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Abstract

The current therapeutic arsenal against viral infections remains limited, with often poor efficacy and incomplete
coverage, and appears inadequate to face the emergence of drug resistance. Our understanding of viral biology
and pathophysiology and our ability to develop a more effective antiviral arsenal would greatly benefit from a
more comprehensive picture of the events that lead to viral replication and associated symptoms. Towards this
goal, the construction of virus-host interactomes is instrumental, mainly relying on the assumption that a viral infection
at the cellular level can be viewed as a number of perturbations introduced into the host protein network when
viral proteins make new connections and disrupt existing ones. Here, we review advances in interactomic
approaches for viral infections, focusing on high-throughput screening (HTS) technologies and on the generation of
high-quality datasets. We show how these are already beginning to offer intriguing perspectives in terms of virus-host
cell biology and the control of cellular functions, and we conclude by offering a summary of the current situation
regarding the potential development of host-oriented antiviral therapeutics.
Introduction
Conventional drug therapies against human viruses mainly
target viral enzymes (Table 1). The repertoire of druggable
viral proteins and corresponding small molecules is ex-
tremely limited, and a major drawback in the use of
these direct-acting drugs is the emergence of resistance
[1-3]. Because of these limitations, antiviral drug discov-
ery is beginning to explore the possibility to develop
host-oriented molecules acting on cellular functions
that are essential for viruses to replicate [4]. Indeed, vi-
ruses are obligate intracellular parasites, and, as such,
they rely on cellular functions to replicate. They have
evolved a variety of strategies to manipulate the cellular
machinery for their own benefit as well as to counteract
or even to use host immune defenses. As the vast major-
ity of cellular functions is supported by interacting pro-
teins, the manipulation of cellular processes by viruses
mainly results from physical interactions between viral
and host proteins [5]. Therefore, a virus-host (VH) in-
teractome, interpreted in the context of the host inter-
actome, allows the identification of a network of cellular
proteins and associated functions that are essential in
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the virus life-cycle. These proteins can be considered as
new antiviral targets, and some of them could well be
functionally manipulated with new small molecules,
repurposed drugs (Food and Drug Administration (FDA)-
approved or experimental molecules) or with rescued drugs
from abandoned pharmaceutical pipelines [4,6-9].
Until 2007, VH protein-protein interactions (PPIs) had

been explored with low-scale experiments focusing on a
particular viral protein or a specific biological process.
The recent application of high-throughput screening
(HTS) methods to the establishment of VH interactomes
has not only greatly enriched the landscape of VH PPI
but has also yielded an explosion in candidate drug tar-
gets. Furthermore, substantial efforts have been made to
integrate both low- and high-throughput data in various
databases (Table 2), favoring the transition from a reduc-
tionist to an integrative approach to understanding viral
infection.
Altogether, the wealth of VH PPI data has already pro-

vided access to nearly complete interactomes for several
viruses that are of public health concern, including influ-
enza virus, hepatitis C virus (HCV) and dengue virus
[10]. Integration of this information into knowledge of
the uninfected human protein network highlights key
topological and functional features of the ‘infected network’.
High-throughput approaches also allow comparative
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Table 1 Current FDA-approved antivirals and their targets

DrugBank ID Name Type Year of first approval
as an antiviral

Virus Target(s)

DB00249 Idoxuridine Small molecule 1963 HSV DNA, viral thymidine kinase

DB00915 Amantadine Small molecule 1966 Influenza virus Viral matrix protein M2

DB00987 Cytarabine Small molecule 1969 Herpesviruses Human cytidine deaminase, human
cytochrome P450 3A4, human deoxycytidine
kinase, human 5’-nucleotidase, human
deoxycytidylate deaminase

DB00194 Vidarabine Small molecule 1976 HSV, VZV Viral DNA polymerase, viral thymidine
kinase, DNA

DB00811 Ribavirin Small molecule 1980 HCV, RSV Human inosine-5’-monophosphate
dehydrogenase 1, human adenosine kinase,
human cytosolic purine 5’-nucleotidase

DB00787 Aciclovir Small molecule 1982 HSV1, HSV2, VZV Viral DNA polymerase, viral thymidine kinase

DB00495 Zidovudine Small molecule 1987 HIV Viral reverse transcriptase

DB01004 Ganciclovir Small molecule 1989 CMV Viral DNA polymerase, viral thymidine
kinase, DNA

- Tromantadine Small molecule Later than 1990 HSV Human glycoproteins

- Interferons Proteins 1990s Hepatitis, etc. Human IFNARs

DB00900 Didanosine Small molecule 1991 HIV Viral reverse transcriptase

DB00529 Foscarnet Small molecule 1991 CMV, HSV Viral DNA polymerase

DB00943 Zalcitabine Small molecule 1992 HIV Viral reverse transcriptase

DB00426 Famciclovir Small molecule 1994 HSV, VZV Viral DNA polymerase

DB00478 Rimantadine Small molecule 1994 Influenza virus Viral matrix protein M2

DB00649 Stavudine Small molecule 1994 HIV Viral reverse transcriptase

DB00709 Lamivudine Small molecule 1995 HIV, HBV Viral reverse transcriptase

DB00432 Trifluridine Small molecule 1995 HSV Viral thymidylate kinase

DB00577 Valaciclovir Small molecule 1995 HSV, VZV, CMV Viral DNA polymerase, viral thymidine kinase

