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Abstract
In this paper, we consider the initial boundary value problem for a fourth order
nonlinear pseudo-parabolic equation with a nonlocal source. By using the concavity
method, we establish a blow-up result of the solutions under suitable assumptions on
the initial energy.
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1 Introduction
In this article, we are concerned with the following initial boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u – �ut + �u = up(x, t)
∫

�
K(x, y)up+(y, t) dy, x ∈ �, t > ,

u(x, ) = u(x), x ∈ �,

u = ∂u
∂ν

=  or u = �u = , x ∈ ∂�, t > ,

(.)

where p > , and � is a bounded domain of Rn (n ≥ ) with a smooth boundary ∂�. Here,
ν is the unit outward normal to ∂�, and K(x, y) is an integrable, real valued function such
that K(x, y) = K(y, x). It is well known that this type of equations describes a variety of
important physical processes, such as the analysis of heat conduction in materials with
memory, viscous flow in materials with memory [], the theory of heat and mass exchange
in stably stratified turbulent shear flow [], the non-equilibrium water-oil displacement
in porous strata [], the aggregation of populations [–], the velocity evolution of ion-
acoustic waves in a collisionless plasma when ion viscosity is invoked [], filtration theory
[, ], cell growth theory [, ], and so on. In population dynamics theory, the nonlo-
cal term indicates that evolution of species at a point of space does not depend only on
the nearby density but also on the total amount of species due to the effects of spatial
inhomogeneity; see [].

There have also been many profound results on the existence of global solutions and
asymptotic behavior of the solutions for the initial boundary value problems and the initial
value problems of fourth order nonlinear pseudo-parabolic equations.
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In , Kabanin [] considered the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut – βuxxt + γ uxxxx = αuxx,  < x < l, t > ,

u(x, ) = ϕ(x),  ≤ x ≤ l,

u(, t) = u(l, t) = uxx(, t) = uxx(l, t) = ,  ≤ t ≤ T ,

(.)

where α, β , γ are positive constants. A classical solution of this mixed problem is obtained
through the Fourier method in the form of a series. Conditions sufficient for uniform con-
vergence of this series are found.

In , Bakiyevich and Shadrin [] considered the following problem:
⎧
⎨

⎩

ut – γ uxxt + βuxxxx = αuxx + f (t, x), x ∈R, t > ,

u(x, ) = ϕ(x), x ∈R,
(.)

where α > , β ≥ , γ >  are constants. They showed that the solutions of this problem
are expressed through the sum of convolutions of functions ϕ(x) and f (t, x) with corre-
sponding fundamental solutions of the problem.

Zhao and Xuan [] studied the following fourth order pseudo-parabolic equation:

ut – αuxx – γ uxxt + βuxxxx + f (u)x = , x ∈R, t ≥ . (.)

They obtained the existence of the global smooth solutions for the initial value problem
of (.) and discussed the convergence behavior of solutions as β → .

Recently, Khudaverdiyev and Farhadova [] discussed the following fourth order semi-
linear pseudo-parabolic equation:

ut – αuxxt + uxxxx = f (t, x, u, ux, uxx, uxxx),  ≤ x ≤ ,  ≤ t ≤ T , (.)

with Ionkin type non-self-adjoint mixed boundary conditions, where α >  is a fixed num-
ber. They proved the local existence for a generalized solution of the mixed problem un-
der consideration by combining generalized contracted mapping principle and Schauder’s
fixed point principle and then proved the global existence for a generalized solution by
means of Schauder’s stronger fixed point principle.

The so-called viscous Cahn-Hilliard equation is also in a class of fourth order nonlinear
pseudo-parabolic equations and can be considered as a special case of (.). In recent years,
a lot of attention has been paid to the viscous Cahn-Hilliard equations. For more and
deeper investigations of the stability analysis (as t → ∞) and the asymptotic behavior of
viscous Cahn-Hilliard models, we refer readers to [, ] and the references therein.

