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PTK6 inhibition promotes apoptosis of
Lapatinib-resistant Her2+ breast cancer cells
by inducing Bim
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Abstract

Introduction: Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human
Epidermal Growth Factor 2+ (Her2+) breast cancers. Overexpression of PTK6 enhances anchorage-independent
survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective
strategy to inhibit growth and survival of Her2+ breast cancer cells, including those that are relatively resistant to
Lapatinib, a targeted therapy for Her2+ breast cancer, either intrinsically or acquired after continuous drug exposure.

Methods: To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2+ breast cancer cell lines
(UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6
expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo,
as well as the mechanisms responsible for these effects.

Results: Lapatinib treatment of “sensitive” Her2+ cells induces apoptotic cell death and enhances transcript and
protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively “resistant” Her2+

cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6
expression in these “resistant” cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation
impairs growth of these cells in in vitro 3-D MatrigelTM cultures, and also inhibits growth of Her2+ primary tumor
xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA
rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK
or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and
pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells
from apoptosis.

Conclusions: PTK6 downregulation induces apoptosis of Lapatinib-resistant Her2+ breast cancer cells by enhancing Bim
expression via p38 activation. As Bim expression is a critical biomarker for response to many targeted therapies, PTK6
inhibition may offer a therapeutic approach to treating patients with Her2 targeted therapy-resistant breast cancers.
Introduction
Patients with breast cancers of specific subtypes are at
higher risk for recurrence. Human epidermal growth
factor receptor 2 (Her2)+ breast cancer is a higher risk
subtype that constitutes 20–30 % of all breast tumors.
Targeted therapies such as Herceptin and Lapatinib have
* Correspondence: hanna.irie@mssm.edu
1Division of Hematology and Medical Oncology, Department of Medicine,
Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468
Madison Avenue, New York, NY, USA
2Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of
Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA

© 2015 Park et al. This is an Open Access artic
License (http://creativecommons.org/licenses/
any medium, provided the original work is pr
(http://creativecommons.org/publicdomain/ze
improved recurrence-free survival and helped control
metastatic or recurrent disease (as reviewed [1]). However,
response to these therapies is not uniform and resistance,
either intrinsic or acquired, remains a significant clinical
challenge. Strategies to treat breast cancers that are no
longer sensitive to these targeted therapies could translate
into improved outcomes for patients.
We initially identified protein tyrosine kinase 6 (PTK6)

as a critical mediator of anoikis resistance of breast cancer
cells in a functional genomic screen designed to identify
regulators of anchorage-independent survival [2]. PTK6,
a member of a distinct family of non-receptor tyrosine
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kinases distantly related to Src kinases, is expressed in
breast cancers and multiple other cancer types [3–7]. We
reported that PTK6 transcript expression has prognostic
significance; higher levels of PTK6 are associated with
adverse outcomes independently of other factors such as
nodal status. Among the molecular subtypes of breast
cancer, estrogen receptor (ER)+ and Her2+ cancers express
the highest levels of PTK6 transcript [2].
PTK6 is a non-receptor tyrosine kinase composed of

an amino-terminal SH3 domain, SH2 domain, and
carboxyl-terminal kinase domain (as reviewed [6, 7]).
PTK6 promotes oncogenic phenotypes including enhanced
proliferation, enhanced anoikis resistance, regulation of
autophagy, epithelial-mesenchymal transition, and
migration/invasion, via kinase activity-dependent and
possibly independent mechanisms [2, 6–11]. There are
increasing numbers of PTK6 kinase substrates, including
Sam68, Stat3/5b, BKS, Fak, Cbl, and paxillin, many of
which are known to play critical roles in oncogenic
signaling [12–19]. Unlike the distantly related src kinases,
PTK6 lacks a myristylation sequence. Therefore, PTK6
exhibits a broader range of cellular localization that could
impact its activities; PTK6 protein has been detected in the
nucleus, cytosol, and membranes of cells [4, 10, 20]. The
preferential localization pattern of PTK6 appears to differ
between normal vs tumor cells, which could account for
differential access to substrates and differential activities in
these contexts; while PTK6 is expressed in the nucleus of
normal luminal prostate epithelial cells, PTK6 is largely
cytosolic in more aggressive prostate cancer cells [4, 12].
PTK6 impacts survival of both normal and cancer

