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Short-term forecasting of the prevalence of
clinical trachoma: utility of including
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Abstract

Background: The World Health Organization aims to control blinding trachoma by 2020. Decisions on whether to
start and stop mass treatments and when to declare that control has been achieved are currently based on clinical
examination data generated in population-based surveys. Thresholds are based on the district-level prevalence of
trachomatous inflammation–follicular (TF) in children aged 1–9 years. Forecasts of which districts may and may not
meet TF control goals by the 2020 target date could affect resource allocation in the next few years.

Methods: We constructed a hidden Markov model fit to the prevalence of two clinical signs of trachoma and PCR
data in 24 communities from the recent PRET-Niger trial. The prevalence of TF in children in each community at
36 months was forecast given data from earlier time points. Forecasts were scored by the likelihood of the
observed results. We assessed whether use of TF with additional TI and PCR data rather than just the use of TF
alone improves forecasts, and separately whether incorporating a delay in TF recovery is beneficial.

Results: Including TI and PCR data did not significantly improve forecasts of TF. Forecasts of TF prevalence at
36 months by the model with the delay in TF recovery were significantly better than forecasts by the model
without the delay in TF recovery (p = 0.003). A zero-inflated truncated normal observation model was better than a
truncated normal observation model, and better than a sensitivity-specificity observation model.

Conclusion: The results in this study suggest that future studies could consider using just TF data for forecasting,
and should include a delay in TF recovery.

Trial registration: Clinicaltrials.gov NCT00792922
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Background
The World Health Organization (WHO), the International
Trachoma Initiative (ITI), Ministries of Health, and their
partners aim to control blinding trachoma by 2020 by
implementing surgical campaigns, antibiotic distributions,
hygiene initiatives, and environmental improvements [1, 2].
Decisions on whether to start and stop mass treatments
and when to declare that control has been achieved are

currently based on the clinical examination data generated
in population-based surveys. Thresholds are based on the
district-level prevalence of trachomatous inflammation–fol-
licular (TF) in children aged 1–9 years. Forecasts of which
districts may and may not meet TF control goals by the
2020 target date could affect resource allocation in the next
few years.
Unfortunately, TF is not an ideal indicator for several

reasons. TF is only indirectly associated with infection
with the causative agent Chlamydia trachomatis, in part
because the clinical signs of trachoma may persist for
months after infection has been cleared [3–7]. Also, TF
is a subjective sign with only moderate reproducibility.
Other indicators such as trachomatous inflammation-
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intense (TI) and more direct evidence of chlamydial in-
fection (PCR) may provide additional information, even
in forecasting the future prevalence of TF.
Recent community-randomized trials have followed

multiple communities which were treated with identical
mass antibiotic programs, providing datasets to test vari-
ous types of forecasts. These trials have assessed the
prevalence of TF, TI and chlamydial PCR. Here, we use a
hidden Markov model with recent clinical trial data of
biannual assessments of 24 communities from baseline
through 30 months to forecast the prevalence of TF in
children in each at 36 months [8]. We assess whether
use of TF with additional TI and PCR data rather than
just the use of TF improves forecasts, and separately
whether incorporating a delay in TF recovery is benefi-
cial; we also compare different observation models.

Methods
Data collection
Forty-eight communities were followed as part of the
Niger arm of the Partnership for the Rapid Elimination
of Trachoma (PRET) study. Communities were random-
ized to either mass antibiotics of the entire community,
or antibiotics targeted just to children 12 years and
younger. The 24 communities included in this study re-
ceived annual antibiotic treatment of all ages. Communi-
ties were assessed at baseline and then biannually for
3 years. All individuals were offered antibiotic treatment
annually, within two weeks of the assessment: children
under 6 months, those allergic to macrolides, and preg-
nant women were offered topical tetracycline, and all
others were offered a single dose of oral azithromycin
(20 mg/kg for children and 1 g for adults).
A random sample of 100 children 0–5 years old were

selected from each community. If a community had less
than 100 0–5 year-old children, then all were offered as-
sessment. Each participating child had their upper right
tarsal conjunctiva swabbed, and processed for PCR as
previously described [9]. Clinical grading of the right
everted superior tarsal conjunctiva was performed using
a 2.5× magnifying loupe and adequate sunlight or a
torch light according to the WHO simplified grading
system [10] as previously described [9].