Since the study on blow-up solutions for nonlinear parabolic equation with nonlocal
source by Levine in [], many efforts have been made devoted to the study of blow-up
properties for nonlocal semilinear parabolic equations. The upper bound and lower bound
of the blow-up time, blow-up rate estimate, blow-up set, and blow-up profile of the blow-
up solutions for a various of nonlocal semilinear parabolic equations with nonlocal source
terms or nonlocal boundary condition have been widely studied in the last few decades;
we refer the readers to [–] and the references cited therein.

Korpusov [] considered a Sobolev type equation with a nonlocal source and obtained
blow-up results under suitable conditions on initial data and nonlinear function. In [],
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Bouziani studied the solvability of nonlinear pseudo-parabolic equation with a nonlocal
boundary condition. More results on the global well-posedness for the nonlinear pseudo-
parabolic equation with nonlocal source can be found in [] and the references therein.

Motivated by the above-mentioned works, we investigate the blow-up behavior of solu-
tions of the initial boundary value problem for a fourth order nonlinear pseudo-parabolic
equation with a nonlocal source (.). By using the concavity method, we prove a finite
time blow-up result under some assumption on the initial energy E().

2 Preliminaries
In this section, we first state a local existence theorem, which can be obtained by Faedo-
Galerkin methods. The interested readers are referred to Lions [] or Escobedo and Her-
rero [] for details.

Theorem . Assume that p >  and u ∈ H
(�). Then there exists a Tm >  for which

problem (.) has a unique local solution u ∈ C([, Tm); H
(�)) satisfying

(ut , v) + (∇u,∇v) + (∇ut ,∇v) + (�u,�v) =
(

up(x, t)
∫

�

K(x, y)up+(y, t) dy, v
)

, (.)

for all v ∈ H
(�) and t ∈ [, Tm).

Before stating our principal theorem, we note that the Fréchet derivative fu of the non-
linear function f (u) = up(x, t)

∫

�
K(x, y)up+(y, t) dy is

fu · h(x, t) = pup–(x, t)h(x, t)
∫

�

K(x, y)up+(y, t) dy

+ (p + )up(x, t)
∫

�

K(x, y)up(y, t)h(y, t) dy, ∀u ∈ H(�).

Clearly fu is symmetric and bounded, so that the potential F exists and is given by

F(u) =
∫ 



(
f (ρu), u

)
dρ

=
∫ 



∫

�

ρpup(x, t)
[∫

�

K(x, y)ρp+up+(y, t) dy
]

u(x, t) dx dρ

=


p + 

∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy. (.)

Now, differentiating the identity (.) with respect to t, it follows that

d
dt

F(u) =


p + 
d
dt

∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy

=



∫

�

∫

�

K(x, y)up(x, t)up+(y, t)ut(x, t) dx dy

+



∫

�

∫

�

K(x, y)up(y, t)up+(x, t)ut(y, t) dx dy

=
∫

�

∫

�

K(x, y)up(x, t)up+(y, t)ut(x, t) dx dy =
(
f (u), ut

)
, (.)

where we have used the symmetry of K(x, y).
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To obtain the blow-up result, we will introduce the energy function. We have

E(t) =



∫

�

|∇u| dx +



∫

�

|�u| dx

–


p + 

∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy. (.)

Lemma . Let p >  and u be a solution of the problem (.). Then E(t) is non-increasing
function, that is, E′(t) ≤ . Moreover, the following energy equality holds:

E(t) +
∫ t



(|ut| + |∇ut|
)

dx dτ = E().

Proof Multiplying (.) by ut and integrating over �, we have
∫

�

|ut| dx +
∫

�

|∇ut| dx +



d
dt

∫

�

|∇u| dx +



d
dt

∫

�

|�u| dx

=
∫

�

up(x, t)
[∫

�

K(x, y)up+(y, t) dy
]

ut(x, t) dx.