cells, and may seemingly play contradictory roles in
these two contexts. In normal intestinal epithelial cells,
PTK6 is required for apoptosis induced by DNA damage
following UV irradiation [21]. In contrast, in many tumor
model systems PTK6 promotes survival. For example,
enhanced PTK6 expression inhibits anoikis and autopha-
gic death following matrix detachment and promotes soft
agar colony growth [2, 9, 17, 22]. Furthermore, downregu-
lation of PTK6 enhances anoikis of breast, ovarian and
prostate cancer cells [2, 17]. PTK6 may also regulate
sensitivity to targeted therapeutics. In the studies of
Xiang et al., overexpression of PTK6 in ErbB2+ MCF-10A
cells suppressed the growth inhibitory effects of Lapatinib
treatment [23]. However, the precise molecular mecha-
nisms by which PTK6 regulates survival and specifically the
apoptotic machinery, of Her2-targeted therapy-resistant
cells have not yet been elucidated.
In this study, we sought to determine the effects of PTK6

inhibition on growth and survival of Lapatinib-resistant
Her2+ breast cancer cells. We demonstrate that PTK6
downregulation induces apoptosis of these cells by enhan-
cing Bim protein expression. Induction of Bim is critical,
as downregulation of Bim expression prevents PTK6
shRNA-induced apoptosis. We also present evidence for
p38 activation as a mechanism for PTK6 shRNA-induced
Bim induction, and provide the first link between PTK6
and the intrinsic apoptotic pathway.

Methods
Antibodies and reagents
GAPDH, cleaved PARP, phospho-ERK1/2, phospho-AKT
(Ser473), phospho-p38 (Thr180/Tyr182), phospho-hsp27
(Ser82), phospho-JNK (Thr183/Tyr185), p-c-Jun (Ser73),
p-ATF2 (Thr71), α-tubulin, phospho-Her2 (Tyr1289),
phospho-Her2 (Tyr877), Hsp70, Bcl-2, Bcl-xL, Mcl-1,
pro-apoptotic Bcl-2 family members (Puma, phospho-Bad
(Ser112), Bid), and total p38 antibodies were purchased
from Cell Signaling (Danvers, MA, USA). PTK6 (D7),
PTK6 (C18), anti-rabbit-hrp, anti-mouse-hrp antibodies,
and Protein A/G Plus-agarose (sc-2003) were purchased
from Santa Cruz Biotechnology, Inc (Dallas, TX, USA).
Bim antibody was purchased from Abcam (Cambridge,
MA, USA). Growth factor-reduced MatrigelTM and
Z-VAD-FMK were purchased from BD Bioscience
(Franklin Lakes, NJ, USA). Lipofectamine 2000 and Plus
reagent were purchased from Life Technologies (Grand
Island, NY, USA). Lapatinib, SB203580, and SP600125
were purchased from Sellekchem (Houston, TX, USA).

RNAi
PTK6 Mission shRNAs (TRCN0000021549 (49), TRCN
0000021552 (C9), TRCN0000196912 (12), TRCN000
0199853 (53)) and Bim shRNAs (TRCN0000001051 (51),
TRCN0000001054 (54)) were purchased from Sigma
Aldrich (St. Louis, MO, USA).

Cell lines
MDA-MB-453, UACC893, SKBR3, and HCC1954 were
purchased form ATCC (Manassas, VA, USA). MDA-MB-
453 and UACC893 cells were maintained in complete
DMEM medium supplemented with 10 % fetal bovine
serum and penicillin/streptomycin. The Lapatinib-resistant
cell line, UACC893R1, was generated by culturing parental
UACC893 cells continuously over 6 months in the presence
of increasing concentrations of Lapatinib (up to 5 μM).
These cells were then maintained in DMEM complete
medium in the presence of 1 μM Lapatinib. SKBR3 and
HCC1954 cells were maintained in complete McCoy’s 5A
and RPMI medium, respectively, supplemented with 10 %
fetal bovine serum and penicillin/streptomycin.

Viral infections
Lentivirus was generated by co-transfecting 293T cells
with lentiviral vector, Δ8.9, and pCMV-VSV-G using
Lipofectamine 2000 and Plus reagent as described in
Irie et al. [2]. Supernatants were collected and frozen
at −80 °C overnight. Retrovirus was generated by
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transfecting 100-mm plates of 293-GPG cells with retro-
viral vectors using Lipofectamine 2000 according to estab-
lished protocols [24]. Virus was collected, filtered and
stored at −80 °C. Cells were infected with virus by spin-
infection at 2,250 rpm for 30 minutes at room temperature
followed by overnight incubation at 37 °C. Infected cells
were selected in the presence of antibiotics (puromycin or
G418) purchased from InvivoGen (San Diego, CA, USA).

