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Abstract

In this paper, we deal with the localization problem in wireless sensor networks, where a target sensor location must
be estimated starting from few measurements of the power present in a radio signal received from sensors with
known locations. Inspired by the recent advances in sparse approximation, the localization problem is recast as a
block-sparse signal recovery problem in the discrete spatial domain. In this paper, we develop different
RSS-fingerprinting localization algorithms and propose a dictionary optimization based on the notion of the
coherence to improve the reconstruction efficiency. The proposed protocols are then compared with traditional
fingerprinting methods both via simulation and on-field experiments. The results prove that our methods outperform
the existing ones in terms of the achieved localization accuracy.
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1 Introduction
In the last decade, localization services have become
widespread in everyday life, supported by the advances
in communication technologies that allow to detect the
position of people and devices [1]. After the diffu-
sion of satellite-based localization systems, which can be
exploited in favorable outdoor conditions, much atten-
tion has been devoted to localization in indoor environ-
ments or in outdoor adverse conditions due to geological
or energy barriers (e.g., presence of mountains or dense
forests, high consumption of GPS systems) [2, 3]. The
studies in this field are motivated by a number of safety
and monitoring tasks, such as the tracking of products
and equipment in hospitals or warehouses, or the detec-
tion of security personnel in a building. More generally,
tasks like indoor guidance are convenient in all those con-
texts where mobility is fundamental, for example, in huge
shopping malls, museums, or airports.
Localization has recently taken advantage of the devel-

opment of wireless sensor networks (WSNs), that are now
widely used as a valuable alternative to satellite-based
technologies in the aforementioned frameworks. Many
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different settings, designs, and methodologies have been
tested and analyzed for localization in WSNs, which are
illustrated in a number of books and surveys on the topic,
e.g., [3–7].
The mathematical modeling of indoor signal propaga-

tion is particularly challenging due to the presence of
multipath, moving elements, and reflecting surfaces. A
unified approach is not available yet: techniques are typi-
cally developed for a specific setting and different schemes
can be combined to improve the efficiency [3].
Based on the type of measurements available, we can

distinguish two main approaches: (a) triangulation and
(b) scene analysis (or fingerprinting) [3]. Triangulation
exploits the geometric properties of triangles and includes
methods like Direction of Arrival (DoA) and Time of
Arrival (ToA) (see [1] for an overview), which estimate the
angle from which a source is emitting the signal and the
time of arrival of the signal (which is typically proportional
to the distance), respectively. Nevertheless, the former
approach is not capable of revealing the physical location
of the emitting source, while the second dramatically suf-
fers from multipath and refraction effects. The presence
of obstacles causes inaccuracies also using methods based
on the measurement of the received signal strength (RSS),
that is, the power transmitted by the device to be local-
ized. RSS-based techniques however are more efficient if
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combined with fingerprinting [8], which is a map-based
approach that consists in creating a signaturemap in order
to represent the physical space capturing the variations of
the dynamic nature of the indoor radio propagation. More
precisely, RSSmeasurements are collected off-line at some
known locations in the area and then stored in a signature
map. The unknown location can then be obtained on-line
from the current RSS measurements, which are compared
with those in the signature map.
While more robust and accurate, RSS-fingerprinting

methods require the exchange of a large number of data
between the receiver and the transmitter to achieve the
desired level of performance. This issue has been recently
tackled by recasting localization into a sparse approxi-
mation problem [9–11]. The rationale is the following:
assuming that the physical space is discretized onto a grid
of D cells, each of them associated with a prescribed posi-
tion, the device position can be represented by a vector
of length D that has non-zero entries only where a device
occupies that position. Typically, we want to localize few
devices at a time, thus this vector has few non-zero entries,
i.e., it is sparse, while the number of possible positions D
is very large. Within the aforementioned applications, the
localization of a specific medical equipment in a hospi-
tal [3] is an example of a problem that may be sparse. A
hospital typically is a wide environment and is discretized
in a huge number of cells, while a specific equipment
(even if several copies of it are available) is not expected
to be present everywhere, i.e., does not occupy many cells.
Localization can then be performed by solving an under-
determined linear system under sparsity constraints. The
underlying mathematical problem is analogous to the one
considered by the recent theory of compressed sensing
[12], which provides a number of theoretical guarantees
on the recovery accuracy.
In this paper, we start from the setting presented in [9]

and we present new methods, based on block-sparsity,
that improve the performance of the localization sys-
tem and make it suitable for practical use. Block-sparsity
assumes that the non-zero entries of the sparse signal to
be reconstructed are confined in some blocks, while other
segments are completely empty; recent work [13, 14] pro-
vides theoretical guarantees for their reconstruction in a
compressed sensing framework. Leveraging these general
results, we explore RSS-fingerprinting methods based on
block-sparsity and we prove their efficiency.
In particular, we propose two families of algorithms. In

the first class, given the dictionary of fingerprints that
consists of multiple blocks, the localization is obtained by
searching for the block-sparsest solution, i.e., the repre-
sentation that uses the minimum number of blocks. In
the second one, the blocks are rearranged by exploiting
intra-block correlation in order to improve recovery per-
formance. These algorithms also shed light on how to

optimize the dictionary exploiting such correlation and,
thereby, improving performance. Our criteria depend on
the notion of mutual coherence of a dictionary. We evalu-
ate the performance of the proposed localization systems
through a number of simulations and on-field trials, show-
ing their higher accuracy in terms of localization distance
error with respect to the state of the art. Thanks to the
blocks’ arrangement, our methods are also more robust
to noise, which can be caused by interferences with other
signals, or by people walking in the area, or by walls and
furniture. Moreover, the algorithms we use for the local-
ization are based on greedy algorithms, which are known
to be computationally efficient. Thus we obtain a more
accurate localization in a short time, as we will explain at
the end of Section 3.
The paper is organized as follows: in Section 2, we

introduce the localization scenario, defining the setting of
our model; in Section 3, we explain the proposed algo-
rithms based on block-sparsity. Technical details on the
boards used in our experiments and the validation of
the theoretical model are given in Section 4. Finally, the
results of simulations and field tests, both in outdoor and
indoor environments, are presented in Sections 5 and 6,
respectively.

