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Abstract
In this paper, by using the Guo-Krasnoselskii theorem, we investigate the existence
and nonexistence of positive solutions of a system of integral equation with
parameters which can be seen as an effective generalization of various types of
systems of boundary value problems for differential equation on continuous interval
and time scales or fractional differential equations. We give a general approach of
positive solutions to cover various systems of boundary value problems in a unified
way, which avoids treating these problems on a case-by-case basis. Under some
growth conditions imposed on the nonlinear term, we obtain explicit ranges of
values of parameters with which the problem has a positive solution and has no
positive solution, respectively. By giving some examples, we will show how our results
may be applied to consider existence of positive solutions to a variety of system of
boundary value problems of differential equations, differential equations on time
scales or fractional differential equations.
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1 Introduction
We consider the existence of eigenvalues yielding positive solutions to the system of inte-
gral equations

(Pλ,μ,ζ )

⎧
⎪⎨

⎪⎩

u(t) = λ
∫ 

 k(t, s)f (s, u(s), v(s), w(s)) ds,  ≤ t ≤ ,
v(t) = μ

∫ 
 k(t, s)g(s, u(s), v(s), w(s)) ds,  ≤ t ≤ ,

w(t) = ζ
∫ 

 k(t, s)h(s, u(s), v(s), w(s)) ds,  ≤ t ≤ ,

where λ,μ, ζ are positive numbers and
(H) f , g, h ∈ C([, ] × R+ × R+ × R+, R+).
(H) k, k, k : [, ] × [, ] → R+ are continuous functions and there exist an interval

[ξ ,η] ⊂ [, ], positive constants γ,γ,γ, and functions �,�,� ∈ C([, ], R+)
such that

ki(t, s) ≤ �i(s), for (t, s) ∈ [, ] × [, ], i = , , ,
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and

ki(t, s) ≥ γi�i(s), for (t, s) ∈ [ξ ,η] × [, ], i = , , .

Here we denote γ = min{γ,γ,γ}.
Systems of differential equations or integral equations containing three equations have

gained considerable popularity and importance due mainly to their demonstrated appli-
cations in widespread fields of science and technology. For example, to describe the de-
velopment of an infectious disease, compartmental models have been given to separate
a population into various classes based on the stages of inflection []. The classical SIR
model is described by partitioning the population into susceptible, infectious, and recov-
ered individuals, denoted by S, I, R, respectively. Assume that the disease incubation pe-
riod is negligible so that each susceptible individual becomes infectious and later recovers
with a permanently or temporarily acquired immunity, then the SIR model is governed by
the following system of differential equations:

⎧
⎪⎨

⎪⎩

dS
dt = –βS(t)I(t) – μS(t) + b,
dI
dt = βS(t)I(t) – μI(t) – αI(t),
dR
dt = αI(t) – μR(t),

where the total population size has been normalized to one and the influx of the suscep-
tible comes from a constant recruitment rate b. The death rates for the S, I, R classes are
given by μ,μ,μ, respectively.

It is well known that the predator-prey model, which was proposed by Volterra in ,
is one of the basic and important models for the interacting species in both ecology and
mathematical ecology due to the fact that the predator-prey interaction is the fundamental
structure in population dynamic. Since then, various types of predator-prey models de-
scribed by differential systems have been proposed and the dynamics of these systems has
been considered. For example, Song and Chen [] proposed the following predator-prey
system with stage structure:

⎧
⎪⎨

⎪⎩

du
dt = αu(t) – ru(t) – ae–tτ u(t – τ ),

du
dt = ae–tτ u(t – τ ) – mu

(t) – au(t)v(t),
dv
dt = v(t)[r + au(t) – bv(t)],

where u(t), u(t) represent the densities of immature and mature population of the prey
species, respectively, v(t) represent the density of the predator.

Positive solutions of a n-dimensional differential equation system or fractional differ-
ential equation system with some boundary conditions have received wide attention due
to its distinguished applications in engineering, science, mathematical biology and other
fields. For n = , see, for example, [–] (ordinary differential equations), [–] (differen-
tial equations on time scales), and [–] (fractional differential equations). For n = , see
[–] (differential equations on time scales), [–] (ordinary differential equations),
and [–] (fractional differential equations) and references along this line. A consider-
able number of these problems can be formulated as integral equation or integral equation
system usually by finding the corresponding Green’s function of these problems. Thus the
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integral equation system can be seen naturally as an effective generalization of these types
of boundary value problems. The advantage of studying the integral equation system is
that we can avoid considering various boundary value problems of differential equations
ad hoc.

The aim of this paper is to give a general approach of positive solutions to cover various
systems of boundary value problems for differential equation on continuous interval and
time scales or fractional differential equations in a unified way, which avoids treating these
problems on a case-by-case basis. We consider the existence and nonexistence of positive
solutions of integral equation system (Pλ,μ,ζ ) under the conditions (H)-(H) and so the
results obtained in this paper may include some known results as a special cases and can
be applied to unconsidered boundary value problems which can be formulated as a system
of integral equations like (Pλ,μ,ζ ).

Motivated by Webb and Infante [, ] and Webb and Lan [], who established new ex-
istence results of positive solutions of a Hammerstein integral equation in an unified way,
under some growth condition imposed on the nonlinear term, we obtain explicit ranges
of values of λ,μ, and ζ with which the problem (Pλ,μ,ζ ) has a positive solution and has
no positive solution, respectively. By giving some examples, we will show how our results
may be applied to obtain eigenvalues yielding the existence of positive solutions to a vari-
ety of system of boundary value problems of differential equations, differential equations
on time scales or fractional differential equations.

The main tool used is the following fixed point theorem by Guo and Krasnoselskii [].

Lemma . [] Let E be a Banach space and K ⊂ E be a cone. Assume �,� are open
bounded subsets of E with  ∈ � ⊂ � ⊂ �, and let

A : K ∩ (� \ �) → K

be a completely continuous operator such that

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�

or

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�,

then A has a fixed point in K ∩ (� \ �).

2 Existence results of positive solutions
In this section we shall consider sufficient conditions on λ,μ, ζ , f , g , and h such that a
positive solution with respect to a cone for the problem (Pλ,μ,ζ ) exists.

Let the Banach space X = {u ∈ C[, ]} be endowed with the norm

‖u‖ = sup
≤t≤

∣
∣u(t)

∣
∣, u ∈ X

and the Banach space Y = X × X × X with the norm

∥
∥(u, v, w)

∥
∥

Y = ‖u‖ + ‖v‖ + ‖w‖.



Shen et al. Advances in Difference Equations  (2016) 2016:260 Page 4 of 26

We define the cone P ⊂ Y by

P =
{

u ∈ E
∣
∣u(t) ≥ , v(t) ≥ , w(t) ≥ , inf

ξ≤t≤η

(
u(t) + v(t) + w(t)

) ≥ γ
∥
∥(u, v, w)

∥
∥

Y

}
.

Define the operators T : Y → X, T : Y → X, T : Y → X, and T : Y → Y by

T
(
u(t), v(t), w(t)

)
:= λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds,

T
(
u(t), v(t), w(t)

)
:= μ

∫ 


k(t, s)g

(
s, u(s), v(s), w(s)

)
ds,

T
(
u(t), v(t), w(t)

)
:= ζ

∫ 


k(t, s)h

(
s, u(s), v(s), w(s)

)
ds,

and

T(u, v, w) =
(
T(u, v, w), T(u, v, w), T(u, v, w)

)
.