Quantitative real-time PCR
GAPDH and β-Actin primers were purchased from Qiagen
(Venlo, Netherlands). β-2M (Hs00984230_m1), PTK6
(Hs00963386_m1), and Bim (Hs00708019_s1) gene expres-
sion assays were purchased from Applied Biosystems
(Grand Island, NY, USA). The Bim gene expression assay
detects all isoforms of Bim transcript (BimEL, BimL, and
BimS). For real-time PCR, RNA was extracted from cell
lines using RNeasy kit (Qiagen) and cDNA was synthesized
using Taqman cDNA synthesis kit and oligo-dt (16)
primers (Life Technologies). Taqman PCR reactions were
run using 2 × Taqman universal master mix II (Applied
Biosystems, Cat. number 4440040), 5 μl of undiluted
cDNA, and 1 μl of PTK6 gene expression assay (protocol
used: UNG incubation (50 °C, 2 minutes), polymerase acti-
vation (95 °C, 10 minutes), 40 cycles of denaturation (95 °C,
15 sec) and annealing/extension (60 °C, 1 minute)). For
other genes, the reactions were performed using 2 × Power
SYBR green PCR master mix (Life Technologies), 5 μl of
two-fold diluted cDNA, and 2.5 μl of 10 μM primer mix.

Three-dimensional (3-D) cell growth assays
Eight-well chamber slides (BD Biosciences) were coated
with 50 μl of growth factor-reduced MatrigelTM; 400 μl
of complete growth media containing 4,000 cells were
added to each well coated with MatrigelTM. All samples
were set up in triplicates. The chamber slides were incu-
bated at 37 °C and re-fed every 3–4 days with complete
growth media. Cells were imaged using the Axiovert 25
inverted microscope (Carl Zeiss AB).

Western blots
Protein lysates were prepared using 1 % NP40 Lysis Buffer
(Boston Bioproducts, Ashland, MA, USA) and quantified
by bicinchoninic acid (BCA) assay. Lysates were resolved
using 4–12 % Bis-Tris gradient gels (Life Technologies),
transferred at 100 V onto polyvinylidene fluoride (PVDF)
membranes using transfer buffer solution (Boston Biopro-
ducts) containing 10 % methanol. The membranes were
blocked in 5 % BSA/TBS + 0.05 % Tween solution at
room temperature and incubated in primary antibody
overnight at 4 °C. Membranes were incubated with
secondary antibody (1:2,000) for 1 h at room temperature
and were washed in 1 × TBS+ 0.05 % Tween. Blots were
developed using ECL (Pierce).
Growth curve analysis
We plated 5 × 104 MDA-MB-453 or UACC893R1 cells
infected with either control or PTK6 shRNAs onto 12-well
plates in triplicate. The number of live cells was counted
every 3–4 days to generate the growth curves. Experiments
were performed two or three times with UACC893R1 and
MDA-MB-453 cells, respectively. For growth curve ana-
lysis in the presence of Lapatinib, 1 × 105 UACC893 and
UACC893R cells were plated in triplicate in 24-well
plates. Cells were treated with either DMSO or Lapatinib
(0.5–5 μM). The number of live cells was counted to
generate the growth curves.

Fluorescence-activated cell sorting (FACS)
We detached 5 × 105 cells from the plates using 3mM
EDTA/PBS and resuspended in 500 μl of ice-cold PBS.
Annexin V-fluorescein isothiocyanate (FITC) staining
was performed according to the manufacturer’s protocol
(BD Pharmingen, San Diego, CA, USA). For cell cycle
profile analysis, cells were fixed using 80 % ethanol,
stored overnight at 4 °C, and then spun at 1,500 rpm for
5 minutes at 4 °C using a centrifuge (Eppendorf 5810R).
Pellets were washed with cold PBS + 1 % serum, mixed,
spun for 5 minutes at 1,200 rpm, and stained with pro-
pium iodide (PI)/RNase solution (BD Pharmingen). All
analysis was performed using FACS Diva software on a
BD FACSCanto II flow cytometer.

Soft agar assays
Base agar was prepared with 0.8 % agarose (Lonza,
Basel, Switzerland) at 42 °C. Equal volumes of agarose
and 2 × complete growth media were mixed and
plated. Top agar (final concentration of 0.4 %) was
prepared using a 1:1 mixture of 0.8 % agarose and 2 ×
growth medium at 37 °C. Cells resuspended in top agar
were plated and cultured for 30 days. Cells were re-fed
one to two times a week with fresh media.