Ethics statement
This study of de-identified data received ethical approval
from the Committee on Human Research of the University
of California San Francisco and was carried out in accord-
ance with the Declaration of Helsinki. A parent or guardian
of any child participant provided informed consent on their
behalf. The informed consent given was oral: (a) we chose
verbal consent because of the low literacy rates in the study
area, (b) the IRB (10.00812) approved the use of oral con-
sent, and (c) oral consent was documented on the

registration form for each study participant prior to exam-
ination in the field.

Modeling methods
We constructed a stochastic transmission model of
Chlamydia trachomatis infection over time. The model
contains two components: (1) change in the number of
infected individuals over time due to transmission, re-
covery and mass antibiotic treatment with the reported
coverage levels, and (2) the observed TF, TI and PCR-
positive based on the number of infected individuals.
For community j (j =1, …, 24), we assumed a population
of size Nj at the time of treatment k (k = 1, 2, 3 corre-
sponding to baseline, 12 and 24 months). We used an
SIS (susceptible-infectious-susceptible) model structure,
assuming that the force of infection is proportional to
the prevalence of infection in the population with pro-
portionality constant β, and a constant per-capita recov-
ery rate γ [11]. Between periods of treatment, we
assumed that the probability pi,j

(k)(t) that there are i infec-
tions in community j at time t after treatment time point
k obeys the following equations [12, 13]:
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is the probability of i ' infected chil-

dren aged 0–5 years before treatment time point k, and i is
the number of infected children aged 0–5 years after treat-
ment. Let Sj,TF

(l) , Sj,TI
(l) and Sj,PCR

(l) be the observed TF, TI and
PCR-positive at each observation time point l (l = 0, 1, 2, 3,
4 and 5 corresponding to baseline, 6, 12, 18, 24 and
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30 months, respectively) for community j. For a community
with i infections, the probabilities of the observed TF, TI
and PCR-positive based on i infections are given by using
the observation component of the Kalman filter [14] (please
see Additional file 1 for more details).

Sensitivity analyses
We assessed several ways of modeling each observation
(TF, and where applicable, TI and PCR). Given a true hid-
den prevalence (Equation 1), each observation could be
specified using epidemiologically driven, traditional sensitiv-
ity and specificity, instead of the technically driven, trun-
cated normal distribution described in Additional file 1.
With the truncated normal distribution, we have sev-
eral options to handle the portion of the density at
zero, including no zero-inflation, a density at zero
(zero-inflation #1) proportional to the density of the
normal that would have been <0, or a density at zero
given by a free, fitted parameter. In addition, we
could include a delay in TF specifically (not TI or
PCR), as the follicles associated with TF are known to
take months if not longer to recede. Here, we per-
formed specific sensitivity analyses: (a) fitting the
model to the observed TF instead of the observed TF,
TI and PCR by simplifying Equations 2 and 3 in Additional
file 1; (b) using another zero-inflated truncated normal
(zero-inflation #2) as the posterior in Equation 2 in
Additional file 1 in which the density at 0 % (the first
of those 101 discrete units) was assumed to be a par-
ameter between 0 and 1 (ηTF for TF, ηTI for TI, and
ηPCR for PCR); (c) using the truncated normal as the
posterior; (d) assuming no delay in TF recovery; (e)
assuming that the posterior is the convolution of two
binomial distributions: the distribution of the number
of tested positives isens from true positives i in a com-
munity with Nj individuals because of the sensitivity
of a test, and the distribution of the number of tested
positives ispec from true negatives Nj − i because of the

specificity of the test. Table 1 shows 10 scenarios of
sensitivity analyses.

Statistics
Bootstrap percentile confidence intervals for results
from Niger were estimated using R [15], N = 10,000. CIs
for model parameter estimates were obtained from
MCMC with 16384 (214) steps after a burn-in including
8192 (213) steps.