2 Indoor localization system
In this section, we introduce the localization scenario that
we consider throughout the paper and we describe the
mathematical formulation of the problem.

2.1 Model setting
We start by defining a two-dimensional region A ⊂ R

2

that represents the area of interest where the device to be
localized is placed. We then consider a discretization of
A by setting D ∈ N significant points in A, named refer-
ence points (RPs), whose coordinates are indicated by ξi,
i ∈ {1, . . . ,D}, and partitioningA into D subsets (or cells),
each of them containing a RP. If the environment is pretty
much uniform, a natural choice to arrange the cells is a
uniform grid that covers the entire area with the desired
resolution, as in Fig. 1. On the other hand, if obstacles
such as building walls or furniture limit the area, non-
uniform adapted partitions could be considered. The RPs
are generally intended as the centroids of the cells. For
simplicity of exposition, in this work, we always consider a
rectangular-shaped region A with uniform grid of R rows
and C columns, and D = RC RPs as in Fig. 1.
Given the discretization, the localization task consists in

detecting the cell occupied by the device. Clearly, increas-
ing the desired resolution, we increase also the localiza-
tion accuracy, provided that the right cell is identified. To
perform localization, we set J base stations (BSs), inside
or outside A, that collect signals from the RPs and trans-
mit information to a central unit that processes the data
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Fig. 1 Example of a uniform grid over a rectangular areaA; the RPs
(red dots) are set in the centroids of the cells; in this case the BSs are
set outsideA

and runs the localization algorithm. In our model, the BSs
are assumed to acquire the RSS of the signals, which is a
measure of the power. RSS methods are widely used for
localization as they are among the most inexpensive and
less consuming [9, 15]. Taking into account, the atten-
uation due to the distance and obstacles between the
transmitting device and the receiver (e.g., walls, furniture,
and people), the RSS at distance d is modeled as follows
[9]:

Pr(d) = Pt − PL(d0) − 10n log10(d/d0) − ησ , (1)

where Pt is the transmitting power, PL(d0) is the average
path loss value at a reference distance d0, generally d0 =
1m, n is an attenuation parameter (generally 2 ≤ n ≤ 4),
ησ is a zero-mean Gaussian noise with standard deviation
σ , that we denote as ησ ∼ N (0, σ 2).
Let us now introduce the fingerprinting basics [8], on

which we build our localization procedure.

2.2 Fingerprinting techniques
RSS-fingerprinting consists in creating a signature map
(or dictionary) that represents the RPs ofA and then com-
paring RSS measurements with such fingerprints. More
precisely, we distinguish two phases, known as training
(or off-line) phase and runtime (or on-line) phase, that we
now describe.

2.2.1 Training phase
During the training phase, a fingerprint map is created
as follows. A transmitting device is set in turn in each
RP at position ξi, i ∈ {1, 2, . . . ,D} and broadcasts a sig-
nal T ≥ 1 times. At each time t ∈ {1, 2, . . . ,T}, each BS
j ∈ {1, 2, . . . , J} stores a RSS ψ

j
t,i from RP at ξi. Each BS is

then associated with a map � j that can be written as the
measurements’ matrix

� j =

⎛
⎜⎜⎜⎜⎝

ψ
j
1,1 ψ

j
1,2 . . . ψ

j
1,D

ψ
j
2,1 ψ

j
2,2 . . . ψ

j
2,D

...
...

. . .
...

ψ
j
T ,1 ψ

j
T ,2 . . . ψ

j
T ,D

⎞
⎟⎟⎟⎟⎠ ∈ R

T×D. (2)

The motivation to take multiple acquisitions (T > 1) is
clearly the presence of noise, which is inherent in trans-
missions and also due to the stable or moving obstacles
in the area of interest: intuitively, a redundant number of
samples guarantees to obtain accurate localization with
higher probability.
Finally, each BS sends its own � j to the central unit,

which stores the global map

� =

⎛
⎜⎜⎜⎝

�1

�2

...
�J

⎞
⎟⎟⎟⎠ ∈ R

TJ×D. (3)

2.2.2 Runtime phase
Localization is performed in the runtime phase. The BSs
take T ≥ 1 RSS measurements zj ∈ R

T , j ∈ {1, . . . , J}, and
transmit them to the central unit, that collects them into
the global measurement vector

z =

⎛
⎜⎜⎜⎝

z1
z2
...
zJ

⎞
⎟⎟⎟⎠ ∈ R

TJ . (4)

Figure 2 illustrates the transmission tasks performed
during the training and runtime phases.
At this point, given � and z, the central unit estimates

the position of the device comparing z with � . Intuitively,
if the device is in the RP at ξl, each BS j is expected to
receive a signal zj “close” toψ

j
t,l, t = 1, . . . ,T . Based on the

notion of distance that one considers, different algorithms
can be developed to estimate the position.

3 Block-sparsity-based fine localization
We now introduce some elements of localization via spa-
tial sparsity; further we introduce block-sparsity, which
is the theoretical foundation for our novel approach to
localization.