Tumor xenografts
We resuspended 5 × 105 UACC398R1 cells infected with ei-
ther control or PTK6 shRNA lentivirus in 100 μl of growth-
factor-reduced MatrigelTM on ice. Cell suspensions were
injected subcutaneously into the flanks of 6-week-old female
nude (nu/nu) mice (Charles River Laboratories). Tumor
measurements were performed twice weekly and tumor vol-
ume was calculated using the formula: V =1/2 (L × W2). All
procedures and studies with mice were performed in ac-
cordance with protocols pre-approved by the Institutional
Animal Care and Use Committee of Mount Sinai.

Immunoprecipitation (IP)
We lysed 5 × 105 UACC893R1 cells infected with either
control or PTK6 shRNA lentivirus in IP lysis buffer (NP-40
lysis buffer (Boston Bioproducts: BP-431), PMSF, leupeptin,
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aprotinin, NaF, Na3VO4, and phosSTOP (Roche, Basel,
Switzerland)) and incubated at 4 °C for 20 minutes. Cell ex-
tract was prepared by spinning at full speed for 20 minutes
at 4 °C using a centrifuge (Eppendorf Centrifuge 5424R).
Supernatant was pre-cleared with 50 % slurry beads (pre-
equilibrated with IP lysis buffer) for 30 minutes, incubated
with PTK6 antibody (C18) for 2 h, and incubated with 35
μl of 50 % slurry beads for 1 h in a rotating wheel at 4 °C.
Beads were washed three times with IP wash buffer (IP lysis
buffer without protease inhibitor) and boiled with 2 × SDS
sample buffer for 3 minutes at 95 °C. The samples were an-
alyzed by western blotting following the above protocol.

Consent statement
We confirm that this study did not involve human patients
and no consent was necessary.

Results
Bim expression is not induced in Lapatinib-resistant
Her2+ breast cancer cells
We assessed a panel of Her2+ breast cancer cells with
respect to their relative sensitivities to treatment with
Lapatinib, a small molecule inhibitor of Her2 and other
epidermal growth factor receptor (EGFR) family mem-
bers that is used in clinical practice. Cell death following
24 h of Lapatinib treatment was initially quantified by
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not increase expression of Bim above basal levels. Lapatinib
treatment of UACC893R1 cells also did not result in en-
hanced levels of cleaved PARP (above basal) even though
Her2 phosphorylation was still effectively inhibited (Fig. 1b).
In addition, in MDA-MB-453 cells, which are intrinsically
resistant to Lapatinib treatment, Lapatinib did not enhance
levels of Bim or apoptosis, as assessed by cleaved
PARP detection (Fig. 1c). Therefore, in some Her2+

breast cancer cells, resistance may be linked to the
inability of Lapatinib treatment to induce Bim and
apoptosis, and strategies that enhance Bim expression
could induce death of these resistant cells.

Downregulation of PTK6 inhibits growth and induces
death of Lapatinib-resistant Her2+ breast cancer cells
We previously reported that PTK6 transcript is highly
expressed in the Her2+ subtype and downregulation
enhances anoikis of Her2+ breast cancer cells [2].
Interestingly, in The Cancer Genome Atlas (TCGA)-
Breast expression dataset PTK6 expression correlates
with genes that negatively regulate programmed cell
death (NIH DAVID fold enrichment = 1.85, nominal
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which PTK6 downregulation impairs survival and growth
of Lapatinib-resistant Her2+ breast cancer cells.

PTK6 downregulation induces Bim expression, which is
required for apoptosis
We sought to determine the mechanisms by which
PTK6 regulates survival of Lapatinib- resistant Her2+

breast cancer cells. As a first step, we evaluated the
effect of PTK6 downregulation on expression of pro-and
anti-apoptotic members of the Bcl2 family. We did not
observe any changes in expression of Mcl-1, Bcl-xL, Bcl-2,
Puma, Bid, or phospho-Bad (Additional file 4: Figure S4).
However, with PTK6 shRNA expression, we observed an
increase in expression of the three major isoforms of Bim,
a pro-apoptotic BH3 domain-only member of the Bcl2
family (BimEL, BimL, and BimS); changes were most pro-
nounced for BimEL and BimS, and to lesser degree for
BimL (Fig. 4a). The enhancement in Bim levels and apop-
tosis induced by PTK6 shRNA expression can be fully
suppressed by co-expression of wild-type PTK6 that
cannot be targeted by the PTK6 shRNA vector, supporting
the specificity of this regulation (Fig. 4b). Furthermore,
Bim induction was observed with PTK6 shRNA expres-
sion even in the presence of Z-VAD-FMK, a pan-caspase
inhibitor, indicating that the induced Bim expression is
not secondary to cell death (Additional file 5: Figure S5).
The induction of Bim protein observed with PTK6
shRNA expression is at least in part due to increased
transcript levels of Bim, as assessed by quantitative
RT-PCR (Fig. 4c).
To address the requirement for Bim induction in apop-

