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1 Introduction
Assuming that f,g € L*(R,), IIf]l = {/;"/*(%) dx)? > 0, lgll > 0, we have the following
Hilbert integral inequality (c¢f. [1]):

<[ fx)g)
/ f 180 oy <1l 1D
o Jo x+y
where the constant factor 7 is best possible. If a = {a,,}°°,,b = {b,}%°, € I, |a| =
{Zf::l afn}% >0, [|b]| > 0, then we have the following discrete Hilbert inequality:
0o o0 ﬂmbn
>N <7 all|l, (12)
m=1 n=1 m+n

with the same best constant factor 7. Inequalities (1.1) and (1.2) are important in analy-
sis and its applications (cf. [2, 3]). On the other hand, we have the following Mulholland
inequality with the same best constant factor 7 (cf. [1, 4]):

mn 2 2
Zzlnmn<niZmamann} . (1.3)
m=2 n=2 m=2 n=2

In 1998, by introducing an independent parameter A € (0,1], Yang [5] gave an extension
of (1.1). Generalizing the results from [5], Yang [3] gave some extensions of (1.1) and (1.2) as
follows: If p > 1, 117 + é =1, 1+ X2 = 2 € R, k;.(x,y) is a non-negative homogeneous function

of degree —2 satisfying

Mhh/'hmDWAﬁem,
0
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P () =007,y (x) = 210727, (%), (p) > 0,

feLypRy)= {f‘ Wfllpg = {/0 ¢(x)[f(x)|pdx}p < oo},
g€ Lq,w(R+)r and ”_f||p,¢; IIgll,w > 0, then

/0 /0 K (6, 9) (0)g0) ddly < KO f o gl g 14)

where the constant factor k(A1) is best possible. Moreover, if k;(x,y) is finite and

k. (%, )17 (K, (, y)y*271) is decreasing for x > 0 (y > 0), then for a,,,, b, > 0,

1

0 P
a={amlp, €lpy = {a } lallpg = {Zwm)mmv’} < oo},
m=1

and b = {b,}32, € Iy llallpe, 16ll4,y > 0, we have

D) klmmayby, < kOa)lallpg 1Bllgy, (15)

m=1 n=1

where the constant factor k(A;) is still the best possible. Clearly, for p =g =2, 1 =1,
ki(x,y) = W and A; = Ay = %, (1.4) reduces to (1.1), while (1.5) reduces to (1.2).

Some other results about Hilbert-type inequalities can be found in [6-13]. On half-
discrete Hilbert-type inequalities with the general non-homogeneous kernels, Hardy et
al. provided a few results in Theorem 351 of [1]. But they did not prove that the constant
factors are best possible. In 2005, Yang [14] gave a result with the kernel by intro-
ducing a variable and proved that the constant factor is best possible. Recently, Wang and
Yang [15] gave a more accurate reverse half-discrete Hilbert-type inequality, and Yang [16]

provided the following half-discrete Hilbert inequality with best constant factor:

oo

oo a,
/0 f(x)zxﬂfz

n=1

(1.6)

In this paper, by means of weight functions and Hermite-Hadamard’s inequality, a new
half-discrete Mulholland-type inequality similar to (1.3) and (1.6) with a best possible con-

stant factor is given as follows:

1
2

> - an > = 2
/lf(x);mdxmr{fl xf(x)dx;nan}. (1.7)

Moreover, a best extension of (1.7) with multi-parameters, some equivalent forms, the

operator expressions as well as some particular cases are considered.
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2 Some lemmas
Lemma 2.1 [fO<o <A (0 <1),a>0,8> %, 8 € {-1,1}, the weight functions w(n) and
w (x) are defined by

o] )8:1—1

(Inax

(n) := (In fn)° /L x(1 + In’ ax In B

[

o o-1
@ (x) := (Inax)® Z (In 1) X € (l, oo), (2.2)

~n(l+ In® axIn Bn)*’ o

dx, neN\{1}, (2.1)

then we have
w(x) < w(n) =B(o,\—0). (2.3)

Proof Substituting ¢ = In® ax1n f7 in (2.1), and by a simple calculation, for § € {-1,1}, we
have

— * 1 o-1 —
a)(n)—/o (1+t))\t dt=B(o,A—0).