DB00369 Cidofovir Small molecule 1996 CMV Viral DNA polymerase

DB00224 Indinavir Small molecule 1996 HIV Viral protease

DB00238 Nevirapine Small molecule 1996 HIV Viral reverse transcriptase

DB00299 Penciclovir Small molecule 1996 HSV Viral DNA polymerase, viral thymidine
kinase

DB00503 Ritonavir Small molecule 1996 HIV Viral protease

DB01232 Saquinavir Small molecule 1996 HIV Viral protease

DB00705 Delavirdine Small molecule 1997 HIV Viral reverse transcriptase

DB00220 Nelfinavir Small molecule 1997 HIV Viral protease

DB01048 Abacavir Small molecule 1998 HIV Viral reverse transcriptase

DB00625 Efavirenz Small molecule 1998 HIV Viral reverse transcriptase

- Fomivirsen Oligonucleotide 1998 CMV Viral mRNA

DB00110 Palivizumab Humanized monoclonal
antibody

1998 RSV Viral fusion glycoprotein F0

DB00701 Amprenavir Small molecule 1999 HIV Viral protease

DB00198 Oseltamivir Small molecule 1999 Influenza virus Viral neuraminidase

DB00558 Zanamivir Small molecule 1999 Influenza virus Viral neuraminidase

DB00632 Docosanol Small molecule 2000 HSV Viral envelope glycoprotein

DB01601 Lopinavir Small molecules 2000 HIV Viral protease

DB00022 Peginterferon alfa-2b Protein 2001 HCV Human IFNARs

DB00300 Tenofovir Small molecule 2001 HIV, HBV Viral DNA
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Table 1 Current FDA-approved antivirals and their targets (Continued)

DB01610 Valganciclovir Small molecule 2001 CMV DNA

DB00718 Adefovir Dipivoxil Small molecule 2002 HBV Viral DNA polymerase

DB00008 Peginterferon alfa-2a Protein 2002 Hepatitis Human IFNARs

DB01072 Atazanavir Small molecule 2003 HIV Viral protease

DB00879 Emtricitabine Small molecule 2003 HIV Viral reverse transcriptase

DB00109 Enfuvirtide Protein 2003 HIV Viral envelope glycoprotein

DB01319 Fosamprenavir Small molecule 2003 HIV Viral protease

DB00442 Entecavir Small molecule 2005 HBV DNA

DB00932 Tipranavir Small molecule 2005 HIV Viral protease

DB01264 Darunavir Small molecule 2006 HIV Viral protease

DB01265 Telbivudine Small molecule 2006 HBV Viral DNA polymerase, DNA

DB04835 Maraviroc Small molecule 2007 HIV Human CCR5

DB06817 Raltegravir Small molecule 2007 HIV Viral integrase

DB06414 Etravirine Small molecule 2008 HIV Viral reverse transcriptase

DB08873 Boceprevir Small molecule 2011 HCV Viral NS3 protein

DB08864 Rilpivirine Small molecule 2011 HIV Viral reverse transcriptase

DB05521 Telaprevir Small molecule 2011 HCV Virus NS3-4A protease

Abbreviations: CMV cytomegalovirus, HBV hepatitis B virus, HCV hepatitis C virus, HSV herpes simplex virus, IFNAR interferon alpha/beta receptor, RSV respiratory
syncytial virus, VZV varicella zoster virus.
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analyses, such as virulence factors versus other factors
[11] and oncogenic versus non-oncogenic factors [12-14],
and the differential targeting of crucial intracellular path-
ways [15,16].
One successful FDA-approved host-targeting antiviral

drug is Maraviroc, a CCR5 chemokine receptor antagonist
Table 2 Databases of virus-host protein-protein interactions a

VH PPI databases

Name (reference) Description

IntAct/MINT [87] Open-data molecular-interaction database populated b
from the literature or from direct data depositions

DIP [88] Database that catalogs experimentally determined pro
are either curated or computationally extracted

Uniprot [89] Protein sequence reference database. Among numero
listed some binary protein interactions quality-filtered

VirusMentha [51] Resource that specifically captures and presents interac
and host proteins curated by databases that are part o

VirHostNet [52] Knowledge base dedicated to literature- and database
between viral and human proteins

Drug-target databases

Name (reference) Description

DrugBank [90] High-quality knowledgebase. Provides extensive inform
mechanisms of action and their associations with targ

Therapeutic Target
Database [91]

Conceptually similar to DrugBank. Provides links betwe
targets and their corresponding drugs

ChEMBL [92] Large-scale database dedicated to the description of b
numerous chemical entities with drug-like properties, m
the medicinal chemistry literature

Abbreviations: IMEx International Molecular Exchange, PPI protein-protein interaction
for the treatment of HIV infection [17] (Table 1). Other
antivirals are being designed to target viral receptors, but
a challenging and promising strategy is the use of pre-
existing small molecules to drug intracellular interac-
tors of viral proteins that have been initially designed
to treat other diseases. Considering the exponentially
nd drug-targets