It is obvious that the fixed points of the operator T are the positive solutions of the problem
(Pλ,μ,ζ ).

Lemma . T : P → P is completely continuous.

Proof The operator T : P → Y is nonnegative and equicontinuous in view of the non-
negativeness and continuity of functions k(t, s), k(t, s), k(t, s) and f (t, u, v, w), g(t, u, v, w),
h(t, u, v, w).

Let � ⊂ P be bounded. Then there exists a constant R >  such that ‖(u, v, w)‖Y ≤
R, (u, v, w) ∈ �. Denote

R = max
{

max
≤t≤,(u,v,w)∈�

∣
∣f (t, u, v, w)

∣
∣, max

≤t≤,(u,v,w)∈�

∣
∣g(t, u, v, w)

∣
∣,

max
≤t≤,(u,v,w)∈�

∣
∣h(t, u, v, w)

∣
∣
}

+ .

Then for (u, v, w) ∈ �, we have

∣
∣T(u, v, w)

∣
∣ ≤ λ

∫ 


k(t, s)

∣
∣f

(
s, u(s), v(s), w(s)

)∣
∣ds ≤ λR

∫ 


�(s) ds,

∣
∣T(u, v, w)

∣
∣ ≤ μ

∫ 


k(t, s)

∣
∣f

(
s, u(s), v(s), w(s)

)∣
∣ds ≤ μR

∫ 


�(s) ds,

∣
∣T(u, v, w)

∣
∣ ≤ ζ

∫ 


k(t, s)

∣
∣f

(
s, u(s), v(s), w(s)

)∣
∣ds ≤ ζR

∫ 


�(s) ds.

Hence T(�) is bounded.
By means of the Arzela-Ascoli theorem, we see that T is completely continuous. Fur-

thermore, considering

inf
ξ≤t≤η

T(u, v, w)(t) ≥ γ sup
t′∈[,]

T(u, v, w)
(
t′),
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inf
ξ≤t≤η

T(u, v, w)(t) ≥ γ sup
t′∈[,]

T(u, v, w)
(
t′),

inf
ξ≤t≤η

T(u, v, w)(t) ≥ γ sup
t′∈[,]

T(u, v, w)
(
t′).

Hence

inf
ξ≤t≤η

∣
∣T(u, v, w)(t) + T(u, v, w)(t) + T(u, v, w)(t)

∣
∣

≥ inf
ξ≤t≤η

T(u, v, w)(t) + inf
ξ≤t≤η

T(u, v, w) + inf
ξ≤t≤η

T(u, v, w)(t)

≥ γ
∥
∥T(u, v, w)

∥
∥ + γ

∥
∥T(u, v, w)

∥
∥ + γ

∥
∥T(u, v, w)

∥
∥

≥ γ
∥
∥T(u, v, w)

∥
∥

Y .

Thus, we show that T : P → P is a completely continuous operator.
Here we introduce the following extreme limits:

f s
 = lim

u+v+w→+
sup max

t∈[,]

f (t, u, v, w)
u + v + w

, f i
 = lim

u+v+w→+
inf min

t∈[ξ ,η]

f (t, u, v, w)
u + v + w

,

f s
∞ = lim

u+v+w→∞ sup max
t∈[,]

f (t, u, v, w)
u + v + w

, f i
∞ = lim

u+v+w→∞ inf min
t∈[ξ ,η]

f (t, u, v, w)
u + v + w

,

gs
 = lim

u+v+w→+
sup max

t∈[,]

g(t, u, v, w)
u + v + w

, gi
 = lim

u+v+w→+
inf min

t∈[ξ ,η

g(t, u, v, w)
u + v + w

,

gs
∞ = lim

u+v+w→∞ sup max
t∈[,]

g(t, u, v, w)
u + v + w

, gi
∞ = lim

u+v+w→∞ inf min
t∈[ξ ,η]

g(t, u, v, w)
u + v + w

.

hs
 = lim

u+v+w→+
sup max

t∈[,]

h(t, u, v, w)
u + v + w

, hi
 = lim

u+v+w→+
inf min

t∈[ξ ,η]

h(t, u, v, w)
u + v + w

,

hs
∞ = lim

u+v+w→∞ sup max
t∈[,]

h(t, u, v, w)
u + v + w

, hi
∞ = lim

u+v+w→∞ inf min
t∈[ξ ,η]

h(t, u, v, w)
u + v + w

.

Denote the positive constants

K =
b

γ Ãf i∞
, K =

c
Af s


, K =

a
γ B̃gi∞

,

K =
d

Bgs


, K =
 – a – b
γ C̃hi∞

, K =
 – c – d

Chs


,

where f s
 , gs

, hs
, f i∞, gi∞, hi∞ ∈ (,∞), a ∈ [, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), and

A =
∫ 


�(s) ds, B =

∫ 


�(s) ds, C =

∫ 


�(s) ds, Ã = γ

∫ η

ξ

�(s) ds,

B̃ = γ

∫ η

ξ

�(s) ds, C̃ = γ

∫ η

ξ

�(s) ds. �

Theorem . Assume that (H)-(H) hold. f s
 , gs

, hs
, f i∞, gi∞, hi∞ ∈ (,∞), a ∈ [, ], b ∈

(, ), c ∈ [, ], d ∈ (, ), K < K, K < K, and K < K, then for λ ∈ (K, K),μ ∈ (K, K),
and ζ ∈ (K, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈
[, ].
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Proof Let λ ∈ (K, K),μ ∈ (K, K), ζ ∈ (K, K), and ε be a positive number such that
f i∞, gi∞, hi∞ > ε, and

b
γ Ã(f i∞ – ε)

< λ <
c

A(f s
 + ε)

,

a
γ B̃(gi∞ – ε)

< μ <
d

B(gs
 + ε)

,

 – a – b
γ C̃(hi∞ – ε)

< ζ <
 – c – d
C(hs

 + ε)
.

By condition (H), there exists R >  such that for t ∈ [, ], u(t) ≥ , v(t) ≥ , w(t) ≥  and
u(t) + v(t) + w(t) ≤ R,

f
(
t, u(t), v(t), w(t)

) ≤ (
f s
 + ε

)(
u(t) + v(t) + w(t)

)
,

g
(
t, u(t), v(t), w(t)

) ≤ (
gs

 + ε
)(

u(t) + v(t) + w(t)
)
,

h
(
t, u(t), v(t), w(t)

) ≤ (
hs

 + ε
)(

u(t) + v(t) + w(t)
)
.

We define the set

� =
{(

u(t), v(t), w(t)
) ∈ Y ,

∥
∥(u, v, w)

∥
∥

Y < R
}

.