For fixed x > é, in view of the conditions, it is easy to find that

(In By)°t 1
hix,y) = 5 = 3 Z
y(L +1n’ axIn By)*  y(1 + 1In° axln By)*(In By)l-°

1

is decreasing and strictly convex with h;,(x, y) < 0 and //zy2 (x,9)>0, fory € (%, o0). Hence

by the Hermite-Hadamard inequality (cf [17]), we find

e 1

w(x) < (lnozx)‘s"/ 5 — dy
3 y(1+In° axlnBy)*(In By)t-°
_1n® axln o) t(r—l
o’ axl ﬂyf _dt < B(o,—0),
b axin(3 p) (1 +£)
and then (2.3) follows. O

Lemma 2.2 Let the assumptions of Lemma 2.1 be fulfilled and, additionally, let p > 1, i +

é =1, a, >0, n € N\{1}, f(x) is a non-negative measurable function in (é,oo). Then we

have the following inequalities:

L = l o -1 OOL ’ }7
J = !;n(lnﬂn)p [/é (1+1n5ax1n,3n)*dx]}

{ /1 ” @ (1) (In )P 18012 () dx} ' , (2.4)

| (nax)ret | & 4n Ak
Ly:= {/é x[ (x)]2 7 [; (1+1n’ axlnﬁ”)'\} dx}

< [B(a, A—0) Z 117 (In ﬁn)”(l"“>_1uz } q. (2.5)

n=2

Q=

< [B(a,k —o)]
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Proof By Holder’s inequality (cf [17]) and (2.3), it follows that

[ ey
1 (1 +1In® axIn Bn)*

_{/00 1 [(lnax)(l‘aa)/q x%lf(x)]
- 1 (1+In’ axInBn)* [ (Ingm)-2lp 3

(In Bn)-o)lp o 4 » - /"0 7 (In ) 180D P (x) dix
X | ———— X
(Inax)(1-60)g 1 “Jr 1+ In’ ax1n Bn)* n(ln Bn)i-o

x4

o nd-1 (Ing n)(l—a)(q—l) p-1
X { / 5 dx}
1 (1+1In°axInpn)* x(In oex)1-%
-1 (1-80)(p-1)
= {w(n)n?™(In fr) 1= }p—l / * 2 (Inax) WD fP(x) dx

1 (L+In’ axInBn)* n(ln Bn)t=

~ o I 2 1(Inax)100C-D P (x) dx
= [B(o,A - 0)]" n(In Bn) /a (1+ 10’ axIn By n(in fr)i—

—

Then by Lebesgue term-by-term integration theorem (cf. [18]), we have

1

1 P (Inax) 50000 fr(x)dx |?
J < [Blo,1~0)] Z/ A +1In’ axln fn)* n(lnBn)l- “}

1
/-oo o xp—l(lnax)(l—éa)(p—l) fp(x)dx 4
1~ (1+In’ axInBn)* n(lnpn)t-

Q=

= [B(a,k - o)]

Q=

= [B(a,k — cr)]

/100 @ (%)x" 1 (In ax)p(1_5”)_1fp (%) dx} ’ ,

hence, (2.4) follows.

By Holder’s inequality again, we have

oo q
ap
|:n22: (1 +1n® axIn Bn)* :|
nd 1 (In oex)1-99)/q xi
_ {Z : [
2|

= (1+1In’ axIn Bn)* (In Bn)@-o)p n_zlai|

(In )2 nra, 1) > € (In qrx) 173001 71
X <
|:(ln ax)i-0Va - 2 :| - nX:Z: n(1 +In® axIn Bn)*(In Bn)l-o

[e.¢]

na-1 In Bn (1-0)(g-1)
s (n 1=

a
— (1+ In’ axIn fn)*  x(lnax)i-oo "

x[w (1)1 & ni!