3.1 Localization via spatial sparsity
Recently, a sparsity-based approach to localization has
been explored in literature [9–11, 15], which arises from
the observation that localization can be interpreted as the
reconstruction of a sparse signal, namely a signal with
few non-zero entries. Specifically, we define a vector b ∈
{0, 1}D such that bi = 1 if a device is in the cell i, and bi = 0
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Fig. 2 Illustration of training phase (left) and runtime phase (right): in the training phase, each RP transmits T times to the BSs, which in turn send the
data to the central unit that collects the signature map; in the runtime phase, a device is placed in cell and transmits to the BSs, which forward the
information to the central unit, which tries to localize the device using the database

otherwise. Assuming that the number of devices is small
with respect to the number D of RPs, b is sparse, and its
recovery (i.e., the recovery of the position of its non-zero
entries) corresponds to solving the localization problem.
The mathematical problem [9, 16] consists in finding

b ∈ R
D such that z = �b + η where η ∈ R

TJ is a small
error, subject to the constraint that just one position is
occupied by each device. A common formulation to this
problem is the following:

min
x∈Rn

‖z − �x‖2 s. t.‖x‖0 ≤ k (5)

where ‖x‖0 = |{i ∈ {1, . . . ,D}|xi �= 0}|, | · | denotes cardi-
nality, and k ≥ 1 is the number of devices to be localized.
The sparse recovered vector has 1 in the position where
the solution to (5) is non-zero and 0 otherwise.
As already mentioned, the classical algorithms, such as

the nearest neighbor ones [17] and Bayesian ones [18], can
localize only one device, while our methods can handle
multiple devices. However, in this work, we focus on the
localization of one device in order to fairly compare to the
classical algorithms. From now on, we then assume k = 1.
Assuming that J < D, the formulation of the problem

in (5) is similar to compressed sensing [12], which has
been widely studied in the last years. The problem can be
solved by relaxing the constraint with the �1-norm and
by using convex optimization [12]. It is well known that
b can be recovered solving (5) if the sensing matrix ful-
fills the so-called restricted isometry property (RIP; [19]),
which however has been proved only for a limited class
of matrices (in particular, random matrices [20]). In our
case, the matrix � not only cannot be chosen, but is in
fact determined by the real environment, which makes it
poorly suited to a study of its mathematical properties.
In this section, we develop three different schemes

that recast the localization into a block-sparse recov-
ery problem. The schemes we propose are referenced as
crossing approach, hierarchical approach, and hierarchi-
cal approach with spatial averages. In the next paragraphs,
we describe the proposed protocols.

3.2 Crossing approach
In this first approach, we provide the position of the tar-
get by estimating the row and the column which identify
the cell occupied in the grid. More precisely, we consider
the signature map � exactly as defined in (3), but we
look at it organized in blocks according to the rows of the
discretization grid:

The first block �[ 1] corresponds to the first row of the
grid and thus it consists in the first C columns of � , as
defined in (3), where C is the total number of columns of
the grid.
Let b ∈ {0, 1}D be the vector such that

b =

⎛
⎜⎜⎜⎝

b[ 1]
b[ 2]
...

b[R]

⎞
⎟⎟⎟⎠

where

b[ r]=

⎛
⎜⎜⎜⎝

b(r−1)C+1
b(r−1)C+2

...
brC

⎞
⎟⎟⎟⎠ ∈ {0, 1}C ,

for any r ∈ {2, . . . ,R}. The row is then estimated by solving

min
b∈Rn

‖z − �b‖2 s. t.‖b‖2,0 ≤ k (6)
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where z ∈ R
TJ×1 is the acquired vector in the runtime

phase, ‖b‖2,0 = |{i ∈ {1, . . . ,N} : ‖b[ i] ‖ > 0}|. If b� is the
solution of (6), then the index r̂ such that b�[ r̂] �= 0 is the
row occupied by the device.
Then, reorganizing the columns in � , we can write it in

blocks according to the columns of the grid, i.e.

�̃ = (
�̃[ 1] , �̃[ 2] , . . . , �̃[C]

)

where each block �̃[ c]=
[
�̃[ c] (1), �̃[ c] (2), . . . , �̃[ c]

(r), . . . , �̃[ c] (R)

]
contains the cth column of the previous

R blocks:

e.g., �̃[ c] (r) = �[ r] (c) is the cth column of the rth block
of � .
The estimation of the column ĉ is provided by the

solution of

min
b∈Rn

‖z − �̃b‖2 s. t.‖b‖2,0 ≤ k (7)

Thus, the estimated position is given by x = C(r̂ − 1) + ĉ,
crossing the estimated row r̂ and column ĉ, as shown in
Fig. 3.

Fig. 3 Graphical representation of the crossing approach

3.3 Hierarchical approach
In this approach, we refine the spatial sparsity methods by
grouping the cells and proposing a hierarchical search of
the device position.
The idea is as follows. In the training phase, some adja-

cent cells, which form a partition of the ground floor, are
grouped into N macroblocks. The dictionary � is then
rearranged accordingly. For example, let us consider a 6×8
grid and N = 12 groups composed by 2 × 2 blocks of
adjacent cells as shown in Fig. 4.
The matrix � is then rearranged to form a new dictio-

nary, denoted by

� ′ = [
� ′[ 1] ,� ′[ 2] , . . . ,� ′[N]

]
.