VH interactions Search date

y data curated either 5,717 (query performed through
IMEx single entry-point)

July 2014

tein interactions that

us annotations are
from IntAct

tions between viral
f the IMEx consortium

5,846 October 2014

-curated interactions 3,113 July 2014

Drugs Targets Search date

ation on drugs, their
ets

7,739 4,092 July 2014

en primary therapeutic 20,667 2,360 July 2014

iological activities of
anually curated from

1,359,508 9,414 July 2014

, VH virus-host.
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growing number of candidate cellular targets from in-
teractome studies, such drug repositioning is becoming
a potentially more efficient way to increase the thera-
peutic antiviral arsenal.
Here, we will review and discuss recent advances in

approaches for high-throughput VH PPI screening and
the implications of these recent findings for understand-
ing the landscape of VH PPI. We will describe the main
insights for basic research as well as the potential for
antiviral drug discovery. Finally, we feature some exam-
ples of promising and successful antiviral molecules tar-
geting host proteins.

Approaches for high-throughput screening of
virus-host protein-protein interactions
Since the first descriptions of VH protein interactions in
the late 1980s, the associated methodologies have been
adapted to large-scale studies. Yeast two-hybrid (Y2H)
and co-affinity purification remain the most frequently
used technologies, while protein arrays and protein-
complementation assays are emerging as promising ap-
proaches. As high-throughput data production does
not have a universally accepted definition, we have
chosen to review technologies that have generated
more than 100 VH PPIs. Using this definition, 35 re-
ports can be referred to as HTS of VH PPIs since 2007
(Figure 1).
Since the pioneering description of the Y2H approach

in 1989 by Fields and Song [18], Y2H and its various
technological improvements have been among the
methods of choice for the construction of VH interac-
tomes (Figure 2a). The first two unbiased genome-wide
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VH PPI screens using Y2H technology were performed
for Epstein-Barr virus and HCV. These studies relied
on an initial construction of a viral ORFeome, com-
prising cloned open reading frames (ORFs) encoding a
complete set of viral proteins, and led to the identifica-
tion, respectively, of 173 and 314 VH PPIs [19,20]. The
Y2H technology has been used in 15 high-throughput
screens since these founding studies, for viral genome-
wide interactome exploration or for focusing on a subset
of viral proteins (Figure 1). Construction of viral and hu-
man ORFeome collections and implementation of versa-
tile recombinational cloning systems (such as Gateway
(Life Technologies, Gaithersburg, MD, USA)) are essential
tools that have allowed this approach to become particu-
larly powerful. For example, Shapira and colleagues [21]
tested the interactions between the 10 influenza virus pro-
teins and 12,000 human proteins available in the human
ORFeome v3.1 [22]. The versatility of the Gateway system
allows easy transfer of cDNAs into any compatible expres-
sion system for further interaction or functional studies.
The ViralORFeome database was constructed to provide
the scientific community with an integrated set of bio-
informatics tools enabling the potential capture of viral
ORFs in the Gateway recombinational cloning system and
to make available a collection of viral cDNAs in Gateway-
compatible plasmids [23]. Nevertheless, interactions dis-
covered using Y2H screens must be confirmed by a sec-
ondary method, such as co-affinity purification, to reduce
the risk of false-positive interactions and to increase the
confidence in the dataset, which is usually expected to
reach >80% [20]. The problem of false-negative interac-
tions is more difficult to address - the sensitivity of this
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technology does not exceed 25% [24], so that repetitive
samplings of the same search space are mandatory to
reach completeness.
While Y2H screens tend to detect transient binary inter-

actions, co-affinity purification coupled to mass spectrom-
etry (coAP/MS) assays aim at detecting stable complexes
[25], exploring overlapping and complementary inter-
action search spaces (Figure 2b). One major strength of
this method, compared with Y2H, is that it can be per-
formed under more-physiological conditions, allowing
context-dependent identification of interactions. The
tandem affinity purification (TAP) technique is a vari-
ation of co-affinity purification that is characterized by a
lower contaminating background [26]. The TAP strategy
involves the use of two tags and two sequential steps of
affinity purification. This method has been used to gen-
erate the largest numbers of VH PPI data, for the target-
ing of host proteins by viral immune modulators [27]
and by tumor virus proteins [13] that identified, respect-
ively, 1,681 and 3,787 VH protein associations (Figure 1).
Protein array technologies emerged in 2010 as a prom-

ising approach to study VH PPI (Figures 1 and 2c). In a
first screen, an original array was printed with human
and viral leucine zipper regions of 33 human basic leu-
cine zipper domain proteins and four viral proteins. By
probing with fluorescently labeled versions of the same
proteins, 101 interactions were detected [28]. This ap-
proach was well validated by circular dichroism (CD)
spectroscopy that determines whether there are changes
in the conformation of proteins when they interact. Use
of CD confirmed all the retested interactions. A second
screen performed in 2013 used a commercial human
protein microarray kit containing 9,000 human proteins
that identified 100 interactions with the HCV core protein
as a probe [29]. This technology is rapidly evolving to
improve sensitivity, to increase proteome coverage and
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to allow the development of label-free optical tools and
the quantification of the association-dissociation rate of
protein interactions in a high-throughput format [30].
More recently, HTS of VH PPI by using a protein com-
plementation assay has been implemented by Jacob and
coworkers (Figures 1 and 2d) [12,14]. Comparative VH
interactomes were explored for E2, E6 and E7 proteins
from a range of pathogenic and non-pathogenic human
papillomaviruses. Benchmarking this method with ran-
dom protein pairs and a positive reference set con-
firmed the performance of this assay in a high-throughput
setting [31].
Because the presence of false positives and false nega-