Let (u, v, w) ∈ P ∩ ∂�,

T(u, v, w)(t) = λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


k(t, s)

(
f s
 + ε

)(
u(s) + v(s) + w(s)

)
ds

≤ λ
(
f s
 + ε

)
∫ 


k(t, s)

(‖u‖ + ‖v‖ + ‖w‖)ds

≤ λA
(
f s
 + ε

)∥
∥(u, v, w)

∥
∥

Y

≤ c
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = μ

∫ 


k(t, s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


k(t, s)

(
gs

 + ε
)(

u(s) + v(s) + w(s)
)

ds

≤ μ
(
gs

 + ε
)
∫ 


k(t, s)

(‖u‖ + ‖v‖ + ‖w‖)ds

≤ μB
(
gs

 + ε
)∥
∥(u, v, w)

∥
∥

Y

≤ d
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = ζ

∫ 


k(t, s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ζ

∫ 


k(t, s)

(
hs

 + ε
)(

u(s) + v(s) + w(s)
)

ds
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≤ ζ
(
hs

 + ε
)
∫ 


k(t, s)

(‖u‖ + ‖v‖ + ‖w‖)ds

≤ ζC
(
hs

 + ε
)∥
∥(u, v, w)

∥
∥

Y

≤ ( – c – d)
∥
∥(u, v, w)

∥
∥

Y .

Then for (u, v, w) ∈ P ∩ ∂�,

∥
∥T(u, v, w)

∥
∥

Y =
∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥

≤ c
∥
∥(u, v, w)

∥
∥

Y + d
∥
∥(u, v, w)

∥
∥

Y + ( – c – d)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

On the other side, by condition (H) and the definition of f i∞, gi∞, and hi∞, there exists
R >  such that for t ∈ [ξ ,η], u(t) ≥ , v(t) ≥ , w(t) ≥ , and u(t) + v(t) + w(t) ≥ R,

f
(
t, u(t), v(t), w(t)

) ≥ (
f i
∞ – ε

)(
u(t) + v(t) + w(t)

)
,

g
(
t, u(t), v(t), w(t)

) ≥ (
gi
∞ – ε

)(
u(t) + v(t) + w(t)

)
,

h
(
t, u(t), v(t), w(t)

) ≥ (
hi

∞ – ε
)(

u(t) + v(t) + w(t)
)
.

We consider R = max{R, R/γ }, and we define the set

� =
{(

u(t), v(t), w(t)
) ∈ Y ,

∥
∥(u, v, w)

∥
∥

Y < R
}

.

Let (u, v, w) ∈ P ∩ �, then for (u, v, w) ∈ P with ‖(u, v, w)‖ = R, we have

T(u, v, w)(t) = λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)
(
f i
∞ – ε

)(
u(s) + v(s) + w(s)

)
ds

≥ λγ

∫ η

ξ

k(t, s)
(
f i
∞ – ε

)∥
∥(u, v, w)

∥
∥

Y ds

≥ λγ Ã
(
f i
∞ – ε

)∥
∥(u, v, w)

∥
∥

Y

≥ b
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = μ

∫ 


k(t, s)g

(
s, u(s), v(s), w(s)

)
ds

≥ μ

∫ η

ξ

k(t, s)g
(
s, u(s), v(s), w(s)

)
ds

≥ μ

∫ η

ξ

k(t, s)
(
gi
∞ – ε

)(
u(s) + v(s) + w(s)

)
ds

≥ μγ

∫ η

ξ

k(t, s)
(
gi
∞ – ε

)∥
∥(u, v, w)

∥
∥

Y ds
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≥ μγ B̃
(
gi
∞ – ε

)∥
∥(u, v, w)

∥
∥

Y

≥ a
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = ζ

∫ 


k(t, s)h

(
s, u(s), v(s)

)
ds

≥ ζ

∫ η

ξ

k(t, s)h
(
s, u(s), v(s), w(s)

)
ds

≥ ζ

∫ η

ξ

k(t, s)
(
hi

∞ – ε
)(

u(s) + v(s) + w(s)
)

ds

≥ ζγ

∫ η

ξ

k(t, s)
(
hi

∞ – ε
)∥
∥(u, v, w)

∥
∥

Y ds

≥ ζγ C̃
(
hi

∞ – ε
)∥
∥(u, v, w)

∥
∥

Y

≥ ( – a – b)
∥
∥(u, v, w)

∥
∥

Y .

Thus,

∥
∥T(u, v, w)

∥
∥

Y =
∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥

≥ b
∥
∥(u, v, w)

∥
∥

Y + a
∥
∥(u, v, w)

∥
∥

Y + ( – a – b)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

By using Lemma ., T has a fixed point (u, v, w) ∈ P ∩ (� \ �). �

By a similar analysis, we can consider the case that the above limits reach  or ∞. We
give the main results here and the proofs are omitted.

Theorem . Assume that (H)-(H) hold. If f s
 = , gs

, hs
, f i∞, gi∞, hi∞ ∈ (,∞), a ∈ [, ],

b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, and K < K, then for λ ∈ (K,∞),μ ∈ (K, K), and
ζ ∈ (K, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If gs
 = , f s

 , hs
, f i∞, gi∞, hi∞ ∈ (,∞), a ∈ [, ],

b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, and K < K, then for λ ∈ (K, K),μ ∈ (K,∞), and
ζ ∈ (K, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If hs
 = , f s

 , gs
, f i∞, gi∞, hi∞ ∈ (,∞), a ∈ [, ],

b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, and K < K, then for λ ∈ (K, K),μ ∈ (K, K), and
ζ ∈ (K,∞), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f s
 = gs

 = , hs
, f i∞, gi∞, hi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, then for λ ∈ (K,∞),μ ∈ (K,∞), and ζ ∈
(K, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f s
 = hs

 = , gs
, f i∞, gi∞, hi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, then for λ ∈ (K,∞),μ ∈ (K, K) and ζ ∈
(K,∞), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].
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Theorem . Assume that (H)-(H) hold. If gs
 = hs

 = , f s
 , f i∞, gi∞, hi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, then for λ ∈ (K, K),μ ∈ (K,∞) and ζ ∈
(K,∞), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f s
 = gs

 = hs
 = , f i∞, gi∞, hi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), then for λ ∈ (K,∞),μ ∈ (K,∞), and ζ ∈ (K,∞), the
problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f i∞ = ∞, f s
 , gs

, hs
, gi∞, hi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, and K < K, then for λ ∈ (, K),μ ∈ (K, K),
and ζ ∈ (K, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈
[, ].

Theorem . Assume that (H)-(H) hold. If gi∞ = ∞, f s
 , gs

, hs
, f i∞, hi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, and K < K, then for λ ∈ (K, K),μ ∈ (, K),
and ζ ∈ (K, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈
[, ].

Theorem . Assume that (H)-(H) hold. If hi∞ = ∞, f s
 , gs

, hs
, f i∞, gi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, and K < K, then for λ ∈ (K, K),μ ∈ (K, K),
and ζ ∈ (, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈
[, ].

Theorem . Assume that (H)-(H) hold. If f i∞ = gi∞ = ∞, f s
 , gs

, hs
, hi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, then for λ ∈ (, K),μ ∈ (, K), and ζ ∈
(K, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f i∞ = hi∞ = ∞, f s
 , gs

, hs
, gi∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, then for λ ∈ (, K),μ ∈ (K, K), and ζ ∈
(, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If gi∞ = hi∞ = ∞, f s
 , gs

, hs
, f i∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), K < K, then for λ ∈ (K, K),μ ∈ (, K), and ζ ∈
(, K), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f i∞ = gi∞ = hi∞ = ∞, f s
 , gs

, hs
 ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), then for λ ∈ (, K),μ ∈ (, K), and ζ ∈ (, K), the
problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Denote the positive constants

L =
b

γ Ãf i


, L =
c

Af s∞
, L =

a
γ B̃gi


,

L =
d

Bgs∞
, L =

 – a – b
γ C̃hi


, L =

 – c – d
Chs∞

.

