éi)}

i=1

n IP1+P2f(s,x(S))(t) — AIP2x(s)(t)

p1+p2-1
_ T ¢

STo+pm) 19 |:I’””"2II;3IIT(IIxII)(n)+I?»II”llxll(n)

+ Yl 1T P BIY (Jlell) (x) + (11772 ||x||(f))($i)i|

i=1
+ZPP2 || BIIY (N1l ) (8) + |1 ZP2 1| (£)
<1BIY(Ixll) Apr) + [LIRA(0)
<IIBITR)A(p1) + [AIRA(0),

and consequently,
1Qx1 < IBIT(R)A(p1) + [AIRA(0).

Next we will show in the second step that Q maps bounded sets into equicontinuous sets
of C([0, T],R). Let t1, £, € [0, T] with ¢ < £, and x € Bg. Then we have

|(Q)(82) - (Qx)(11)|

I'(p1) tz271+172—1 _ t{’ﬁpz—l
- F(p1 +p2) Q

|:IP1+P2f(S’x(S))(;7) — AIP2x(s)(n)

=Yl (@ (s 009) (1) - umx(sxr))(si)} ‘

i=1

+ |Ip1+p2f(s,x(s))(tz) - Ip1+pzf(s,x(s))(t1)|
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+ |AIp2x(s)(t2) - )»Imx(S)(tl)|

I'(p) t§1+192—1 _ t{ﬂﬂﬂz—l
F(pl +p2) Q

|:Ip1+pz B (ll11) () + [AIZP2 ||%]1 ()

+ Y a1 (TP B (Il () + AT ||x||(f))(5i):| ‘

i=1
+ |22 BIY (el ) (22) = ZP P21 B Y (Nlell) (21) |
+ [AZP2x()(82) — ATP2x(s) (1)

T'(p1) tz271+p271 _ t{?lﬂﬂz*l
F(pl +p2) Q

|:Ip1+pz B (ll11) () + [AIZ72 ||%] ()

+ Y a1 (TP Y (1)) () + |A|I"2||x||(r))(§i)ﬂ

i=1
+ [ BIT(R)|(Z7721) (8,) — (T 721) (1) |
+|MR|(Z7)(t2) - (I72) (1)

I'(p) tgﬁpzfl _ tfﬁpz*l
I‘(pl +p2) Q

|:Ip1+pz IBIN (%) () + |AZP> 1|1 (n)

+ Y a1 (TP BT (Il () + AP IIxII(T))(éi):| ’

i=1

t.”l*'PZ tPl‘*’PZ
+ IIﬁIIT(R)’ 2 - !
Fl+pi+ps) Td+p+po)
£y’ 8
+ AR - )
Fl+p2) T'd+p2)

We see that the right-hand side of the above inequality tends to zero independently of
x € Bp as tp — ) — 0. Therefore, by the conclusion of the Arzeld-Ascoli theorem [34], the
operator Q : C([0, T],R) — C([0, T],R) is completely continuous.

Let x be a solution. Then, for ¢ € [0, T], and using a similar method to the computation

of the first step, we have

(&) < 1817 (xll) Apr) + 211 A (0),

which leads to

] L
IBIT (%A @) + AT A©) ~

In view of (H3), there exists a positive constant M such that ||x|| # M. Let us set
u-= {x € C([O, T],R) el <M}.

Then the operator Q : U — C([0, T], R) is continuous and completely continuous. From
the choice of U, there is no x € U such that x = £ Qx for some u € (0,1). Consequently,

Page 9 of 16
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by the nonlinear alternative of Leray-Schauder type, we deduce that Q has a fixed point
x € U, which is a solution of the problem (1.1). This completes the proof. g

3.3 Existence result via Krasnoselskii's fixed point theorem

The next result is based on the following fixed point theorem.

Lemma 3.1 (Krasnoselskii’s fixed point theorem) [35] Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax + By €
M whenever x,y € M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

Theorem 3.4 Suppose that:
(Ha) f@&u)l <y (2),V(t,u) € [0, T] x R, and ¢ € C([0, T],RY).