tives is inherent to HTS, quality control of the datasets
is a major issue. Multiple approaches have been devel-
oped for the Y2H strategies, including the diversification
of reporter genes, low plasmid copy number and retest-
ing hits by subcloning ORFs into fresh yeast [11,32-34],
that have greatly helped to improve the quality of the
datasets. A database of cDNAs considered to be false
positives for the classic Y2H system is also available as a
work in progress [35] thanks to the work of Golemis
and co-workers [36]. In a related attempt, last year the
CRAPome database, a repository of common contami-
nants in coAP/MS experiments, was constructed to allow
better characterization of background associated with this
technology (for example, proteins that bind to the bead
matrix used during the precipitation, antibodies conju-
gated to the beads or the epitope tag) [37]. Recent tech-
nical improvements also contributed to lower the rate of
contaminants, and one of these techniques is known as
‘stable isotope labeling with amino acids in cell culture’
(SILAC) [38] coupled to co-affinity purification. SILAC is
a powerful tool to discriminate background from specific
interactions. Cells expressing the protein of interest and
control cells are labeled with different non-radioactive iso-
topes (heavy (H) and light (L)). The quantification of the
H:L ratio of proteins co-purified with the bait protein
allows the relative quantification of recovered proteins.
Nonspecific binding leads to a ratio of 1, whereas a high
ratio indicates a possible specific interaction. This method
has been successfully applied to the interactomic mapping
of the nucleocapsid protein from highly pathogenic North
American porcine reproductive and respiratory syndrome
virus [39], the human respiratory syncytial virus NS1 pro-
tein [40], the coronavirus infectious bronchitis nucleocap-
sid protein [41], the HIV1 Gag protein [42], NS3 and NS5
proteins of dengue virus type 2 [43], and NS1 and NS2
proteins of influenza A virus [44].
These approaches are complementary and allow the

exploration of different interaction search spaces. Other
methods have also been developed to be amenable to a
high-throughput format. Among them, MAPPIT is a
cytokine-based mammalian PPI trap assay [45] and
LUMIER is a tag-precipitation assay coupled to renilla
luciferase [46]. To our knowledge, none of these
methods has yet been applied in a high-throughput VH
PPI study.

Access to the comprehensive landscape of viral
human protein targets
Systems biology and reductionist approaches are com-
plementary to build a comprehensive landscape of viral
infection and replication. High-throughput screening has
revealed a large number of VH PPIs, and numerous
studies have also provided detailed and often mechanis-
tically oriented information on specific VH interactions.
Therefore, it is a challenge to identify the wealth of VH
PPI data that are available in the literature. Several data-
bases have been developed to capture and structure
these data, either through text mining or through man-
ual curation [47]. The International Molecular Exchange
(IMEx) consortium can be considered the key public
curator of such data, focusing on manually curated data
to ensure the high-quality datasets that are required for
further analysis [48]. Created in 2005, this international
collaboration framework now coordinates most of the
major public-interaction data providers. They share the
literature curation workload, applying high-level quality
standards and provide the scientific community with
unique access to the data [48]. The IMEx strategy limits
redundancies as well as inconsistencies and improves
curation coverage. IMEx partners have adopted a com-
mon curation policy that entails the use of the con-
trolled vocabularies and formats first standardized by
the Human Proteome Organization (HUPO) Proteomics
Standards Initiative - Molecular Interaction (PSI-MI)
working group in 2002 [49].
VH PPIs are represented by nearly 6,000 non-redundant

physical interactions highlighted by searching the available
databases (IntAct/MINT, DIP and Uniprot, searched be-
tween July and October 2014; Table 2). VH PPIs are also
accessible in VirusMentha, an iteration of the interactome
browser mentha that presents non-redundant virus-
related interactions extracted from manually curated
PPI databases that have adhered to the requirements of
the IMEX consortium [50,51] (Table 2). Finally, the
VirHostNet database also offers a high-quality dataset
of approximately 3,100 curated VH PPIs but has not
been updated since 2009 [52] (Table 2).
Additional efforts to construct a clean repository of