Hence, from (.), we obtain
∫

�

|ut| dx +
∫

�

|∇ut| dx +



d
dt

∫

�

|∇u| dx +



d
dt

∫

�

|�u| dx

=


p + 
d
dt

∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy

and
∫

�

|ut| dx +
∫

�

|∇ut| dx +
d
dt

E(t) = . (.)

Integrating (.) from  to t, we find

E(t) +
∫ t



∫

�

(|ut| + |∇ut|
)

dx dτ = E(). (.)

The proof of the Lemma . is completed. �

3 Blow up of solutions
Now, we will state the blow-up result of the solutions to the problem (.).

Theorem . Assume that p >  and u ∈ H
(�). If u(x, t) is a solution of the problem (, )

and the initial data u(x) satisfies
∫

�

(|u| + |∇u|
)

dx > ηE(), (.)

then the solution of problem (.) blows up in finite time; that is, the maximum existence
time Tmax of u(x, t) is finite and

lim
t→T–

max

∫ t



∫

�

(|u| + |∇u|)dx dτ = +∞,
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where η = α
m ; m = ( α

 – )λ;  ≤ α ≤ p + ; λ is the first eigenvalue of operator –� under
homogeneous Dirichlet boundary conditions.

Proof The proof makes use of the so-called ‘concavity method’. Multiplying (.) by u and
integrating over �, we have




d
dt

∫

�

|u| dx +



d
dt

∫

�

|∇u| dx +
∫

�

|∇u| dx +
∫

�

|�u| dx

=
∫

�

up(x, t)
[∫

�

K(x, y)up+(y, t) dy
]

u(x, t) dx.

Hence




d
dt

∫

�

|u| dx +



d
dt

∫

�

|∇u| dx +
∫

�

|∇u| dx +
∫

�

|�u| dx

–
∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy + αE(u) –
α



∫

�

|∇u| dx

–
α



∫

�

|�u| dx +
α

p + 

∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy

=



d
dt

[∫

�

|u| dx +
∫

�

|∇u| dx
]

+ αE(u)

+
(

α

p + 
– 

)∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy

+
(

 –
α



)∫

�

|∇u| dx +
(

 –
α



)∫

�

|�u| dx = . (.)

We consider the following function:

H(t) =
∫

�

(|u| dx + |∇u|)dx – ηE(). (.)

From (.), (.), Lemma ., and Poincaré’s inequality, we have




d
dt

H(t)

=



d
dt

∫

�

(|u| + |∇u|)dx

=
(

α


– 

)∫

�

(|∇u| + |�u|)dx – αE(u)

+
(

 –
α

p + 

)∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy

=
(

α


– 

)∫

�

(|∇u| + |�u|)dx – αE(u) + α

∫ t



∫

�

(|ut| + |∇ut|
)

dx dτ

+
(

 –
α

p + 

)∫

�

∫

�

K(x, y)up+(x, t)up+(y, t) dx dy

≥
(

α


– 

)∫

�

(|∇u| + |�u|)dx – αE(u)
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≥
(

α


– 

)

λ

∫

�

(|∇u| + |u|)dx – αE(u)

= m
[∫

�

(|∇u| + |u|)dx – ηE(u)
]

= mH(t), (.)

where η = α
m ; m = ( α

 – )λ;  ≤ α ≤ p + ; λ is the first eigenvalue of operator –� under
homogeneous Dirichlet boundary conditions.

Due to the conditions (.), it follows that

H() =
∫

�

(|u| + |∇u|
)

dx – ηE(u) > . (.)

Multiplying (.) by e–mt , we have

e–mt d
dt

H(t) – me–mtH(t) =
d
dt

[
e–mtH(t)

] ≥ .

From the last inequality above and (.), we obtain

H(t) ≥ H()emt > . (.)

From what has been discussed above, we find




d
dt

∫

�

(|u| + |∇u|)dx > α

∫ t



∫

�

(|ut| + |∇ut|
)

dx dτ . (.)