If
IA|A(0) <1, (3.4)
then the problem (1.1) has at least one solution on [0, T].

Proof To prove our result, we set sup,.(o 1 [¥(¢)| = ||| and choose

o= IV1AGY

SSEING) 35)

(where A(p1) and A(0) are defined by (3.2)). Let Bg = {x € C([0, T], R) : || x|| < R}. We define
the two operators Q; and Q; on By by

F(pl) tpr+p2-1 .
(Qux)(2) = m g |:Ip P f(s,x(S))(n)
=) a1 (TS (s,x(S))(f))(éi)} + IV (5,%(5)) (2),
i=1
Al(py) vl , i (o
(Qax)(2) = —m S |:Ip x(s)(1) = ;ai’)’ﬂ’ (zr x(S)(T))(Ei)]

- AIP2x(s)(t), te][0,T].
For any x,y € Bg, we have

| Qux(2) + Qay(t)|

(p1) Prip2-1
=—2° - |[7Prf(s,
Toip)  Q [ £ (s, %(5)) (m)

_ Z o i1 (Ipwﬂzf(s, x(s))(t)) (§i):| + Ip””zf(s,x(s))(t)

i=1
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- F(pl +p2) Q i1

AL (pr) gt |:Ip2y(s)(n) = e (Imj/(s)(f))(%_i):|

— AZP2y(s)(¢t)

C(p) trre-l . " o .
<yl (W%W[(Im 1) (n) + ;mmﬂ’((l” P 1)(r))(a)}

1+P2 M@ P2
+ (7 pl)(t)>+R(F(p1+p2) i [(I 1)(n)

+ Y lol 1% ((271) (1)) (s»} + |x|(IP21)(t))

i=1

=¥ A(p) + RIAA(0) <R,

which implies that || Q;x + Q,y|| < R. This shows that Q;x + O,y € Bg.
Using (3.4) for x,y € C and for each t € [0, T'], we have

| Qox — Qoyll < [AIA(0)llx - yll,

which implies that Q, is a contraction mapping. The continuity of f implies that the op-
erator Q; is continuous. Also, Q; is uniformly bounded on By as

[ Quxll < IV 1| Alpy).

Next we will prove the compactness of the operator Q;.

Define sup, ¢ (0,75, If (£:%)] = f < 00. Consequently we have

|(Q1x)(t2) - (le)(t1)|

T'(p1) tgﬁpzfl _ tfﬁpz%
L(p1 +p2) 12|

[I"’ P2 (s, x(5)) (1)

+ Z logi| 1% (TP P2 f (S’x(s))(f))(gi):| '

i=1
+ [T (5,%(9) (02) — P21 (5, (5)) 81|

I'(p) t§1+p2—1 _ tfﬁpz—l
T(p1 +p2) |€2]

[I””’” 111 ()

£ Y lol T (TP | ||<r))(si)} ‘

i=1
+ [T ) - TP 9 (1)

I'(p) t.!271+192—1 _ tf1+P2_l
['(p1 +p2) 1€2]

[I”””z I 11(n)

£ Yl P (T2 |y | (7)) (&)} ’

i=1



Thaiprayoon et al. Advances in Difference Equations (2015) 2015:374 Page 12 of 16

+ W (ZPP21) (k) - (Z721) (1) |

I'(p)) tgﬁpz—l _ tlpﬁpz—l

=Wl <) I

|:(IP1+172 1)(,])

1+P2 1+P2
Y

+ Yl S
I'd+p1+p2)

’

£y |ai|ﬂf1%'((Zpﬁm)(r))(&)}

i=1

which is independent of x and tends to zero as t, — t; — 0. Thus, Q; is equicontinuous.
So Q; is relatively compact on Bg. Hence, by the Arzeld-Ascoli theorem, Q; is compact
on Bg. Thus all the assumptions of Lemma 3.1 are satisfied. So the conclusion of Lemma 3.1
implies that the problem (1.1) has at least one solution on [0, T. O

3.4 Existence result via Leray-Schauder degree
Theorem 3.5 Assume that:

(Hs) There exist constants 0 < L < [1—|A|A(0)][A(p1)] ™ and M > 0 such that
[f(t,x)| <Llx|+M forall(t,x)€[0,T] xR,

where A(p1) and A(0) are given by (3.2).