VH PPIs have been made but are difficult to trace be-
cause they often result from isolated initiatives. For sev-
eral years, we have been performing our own manual
curation of VH PPIs in the literature, according to PSI-
MI standards. From our own experience, this is a highly
demanding task, especially when it comes to viruses for
which species, strains and protein identifiers have to be
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clearly defined, and because mature proteins are often
not identified in viral polyprotein sequences. Papers with
large datasets are also often difficult to process because
of their inconvenient format and because of the hetero-
geneity in protein-annotation systems.
The number of publications describing VH PPIs is

now over 3,000, involving more than 200 viral species
(Figure 3a). The identification of non-redundant VH
PPIs has been growing exponentially since 2007, with
the use of HTS methods (Figures 1 and 3a). The accu-
mulation of VH PPIs also might allow increased confi-
dence in interactions that are redundantly described in
the literature.
Evolution of drug repositioning potential
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Figure 3 Virus-host protein-protein interaction dataset and
drug-repositioning potential. (a) Evolution of the VH PPI dataset
over the past 26 years. Orange indicates the number of non-redundant
VH PPIs; blue shows the number of publications describing at least
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(a). Number of drug-viral species combinations inferred from the VH
PPI dataset. Orange shows all drugs; blue shows FDA-approved drugs
only; and green indicates experimental drugs only.
Despite efforts to gain confidence in HTS data, over-
laps between VH PPI datasets are often very low. Experi-
mental protocols are not yet standardized from lab to
lab, from the choice of technology to differences in scor-
ing cutoffs. For instance, if Y2H has been the most
popular strategy so far to construct VH interactomes,
technological variations of this generic approach are very
important at different essential steps, such as the re-
porter genes, yeast strains, plasmid copy number, fusion
proteins, stringency conditions and libraries, that have
an obvious impact on the outcome of the experiment
[53]. Another important consideration is the dynamic
nature of many VH PPIs during the course of the infec-
tion. For instance, Sindbis virus nsP3 protein has been
shown to interact with several heterogeneous nuclear ri-
bonucleoproteins primarily at the early times of infec-
tion, whereas interactions with 14-3-3 epsilon, zeta and
eta were only observed at later times during infection
[53]. Sindbis virus nsP4 protein was found associated
with five specific host factors at early times in infection
and ten others at later times [54]. This highlights the im-
portance of the physiological context evolving during
the infection and that can also differ according to the
type of cells and the conditions of infection. Independ-
ent of the technology, an important variable that could
influence the overlap between VH screens is the hetero-
geneity of the virus protein sequences. This is mostly
exemplified for RNA viruses, whose polymerases display
a high mutation rate [55]. As a consequence, an RNA
virus referred to as a primary isolate is not genetically
homogeneous. The sequence of a viral protein can be
highly divergent from the sequence of a reference pro-
tein, and this could be responsible for the loss or gain of
interactions. Finally, some interactions might be missed
owing to inherent limitations of the technologies that
are used. For instance, Y2H is not compatible with
membrane proteins or with self-activating proteins, and
some interactions might require post-translational modi-
fications from mammalian cells. Tags or reporter pro-
teins that are fused with baits or preys can cause steric
hindrance and prevent protein interactions. To gain confi-
dence in a biophysical interaction, orthogonal validations
using other interaction methods are therefore required so
that a confidence score can be calculated [24]. After more
than two decades of studying VH PPIs, the overlap of re-
cent screens for the most-studied viruses with previous
studies is now reaching 25% (HCV [56], influenza virus
NS1 protein [44]). Bearing the above considerations in
mind, it is possible that this rate of overlap defines a near-
complete dataset of cellular proteins that are in interaction
with an extensively studied virus.
VH interactomes are representative of which interac-

tions might occur during the infection but do not unam-
biguously identify biologically relevant cellular targets
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before a functional validation of the interactions. The
functional validation is mostly assessed by modulating
the expression levels of cellular proteins (overexpression,
knockout or knockdown). In a recent exploration of
HCV-host PPIs, RNA interference screening of viral pro-
tein interactors revealed that 21.7% were essential for
viral replication [56]. This rate of validation is in the
range of previous work [11,21] and is well above the
rates identified from genome-wide small interfering
RNA screens (between 0.45% [57] and 1.36% [58]). This
indicates that combining interactomics with functional
genomics strongly enhances the biological relevance of a
cellular protein for the replication of a virus. It should
also be considered that, instead of modulating the quan-
tity of a given cellular protein, anti-viral molecules will
rather be designed to inhibit a catalytic cellular activity
or to prevent a viral protein from interacting with one
or several cellular partners. Therefore, although the
combination of high-throughput strategies could help
reduce the number of drug-target candidates in a funnel
effect, a drawback is the possible emergence of false-
negative targets and the exclusion of potentially interest-
ing drug candidates.

Recent insights from virus-human interactome
studies
High-throughput screening studies of VH interactions
were initially implemented to provide a comprehensive
view of the interplay between a virus and its host. For
example, mapping of the HCV infection protein network
has shed new light on the molecular basis of the co-
deregulation of insulin, Jak-STAT and transforming
growth factor beta signaling pathways involved in the
most frequent clinical syndromes, and it has identified
the specific targeting of the focal adhesion pathway, thus
providing new avenues for the study of tumor initiation
and progression [20].
Other screens have been designed to identify the dif-