Specifically, � has the following structure:

where the different colors represent different blocks, com-
posed by the cells indicated in Fig. 4. We also rear-
range x ∈ R

D into a concatenation of N blocks x =
(x[ 1]
 , x[ 2]
 , . . . , x[N]
 )
.
In the runtime phase, first, the macroblock occupied

by the device is estimated by solving the optimization
problem

min ‖z − � ′x‖2 s. t.‖x‖2,0 ≤ k (8)

where ‖x‖2,0 = |{i ∈ {1, . . . ,N} : ‖x[ i] ‖2 > 0}|. Sec-
ond, if x� is the solution to (8) and �� is the index such
that x�[ ��] �= 0, the cell occupied by the device in the

Fig. 4 An example of block partitioning
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selected macroblock is estimated by solving (5), reducing
the dictionary to the columns of � ′[ ��].
This approach can be extended to multiple stages and to

multiple devices to be localized.

3.4 Hierarchical approach with spatial averages
We now propose an extension of the hierarchical
approach. It also operates in two consecutive steps, requir-
ing a new signature map, where each block �̂[ n] is com-
puted taking the mean in the cells constituting the block:

�̂[ n]= 1
Ln

Ln∑
l=1

ψS[n](l) ∈ R
TJ ,

where Ln is the number of cells constituting the nth block
and ψS[n](l) is the column of � indexed by S[ n] (l) that is
the lth component of the subset S of indices of the cells
constituting the nth block.
Referring to Fig. 4, S[ 1]= {1, 2, 9, 10}, S[ 2]=

{2, 3, 11, 12}, and so on, are the subsets of indices rep-
resenting each block. Thus, for instance, the first block,
which is the red-colored one, is computed taking the
average of the first, the second, the ninth and the tenth
columns of � , as defined in (3).
Specifically

This approach is motivated by the fact that averag-
ing RSS measurements minimizes the mean square error
(MSE) of the RSS values measured in different points.
Moreover, if the distance among the reference points is

not too large, compared to the environment dimension,
the averaging process is approximately equivalent to take
the RSS from the centroid of the reference points. For
instance, if we consider four adjacent cells in a macroblock
2× 2, the averaging process provides an approximation of
the RSS in the middle of the macroblock. Thus, this could
be interpreted as a new discretization with bigger cells.
Then, we find the occupied block ι̂ by solving (5), and

finally we can find the occupied position by solving (5)
using the selected block �̂[ ι̂]. In all previous approaches,
the recovery of the occupied position is computed via
Orthogonal Matching Pursuit (OMP) algorithm [21]. We
choose OMP instead of a convex optimization routine,
such as the interior point or the simplex method [22],
since it is computationally more efficient.

4 Hardware implementation andmodel
validation

Before presenting numerical and experimental results, we
provide the specifications about the hardware and the
software used for the experiments as well as some tests
that we performed in order to validate our model.

4.1 Boards and software description
The experiments have been carried out using SPIRIT1-
based evaluation boards [23] produced by ST Microelec-
tronics (see Fig. 5). The SPIRIT1 is a radio frequency
transceiver optimized for low-power operations [24].
This device is designed to operate both in the license-

free ISM and SRD frequency bands at 169, 315, 433,
868, and 915 MHz, and can support different modulation
schemes. The experiments reported in this paper have
been carried out using the 915-MHz band. The SPIRIT1
transceiver provides digital output of the RSS for the last
received packet or for the last sequence of received sym-
bols. This sensed value is used by each base station to
provide the RSS information of the packets received by the
device to be localized.

Fig. 5 SPIRIT1-based evaluation board
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The firmware running on the devices has been devel-
oped starting from the Thingsquare [25] open source
code, taking advantage of its Contiki operating system
[26] core for the programming model and for the net-
working support. The experimental results have been col-
lected using a set of SPIRIT1-based boards, connected by
means of a 6LoWPAN network [27]. A usb-dongle device
connected to a laptop has been used to provide the Bor-
der Router functionalities to the wireless sensor network
(WSN).

4.2 RSS trend andmodel validation
Some experiments have been carried out to evaluate the
profile of sensed RSS versus the distance from the receiv-
ing device.
We employ two boards, one serving as a base station

and the other as the device sending messages to the base
station. We start with the two boards next to each other,
then we separate them gradually for about 60 m, taking
measurements every 2 m, in order to compare these sam-
ples with the theoretical model (1). The result is shown
in Fig. 6: at each step, we take the average of 20 sam-
ples (red circles). Both the noise-free and the noisy model
(blue and green curves, respectively) follow the trend of
the real sample. The noisy trend is obtained adding Gaus-
sian noise to the noise-free model with standard deviation
σ computed from the samples (σ ∈[ 0.2, 5.5]).
Another test to validate the considered model is carried

out in an outdoor area of size 20 × 9 m2 where we placed
six BSs inside the grid. We choose quadrangular cells with
a 180-cm-long side. In Fig. 7, we show the trend of the

RSS at a BS, which is located in the ninth row and the sec-
ond column. In the first two images, we can see the RSS
trend on the ninth row and the second column, respec-
tively, while in the second two we display a color-map of
the whole area. The RSS value is higher in the neighbor-
hood of the BS and decreases with the distance both in the
real experiments and in the ideal case.
Moreover, in order to check if the trend is more or less

constant over time, we take twice the RSS values in a 15 ×
12.5 m2 indoor area at a BS located in the third row and
the fourth column. The result of this experiment is shown
in Fig. 8: both the trend on a line in the third row and
in the fourth column of the grid and the trend on the
whole grid are almost the same for both the experiments
tested. We can notice that the highest RSS values are in
correspondence of the BS and then they decrease with
distance.
Finally, in order to validate the choice of SPIRIT1

board, we try also a similar experiment in an indoor
area with another kind of board: we test MBxxx [28], a
platform based on STM32Wwith 2.4 GHz, IEEE 802.15.4-
compliant transceiver, working with Contiki-OS [26] as
well. In this case, as we can see in Fig. 9, the RSS values
obtained at a BS located in the fifth row and first column
are less stable than the one we obtained with SPIRIT1
boards: as a matter of fact, there are several peaks and
unexpected oscillations. This is due to the different trans-
mitting frequency: for the SPIRIT1, we use a 915 MHz
band, so operating in the sub-GHz band, while for the
MBxxx it is 2.4 GHz, which is more noisy since it is the
frequency of many other signals (e.g., Wi-Fi). Moreover,