tosis induced by PTK6 shRNA expression, we co-infected
cells with shRNA vectors targeting PTK6 and Bim.
Co-infection of Bim shRNA (with either of two inde-
pendent vectors) rescued PTK6 shRNA-expressing
cells from apoptosis, as assessed by levels of cleaved
PARP and number of Annexin V-positive cells (Fig. 4d, e,
and Additional file 6: Figure S6). These data support a
causal, mechanistic link between PTK6 shRNA expression,
Bim expression and apoptosis of these Lapatinib-resistant
Her2+ breast cancer cells.

PTK6 downregulation enhances Bim expression in part
through activation of p38MAPK signaling
To determine the signaling pathways responsible for PTK6
downregulation-mediated Bim induction in UACC893R1
and MDA-MB-453 cells, we examined the status of major
signaling pathways activated downstream of Her2 that have
been implicated in survival, and Bim regulation [26, 28].
Interestingly, PTK6 downregulation did not consistently
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Fig. 4 Induction of Bim expression is required for apoptosis following protein tyrosine kinase 6 (PTK6) downregulation. a MDA-MB-453 and
UACC893R1 cells expressing control or PTK6 shRNA(s) (C9, 12 or 49) were lysed at two time points following shRNA lentiviral infection. Lysates
were probed with indicated antibodies. b UACC893R1 cells expressing either empty or wild-type (WT) PTK6 cDNA vector were super-infected
with control or PTK6 shRNA lentivirus that targets the 3′UTR of PTK6 (49). Cells were lysed 96 h after infection and lysates were probed with the
indicated antibodies. c RNA from UACC893R1 or MDA-MB-453 expressing PTK6 shRNA (C9, 12, or 49) was extracted and levels of Bim transcript
were assessed. d UACC893R1 cells expressing control or Bim shRNA (51) were superinfected with control or PTK6 shRNA lentivirus. Cells were
harvested and lysates were probed with antibodies to cleaved poly ADP ribose polymerase (PARP) and Bim. All experiments were performed
three times. Numbers below blots indicate quantification of band intensity performed using Image J, normalized to respective loading control
bands. e UACC893R1 cells co-infected with the indicated viruses (EV, empty vector; PTK6 shRNA 49; Bim shRNA 51) were harvested 96 h after
infection, stained with Annexin-V and propium iodide, and analyzed by flow cytometry. The percentage of Annexin-V positive cells is plotted.
Right, the levels of Bim or PTK6 transcript were evaluated in parallel samples. Statistics were applied to results obtained with triplicate experiments;
*P <0.05. P-values were determined by comparing control shRNA to PTK6 and/or Bim shRNA-treated samples: δPTK6; #Bim
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affect either Akt or Erk/mitogen-activated protein kinase
(MAPK) signaling, two pathways known to regulate Bim
expression (Fig. 5a). In contrast, we observed robust activa-
tion of p38 MAPK with PTK6 downregulation (Fig. 5a).
To determine if p38 MAPK kinase activation plays a

role in Bim induction and apoptosis following PTK6
expression downregulation, UACC893R1 or MDA-MB-453
cells expressing PTK6 shRNA were treated with a pharma-
cological inhibitor of p38 (SB203580) and effects on Bim
expression and apoptosis were assessed. Inhibition of p38
activity by SB203580 was confirmed by assessing the level
of phosphorylation of Hsp27, a direct substrate of p38; the
inhibition of p38 activity was nearly complete at 5-μM con-
centration (Fig. 5b). SB203580 treatment partially rescued
cells from apoptosis in a dose-dependent manner, as
assessed by levels of cleaved PARP (Fig. 5b). In addition,
treatment of PTK6 shRNA-expressing UACC893R1 cells
with SB203580 prevented PTK6 downregulation-induced
expression of all Bim isoforms (Fig. 5c). Similarly in
MDA-MB-453 cells, treatment with the p38 inhibitor
SB203580 prevented PTK6 shRNA-induced Bim expression
and apoptosis (Fig. 5b and c). These effects of p38 inhibitor
treatment are not due to generalized inhibition of stress-
related kinases. JNK is also activated in response to PTK6
downregulation (Additional file 7: Figure S7A). However,
treatment with SP600125, a JNK inhibitor, failed to
rescue cells from apoptosis or prevent Bim induction
at doses that inhibited anisomycin-induced JNK activity
(Additional file 7: Figure S7B and C). Taken together,
our results support a role for activation of p38MAPK
in Bim expression and apoptosis induced by PTK6
downregulation.