ferential strategies exploited by closely related viruses to
perturb the cellular network. Comparative interactomics
of human papillomavirus E2 proteins clustered these
proteins according to the pathogenic potential of the
viral strains (high-risk versus low-risk), giving clues to
the potential of therapies targeting specific proteins [14].
The TAP approach has been applied to profile the inter-
actome of 70 viral immune modulators from 30 viral
species, identifying an unexpected variety of cellular
mechanisms exploited by individual viruses, families and
groups [27]. Simultaneously, a systematic study of DNA
VH interactomes (including papillomavirus, Epstein-Barr
virus, adenovirus and polyomavirus, using both Y2H
screens and TAP tag purifications) and transcriptome
network perturbations revealed a rewiring of the cellular
network and highlighted the Notch signaling pathway
and deregulation of apoptosis in virus-induced cancer
[13]. The first comparative mapping of interactions of a
set of influenza A virus NS1 and NS2 proteins, chosen
for their sequence diversity, revealed cellular targets in-
volved in each step of the infectious process that are
shared by all or the majority of the viral proteins [11].
Beyond the establishment of VH interactomes and the

discovery of specific and common cellular functions tar-
geted by viruses, studies have revealed the fundamental
principles that have evolved by which viruses manipulate
the cellular network [5,10,59,60]. Computational analysis
of network-descriptive metrics (such as ‘degree’ and ‘be-
tweenness’) raised striking observations regarding the
centrality of viral targets in the context of the human
protein network. Indeed, viral proteins showed a prefer-
ential interaction with high-degree cellular proteins -
that is, proteins having a high number of direct interact-
ing partners that are therefore locally highly connected
in the human interactome. Viral proteins also have a
strong tendency to interact with cellular proteins of high
betweenness, which is a global centrality measure of the
number of shortest paths that pass through a given pro-
tein and reflects the flux of information that is con-
trolled by that protein. These topological characteristics
of cellular proteins targeted by viral proteins have been
observed from unbiased high-throughput VH interaction
screenings and are indicative of the functional import-
ance of these characteristics. Another general hallmark
of viruses is that they can compensate for their small
proteomes by the ability to interact with numerous cel-
lular proteins. To allow this, they have evolved intrinsic-
ally disordered protein regions that are enriched for
short linear motifs involved in multiple interactions in
the human protein network [10,61]. Some of these mo-
tifs are adopted from the characteristics of their host by
using a strategy of molecular mimicry (for example, the
PDZ-binding motif at the carboxyl terminus of avian in-
fluenza NS1 proteins [62] and the polyproline motif on
the HCV NS5A protein that is able to interact with Src-
homology 3 (SH3) domains of cellular proteins [63]).
Taken together, proteomic analyses are boosting our

knowledge of viral replication and disease etiology and
are allowing the identification of new cellular targets
that might be suitable for drug development.

Advances in targeting viral interactors
Antiviral drug discovery shifts towards host targets
The search for effective therapeutics to treat viral infec-
tions has been an active area of research for many years,
resulting in both success and failure. Chronic infections
by viruses such as HIV or hepatitis B virus (HBV) can
now be controlled, but they require lifelong treatment.
Treatments for acute viral infections - for example, by
respiratory viruses or highly pathogenic emerging RNA
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viruses - are either poorly effective or do not exist. Over-
all, the treatment of viral infections largely remains an
unmet medical need despite intense research activity. In
addition to targeting viral components through direct-
acting drugs (Table 1), recent efforts are now focusing
on the identification of essential host factors as the tar-
gets of new antivirals. Targeting host factors dramatically
enlarges the repertoire of therapeutic targets and offers a
greater barrier to the emergence of resistance. Targeting
host molecules has the potential for broad-spectrum in-
dications when targeting pathways that are shared by the
different variants of a given virus or by different types of
virus [10]. Although far from complete, the construction
of VH interactomes is starting to support this active field
to identify the best cellular proteins to be targeted for an
antiviral activity.

Targeting human proteins
Antiviral small molecules that inhibit cellular functions
or VH PPIs have been reported in the literature, but cur-
rently no database has been developed to reference
them. Below, we review a selection of host-oriented
molecules with antiviral activity in vitro or in vivo
against two major viruses infecting humans, influenza
and HCVs.
The antiviral market is worth more than US$4 billion

and has a high growth rate. Recurrent seasonal influenza
represents a significant part of this market, with 5 to
10% of the world population being infected each year by
the influenza virus. A highly effective pan-strain vaccin-
ation remains the major objective to protect the popula-
tion from this infection. Currently, protection relies on
annual vaccination, offering variable and unpredictable
efficacy, and on the antiviral neuraminidase inhibitors
oseltamivir and zanamavir, which can be used for the
treatment of established illness and for pre- and post-
exposure prophylaxis in specific situations. However, the
effectiveness of these drugs is strongly questioned, and
the emergence of resistance and changes in seasonal and
pandemic strains further decrease drug response. Be-
cause of the limited therapeutic options for epidemic
and pandemic influenza, novel approaches to the devel-
opment of influenza drugs are a public health priority.
Inhibiting influenza virus replication with drugs that