Fig. 6 RSS trend on a line, taking 20 samples every 2 m
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Fig. 7 Comparison between RSS trend on a rectangular outdoor area in a simulated case and using SPIRIT1 boards: the top graphics represent the
RSS trend at a single BS obtained from the column and row the BS occupies; the bottom ones, instead, give the RSS map of the whole area at that BS
for two different tests

Fig. 8 RSS trend on a rectangular indoor area with SPIRIT1 boards: the top graphics represent the RSS trend at a single BS obtained from the column
and row the BS occupies; the bottom ones, instead, give the RSS map of the whole area at that BS for two different tests



Bay et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:182 Page 9 of 15

Fig. 9 RSS trend on a rectangular indoor area with MBxxx boards: the top graphics represent the RSS trend at a single BS obtained from the column
and row the BS occupies; the bottom ones, instead, give the RSS map of the whole area at that BS for two different tests

a lower frequency brings a longer wavelength, reduc-
ing thus the interferences of physical obstacles such as
walls.

5 Simulations
In this section, we present the results of some numeri-
cal simulations to test our algorithms, comparing them
to classical fingerprinting-based algorithms (i.e., WkNN
[17]) and to sparse methods [9].

5.1 Classical fingerprinting-basedmethods
Classical methods are mainly based on nearest neighbor
(NN; [17]) procedures, that search for the RP that is the
nearest to z. These are widely known clustering meth-
ods that can be efficiently applied for fingerprinting-based
localization.
Different variations are known, such as k-nearest

neighbor (kNN; [17]), and weighted k-nearest neighbor
(WkNN; [17]).
The basic idea of NN-based methods is to estimate the

position as the weighted mean

x̂ =
D∑
i=1

wi∑D
h=1 wh

ξi, (9)

where w = (w1, . . . ,wD)
 are weights, computed in
different ways in the different algorithm versions. More
precisely, let us define the distances

λi =
√√√√ J∑

j=1
|zj − ψ ij|2, (10)

where

ψ ij = 1
T

T∑
t=1

ψ
j
t,i, zj = 1

T

T∑
t=1

zt,j. (11)

We now define a permutation (i1, i2, . . . , iD) of the
sequence (1, 2, . . . ,D) such that λi1 < λi2 < . . . λiD . Then
the weighting coefficients w are chosen as in Table 1: in
the classical NN we consider only the closest RP putting
wi1 = 1 and 0 elsewhere; in kNN the k closest RPs are con-
sidered, while in WkNN the k closest RPs are considered
with a weight depending on the distances.

Table 1 Weights for deterministic methods based on NN

wi1 wi2 . . . wik wik+1 . . . wiD

NN 1 0 . . . 0 0 . . . 0

kNN 1 1 . . . 1 0 . . . 0

WkNN 1/λi1 1/λi2 . . . 1/λik 0 . . . 0
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5.2 Results
For our simulations, we set an area of 30 × 15 m, on
which we build a 12 × 6 grid, with 250-cm-side quad-
rangular cells. We deploy J = 8 BSs randomly in the
grid, and at each BS we took T = 5 measurements.
The signature map is built in a noise free case, follow-
ing the model (1), where we set Pt − PL = −50 and
n = 2.5. Then, for the runtime phase, we generate the real-
time measurements using 100 different values of noise
(σ ) and for each value of σ we have performed 200
experiments.
The results are shown in Fig. 10. Spatial averages meth-

ods with blocks of 2 × 2 cells (lightblue line) turns out to
perform best overall and only the hierarchical approach
with 2 × 2 block-cells (red line) outperforms it in case
of low noise (until σ < 0.1) since it recovers the exact
position almost every time. On the other hand, in case of
high noise, spatial averages with 3 × 2 cells (green line)
reaches performance as good as the best one: a mean
localization error of 2.5 m means that the average error
of 200 experiments is of just one cell. Also our other
proposed algorithm based on block-sparsity (crossing
approach, violet line) performs close to spatial averages
approaches in case of low noise and only for high values
of σ it behaves worse than the spatial sparsity method [9]
and the WkNN [17] (blue and black lines, respectively).
Finally, with 3 × 2 cells hierarchical method (yellow line),
we incur a mean localization error that is always higher
than, or at most the same as, WkNN, but our method
is better than spatial sparsity, except for very high noise
cases.

5.3 Dictionary design via block-coherence
The block-coherence μB of a dictionary � measures the
similarity between dictionary elements belonging to dif-
ferent blocks, and is defined as

μB(�) := 1
T

max
i�=j

ρ
(
�[ i]
 �[ j]

)
,

where ρ
(
�[ i]
 �[ j]

)
is the spectral norm of the matrix

�[ i]
 �[ j]. Conversely, the sub-coherence is a measure of
the correlation of the atoms belonging to the same block,
and is defined as

ν(�) := max
i

min
j �=h

(
θ [ i]
j θ [ i]h

)
,

where θj[ i] denotes the jth column of the ith block.
Theorem 3 in [14] provides a sufficient condition for suc-
cessful recovery in absence of noise. More precisely, let
x ∈ R

LW be a block k-sparse vector (i.e., ‖x‖2,0 ≤ k) and
y = �x, where � ∈ R

N×LW . If the following inequality is
satisfied

kL <
1
2

(
1

μB(�)
+ L − (L − 1)

ν(�)

μB(�)

)
, (12)

then x can be exactly recovered from y. In practice, this
condition requires a small correlation between the atoms
belonging to the same block (i.e., a small value of ν(�)),
and a small correlation between the different blocks (i.e.,
a small value of μB(�)).