Results
Clinical examination (TF and TI) and PCR data were
available for 24 communities with 2212 children (aged 0
to 5 years). At the baseline census, communities had a
mean of 146 children (95 % CI 137 to 155) aged 0 to
5 years. The mean antibiotic coverage of children was
92.3 % at baseline, 89.0 % at 12 months, and 89.8 % at
24 months. At baseline, the observed TF prevalence in
the 24 communities ranged from 10 % to 57 % with a
mean prevalence of 27.6 % (95 % CI 21.8 % to 33.9 %).
The follow-up TF prevalence was 15.2 % (95 % CI
11.9 % to 18.8 %) at 6 months, 19 % (95 % CI 14.9 % to
23.2 %) at 12 months, 19.7 % (95 % CI 14.6 % to 25.2 %)
at 18 months, 14.7 % (95 % CI 10.5 % to 19 %) at
24 months, and 12.3 % (95 % CI 8.5 % to 16.8 %) at
30 months. The observed community prevalence of TF
at 36 months which was to be forecasted ranged from
0 % to 30 % with a mean prevalence of 7.6 % (95 % CI
4.9 % to 11.3 %). The observed community prevalence of
TF, TI and PCR at each biannual visit are shown in Add-
itional file 2.
We forecasted distributions of TF prevalence in

each of 24 communities from 10 models (Fig. 1 and
Additional file 3). The forecast distributions of the
hidden (true) prevalence for each of the 10 models (Fig. 2
and Additional file 4) could be markedly different, even if
the eventual observation forecasts were similar (Fig. 1 and
Additional file 3). The total loglikelihood (the sum of each

Table 1 Forecast scores

Model ID Log likelihood Rank Scenario

Density function Data Delay in TF recovery

1 −71.864 1 Zero-inflation #1 TF,TI, PCR Yes

2 −72.207 2 Zero-inflation #1 TF only Yes

3 −74.792 4 Zero-inflation #2 TF,TI, PCR Yes

4 −74.576 3 Zero-inflation #2 TF only Yes

5 −76.640 7 Truncated normal TF, TI, PCR Yes

6 −76.782 8 Truncated normal TF only Yes

7 −76.173 5 Zero-inflation #1 TF, TI, PCR No

8 −76.174 6 Zero-inflation #1 TF only No

9 −122.234 10 Binomial (sensitivity and specificity) TF, TI, PCR Yes

10 −105.221 9 Binomial (sensitivity and specificity) TF only Yes
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community’s loglikelihood, Equation 3 in Additional file 1)
of the observed 36-month TF prevalence varied between
models (Table 1) given the estimated parameters (Table 2).
The base case (models 1 and 2: zero-inflation #1 with the
observed TF, TI and PCR, and with the observed TF) re-
veals that the loglikelihood of the observed 36-month TF
prevalence from the model based on the observed TF, TI
and PCR data from 0 to 30 months was better than the
model only based on the observed TF data from 0 to
30 months, although the difference between model 1 and
model 2 was not significant (loglikelihood: −71.86 for
model 1, −72.21 for model 2, p = 0.64, Wilcoxon signed
rank test).
As a sensitivity analysis, we assumed no delay in TF re-

covery (models 7 and 8) and compared the model without
the delay in TF recovery to the base case (models 1 and 2),
and found that the model with the delay in TF recovery
and TF, TI and PCR data was significantly better than the
model with the TF data and no delay in TF recovery
(loglikelihood: −71.86 for model 1, −76.17 for model
8, p = 0.003), and the model with the delay in TF re-
covery had better likelihood than the model without
the delay in TF recovery for both scenarios: multiple

observations of TF, TI and PCR (loglikelihood: −71.86 for
model 1, −76.17 for model 7, p = 0.002), and the observa-
tion of TF only (loglikelihood: −72.21 for model 2, −76.17
for model 8, p = 0.005). Sensitivity analyses found no sig-
nificant differences between model 3 and model 4 (loglike-
lihood: −74.79 for model 3, −74.58 for model 4, p = 0.60),
model 5 and model 6 (loglikelihood: −76.64 for model
5, −76.78 for model 6, p = 0.35), and model 7 and
model 8 (loglikelihood: −76.173 for model 5, −76.174
for model 6, p = 0.16), except for model 9 and model
10 (loglikelihood: −122.23 for model 9, −105.22 for
model 10, p = 0.01). Sensitivity analyses on models
based on TF, TI and PCR data but with different pos-
terior densities (models 1, 3, 5 and 9) show that the
zero-inflation #1 (model 1) was better than other
models, and the observation model with the sensitiv-
ity and specificity did not improve forecasts and had
the lowest likelihood (Table 1).
Models 9 and 10 allowed estimation of sensitivity and