target cellular proteins or cellular functions is now an
established concept. Early studies first used these drugs
for basic research [64,65], but, soon after, inhibitors of
protein kinase C (PKC) and the Raf-MEK-ERK signaling
cascades were tested for their therapeutic potential
[66,67]. Since then, more than 80 compounds targeting
host proteins have been identified for their inhibitory
impact on influenza virus replication (Figure 4). These
compounds target a large diversity of cellular proteins,
acting at almost all steps of the virus replication cycle.
Many of these inhibitory molecules were originally de-
veloped for anti-cancer indications and include agents
such as MEK inhibitors [8], obatoclax and gemcitabine
[68], flavopiridol [69], anti-cytoskeletal drugs [70] and
etoposide [71], among others. Most of these drugs have
an inherent toxicity when tested for long-term treat-
ment, but it should be noted that treatment of severe in-
fluenza virus infections is not expected to last more than
a few days. For treatment of non-severe influenza infec-
tions, additional molecules are actively being sought,
and several extended interactomes that have identified
more than 600 cellular targets of viral proteins are pro-
viding useful leads [11,21,44,51].
As mentioned above, a major problem in the use of

direct-acting drugs for the treatment of viral infections
is the high frequency of emergence of resistant strains.
The development of host-targeted therapies is expected
to reduce this risk. This has been tested experimentally
by repetitive culture of influenza virus under pressure of
direct-acting or host-oriented drugs. After five to ten
passages, no reduction of the antiviral effect was ob-
served using host-oriented molecules (a MEK inhibitor
[72], inhibitors of NF-κB [3,73] or an inhibitor of Rac1
[74]), whereas the use of the direct-acting drugs oselta-
mivir or amantadine (the two classes of approved drugs
for the treatment of influenza) led to rapid emergence of
resistant variants. This indicates that the virus cannot
easily adapt to a situation where cellular functions that
are essential for its replication become less accessible
and further suggests that targeting the host confers a
greater barrier to the development of viral resistance.
Currently, LASAG (lysine acetyl salicylate glycine) is the
first molecule targeting host intracellular proteins (NF-
κB) that is undergoing phase II clinical trials for the
treatment of severe influenza virus infection [75]. Inhibi-
tors of NF-κB are expected to limit the production of
deleterious cytokines during an infection with highly
pathogenic influenza viruses [76].
Virus-host PPIs also provide huge potential for the de-

velopment of antiviral molecules that directly interfere
with the VH interactions. Experimental molecules that
disrupt VH PPIs have already been investigated for various
viruses, and several pharmaceutical and biotechnology
companies have projects focusing on the identification
and development of drugs against host targets and VH
PPIs (Table 3). Alisporivir is one of the most advanced
molecules of this kind that has reached phase III trials for
anti-HCV therapy, as part of interferon-free treatment
combinations in chronic hepatitis C genotype 1 patients
(however, the FDA has put the trial on hold to assess a
possible side-effect of pancreatitis). Phase II trial recruit-
ments for chronic hepatitis C genotypes 2 and 3 are
ongoing [77]. The drug is a non-immunosuppressive
derivative of cyclosporin A (CsA) for which the precise
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mechanism of action against HCV infection was ini-
tially unknown [78]. Later, it was shown that CsA dis-
rupts the interaction between cyclophilin A and NS5A
through its binding in the peptidyl-prolyl isomerase
hydrophobic pocket of cyclophilin A [79,80]. Use of
alisporivir also provides a high barrier to the emer-
gence of resistance, with multiple mutations in domain
II of NS5A required in vitro for HCV to become resist-
ant [81]. Even if interference of VH PPIs by small mol-
ecules proves to be effective for specific anti-viral
indications, accumulation of further successful exam-
ples will be necessary for this approach to have wide-
spread applicability.
To date, no molecule targeting an intracellular host

protein is FDA approved for an antiviral indication.
Thus, whether such drugs are truly suitable for the treat-
ment of viral infections remains an open question, mostly
because of potential side effects. Nevertheless, it is worth
noting that the conventional antiviral compounds are
actually quite toxic. Moreover, the duration of the treat-
ment, mostly for acute infections such as with influenza
viruses, is not expected to exceed a few days, and this
could moderate the incidence of side effects and their
severity.

Drug repositioning
The discovery of new antivirals can be accelerated and
rationalized by integrating VH interactomes and drug-
related databases. A VH PPI repertoire is indicative of
the cellular proteins that are essential for the replication
of a given virus. Therefore, these cellular proteins can be
considered as potential therapeutic targets whose func-
tion could be manipulated by existing small molecules
to prevent viral usage and interfere with viral replication.
Such modulators of cellular functions, either approved
by government authorities or in clinical development for
other indications, could be repositioned as new antiviral
agents [4,6-9].