Fig. 10 Comparison of different approaches in a simulated case: for each value of σ , we run 200 experiments to compute the mean localization error
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We perform a Monte Carlo simulation (over 104 runs)
in order to estimate the probability that a dictionary
� ′ verifies the block-coherence condition in (12). We
remark that the block coherence condition for exact
reconstruction holds only in the noise-free case, and
no guarantees are given for the noisy case. However,
we expect the estimation in (8) to be robust against
bounded noise (see [14]): small perturbations in the
observations should cause small perturbations in the
reconstruction. We build � exploiting the RSS model
described in Section 2, and we compute a new dictio-
nary obtained by reorganizing the columns of the orig-
inal matrix � , as described in Section 3. We choose
several partitions of the ground floor, corresponding to
different choices of the block size. For each of these
choices, we evaluated the condition in (12). The estimated
probability for our block-based approach is reported in
Table 2.
For this test, we consider the same settings as in

Section 5. We built � exploiting the RSS model described
in Section 2, and for each localization approach, we
compute a new signature map obtained by reorganizing
the columns of the original matrix � , as described in
Section 3.
In the hierarchical approach, we choose several par-

titions of the ground floor, corresponding to different
choices of the block size. The estimated probability for the
hierarchical approach is summarized in Table 2.
We observe that the best probability is obtained for

blocks of size 2 × 2. This happens because the value of
the sub-coherence ν increases as the block size increases;
therefore, the best value of ν is reached when the block
size is considered the smallest.
For the crossing approach, instead, the estimated prob-

ability is equal to zero. This happens because the block-
coherence of the matrix �̃ is large, since the blocks of
�̃ corresponding to adjacent rows or columns are very
similar, thus highly correlated.
Finally, for the hierarchical approach with spatial aver-

ages, we consider the same block sizes as in case

Table 2 Estimated probabilities for � ′ to satisfy sufficient
condition (12) for hierarchical approach by changing the size of
blocks

Block size Block-sparsity

2 × 2 0.98

2 × 3 0.50

3 × 2 0.80

3 × 3 0.62

4 × 3 0.46

6 × 3 0.11

6 × 6 0.05

of the hierarchical approach. In this case, the esti-
mated probabilities are always 1. This is not surpris-
ing, because in this case the blocks of matrix �̂ have
size 1, therefore condition (12) is satisfied if the matrix
has a full column rank. This occurs with very high
probability.

6 On-field tests
In this section, we show the results of some real
experiments, performed in different indoor and outdoor
scenarios.

6.1 Outdoor experiments
First of all, we consider an outdoor scenario, where we
have less obstacles than in an indoor one, in order to limit
the effect of noise to just the interferences from other
signals.
We choose a 6 × 4 grid with 3-m-side cells in a 18 ×

12 m open air area. We place all J = 7 BSs, six around the
grid and one in the middle, as shown in Fig. 11. At each
BS, we took T = 3 measurements both in the training and
in runtime phase.
The results are shown in Fig. 12, where we illustrate

the cumulative distribution function (CDF) curve with
respect to the localization error, which is defined as the
probability that the localization error of a single exper-
iment X will be found to have a value less than or
equal to x:

CDF(x) = P(X ≤ x).

On a sample of 48 experiments, we obtain that in the
65 % of cases the spatial averages approach (lightblue
line) localizes exactly our device, while for more than the
85 %, we have a localization error lower than 3 m, which
means we have localized the device at most in an adjacent

Fig. 11 Base stations (blue dots) placement in an outdoor scenario: in
a 18 × 12 m grid, we place six BSs around and one in the middle
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Fig. 12 Comparison of cumulative distribution functions for different approaches in an outdoor case: a localization error of 0 m corresponds to the
exact localization of the device, 3 m means that we localized it in an adjacent cell, 4·24 m in a diagonal cell, and so on

cell and this can be however considered a success. This
approach, as well as the other based on block-sparsity,
outperforms all the other approaches considered in this
paper: as a matter of fact, about 55 % of the experiments
give the exact position for the crossing approach (vio-
let line) and the other hierarchical ones (red, violet and
yellow lines), while the one based on spatial sparsity [9]
(blue line) and the WkNN (black line) recovers the cor-
rect cell just 30 and 10 % of the times, respectively. We
can notice that spatial averages methods increase per-
formance of respective hierarchical approaches, and that
2 × 2 blocks are better than 3 × 2, as expected from
Table 2.

6.2 Indoor experiments
Then, we move into indoor environments, where we
expect the localization accuracy to decrease a little due to
the higher noise effect given by walls and furniture near
the device to be localized and the BSs.
We have considered two different setups.
Setup 1: small indoor scenario
Since localization is relevant in smart building contexts,

we have tested our algorithms in a household scenario.
In Fig. 13, we can see the house plan with the walls

dividing the rooms emphasized by dark red thicker lines.
In each room, we considered four cells and deployed
all J = 7 BSs (blue dots) in the middle, except for
hallway and bathrooms. At each BS, we have taken T =

3 measurements both in the training and in runtime
phase.
We run 60 experiments and, as depicted in Fig. 14, the

hierarchical algorithm (red line) presents the best perfor-
mance, with 2 × 2 blocks that correspond to the rooms
size and 2×1 blocks for the hallway. As expected, the per-
formance is worse than in the outdoor scenario due to the
presence of walls and furniture that affects the RSS mea-
surements; however, spatial averages with the same block
configuration and crossing approaches (lightblue and vio-
let lines, respectively) recover the exact position between