~ (Inowx)®o-1 ; x(1 + In® ax In Bn)*

(Inax)®~(In Bn)1=2)@Dgd,
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By the Lebesgue term-by-term integration theorem, we have

1
q

x(l +1n® axIn Bn)*

q—l
L < {f (Inax)’Y(In /Sn)(l’”)(q_l)az dx}

& [ 1 So-1 d %
) { 2 [(ln Py /1 x(l(j l(itlf)(xxln ﬂxn)A }”ql(ln pry = aj }

n=2

1
q

= { Z w(m)ni(n ﬂn)q(l‘”)‘laz } ,

and in view of (2.3), inequality (2.5) follows. O

3 Mainresults
We introduce the functions

@5 (x) 1= 2 (In @x)?1-09)-1 <x > é),
W(n):=nf(In pr)?-1 (ne N\{1}),
wherefrom [@;(x)]'™ = (Inax)?°~!, and [W(n)]'? = L(In fn)° L.

Theorem 3.1 If0 <o <A (0 <1),x >0, /3_3,36{ -1,1}, p>1, —+——1f(x) a, >0,
fe Lp,cp( ,00), @ = {anloey € lgw, Ifllpe; >0, and ||allgw > 0, then we have the following
equivalent inequalities:

I::ia,,/loo( flx)dx

1+ 1n’ axn gn)*

n
/ S = (1 +lndozxylcnﬁn) <B(o,1=0)|fllpesllallgw, (3.1)
= - e d p)»
J= :Z[\D(n)]l P[/l %] } <B(o, A= 0)|fllp,os (3.2)
n=2 k1

1

o0 o0 q q
= algy__ A ~
h [/1 (5] |:n2=2: 1+1n’ ocxln,Bn))‘:| dx] <B(o,r-0)lalgw, (3.3)

o

where the constant B(o, A — o) is the best possible in the above inequalities.

Proof The two expressions for [ in (3.1) follow from Lebesgue’s term-by-term integration
theorem. By (2.4) and (2.3), we have (3.2). By Holder’s inequality, we have

I =Z[w (n) S ) d ][wé(n)an]sfuuuq,u,. (3.4)

= 11+ In® ax In Bn)*

Then by (3.2), we have (3.1).
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On the other hand, assuming that (3.1) is valid, we set

00 -1
a, = [\Il(n)]lfp [/ Lx)]p , neN\{1}.

11+ In® ax In Bn)*

It follows that J#™ = ||a|4w. By (2.4), we find J < co. If ] = 0, then (3.2) is trivially valid; if
J > 0, then by (3.1), we have

lallfy =77 =7 =I<B(o, A = 0)IIf I posllallgw
namely, ||a||Z;; =] <B(o,x —0)|fllpes- That s, (3.2) is equivalent to (3.1).

By (2.3) we have [ (x)]'"7 > [B(o, A — 0)]'™9. Then in view of (2.5), we have (3.3). By
Holder’s inequality, we find

I :/;1( [(I)p(x)f(x) |:q> (x) Z m} dx < ”f”p,‘bsl“ (35)

Then by (3.3), we have (3.1).
On the other hand, assume that (3.1) is valid. Setting

q-1
n 1
fe):=[@5x)] "[Z W} e <a’°°)’

then L™ = ||f |0, By (2.5), we find L < 0. If L = 0, then (3.3) is trivially valid; if L > 0,
then by (3.1), we have

WFID o, = LP9 = L9 = I < B(o, 2 = 0) [f |5 @l g,

therefore |[f|| ¢ =L < B(o,A —0)|allgw, that is, (3.3) is equivalent to (3.1). Hence, in-
equalities (3.1), (3.2), and (3.3) are equlvalent
For 0 <& < p(A —0), setting Es := {x;x > L1’ ax € (0,1)},

~ 1 e ~ 1
fx) = “(nax)’“* 0 x e Ej; fx)=0, {x;x > — }\Eg,
x o

and g, = %(ln ﬂn)aif?*l, n € N\ {1}, if there exists a positive number k (< B(o, A — o)), such
that (3.1) is valid when replacing B(o, . — o) with &, then in particular, for § = 41, setting

u = In® ax, it follows that

d L8]utt 1
f( = ) e

x(In ax)—68+1 0 y—c+s e

Z/ (1+1n’ axln,B a“f(x)dx<k|lf||p¢a||ﬂ||qw

17| 1 = |
- k{/fs x(In ax) 2T } { 2(n2p) " 23: n(In )1

n
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1\7 1 © i
<k(§> {2(1n2,3)“1+ /2 x(In Byl dx}

B k £ 1 % (3.6)
) E{zanzﬁ)“l " (In2p)° } ’ '