Discussion
The treatment of breast cancers resistant to current
standard therapies poses significant clinical challenges.
Cancers intrinsically possess or develop mechanisms to
evade the death-inducing effects of cytotoxic agents, as
well as targeted therapies. Treatment resistance con-
tributes to the development of recurrent or metastatic
breast cancers, which are responsible for the majority
of deaths due to breast cancer. Therefore, strategies
to effectively inhibit the growth and induce death of
breast cancer cells resistant to currently available targeted
therapies could lead to novel therapeutic options for
patients with breast cancer. In this study, we report for
the first time that inhibition of PTK6 induces apoptotic
cell death of Her2+ breast cancer cells that are relatively
resistant to Lapatinib at baseline or after continuous treat-
ment in the presence of this Her2 tyrosine kinase inhibitor
(TKI). Apoptosis is induced via enhanced expression
of Bim, a BH3-only member of the Bcl2 family via a
p38-dependent mechanism.
Our studies show for the first time a link between

PTK6, pro-apoptotic Bim and apoptosis of Her2+ breast
cancer cells. Bim, which is expressed as three major
isoforms (BimEL, BimL, and BimS), is a regulator of
the mitochondrial (intrinsic) apoptotic pathway ([29] and
also reviewed in [30]). Bim is emerging as a biomarker of
sensitivity to targeted therapies, including those that
target EGFR family members such as Lapatinib. Bim
is frequently downregulated in cancers and lower
levels of Bim expression are associated with poorer
response to targeted therapy treatment [31]. Tumors
with relatively lower levels of Bim due to a common
deletion polymorphism are also more resistant to
EGFR tyrosine kinase inhibitors [32].
Induction of Bim expression tips the functional balance

of interacting Bcl2 family members in favor of apoptosis.
Bim induction is required for targeted therapy-induced
apoptosis of colon, lung, and breast cancers; for example,
siRNA-mediated Bim downregulation impaired apoptosis
of Her2+ BT474 cells in response to Lapatinib treatment
[26, 28, 33, 34]. In studies presented in this report, we
found that Bim expression is not significantly induced in
Her2+ breast cancer cells that are resistant to Lapatinib,
either at baseline or acquired through continuous ex-
posure to Lapatinib, and this lack of induction correlates
with lack of apoptosis in response to Lapatinib treatment.
Interestingly, we did not observe induction of PUMA,
another BH3 only protein implicated in Lapatinib-induced
apoptosis, in either the Lapatinib-sensitive or resistant
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cell lines evaluated in this report (Additional file 1:
Figure S1C and [26]).
Strategies that enhance Bim expression, such as PTK6

inhibition, could therefore be an effective strategy to
induce death of TKI-resistant Her2+ breast cancer cells.
Bim is regulated on multiple levels via transcriptional
and post-transcriptional mechanisms. Transcription
factors such as Foxo3a, NF-κB, c-Myc, CHOP, and AP-1
are known to regulate Bim transcription [35–39]; these
are in turn regulated by major survival signaling mole-
cules, such as Erk/MAPK, Akt, and p38 [39–42]. Bim
transcript levels are also influenced by epigenetic modifi-
cations of the BIM locus and by microRNA-dependent
suppression [43–46]. Post-transcriptionally, the stability of
Bim protein is regulated by Erk-dependent ubiquitination
and proteasome-dependent degradation [47]. PTK6 inhib-
ition is one approach to induce death by enhancing the
expression of Bim protein to levels sufficient to induce
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apoptosis in Lapatinib-resistant cells. The increased
expression of Bim protein is at least partially accounted
for by increased levels of Bim transcript in PTK6 shRNA-
expressing cells. Future studies will elucidate the specific
Bim transcriptional programs regulated by PTK6.
Our studies also show for the first time a link between