Fig. 13 Base stations deployment in a home scenario: in a 15 × 12·5
m2 grid, we place five BSs in the middle of the bedrooms, living room
and kitchen, one in a bathroom, and one in the hallway in the middle
of the house
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Fig. 14 Comparison of cumulative distribution functions for different approaches in a home scenario: a localization error of 0 m corresponds to the
exact localization of the device, 2·5 mmeans that we localized it in an adjacent cell, 3·53 m in a diagonal cell, and so on

50 and 60 % of the experiments, while in the literature
[9] (blue line) and [17] (black line) the percentage of suc-
cess is about 30 and below 10 %, respectively. Moreover
3 × 2 blocks approaches, instead, recover the exact posi-
tion only in 35 % of the experiments. This is because the
blocks have been built overlapping them in the hallway.
However, in 80 % of the experiments, all our approaches
localize the device in the right room, even if it could be in
a wrong cell.
Setup 2: wide indoor scenario
The second indoor scenario considered is the aisle of

a university institute, which presents wider rooms with
respect to a household scenario. We change also the
geometry: we build a 12 × 2 grid with 180-cm-side
cells, where we deploy J = 6 BSs (blue dots) on a
side of the aisle, as shown in Fig. 15. This configura-
tion is more convenient since if we had displaced the
BSs along the mid-line, the RSS values read on the left-
hand side would have been exactly the same as the one
read on the right-hand side. At each BS, we took T =
3 measurements both in the training and in runtime
phase.
We run 24 experiments and, as we can see in Fig. 16,

the CDF curves’ trend shows that the best algorithms are
the hierarchical and the spatial averages approaches with
2 × 2 blocks (red and lightblue lines, respectively), which
give an exact localization of the device between 45 and
50 % of the experiments, or localize it at most in the
adjacent one in 80 % of the times. Our other algorithms
based on block-sparsity (violet, yellow, and green lines),

instead, are similar to each other, localizing exactly the
device in 30 % of the experiments and approaching 80 %
if we consider as success even neighboring diagonal cells.
Moreover, also in this scenario, all our algorithms out-
perform [9] and [17] (blue and black lines, respectively),
which localize exactly the device in less than 20 % of the
experiments.

Fig. 15 BSs deployment in a wide indoor scenario: in a 21·6 × 3·6 m2

grid, we located the BSs on the left-hand side of the aisle
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Fig. 16 Comparison of cumulative distribution functions for different approaches in the university institute aisle: a localization error of 0 m
corresponds to the exact localization of the device, 1·8 mmeans that we localized it in an adjacent cell, 2·5 m in a diagonal cell, and so on

7 Conclusions
In this paper, we have introduced new methodologies
for RSS-fingerprinting localization in wireless sensor net-
works, based on block-sparsity, and we have proved that
they perform better than the state-of-the-art techniques
through several numerical simulations and real experi-
ments. In particular, we have done tests deploying sensors
in different indoor and outdoor scenarios.
As in [9], our study arises from the observation that

localization of one or few devices can be interpreted as
reconstruction of a sparse signal. Our specific contribu-
tion improves the results in this framework using block-
sparsity, which can be assumed when very few devices
have to be localized (which is the most common localiza-
tion setting).
Recent mathematical results on block-sparsity provide

analytic conditions for signal reconstruction, which have
been discussed to support our experimental results.
We also describe a real-world implementation of a sys-

tem running for both training and runtime phases: once
the localization parameters and the blocks have been set,
a device sends messages to base stations, which compute
the RSS values and send them to a central unit, where a
Java server collects them and runs hierarchical algorithm
and outputs the estimate of the device’s position.
Many important aspects that have not been dealt in this

work will be investigated in our future research. In par-
ticular, we will focus on distributed localization, in which
the device is not localized by a central unit that collects
and processes the data acquired from the sensor network,

but by the network itself. This raises challenging problems
in terms of computational capabilities and transmissions,
but would be an extremely appealing feature for all those
applications where the network is large and a central unit
is inconvenient.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work has received funding from the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013)/
ERC Grant agreement number 279848.

Author details
1Department of Electronics and Telecommunications (DET), Politecnico di
Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy. 2Department of
Electronics, Information Science and Bioengineering (DEIB), Politecnico di
Milano, Via Ponzio, 34/5, 20133 Milano, Italy. 3Advanced System Technology,
STMicroelectronics, Via C. Olivetti 2, 20864 Agrate Brianza, Italy.

Received: 31 October 2014 Accepted: 5 June 2015

References
1. Y Liu, Z Yang, X Wang, L Jian, Location, localization, and localizability. J.

Comput. Sci. Technol. 25(2), 274–297 (2010)
2. Y Gwon, R Jain, T Kawahara, in Proc. of IEEE INFOCOM 24th Annual Joint

Conference of the IEEE Computer and Communications Societies. Robust
indoor location estimation of stationary and mobile users, vol. 2
(Hong Kong, China, 2004), pp. 1032–1043

3. H Liu, H Darabi, P Banerjee, J Liu, Survey of wireless indoor positioning
techniques and systems. IEEE Trans. Syst. Man Cybern. Syst. Part C: Appl.
Rev. 37(6), 1067–1080 (2007)

4. J Bachrach, C Taylor, Localization in sensor networks. Handb. Sensor
Netw.: Algorithms Architectures. 1, 277–314 (2005)



Bay et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:182 Page 15 of 15

5. A Boukerche, HAB Oliveira, EF Nakamura, AAF Loureiro, Localization
systems for wireless sensor networks. IEEE Wireless Commun.
14(6), 6–12 (2007)