Then the problem (1.1) has at least one solution on [0, T'.

Proof We are considering the fixed point problem
x = O, (3.6)

where operator Q : C — C is defined by (3.1).
To prove our result, it is sufficient to show that Q : By — C satisfies

x #KkQx, VxedBg,Vk €[0,1], (3.7)
where Bg = {x € C : sup, 7} |#(¢)| < R, R > 0}. We define a mapping
H(k,x) =xQx, xe€C,k€l0,1].

As previously proved in Theorem 3.3, we see that the operator Q is continuous, uniformly
bounded, and equicontinuous. Then, by applying the Arzeld-Ascoli Theorem, a continu-
ous mapping #, defined by 4, (x) = x — H(x,x) = x — k Ox is completely continuous. If (3.7)
is true, then the following Leray-Schauder degrees are well defined and by the homotopy
invariance of topological degree [36], it follows that

deg(h,,Bg,0) = deg(I — k Q, Bg, 0) = deg(h1, Bg, 0)

= deg(hOIBRy 0) = deg(erR, 0) =1 7‘101 0e BR: (3'8)

where I denotes the identity operator. By the nonzero property of the Leray-Schauder
degree, /1(x) =x — Qx = 0 for at least one x € Bg. In order to prove (3.7), we assume that
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x = k Ox for some k € [0,1]. Then

(Qx)(2))|

(p1) tp1+p2-1
Fpr+p) @

<

|:Ip1+192f(s,x(s))(;7) = ATIP2x(s)(n)

= Y @l (TPPS (5,x(5)) (1) — A TP 2x(S)(r))(%'i)}

i=1

+ Iplﬁ’zf(s,x(s))(t) — MIP2x(s)(¢)

p1+p2-1
< L(p) ¢
C(p1+p2) |2

[(Lllxll + M) (ZP21) () + (1Ll (Z721) ()

+ ) lol 1% (L]l + M) (Z7721)(7) + Iklllxll(fpzl)(f))(&)}

i=1
+ (Lllxll + M) (ZP7721) (2) + |2l (Z721) (2)
< (Llixll + M) A(pr) + |2 1x]| A 0)
< [LA@) + M A)]llxll + MA(py).

By direct computation for ||x|| = sup,¢[o 7} [¥(2)], we have

Il < Ap)
=LA - A 0)

IfR= %% + 1, then inequality (3.7) holds. This completes the proof. a

4 Examples
In this section, we present some examples to illustrate our results.

Example 4.1 Consider the following fractional Langevin equation subject to the nonlocal
Katugampola fractional integral conditions:

(5-2t)2  |x()]+4°

DY3(D¥* + Lx(t) = Beoslmt 3Ol g poq, (4.1)
2/3 3/4 417 '
#0)=0,  x(3) =3P + P 12() + 11 1Px ().

Here p1 =1/3, py =3/4, A=1/7, 1 =3/4, n =3, oy = 3/4, ap = 2/3, a3 = 1/2, p; = 2/3,
Py =314, p3 = 417, q1 = 3/4, q» = 1/2, g3 = 1/3, & = 1/2, & = 1/2, & = 3/4, and f(t,x) =
((3cos? wt)/((5—-2t)1))((3|x|)/(|x| +4)). Since |f (¢, x) —f (£, )| < (1/4)|x —y], (H,) is satisfied
with L =1/4. We can show that

TPL+P2 [(p) TPr2-1 nP1P2
Alpr) = 2 (

+
FA+pr+pa) Tlpr+pa) 19 CQ+py+p2)

iqi P1p2+p0;
+ Zn: |Ol|[ 1 sip1+p2+pq r( ) /012' ) ])
L
i=1 F(

1 +p1 +p2) plqt F(Pl‘*'PZ‘:)fiqi"'Pi)

~2.201479798
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and

A0) =

TA+py) T(pr+ps) 192] \T(+p)

i p2+pi
o LD+pa) pff T(EEE)

TP? T(py) Triee-! ( P

~2.77114232.