p38 signaling and PTK6-dependent Bim regulation in
Her2+ breast cancer cells. Following PTK6 downregula-
tion, we did not consistently observe changes in Erk/
MAPK or Akt signaling. Rather, p38 MAPK was robustly
activated and contributes to the induction of Bim pro-
tein expression and apoptosis. The rescue of cells from
apoptosis and inhibition of Bim expression by p38
inhibitor treatment is not due to generalized rescue of
stress signaling as inhibition of JNK, which is also
activated by PTK6 shRNA expression, does not block
apoptosis or Bim induction. The pro-apoptotic roles of
p38 in the setting of cellular stress are well documented.
P38 induces Bim activity and apoptosis via direct
phosphorylation at Serine 65 following Sodium arsenite
treatment [48]. In addition, p38 activity led to increased
Bim transcription following glucocorticoid treatment of
lymphoblastic leukemia cells [49]. However, in other
studies, p38 promotes cellular survival, for example, in
response to DNA damage or activation of growth factor
receptors (e.g., IGF-R1) due to ionizing radiation [50, 51].
Our results are also interesting in light of a previous study
showing that PTK6 promotes p38 MAPK activation,
subsequent Cyclin D1 expression and migration in
the context of heregulin- or EGF-stimulated breast
cancer cells [52]. These seemingly conflicting roles of
p38 in normal and cancer cell phenotypes have been
repeatedly observed. P38 may play a role in pro- or
anti-proliferative functions, as well as pro- or anti-
apoptotic signaling depending on the cell-type-specific
context, the specific stimuli that are used to activate p38,
and the intensity or duration of its activation. Future
studies are aimed at further dissecting the mechanism by
which PTK6 inhibition activates p38 signaling, as well as
the mechanisms responsible for p38-mediated regulation
of Bim and apoptosis downstream of PTK6.
Recently Ludyga et al. showed that downregulation of

PTK6 expression, alone or in combination with Her2
downregulation in Lapatinib and Tratuzumab-resistant,
JIMT-1 breast cancer cells inhibited their proliferation
without causing cell death [53, 54]. The lack of apoptosis
following PTK6 downregulation contrasts with our
findings in two independent Her2+ cell lines that are
resistant to Lapatinib treatment. This may potentially
be due to several factors: 1) the relatively high levels
of autophagy reported in JIMT-1 cells which may
protect cells from apoptosis-inducing stimuli [55]; 2)
the differential expression of Bcl2 family members
and other proteins (e.g., high MUC4 expression in
JIMT-1 cells) that could modify the threshold for apoptosis
induction [56]; and 3) differences in the genetic background
of these cells (e.g., PTEN status) that could modify
apoptotic responses [57, 58]. Nevertheless, it is encour-
aging that our studies are complementary in demonstrat-
ing the efficacy of PTK6 inhibition in inhibiting the
growth of Her2 targeted therapy-resistant breast cancer
cells, and future studies are aimed at identifying bio-
markers associated with cytostatic vs. cytocidal responses
to PTK6 downregulation.
The studies presented in our current report support

the clinical translation of PTK6 inhibition. There are
already several small molecule inhibitors of PTK6 that
have been developed and they potently inhibit kinase
activity in vitro [59–61]. As these become available, it
will be critical to assess whether inhibition of kinase
activity phenocopies our results with shRNA expression
vectors. The kinase dependency of PTK6-induced
oncogenic phenotypes has previously been reported by
us and others; in our previous report, we showed that
the ability of PTK6 to enhance anoikis resistance when
overexpressed in immortalized breast epithelial cells was
dependent on PTK6 kinase activity [2]. Kinase activity of
overexpressed PTK6 is also responsible for enhanced cell
migration and invasion of MDA-MB-231 triple-negative
breast cancer cells [19]. These kinase-dependent functions
are likely due to phosphorylation and/or activation of
an increasing number of PTK6 substrate molecules,
including Sam68, Stat3/5b, paxillin, BKS/STAP2, p130CAS,
AKT, β-catenin, and p190RhoGAP [12–17, 19, 20, 62–64].
However, Harvey et al. have also reported that over-
expression of a kinase-inactive PTK6 is able to enhance
proliferation of T47D breast cancer cells relative to vector
control-expressing cells [9]. As these studies did not
include simultaneous evaluation of a kinase-active PTK6,
it is difficult to specifically assess the relative contribution
of kinase activity to enhanced proliferation. Nevertheless,
it is possible that PTK6 is able to regulate proliferation
via protein-protein interactions independently of kin-
ase activity. Small molecule inhibitors of PTK6 should
prove useful in determining the role of PTK6 kinase
activity in Bim and apoptosis regulation of Her2+ breast
cancer cells.