Theorem . Assume that (H)-(H) hold, f i
, gi

, hi
, f s∞, gs∞, hs∞ ∈ (,∞), a ∈ [, ], b ∈

(, ), c ∈ [, ], d ∈ (, ), L < L, L < L, and L < L. Then for λ ∈ (L, L),μ ∈ (L, L), ζ ∈
(L, L), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].
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Proof Let λ ∈ (L, L),μ ∈ (L, L), ζ ∈ (L, L), ε >  satisfying f i
 > ε, gi

 > ε, hi
 > ε, and

b
γ Ã(f i

 – ε)
< λ <

c
A(f s∞ + ε)

,

a
γ B̃(gi

 – ε)
< μ <

d
B(gs∞ + ε)

,

 – a – b
γ C̃(hi

 – ε)
< ζ <

 – c – d
C(hs∞ + ε)

.

By condition (H), there exists R >  such that for t ∈ [ξ ,η], u(t), v(t), w(t) ≥  and u(t) +
v(t) + w(t) ≤ R,

f
(
t, u(t), v(t), w(t)

) ≥ (
f i
 – ε

)(
u(t) + v(t) + w(t)

)
,

g
(
t, u(t), v(t), w(t)

) ≥ (
gi

 – ε
)(

u(t) + v(t) + w(t)
)
,

h
(
t, u(t), v(t), w(t)

) ≥ (
hi

 – ε
)(

u(t) + v(t) + w(t)
)
.

We define the set

� =
{(

u(t), v(t), w(t)
) ∈ Y ,

∥
∥(u, v, w)

∥
∥

Y < R
}

.

Let (u, v, w) ∈ P ∩ ∂�,

T(u, v, w)(t) = λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)
(
f i
 – ε

)(
u(s) + v(s) + w(s)

)
ds

≥ λγ

∫ η

ξ

k(t, s)
(
f i
 – ε

)∥
∥(u, v, w)

∥
∥

Y ds

≥ λγ Ã
(
f i
 – ε

)∥
∥(u, v, w)

∥
∥

Y

≥ b
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = μ

∫ 


k(t, s)g

(
s, u(s), v(s), w(s)

)
ds

≥ μ

∫ η

ξ

k(t, s)g
(
s, u(s), v(s), w(s)

)
ds

≥ μ

∫ η

ξ

k(t, s)
(
gi

 – ε
)(

u(s) + v(s) + w(s)
)

ds

≥ μγ

∫ η

ξ

k(t, s)
(
gi

 – ε
)∥
∥(u, v, w)

∥
∥

Y ds

≥ μγ B̃
(
gi

 – ε
)∥
∥(u, v, w)

∥
∥

Y

≥ a
∥
∥(u, v, w)

∥
∥

Y ,
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T(u, v, w)(t) = ζ

∫ 


k(t, s)h

(
s, u(s), v(s)

)
ds

≥ ζ

∫ η

ξ

k(t, s)h
(
s, u(s), v(s), w(s)

)
ds

≥ ζ

∫ η

ξ

k(t, s)
(
hi

 – ε
)(

u(s) + v(s) + w(s)
)

ds

≥ ζγ

∫ η

ξ

k(t, s)
(
hi

 – ε
)∥
∥(u, v, w)

∥
∥

Y ds

≥ ζγ C̃
(
hi

 – ε
)∥
∥(u, v, w)

∥
∥

Y

≥ ( – a – b)
∥
∥(u, v, w)

∥
∥

Y .

Then for (u, v, w) ∈ P ∩ ∂�,

∥
∥T(u, v, w)

∥
∥

Y =
∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥

≥ b
∥
∥(u, v, w)

∥
∥

Y + a
∥
∥(u, v, w)

∥
∥

Y + ( – a – b)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

On the other side, we define the functions f ∗, g∗, h∗[, ] × R+ −→ R+,

f ∗(t, x) = max
≤u+v+w≤x

f (t, u, v, w), t ∈ [, ], x ≥ ,

g∗(t, x) = max
≤u+v+w≤x

g(t, u, v, w), t ∈ [, ], x ≥ .

h∗(t, x) = max
≤u+v+w≤x

h(t, u, v, w), t ∈ [, ], x ≥ .

Then

f (t, u, v, w) ≤ f ∗(t, x), t ∈ [, ], u, v, w ≥ , u + v + w ≤ x,

g(t, u, v, w) ≤ g∗(t, x), t ∈ [, ], u, v, w ≥ , u + v + w ≤ x,

h(t, u, v, w) ≤ h∗(t, x), t ∈ [, ], u, v, w ≥ , u + v + w ≤ x.

The functions f ∗(t, ·), g∗(t, ·), h∗(t, ·) are nondecreasing for each t ∈ [, ] and satisfy the
conditions

lim sup
x→∞

max
t∈[,]

f ∗(t, x)
x

≤ f s
∞, lim sup

x→∞
max
t∈[,]

g∗(t, x)
x

≤ gs
∞,

lim sup
x→∞

max
t∈[,]

h∗(t, x)
x

≤ hs
∞,

which can be proved similar to Lemma . in []. Thus, for ε > , there exists R >  such
that for all x ≥ R, t ∈ [, ],

f ∗(t, x)
x

≤ lim sup
x→∞

max
t∈[,]

f ∗(t, x)
x

+ ε ≤ f s
∞ + ε,

g∗(t, x)
x

≤ lim sup
x→∞

max
t∈[,]

g∗(t, x)
x

+ ε ≤ gs
∞ + ε,
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h∗(t, x)
x

≤ lim sup
x→∞

max
t∈[,]

h∗(t, x)
x

+ ε ≤ hs
∞ + ε.

Then

f ∗(t, x) ≤ (
f s
∞ + ε

)
x, g∗(t, x) ≤ (

gs
∞ + ε

)
x, h∗(t, x) ≤ (

hs
∞ + ε

)
x.

Let R = max{R, R} and � = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Let (u, v, w) ∈ P ∩ ∂�,
then

f (t, u, v, w) ≤ f ∗(t,
∥
∥(u, v, w)

∥
∥

Y

)
, t ∈ [, ],

g(t, u, v, w) ≤ g∗(t,
∥
∥(u, v, w)

∥
∥

Y

)
, t ∈ [, ],

h(t, u, v, w) ≤ h∗(t,
∥
∥(u, v, w)

∥
∥

Y

)
, t ∈ [, ].