6. J Wang, RK Ghosh, SK Das, A survey on sensor localization. J. Control
Theory Appl. 8(1), 2–11 (2010)

7. Z Farid, R Nordin, M Ismail, Recent advances in wireless indoor localization
techniques and system. J. Comput. Netw. Commun. 2013, 1–12 (2013)

8. VK Jain, S Tapaswi, A Shukla, Performance analysis of received signal
strength fingerprinting based distributed location estimation system for
indoor wlan. Wirel. Pers. Commun. 70(1), 113–127 (2013)

9. S Nikitaki, P Tsakalides, in Asilomar Conference on Signals, Systems and
Computers. Localization in wireless networks via spatial sparsity (Asilomar,
Pacific Grove, CA, US, 2010), pp. 236–239

10. S Nikitaki, P Tsakalides, in IEEE 19th European Signal Processing Conference,
2011. Localization in wireless networks based on jointly compressed
sensing (Barcelona, Spain, 2011), pp. 1809–1813

11. S Nikitaki, P Tsakalides, in Proc. of 7th ACMWorkshop on Performance
Monitoring andMeasurement of HeterogeneousWireless andWired
Networks. Decentralized indoor wireless localization using compressed
sensing of signal-strength fingerprints (Paphos, Cyprus, 2012), pp. 37–44

12. EJ Candès, MB Wakin, An introduction to compressive sampling. IEEE
Signal Process. Mag. 25(2), 21–30 (2008)

13. YC Eldar, M Mishali, Robust recovery of signals from a structured union of
subspaces. IEEE Trans. Inf. Theory. 55(11), 5302–5316 (2009)

14. YC Eldar, P Kuppinger, H Bolcskei, Block-sparse signals: Uncertainty
relations and efficient recovery. IEEE Trans. Signal Process. 58(6),
3042–3054 (2010)

15. C Feng, WSA Au, S Valaee, Z Tan, Received-signal-strength-based indoor
positioning using compressive sensing. IEEE Trans. Mobile Comput.
11(12), 1983–1993 (2012)

16. A Bay, P Fragneto, M Grella, SM Fosson, C Ravazzi, E Magli, in 15th
International Workshop onMultimedia Signal Processing. Sparsity-based
indoor localization in wireless sensor networks (Pula (Sardinia), Italy, 2013)

17. B Li, J Salter, AG Dempster, C Rizos, in Proc. of 1st IEEE International
Conference onWireless Broadband and UltraWideband Communications.
Indoor positioning techniques based on wireless LAN (Sidney, Australia,
2006)

18. D Madigan, E Einahrawy, RP Martin, W-H Ju, P Krishnan, A Krishnakumar, in
Proc. of IEEE INFOCOM 2005, 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Bayesian indoor positioning
systems, vol. 2 (Miami, FL, US, 2005), pp. 1217–1227

19. EJ Candès, The restricted isometry property and its implications for
compressed sensing. Comptes Rendus Mathematique. 346(9), 589–592
(2008)

20. R Baraniuk, M Davenport, R DeVore, M Wakin, A simple proof of the
restricted isometry property for randommatrices. Constr. Approx. 28(3),
253–263 (2008)

21. JA Tropp, AC Gilbert, Signal recovery from randommeasurements via
orthogonal matching pursuit. IEEE Trans. Inf. Theory. 53(12), 4655–4666
(2007)

22. S Boyd, L Vandenberghe, Convex Optimization. (Cambridge university
press, Cambridge, UK, 2004)

23. STMicroelectronics, SPIRIT1 Low Data Rate, Low Power Sub 1GHz
Transceiver. http://www.st.com/web/catalog/sense_power/FM1968/
CL1976/SC1845/PF253167

24. STMicroelectronics, STEVAL-IKR002V5 SPIRIT1 Low Data Rate Transceiver
915 MHz Full Kit. http://www.st.com/web/en/catalog/tools/PF259026

25. Thingsquare, Homepage. http://thingsquare.com/
26. Contiki, The Open Source OS for the Internet of Things. http://www.

contiki-os.org/
27. 6LoWPAN, Proposed Standard. http://tools.ietf.org/html/rfc4944
28. STMicroelectronics, STM32W-EXT Extension boards for evaluation kit for

STM32 Wireless devices. http://www.st.com/web/en/catalog/tools/
PF247100

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://www.st.com/web/catalog/sense_power/FM1968/CL1976/SC1845/PF253167
http://www.st.com/web/catalog/sense_power/FM1968/CL1976/SC1845/PF253167
http://www.st.com/web/en/catalog/tools/PF259026
http://thingsquare.com/
http://www.contiki-os.org/
http://www.contiki-os.org/
http://tools.ietf.org/html/rfc4944
http://www.st.com/web/en/catalog/tools/PF247100
http://www.st.com/web/en/catalog/tools/PF247100

	Abstract
	Keywords

	1 Introduction
	2 Indoor localization system
	2.1 Model setting
	2.2 Fingerprinting techniques
	2.2.1 Training phase
	2.2.2 Runtime phase


	3 Block-sparsity-based fine localization
	3.1 Localization via spatial sparsity
	3.2 Crossing approach
	3.3 Hierarchical approach
	3.4 Hierarchical approach with spatial averages

	4 Hardware implementation and model validation
	4.1 Boards and software description
	4.2 RSS trend and model validation

	5 Simulations
	5.1 Classical fingerprinting-based methods
	5.2 Results
	5.3 Dictionary design via block-coherence

	6 On-field tests
	6.1 Outdoor experiments
	6.2 Indoor experiments

	7 Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