Conclusions
In conclusion, our study supports PTK6 inhibition as a
strategy to induce apoptosis of Lapatinib-resistant Her2+

breast tumors by enhancing expression of pro-apoptotic
Bim that may be suppressed via multiple mechanisms in
breast cancers. PTK6 downregulation induces Bim and
apoptosis by stimulating p38 MAPK activity. Our data
support the clinical translation of PTK6 inhibition as a
therapeutic strategy for Her2+ breast cancers, including
those resistant to currently available targeted therapies.
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Additional files

Additional file 1: Figure S1. Lapatinib treatment induces apoptosis of
human epithelial growth factor receptor 2 (Her2)+ breast cancer cells but
does not induce Puma. A UACC893 and Lapatinib-resistant UACC893R
cells were treated with either dimethyl sulfoxide (DMSO) or increasing
concentrations of Lapatinib (0.5μM−5μM) and counted at the indicated
number of days. B Lapatinib-sensitive Her2+ tumor cells (HCC1954 and
SKBR3) were treated with either DMSO or 1 μM Lapatinib for 24 h,
stained with propium iodide (PI), and analyzed by fluorescence-activated
cell sorting. The percentage of cells in the sub-G1 population is shown.
C UACC893, UACC893R1, and MDA-MB-453 cells were grown in
monolayer cultures, treated with either DMSO or Lapatinib (1 μM) for
24 and 48 h, and lysed. Lysates were probed with the indicated
antibodies. D SKBR3 and HCC1954 cells were grown in monolayer
cultures, treated with either DMSO or Lapatinib (1 μM) for 24 h, and
lysed. Lysates were probed with the indicated antibodies. *P <0.05;
**P <0.005; ns not statistically significant.

Additional file 2: Figure S2. PTK6 expression is correlated with genes
that negatively regulate apoptosis. Correlation analysis of PTK6 transcript
was performed using The Cancer Genome Atlas (TCGA) Breast Cancer
Illumina RNAseq V2 level 3 datasets [27]. Gene Ontology (GO) annotation
was carried out on genes with expression that correlated with expression
of PTK6 at an absolute value for Pearson’s correlation coefficient of 0.3 or
greater. The top 20 Gene Ontology Biological Pathway terms are shown,
and the overlapping genes in the top GO term. The dotted line
represents a nominal p value cutoff of 0.05.

Additional file 3: Figure S3. PTK6 downregulation induces apoptosis
of Lapatinib-resistant human epithelial growth factor receptor 2
(Her2)+ breast cancer cells. A MDA-MB-453-expressing control or
PTK6 shRNA (12) were stained with Annexin-V and propium iodide
(PI), and analyzed by fluorescence-activated cell sorting. The percentage
of Annexin-V-positive cells is plotted. Statistics were applied to results
obtained with triplicate experiments. B MDA-MB-453 cells expressing
either control or PTK6 shRNAs (C9, 49, 53, and 12) were lysed 96 h
after shRNA lentiviral infection. Lysates were probed with antibodies
to PTK6 or cleaved PARP.

Additional file 4: Figure S4. PTK6 downregulation does not affect
the expression of pro- and anti-Bcl2 family members, other than Bim.
UACC893R1 and MDA-MB-453 cells expressing either control or two
different PTK6 shRNA vectors (C9, 49, or 12) were cultured in the
presence of Z-VAD-FMK (50 μM). Cells were lysed and lysates were
probed with indicated antibodies.

Additional file 5: Figure S5. Bim expression induced by PTK6
downregulation is not secondary to cell death. UACC893R1 cells
expressing either control or PTK6 shRNA (49) were treated with
Z-VAD-FMK (50 μM) and lysed 72 h after shRNA lentiviral infection.
Lysates were probed with antibodies to cleaved PARP or Bim.

Additional file 6: Figure S6. Induction of Bim expression is required
for PTK6 shRNA-induced apoptosis. UACC893R1 cells expressing either
control or two independent Bim shRNA vectors (51 and 54) were
superinfected with either control or PTK6 shRNA (49) lentivirus. Cells
were lysed at two time points following infection and lysates were
probed with antibodies to cleaved PARP or Bim.

Additional file 7: Figure S7. Activation of JNK is not required for PTK6
shRNA-induced Bim or apoptosis. A UACC893R1 cells expressing either
control or PTK6 shRNA were cultured in the presence of Z-VAD-FMK
(50 μM). Cells were lysed 48 h after infection and lysates were probed
with antibodies to phospho-JNK and phospho-c-Jun. B UACC893R1 cells
were cultured in the presence of either dimethyl sulfoxide (DMSO) or
Anisomycin (as a positive control for c-Jun N-terminal kinase (JNK)
activation) along with increasing concentrations of SP600125
(JNK inhibitor). Cells were lysed 48 h after DMSO or anisomycin
treatment. Lysates were probed with antibodies as indicated. C
UACC893R1 cells expressing either control or PTK6 shRNA were
cultured in the presence of either DMSO or SP600125. Cells were lysed
48 h after PTK6 shRNA lentiviral infection and lysates were probed with
antibodies to phospho-c-Jun, cleaved PARP or Bim.
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