Thus LA(p1) + |A|A(0) &~ 0.9462474238 < 1. Hence, by Theorem 3.1, the boundary value

problem (4.1) has a unique solution on [0, 1].

Example 4.2 Consider the following fractional Langevin equation subject to the nonlocal

Katugampola fractional integral conditions:

2/3(4/5 , 2 x(t)sinmt 4cosmt
D (D™ + 7)x(t) (3711/J§2x2( t)cost)2 Z/§n2+3t2 » 0<t<l (4.2)
20)=0,  x(2)= 1 1Ax(l) 4 12Ppy3),

Here p1 = 2/3, pop =4/5, A =2/7, n=2/3, n=2, 0y =1/7, ap = 1/5, p1 =1/3, py =
2/3, q1 = 1/4, g2 = 2/3, & = 1/4, & = 3/4, and f(t,x) = ((xsinmt)/((37m + 2x%cosmt)?)) +
((4cosmt)/(3w2 + 3t%)). Then we get

) TP1tp2 C(p1) Tr1pa-1 nP1P2
Apr
(1 +p1+p2) F(p1 +p2) 1] \T1+p1+p2)
P1+P2+Pid; F(IM)
+Z|a, [ 5 qi pﬁpzfxl?‘q'w' ]
1+p1 +py)  pf F(#)
~1.649709484
and
TP2 r TP1+p2-1 P2
A(0) = + ) il
IFl+py) T(pi+p2) 19| '+ po)
i| | 1 %-;72‘*'171% (p_i;:pl)
TN T, pf (R
R 2.762196753.
Clearly,
t)sinmt 4cosmt
t, x(t)| + 3). 4.3
lf( x)| ‘(371 + 2x2(t) cos w£)? 3712 +382| — 9 2(| ( )| ) (4.3)

Choosing B(t) = (4)/(97%) and Y (Jx|) = |x| + 3, we can show that

M

L 4.4
IBITAD)A QL) + INMAQ) (4.4)
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which implies that M > 1.632586649. Hence, by Theorem 3.3, the boundary value prob-
lem (4.2) has at least one solution on [0,1].

Example 4.3 Consider the following fractional Langevin equation subject to the nonlocal
Katugampola fractional integral conditions:

4/5(1/2 | 1 _ tsint arctanx()
D (D +§)x(t)— ts_:_g 'W, 0<t<1,

4ls 3/5 23 (4.5)
x(0) =0, x(3)=¢ TM%(2)+ 2T BPx(3) + 5 1M x(D).

Here p1 =4/5,p» =1/2, A =1/5,n=1/2, n =3, oy = 4/9, oy = 4/7, a3 = 4/9, p1 = 4/5,
P2 = 3/5, pP3 = 2/3, q1 = 1/4, qr = 2/3, qs = 1/4, 51 =5/9, %_2 =2/3, 53 =7/9, andf(t,x) =
((tsint)/(t + 2))((arctanx)/(2|x| + 3)). Since |f(¢,x)| < (¢sint)/(2¢ + 4) and we find that

TP2 C(p1) TP1+pa-1 nP2
+
Fl+pa) Tpr+pa) 9] L1 +p2)

i pato;
+Xn:|a'| L g T, )
i N (RS Ry

A0) =

~ 4.91504846.

Thus |A|A(0) = 0.9830096921 < 1. Hence, by Theorem 3.4, the boundary value problem
(4.5) has at least one solution on [0,1].
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