(In ax)é(cﬂ—;—,)—l

oo

~ 1 a—§—1/

1= “(InBn)’ 4 dx
; n( pn) s %(1 + In® axIn Bm)*

ey a ; ) 1/ b a : e
n(nBn)* Jo +t

n=2
£ &\ — 1
=Blo+—,A-0—-— —— —A(s)
( p p);n(lnﬂn)“l

B< c 8)/00 L o4
>Blo+—A-0—-— ——dy—Ale
p p)Jo y(nBy)+t )

B 1 B 8}L e Ae)
g0

> 1 1 e,
A= 2 iy fo et 7

We find

o0

1 * 1 o+£-1
0<A(8)SZW/ —}Lt P dt

=2 Ingn 3

1 &1
=

<
A £
5 _157 ~ 1’1(11'1,31’1)0+q+1

and so A(e) = O(1)(¢ — 0%). Hence by (3.6) and (3.7), it follows that

LY Y £)_co) <k ¢ L |
(In2p)° (‘”E’ ‘“‘,Z)_‘? ) {2(1n2ﬂ)“1+(ln2ﬂ)8} ’

and B(o,A — o) < k(¢ — 0%). Hence k = B(o, A — o) is the best value of (3.1).

By the equivalence of the inequalities, the constant factor B(o, A — o) in (3.2) ((3.3)) is
the best possible. Otherwise, we would reach the contradiction by (3.4) ((3.5)) that the
constant factor in (3.1) is not the best possible. O

Remark 3.2 (i) Define the first type half-discrete Hilbert-type operator T : L, ¢, (%, 00) —

l

wi-p aS follows: For f € Ly, (é, 00), we define T1f € lp,\pl—p by

o 1

—

Tif(n) = / f(x)dx, neN\{1}.

11+ In® aex In Bn)*

Then by (3.2), IT\fllw1-» < B(o,A = 0)l|fllpe, and so T is a bounded operator with
IT1]| < B(o,A — o). Since by Theorem 3.1, the constant factor in (3.2) is best possible,
we have ||T1|| = B(o,A —0).
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(ii) Define the second type half-discrete Hilbert-type operator T5 : [,y — Lq (leq(é, 00)
i}

as follows: For a € Iy, we define Tha € Lq,q);—q(é, 00) by

Tra(x) = Z ;)Aan, x € (l,oo).

3
“— (L+In"axInpn o
Then by (3.3), ||T2a||q(b1-q < B(o,A — 0)llallgw and so T, is a bounded operator with
s
IT2|| < B(o, A — o). Since by Theorem 3.1, the constant factor in (3.3) is best possible,

we have || T, || = B(o, A — o).

Remark 3.3 Forp=g=2,1=1,0 = %, 8 =1in(3.1), (3.2), and (3.3), (i) if « = B =1, then
we have (1.7) and the following equivalent inequalities:

S W N
Sl ) <7 eas .

n=2

n=2

Rl a, ? 9 > 9
- — ] d ; 3.9
./1 x Zl+lnxlnn e nZ:Z:ml" (39)

(i) ifa =B = %, then we have the following equivalent inequalities:

w

oo a,‘f(x)dx (o] ) o] ) %
f qu{f; *f (x)dx;"ﬂn} : (3.10)

2 n=2

00 %) 2 %)
> % ( /3 de) <7’ /3 xf* () dx, (311)

2 2
= 3 1+ln3xln3n 3

R a ? ) > N
- — " | dx<m na:. 3.12
/3 x §1+ln%xln§n HXZ; " (312)
Remark 3.4 For § = —1in (3.1), (3.2), and (3.3), setting F(x) = In*(ax)f (x), t = A — 0 (> 0),
and ®(x) := #” L (Inax)?""-1, we have the following new equivalent inequalities with the
same best possible constant factor B(o, i):

o0 [e¢]

> F(x)dx B o0 a,
;dn.é In* (B nxx) _/é F(x)gln*(aﬁnx) dx
<B(o, W|IFllpellalgw, (3.13)
- o[ [ Fx)dx 77 ;
L_z[‘lf(n)] U W” <B(o, W0, (314)

00 [e'e) q %
{ / [<I>(x)]l‘q[zm/—”)} dx} <Bo ) lallge. (315)

1 - (aBnx
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