Now we define

G(t) =
∫ t



∫

�

(|u| + |∇u|)dx dτ . (.)

Differentiating the identity (.) with respect to t, we deduce that

G′(t) =
∫

�

(|u| + |∇u|)dx,

G′′(t) =
d
dt

∫

�

(|u| + |∇u|)dx ≥ α

∫ t



∫

�

(|ut| + |∇ut|
)

dx dτ ,

so we have

G′′(t)G(t) ≥ α

∫ t



∫

�

(|ut| + |∇ut|
)

dx dτ ·
∫ t



∫

�

(|u| + |∇u|)dx dτ

≥ α

∫ t



∫

�

|ut| dx dτ ·
∫ t



∫

�

|u| dx dτ

+ α

∫ t



∫

�

|ut| dx dτ ·
∫ t



∫

�

|∇u| dx dτ

+ α

∫ t



∫

�

|∇ut| dx dτ ·
∫ t



∫

�

|u| dx dτ

+ α

∫ t



∫

�

|∇ut| dx dτ ·
∫ t



∫

�

|∇u| dx dτ . (.)
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Using Schwarz’s inequality, we get

(∫ t



∫

�

uut dx dτ

)

≤
∫ t



∫

�

|ut| dx dτ ·
∫ t



∫

�

|u| dx dτ , (.)

(∫ t



∫

�

∇u∇ut dx dτ

)

≤
∫ t



∫

�

|∇ut| dx dτ ·
∫ t



∫

�

|∇u| dx dτ , (.)

and


∫ t



∫

�

uut dx dτ ·
∫ t



∫

�

∇u∇ut dx dτ

≤ 
(∫ t



∫

�

|ut| dx dτ

) 
 ·

(∫ t



∫

�

|u| dx dτ

) 


·
(∫ t



∫

�

|∇ut| dx dτ

) 
 ·

(∫ t



∫

�

|∇u| dx dτ

) 


≤
∫ t



∫

�

|∇ut| dx dτ ·
∫ t



∫

�

|u| dx dτ

+
∫ t



∫

�

|ut| dx dτ ·
∫ t



∫

�

|∇u| dx dτ . (.)

Inserting (.)-(.) into (.), we find

G′′(t)G(t) ≥ α

(∫ t



∫

�

uut dx dτ

)

+ α

(∫ t



∫

�

∇u∇ut dx dτ

)

+ α

∫ t



∫

�

uut dx dτ ·
∫ t



∫

�

∇u∇ut dx dτ

= α

[∫ t



∫

�

(uut + ∇u∇ut) dx dτ

]

=
α



(∫ t


G′′(τ ) dτ

)

=
α


(
G′(t) – G′()

). (.)

Thus, we obtain

G′′(t)G(t) –
α


(
G′(t) – G′()

) ≥ . (.)

On the other hand, from (.), we know

lim
t→∞ H(t) = +∞.

This implies

G′(t) =
∫

�

[|u| + |∇u|]dx → +∞, t → ∞. (.)

Hence, for  < β < α there exists a Tβ , such that for all t ≥ Tβ

α
(
G′(t) – G′()

) ≥ βG′(t). (.)
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By (.) and (.), we have

G′′(t)G(t) –
β


G′(t) ≥ , t ≥ Tβ . (.)

We consider the function G(t)–q for  < q < β

 , we see that

(
G(t)–q)′′ = qG(t)–q–[(q + )G′(t) – G′′(t)G(t)

]

≤ qG(t)–q–
[

(q + )
β

– 
]

G′′(t)G(t) < , t ≥ Tβ . (.)

Since a concave function must always lie below any tangent line, we see that G(t)–q reaches
 in finite time as t → T–, where T > Tβ . This means

lim
t→T–

G(t) = +∞,

or

lim
t→T–

∫ t



∫

�

(|u| + |∇u|)dx dτ = +∞. (.)

Then the desired assertion immediately follows. �
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