Table 3 Biotechnology companies working on the drugs against host targets and virus-host protein-protein interations

Company Web site Location Viral application Stage Mode of action

Inhikibase Therapeutics www.inhibikase.com Atlanta (GA, USA) Polyomaviruses,
HCV, HBV, smallpox
virus, ebola virus,
RSV, rhinovirus

NC NC

Forge Life Science www.forgelifescience.
com

Doyleston (PA, USA) JCV, BKV, CMV,
seasonal flu

Research Enhances the innate
role of human sirtuins

Ciclofilin
Pharmaceuticals

www.ciclofilin.com San Diego (CA, USA) HCV/HBV/HIV
co-infection

Preclinical Inhibitors of cyclophilin

Gemmus Pharma www.gemmuspharma.
com

San Francisco (CA,
USA)

FLUAV NC Agonist of a G
protein-coupled
receptor

Springbank
Pharmaceuticals

www.springbankpharm.
com

Milford (MA, USA) HCV and HBV Phase 1 Activates RIG1 and
NOD2

iTherX www.itxpharma.com San Diego (CA, USA) HCV (liver transplant) Phase 1 Entry inhibitors

Prosetta Biosciences www.prosetta.com San Francisco (CA,
USA)

HCV, FLUAV, HIV1,
RABV

SAR Targets viral capsid host
protein interaction

OyaGen Inc www.oyageninc.com Rochester (NY, USA) HIV1 Pre-clinical APOBEC3G activation and
Vif-APOBEC3G interaction

Microbiotix www.microbiotix.com Worcester (MA, USA) Ebola virus Discovery Targets NPC1-glycoprotein
interaction

Enyo Pharma www.enyopharma.com Lyon (France) HBV, FLUAV, Ebola
virus

Lead
optimization

NC

Scynexis www.scynexis.com Durham (NC, USA) HCV Phase 2 Inhibitors of cyclophilin

Vectura www.vectura.com Germany and UK Severe FLUAV Phase 2 Inhibitor of NF-κB

Novartis www.novartis.com Multinational HCV Phase 2 and 3 Cyclophilin A-NS5A
interaction

Abbreviations: BKV BK virus, HBV hepatitis B virus. HCV hepatitis C virus, CMV cytomegalovirus, FLUAV influenza A virus, JCV John Cunningham virus, NC not
communicated; RABV, rabies virus; RSV, respiratory syncytial virus.
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Databases that collect information on bioactive small
molecules and their protein targets are numerous and
differ mainly in their focus and detail level (Table 2). A
first comparison of these resources highlights that they
are both specific and complementary [82]. However,
their standardization in terms of targets and most of
all in terms of chemical entities remains a crucial chal-
lenge [83]. A preliminary attempt to aggregate several
drug-gene interaction resources is available in the drug-
gene interaction database (DGIdb), a database that allows
the exploration of the human druggable genome [84].
Combining the evolving VH PPI dataset with the drug-

target interactions described in DrugBank has already
revealed the great potential of drug repurposing for the
discovery of antiviral molecules (Figure 3b). This potential
has been accelerating since the first high-throughput
screenings for VH PPIs.

Conclusions and perspectives
Since 2007, high-throughput technologies have been ap-
plied to VH interactomes, and the number of PPIs and
human targets has been growing exponentially ever since.
Overall, this new dataset paves the way for the compre-
hensive understanding of virus life-cycles and host-cell
responses. It also opens new horizons for the discovery
of host-oriented drugs, whereas most of the antiviral
molecules developed so far have only targeted viral com-
ponents. Basic and pharmaceutical research is now mov-
ing towards the targeting of host proteins. Successful
examples include the FDA-approved Maraviroc for the
treatment of HIV infection, and promising results, for
example, for influenza (LASAG, phase II clinical trial,
Vectura, Chippenham, UK) and hepatitis C (Alisporivir,
phase II clinical trial, Novartis, Basel, Switzerland).
These pioneering studies have also demonstrated a re-
duction in the rate of emergence of antiviral resist-
ance. The explosion in the number of potential targets
owing to the recent use of high-throughput technolo-
gies has also resulted in an explosion in the number of
antiviral drug candidates through the use of reposi-
tioning strategies for existing drugs and experimental
molecules.
Virus-host interactomes are far from complete and

would greatly benefit from the diversification of protein-
interaction detection methods to allow the comprehensive
exploration of the interactome space. Another major con-
cern is the quality and completeness of the human inter-
actome itself, which is important for prioritizing targets
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and for proposing strategies of drug combinations based
on network pharmacology.
Viruses have evolved with their hosts to manipulate nu-

merous cellular functions, and much can also be learnt
from them to control cellular functions that are impaired
in non-infectious pathologies. For instance, bioenergetic
metabolism plays a pivotal role in the replication of vi-
ruses, and the targeting of metabolism by viral proteins
can translate into clinical symptoms, best exemplified by
chronic hepatitis C, which is characterized by metabolic
dysfunction, including insulin resistance. Interestingly, the
activity of hexokinase, the first rate-limiting enzyme of
glycolysis, is increased upon its interaction with a HCV
protein [85]. Mimicking the mechanisms by which this
viral protein controls the first step of glycolysis should
make it possible to develop novel therapeutic strategies to
potentiate glycolysis in metabolic diseases. Testing the hy-
pothesis that genomic mutations and tumor viruses might
cause cancer through related mechanisms, Rozenblatt-
Rosen and colleagues [13] showed that the analysis of the
cellular targets of tumor virus proteins can identify cancer
genes with a good success rate. Combined with genomic
studies, tumor VH interactomes could therefore become
instrumental for the identification of cancer-related genes
and proteins and for their prioritization for therapeutic
development. These are just two examples from recent
studies that indicate that, in addition to paving the way to
host-oriented therapeutics for the treatment of viral infec-
tions, VH interactomes also have broad implications for
the field of non-infectious diseases.
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