Thus

T(u, v, w)(t) = λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


k(t, s)f ∗(t,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ λ

∫ 


k(t, s)

(
f s
∞ + ε

)∥
∥(u, v, w)

∥
∥

Y ds

≤ λA
(
f s
∞ + ε

)∥
∥(u, v, w)

∥
∥

Y

≤ c
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = μ

∫ 


k(t, s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


k(t, s)g∗(t,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ μ

∫ 


k(t, s)

(
gs
∞ + ε

)∥
∥(u, v, w)

∥
∥

Y ds

≤ μB
(
gs
∞ + ε

)∥
∥(u, v, w)

∥
∥

Y

≤ d
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = ζ

∫ 


k(t, s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ζ

∫ 


k(t, s)h∗(t,

∥
∥
(
u, v, w(s)

)∥
∥

Y

)
ds

≤ ζ

∫ 


k(t, s)

(
hs

∞ + ε
)∥
∥(u, v, w)

∥
∥

Y ds

≤ ζC
(
hs

∞ + ε
)∥
∥(u, v, w)

∥
∥

Y

≤ ( – c – d)
∥
∥(u, v, w)

∥
∥

Y .
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Then for (u, v, w) ∈ P ∩ ∂�,

∥
∥T(u, v, w)

∥
∥

Y =
∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥

≤ c
∥
∥(u, v, w)

∥
∥

Y + d
∥
∥(u, v, w)

∥
∥

Y + ( – c – d)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

By using Lemma ., T has a fixed point (u, v, w) ∈ P ∩ (� \ �). �

We can also consider the case that the above limits reach  or ∞.

Theorem . Assume that (H)-(H) hold. If f s∞ = , f i
, gi

, hi
, gs∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), L < L, and L < L, then for λ ∈ (L,∞),μ ∈ (L, L),
ζ ∈ (L, L), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If gs∞ = , f i
, gi

, hi
, f s∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), L < L, and L < L, then for λ ∈ (L, L),μ ∈ (L,∞),
ζ ∈ (L, L), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If hs∞ = , f i
, gi

, hi
, gs∞, f s∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), L < L, and L < L, then for λ ∈ (L, L),μ ∈ (L, L),
ζ ∈ (L,∞), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f s∞ = gs∞ = , f i
, gi

, hi
, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), and L < L, then for λ ∈ (L,∞),μ ∈ (L,∞), ζ ∈
(L, L), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f s∞ = hs∞ = , f i
, gi

, hi
, gs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), and L < L, then for λ ∈ (L,∞),μ ∈ (L, L), ζ ∈
(L,∞), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If hs∞ = gs∞ = , f i
, gi

, hi
, f s∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), and L < L, then for λ ∈ (L, L),μ ∈ (L,∞), ζ ∈
(L,∞), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f s∞ = gs∞ = hs∞ = , f i
, gi

, hi
 ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), then for λ ∈ (L,∞),μ ∈ (L,∞), ζ ∈ (L,∞), the prob-
lem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f i
 = ∞, gi

, hi
, f s∞, gs∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), L < L, and L < L, then for λ ∈ (, L),μ ∈ (L, L), ζ ∈
(L, L), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If gi
 = ∞, f i

, hi
, f s∞, gs∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), L < L, and L < L, then for λ ∈ (L, L),μ ∈ (, L), ζ ∈
(L, L), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].
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Theorem . Assume that (H)-(H) hold. If hi
 = ∞, gi

, f i
, f s∞, gs∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), L < L, and L < L, then for λ ∈ (L, L),μ ∈ (L, L),
ζ ∈ (, L), the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f i
 = gi

 = ∞, hi
, f s∞, gs∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), and L < L, then for λ ∈ (, L),μ ∈ (, L), ζ ∈ (L, L),
the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f i
 = hi

 = ∞, gi
, f s∞, gs∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), and L < L, then for λ ∈ (, L),μ ∈ (L, L), ζ ∈ (, L),
the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If hi
 = gi

 = ∞, f i
, f s∞, gs∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), and L < L, then for λ ∈ (L, L),μ ∈ (, L), ζ ∈ (, L),
the problem (Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

Theorem . Assume that (H)-(H) hold. If f i
 = gi

 = hi
 = ∞, f s∞, gs∞, hs∞ ∈ (,∞), a ∈

[, ], b ∈ (, ), c ∈ [, ], d ∈ (, ), then for λ ∈ (, L),μ ∈ (, L), ζ ∈ (, L), the problem
(Pλ,μ,ζ ) has at least one positive solution (u(t), v(t), w(t)), t ∈ [, ].

The proof is similar to Theorem ., we omit it here.

3 Nonexistence results of positive solutions
In this section we shall consider sufficient conditions on λ,μ, ζ , f , g , and h such that the
problem (Pλ,μ,ζ ) has no positive solution.

Theorem . Assume that (H)-(H) hold. If f s
 , f s∞, gs

, gs∞, hs
, hs∞ < ∞, then there exists a

positive constant λ,μ, ζ such that for every λ ∈ (,λ),μ ∈ (,μ), ζ ∈ (, ζ), the prob-
lem (Pλ,μ,ζ ) has no positive solution.

Proof From the condition f s
 , f s∞, gs

, gs∞, hs
, hs∞ < ∞, there exist M > , M > , M >  such

that

f (t, u, v, w) ≤ M(u + v + w), g(t, u, v, w) ≤ M(u + v + w),

h(t, u, v, w) ≤ M(u + v + w), t ∈ [, ], u, v, w ≥ .

Define the positive constants

λ =
a

AM
, μ =

b
BM

, ζ =
 – a – b

CM
.

Let λ ∈ (,λ),μ ∈ (,μ), ζ ∈ (, ζ), suppose that the problem (Pλ,μ,ζ ) has a positive so-
lution (u(t), v(t)), t ∈ [, ]. Thus,

T(u, v, w)(t) = λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


k(t, s)M

(
u(s) + v(s) + w(s)

)
ds
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≤ λM

∫ 


k(t, s)

(‖u‖ + ‖v‖ + ‖w‖)ds

≤ λAM
(‖u‖ + ‖v‖ + ‖w‖)

< λAM
∥
∥(u, v, w)

∥
∥

Y

< a
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = μ

∫ 


k(t, s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


k(t, s)M

(
u(s) + v(s) + w(s)

)
ds

≤ μM

∫ 


k(t, s)

(‖u‖ + ‖v‖ + ‖w‖)ds

≤ μBM
(‖u‖ + ‖v‖ + ‖w‖)

< μBM
∥
∥(u, v, w)

∥
∥

Y ,

< b
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = ζ

∫ 


k(t, s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ζ

∫ 


k(t, s)M

(
u(s) + v(s) + w(s)

)
ds

≤ ζM

∫ 


k(t, s)

(‖u‖ + ‖v‖ + ‖w‖)ds

≤ ζCM
(‖u‖ + ‖v‖ + ‖w‖)

< ζCM
∥
∥(u, v, w)

∥
∥

Y

< ( – a – b)
∥
∥(u, v, w)

∥
∥

Y .

Then

∥
∥(u, v, w)

∥
∥

Y =
∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥

< a
∥
∥(u, v, w)

∥
∥

Y + b
∥
∥(u, v, w)

∥
∥

Y + ( – a – b)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y ,

which is a contradiction. So the boundary value problem (Pλ,μ,ζ ) has no positive solu-
tion. �

Theorem . Assume that (H)-(H) hold. If f i
, f i∞ > , then there exists a positive constant

λ̃ such that for every λ ∈ (λ̃,∞),μ > , ζ > , the boundary value problem (Pλ,μ,ζ ) has no
positive solution.

Proof From the definitions of f i
, f i∞, and the condition f i

, f i∞ > , there exist positive num-
bers m such that

f (t, u, v, w) ≥ m(u + v + w), t ∈ [ξ ,η], u, v, w ≥ .
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Define thepositive constants

λ̃ =


γ Ãm
.

Let λ ∈ (λ̃,∞),μ > , ζ > , we suppose that the problem (Pλ,μ,ζ ) has a positive solution
(u(t), v(t), w(t)), t ∈ [, ]. Then for t ∈ [, ], we have

T(u, v, w)(t) = λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)m
(
u(s) + v(s) + w(s)

)
ds

≥ λγ

∫ η

ξ

k(t, s)m
∥
∥(u, v, w)

∥
∥

Y ds

≥ λγ Ãm
∥
∥(u, v, w)

∥
∥

Y

>
∥
∥(u, v, w)

∥
∥

Y .

Thus,

∥
∥(u, v, w)

∥
∥

Y ≥ ∥
∥T(u, v, w)

∥
∥ >

∥
∥(u, v, w)

∥
∥

Y ,

which is a contradiction. So the boundary value problem (Pλ,μ,ζ ) has no positive solu-
tion. �

Theorem . Assume that (H)-(H) hold. If gi
, gi∞ > , then there exists a positive con-

stant μ̃ such that for every μ ∈ (μ̃,∞),λ > , ζ > , the boundary value problem (Pλ,μ,ζ )
has no positive solution.

Theorem . Assume that (H)-(H) hold. If hi
, hi∞ > , then there exists a positive con-

stant ζ̃ such that for every ζ ∈ (ζ̃,∞),λ > ,μ > , the boundary value problem (Pλ,μ,ζ )
has no positive solution.

Theorem . Assume that (H)-(H) hold. If f i
, f i∞, gi

, gi∞ > , then there exist positive
constants λ̃, μ̃, a ∈ [, ], such that for every λ ∈ (λ̃,∞),μ ∈ (μ̃,∞), ζ > , the boundary
value problem (Pλ,μ,ζ ) has no positive solution.

Proof From the definitions of f i
, f i∞, gi

, gi∞, and the condition f i
, f i∞, gi

, gi∞ > , there exist
positive numbers m, m such that

f (t, u, v, w) ≥ m(u + v + w), t ∈ [ξ ,η], u, v, w ≥ .

g(t, u, v, w) ≥ m(u + v + w), t ∈ [ξ ,η], u, v, w ≥ .

Define the positive constants

λ̃ =
a

γ Ãm
, μ̃ =

 – a
γ B̃m

.
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Let λ ∈ (λ̃,∞),μ ∈ (μ̃,∞), ζ > , we suppose that the problem (Pλ,μ,ζ ) has a positive
solution (u(t), v(t), w(t)), t ∈ [, ]. Then for t ∈ [, ], we have

T(u, v, w)(t) = λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)m
(
u(s) + v(s) + w(s)

)
ds

≥ λγ

∫ η

ξ

k(t, s)m
∥
∥(u, v, w)

∥
∥

Y ds

≥ λγ Ãm
∥
∥(u, v, w)

∥
∥

Y

≥ a
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = μ

∫ 


k(t, s)g

(
s, u(s), v(s), w(s)

)
ds

≥ μ

∫ η

ξ

k(t, s)g
(
s, u(s), v(s), w(s)

)
ds

≥ μ

∫ η

ξ

k(t, s)m
(
u(s) + v(s) + w(s)

)
ds

≥ μγ

∫ η

ξ

k(t, s)m
∥
∥(u, v, w)

∥
∥

Y ds

≥ μγ B̃m
∥
∥(u, v, w)

∥
∥

Y

≥ ( – a)
∥
∥(u, v, w)

∥
∥

Y .

Thus,

∥
∥(u, v, w)

∥
∥

Y > a
∥
∥(u, v, w)

∥
∥

Y + ( – a)
∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y ,

which is a contradiction. So the boundary value problem (Pλ,μ,ζ ) has no positive solu-
tion. �

Theorem . Assume that (H)-(H) hold. If f i
, f i∞, hi

, hi∞ > , then there exist positive
constants λ̃, ζ̃ such that for every λ ∈ (λ̃,∞), ζ ∈ (ζ̃,∞),μ > , the boundary value prob-
lem (Pλ,μ,ζ ) has no positive solution.

Theorem . Assume that (H)-(H) hold. If gi
, gi∞, hi

, hi∞ > , then there exist positive
constants μ̃, ζ̃ such that for every μ ∈ (μ̃,∞), ζ ∈ (ζ̃,∞),λ > , the boundary value
problem (Pλ,μ,ζ ) has no positive solution.

Theorem . Assume that (H)-(H) hold. If f i
, f i∞, gi

, gi∞, hi
, hi∞ > , then there exist posi-

tive constants λ̃, μ̃, ζ̃ such that for every λ ∈ (λ̃,∞),μ ∈ (μ̃,∞), ζ ∈ (ζ̃,∞), the bound-
ary value problem (Pλ,μ,ζ ) has no positive solution.
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Proof From the definitions of f i
, f i∞, gi

, gi∞, hi
, hi∞, and the condition

f i
, f i

∞, gi
, gi

∞, hi
, hi

∞ > ,

there exist positive numbers m, m, m such that

f (t, u, v, w) ≥ m(u + v + w), t ∈ [, ], u, v, w ≥ ,

g(t, u, v, w) ≥ m(u + v + w), t ∈ [, ], u, v, w ≥ ,

h(t, u, v, w) ≥ m(u + v + w), t ∈ [, ], u, v, w ≥ .

Define the positive constants

λ̃ =
c

γ Ãm
, μ̃ =

d
γ B̃m

, ζ̃ =
 – c – d
γ C̃m

.

Let λ ∈ (λ̃,∞),μ ∈ (μ̃,∞), ζ ∈ (ζ̃,∞), we suppose that the problem (Pλ,μ,ζ ) has a posi-
tive solution (u(t), v(t), w(t)), t ∈ [, ]. Then for t ∈ [, ], we have

T(u, v, w)(t) = λ

∫ 


k(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λ

∫ η

ξ

k(t, s)m
(
u(s) + v(s) + w(s)

)
ds

≥ λγ

∫ η

ξ

k(t, s)m
∥
∥(u, v, w)

∥
∥

Y ds

≥ λγ Ãm
∥
∥(u, v, w)

∥
∥

Y

≥ c
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = μ

∫ 


k(t, s)g

(
s, u(s), v(s), w(s)

)
ds

≥ μ

∫ η

ξ

k(t, s)g
(
s, u(s), v(s), w(s)

)
ds

≥ μ

∫ η

ξ

k(t, s)m
(
u(s) + v(s) + w(s)

)
ds

≥ μγ

∫ η

ξ

k(t, s)m
∥
∥(u, v, w)

∥
∥

Y ds

≥ μγ B̃m
∥
∥(u, v, w)

∥
∥

Y

≥ d
∥
∥(u, v, w)

∥
∥

Y ,

T(u, v, w)(t) = ζ

∫ 


k(t, s)h

(
s, u(s), v(s), w(s)

)
ds

≥ ζ

∫ η

ξ

k(t, s)h
(
s, u(s), v(s), w(s)

)
ds
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≥ ζ

∫ η

ξ

k(t, s)m
(
u(s) + v(s) + w(s)

)
ds

≥ ζγ

∫ η

ξ

k(t, s)m
∥
∥(u, v, w)

∥
∥

Y ds

≥ ζγ C̃m
∥
∥(u, v, w)

∥
∥

Y

≥ ( – c – d)
∥
∥(u, v, w)

∥
∥

Y .

Thus,

∥
∥(u, v, w)

∥
∥

Y =
∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥ +

∥
∥T(u, v, w)

∥
∥

> c
∥
∥(u, v, w)

∥
∥

Y + d
∥
∥(u, v, w)

∥
∥

Y + ( – c – d)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y ,

which is a contradiction. So the boundary value problem (Pλ,μ,ζ ) has no positive solu-
tion. �

4 Examples
In this section we show how our results may be applied to consider the existence and
nonexistence of positive solutions for a system of boundary value problems for differential
equations of integral or fractional order. The study of these problems was mainly initiated
by Il’in and Moiseev [, ]. Since then positive solutions of boundary value problems
have been extensively studied by many researchers in recent years, not only because of
their mathematical interest but also because of their wide use in a variety of applications.

4.1 Application to system of boundary value problems of ordinary differential
equations

Consider the system of nonlinear second order differential equation (the problem (P))

⎧
⎪⎨

⎪⎩

u′′(t) + λf (t, u(t), v(t), w(t)) = , t ∈ [, ],
v′′(t) + μg(t, u(t), v(t), w(t)) = , t ∈ [, ],
w′′(t) + ζh(t, u(t), v(t), w(t)) = , t ∈ [, ],

subject to the boundary conditions

u() = , u() = βu(η),

v′() = , v() = βv(η),

w′() = , w() = βw(η),

where  < η,η,η < , and

f (t, u, v, w) =
√t((u + v + w) + )( + sin(v))(u + v + w)

u + v + w + 
,

g(t, u, v, w) =
√

t + ((u + v + w) + )( + cos(w))(u + v + w)
u + v + w + 

,
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h(t, u, v, w) =
√

t + ((u + v + w) + )( + cos(u))(u + v + w)
u + v + w + 

.

By using the Green’s functions, we can formulate the problem (P) as

⎧
⎪⎨

⎪⎩

u(t) = λ
∫ 

 k(t, s)f (s, u(s), v(s), w(s)) ds,  ≤ t ≤ ,
v(t) = μ

∫ 
 k(t, s)g(s, u(s), v(s), w(s)) ds,  ≤ t ≤ ,

w(t) = ζ
∫ 

 k(t, s)h(s, u(s), v(s), w(s)) ds,  ≤ t ≤ ,

where

k(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t(–s)
–βη

– β(η–s)t
–βη

– (t – s),  ≤ s ≤ t ≤ , s ≤ η,
t(–s)

–βη
– β(η–s)t

–βη
,  ≤ t ≤ s ≤ η,

t(–s)
–βη

,  ≤ t ≤ s ≤ , s ≥ η,
t(–s)

–βη
– (t – s), η ≤ s ≤ t ≤ ,

k(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–s
–β

– β(η–s)t
–β

– (t – s),  ≤ s ≤ t ≤ , s ≤ η,
–s

–β
– β(η–s)t

–β
,  ≤ t ≤ s ≤ η,

t(–s)
–β

,  ≤ t ≤ s ≤ , s ≥ η,
–s

–β
– (t – s), η ≤ s ≤ t ≤ ,

and

k(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–s
–β

– β(η–s)t
–β

– (t – s),  ≤ s ≤ t ≤ , s ≤ η,
–s

–β
– β(η–s)t

–β
,  ≤ t ≤ s ≤ η,

t(–s)
–β

,  ≤ t ≤ s ≤ , s ≥ η,
–s

–β
– (t – s), η ≤ s ≤ t ≤ .

We consider the case η = 
 ,η = η = 

 ,β = 
 ,β = β = 

 . After an easy computation,
we conclude

A =



, Ã =



, B =




, B̃ =



, C =



, C̃ =



, γ =



,

f s
 = , f i

 =  

√



, f s
∞ = , f i

∞ =  

√



,

gs
 = 

√
, gi

 = , gs
∞ = 

√
, gi

∞ = ,

hs
 = 

√
, hi

 = , hs
∞ = 

√
, hi

∞ = ,

M = , M = 
√

, M = 
√

,

m =  

√



, m = , m = , a = b = c = d =



,

and

K =
b

γ Ãf i∞
≈ ., K =

a
Af s


≈ ., K =

 – b
γ B̃gi∞

≈ .,

K =
 – a
Bgs


≈ ., K =

 – a – b
γ C̃hi∞

≈ ., K =
 – c – d

Chs


≈ .,
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λ =
a

AM
≈ ., μ =

b
BM

≈ ., ζ =
 – a – b

CM
≈ .,

λ̃ =
c

γ Ãm
≈ ., μ̃ =

d
γ B̃m

≈ ., ζ̃ =
 – c – d
γ C̃m

≈ ..

Then:
() from Theorem ., for λ ∈ (K, K),μ ∈ (K, K), ζ ∈ (K, K), the problem (P) has a

positive solution;
() from Theorem ., for λ ∈ (,λ),μ ∈ (,μ), ζ ∈ (, ζ), the problem (P) has no

positive solution;
() from Theorem ., for λ ∈ (λ̃,∞),μ ∈ (μ̃,∞), ζ ∈ (ζ̃,∞) the problem (P) has no

positive solution.

4.2 Application to system of boundary value problems of differential equations
on time scales

Consider the system of boundary value problems of nonlinear differential equation on
time scale T (the problem (P)),

u∇ (t) + λf
(
t, u(t), v(t), w(t)

)
= , t ∈ [, T] ⊂ T,

v∇ (t) + μg
(
t, u(t), v(t), w(t)

)
= , t ∈ [, T] ⊂ T,

w∇ (t) + ζh
(
t, u(t), v(t), w(t)

)
= , t ∈ [, T] ⊂ T,

subject to the boundary conditions

u() = βu(η), u(T) = αu(η),

v() = βv(η), v(T) = αv(η),

w() = βw(η), w(T) = αw(η),

where T is a time scale and  < η < T ,  < α < T
η

,  < β < T–αη

T–η
, and

f (t, u, v, w) =
√

t + (u + v + w + )( + sin(v))(u + v + w)
,(u + v + w) + 

,

g(t, u, v, w) =
√

t + (u + v + w + )( + cos(w))(u + v + w)
,(u + v + w) + 

,

h(t, u, v, w) =
√

t + (u + v + w + )( + cos(u))(u + v + w)
,(u + v + w) + 

.

We can formulate the problem (P) as

⎧
⎪⎨

⎪⎩

u(t) = λ
∫ 

 k(t, s)f (s, u(s), v(s), w(s))∇s, t ∈ [, T],
v(t) = μ

∫ 
 k(t, s)g(s, u(s), v(s), w(s))∇s, t ∈ [, T],

w(t) = ζ
∫ 

 k(t, s)h(s, u(s), v(s), w(s))∇s, t ∈ [, T],
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where

k(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

((–β)t+βη)(T–s)
(T–αη)–β(T–η) – ((β–α)t–βT)(η–s)

(T–αη)–β(T–η) – (t – s),  ≤ s ≤ t ≤ T , s ≤ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) – ((β–α)t–βT)(η–s)

(T–αη)–β(T–η) ,  ≤ t ≤ s ≤ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) ,  ≤ t ≤ s ≤ T , s ≥ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) – (t – s), η ≤ s ≤ t ≤ T ,

k(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

((–β)t+βη)(T–s)
(T–αη)–β(T–η) – ((β–α)t–βT)(η–s)

(T–αη)–β(T–η) – (t – s),  ≤ s ≤ t ≤ T , s ≤ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) – ((β–α)t–βT)(η–s)

(T–αη)–β(T–η) ,  ≤ t ≤ s ≤ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) ,  ≤ t ≤ s ≤ T , s ≥ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) – (t – s), η ≤ s ≤ t ≤ T ,

k(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

((–β)t+βη)(T–s)
(T–αη)–β(T–η) – ((β–α)t–βT)(η–s)

(T–αη)–β(T–η) – (t – s),  ≤ s ≤ t ≤ T , s ≤ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) – ((β–α)t–βT)(η–s)

(T–αη)–β(T–η) ,  ≤ t ≤ s ≤ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) ,  ≤ t ≤ s ≤ T , s ≥ η,
((–β)t+βη)(T–s)
(T–αη)–β(T–η) – (t – s), η ≤ s ≤ t ≤ T .

Lemma . Let  < αi < ηi
T ,  < βi < T–αiηi

T–ηi
, (u(t), v(t), w(t)) be a solution of the problem (P),

then

min
t∈[,T]

u(t) ≥ γ max
t∈[,T]

u(t), min
t∈[,T]

v(t) ≥ γ max
t∈[,T]

v(t), min
t∈[,T]

w(t) ≥ γ max
t∈[,T]

w(t),

where

γi = min

{
αi(T – ηi)
T – αiηi

,
αiηi

T
,
βi(T – ηi)

T
,
βiT
T

}

, i = , , .

We consider the case

T = , η = η = η =



, β = β = β =




, α = α = α = .

After an easy computation, we conclude

A = B = C =



, γ =



, Ã = B̃ = C̃ =


,

,

f s
 = , f i

 = 
√

, f s
∞ =




, f i
∞ =

√


,
,

gs
 = 

√
, gi

 = , gs
∞ =

√


,
, gi

∞ =


,
,

hs
 = 

√
, hi

 = , hs
∞ =

√


,
, hi

∞ =


,
,

M = , M = 
√

, M = 
√

,

m =
√


,

, m =


,
, m =


,

.
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Choose a = 
 , b = 

 , c = 
 , d = 

 . Then

L =
b

γ Ãf i

≈ ., L =

C
Af s∞

≈ ., L =
a

γ B̃gi

≈ .,

L =
d

Bgs∞
≈ ., L =

 – a – b
γ C̃hi


≈ .,

L =
 – c – d

Chs∞
≈ .,

λ =
a

AM
≈ ., μ =

b
BM

≈ ., ζ =
 – a – b

CM
≈ .,

λ̃ =
c

γ Ãm
≈ ,, μ̃ =

d
γ B̃m

≈ ,, ζ̃ =
 – c – d
γ C̃m

≈ ,.

Thus
() from Theorem ., for λ ∈ (L, L),μ ∈ (L, L), ζ ∈ (L, L), the problem (P) has a

positive solution;
() from Theorem ., for λ ∈ (,λ),μ ∈ (,μ), ζ ∈ (, ζ), the problem (P) has no

positive solution;
() from Theorem ., for λ ∈ (λ̃,∞),μ ∈ (μ̃,∞), ζ ∈ (ζ̃,∞) the problem (P) has no

positive solution.

4.3 Application to system of boundary value problems of fractional differential
equations

Consider the system of nonlinear fractional differential equation (the problem (P))

Dα
+u(t) + λf

(
t, u(t), v(t), w(t)

)
= , t ∈ (, ),

Dα
+v(t) + μg

(
t, u(t), v(t), w(t)

)
= , t ∈ (, ),

Dα
+w(t) + ζh

(
t, u(t), v(t), w(t)

)
= , t ∈ (, ),

subject to the boundary conditions

u() = u′() = u′() = ,
[
Dδ

+u(t)
]

t= = ,

v() = v′() = v′() = ,
[
Dδ

+v(t)
]

t= = ,

w() = w′() = w′() = ,
[
Dδ

+w(t)
]

t= = ,

where α = ., δ = ., and

f (t, u, v, w) = (u + v + w)
(u + v + w) + 

u + v + w + 
(
 + sin(u + v + w)

)
,

g(t, u, v, w) = (u + v + w)
(u + v + w) + 

u + v + w + 
(
 + sin(u + v + w)

)
,

h(t, u, v, w) = (u + v + w)
(u + v + w) + 

u + v + w + 
(
 + cos(u + v + w)

)
.
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We can check that

k(t, s) = k(t, s) = k(t, s) =

{ tα–(–s)α–δ––(t–s)α–

�(α) ,  ≤ s ≤ t ≤ ,
tα–(–s)α–δ–

�(α) ,  ≤ t ≤ s ≤ .

It is easy to verify that maxt∈[,] ki(t, s) = ki(, s), i = , , , for each s ∈ [, ] and there is a
positive constant γ ∈ (, ) such that []

min
t∈[ 

 ,]
ki(t, s) ≥ γ ki(, s),  < s < , i = , , ,γ = min

{
(/)α–δ–

δ – 
,
(




)α–}

.

Thus

A = B = C =
∫ 


ki(, s) ds =


�(.)

≈ ., γ =
(




).

,

Ã = B̃ = C̃ = .,

f s
 = , f i

 = , f s
∞ = , f i

∞ = ,

gs
 = , gi

 = , gs
∞ = , gi

∞ = ,

hs
 = , hi

 = , hs
∞ = , hi

∞ = ,

M = , M = , M = , m = , m = , m = .

Choose a = 
 , b = 

 , c = 
 , d = 

 , ξ = 
 ,η = . Then

K =
b

γ Ãf i∞
≈ ., K =

a
Af s


≈ ., K =

 – b
γ B̃gi∞

≈ .,

K =
 – a
Bgs


≈ ., K =

 – a – b
γ C̃hi∞

≈ ., K =
 – c – d

Chs


≈ .,

λ =
a

AM
≈ ., μ =

b
BM

≈ ., ζ =
 – a – b

CM
≈ .,

λ̃ =
c

γ Ãm
≈ ., μ̃ =

d
γ B̃m

≈ ., ζ̃ =
 – c – d
γ C̃m

≈ ..

Thus,
() From Theorem ., for λ ∈ (K, K),μ ∈ (K, K), ζ ∈ (K, K), the problem (P) has a

positive solution;
() from Theorem ., for λ ∈ (,λ),μ ∈ (,μ), ζ ∈ (, ζ), the problem (P) has no

positive solution;
() from Theorem ., for λ ∈ (λ̃,∞),μ ∈ (μ̃,∞), ζ ∈ (ζ̃,∞) the problem (P) has no

positive solution.
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