specificity for each of TF, TI and PCR (Table 3). TF was
estimated to be 65.2 % (95 % CI 61.2 % to 82.3 %) sensi-
tive and 89.7 % (95 % CI 87.9 % to 90.7 %) specific; the
delay in TF recovery was estimated to be 0.32 per six-

Fig. 1 Forecasts of TF prevalence versus observed TF prevalence (averaged over 24 communities). The forecast distributions of average TF
prevalence at 36-month in all communities from 10 models are shown by solid and dotted curves in different colors (as listed in the large
legends), and their densities at 0 are listed in the small legends. The observed average TF prevalence at 36-month is shown by the dashed grey
bar. For the forecast distributions of TF and the observed TF at 36-month in each of 24 communities, please see Additional file 3
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month (95 % CI 0.25 to 0.36); TI was estimated to be
58 % (95 % CI 50.9 % to 78.3 %) sensitive and 98.4 %
(95 % CI 98 % to 98.6 %) specific, and PCR was esti-
mated to be 62.7 % (95 % CI 57.5 % to 88.7 %) sensitive
and 96.3 % (95 % CI 95.7 % to 96.6 %) specific.

Discussion and conclusion
Here, we compared the inclusion of several features of
model-based forecasts of the prevalence of clinically ac-
tive trachoma (TF) 6-months into the future. Inclusion
of the second trachoma sign TI and lab-based chlamydia
testing improved TF forecasts, but not significantly.
Thus we cannot state that PCR testing is necessary for
better forecasting of TF, although it may well help fore-
cast future infection—that would require further study.
TF is known to remain for months after infection has
cleared, and inclusion of this feature into the observation
model improved forecasting significantly. Different
forms of the observation portion of the hidden model
performed differently. In particular, a zero-inflated trun-
cated normal distribution performed better than the ob-
servation model with sensitivity and specificity, and
inclusion of the sensitivity and specificity into the obser-
vation model did not improve forecasts.

We estimated the sensitivity and specificity for each of
TF, TI and PCR. Our estimates of TF sensitivity (65.2 %
from 61.2 % to 82.3 %) and specificity (89.7 % from
87.9 % to 90.7 %) are consistent with the estimates in
studies [5, 16–18] in Tanzania and The Gambia, in
which sensitivity was estimated at 24.0 % to 86.7 % and
specificity at 74.0 % to 94.0 %. However, in study [3] in
Ethiopia, TF sensitivity was estimated to be 87.3 %
(higher than our estimate of TF sensitivity), and TF spe-
cificity was estimated to be 36.6 % (lower than our esti-
mate of TF specificity). Our estimates of TI sensitivity
(58.0 % from 50.9 % to 78.3 %) and specificity (98.4 %
from 98.0 % to 98.6 %) closely agree with the estimates
in [3, 5, 16, 17] in which sensitivity was estimated at
12.4 % to 77.0 % and specificity at 74.0 % to 99.4 %. The
estimate of PCR specificity (96.3 % from 95.7 % to
96.6 %) in our study is close to the estimates in [3, 5, 17]
in which PCR specificity was estimated at 93.0 % to
100 %. However, our estimate of PCR sensitivity (62.7 %
from 57.5 % to 88.7 %) is lower than the estimates in
[3, 5, 17] in which PCR sensitivity was estimated at
77.8 % to 97.0 %.
Previous mathematical models have provided insight

into the transmission of trachoma [3, 5, 16, 17, 19–24],

Fig. 2 Forecasts of the hidden (true) prevalence (averaged over 24 communities). The forecast distributions of average true prevalence at
36-month in all communities from 10 models are shown by solid and dotted curves in different colors (as listed in legends). For the forecast
distributions of true prevalence at 36-month in each of 24 communities, please see Additional file 4
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Table 2 Estimated parameters

Model ID Estimated parametersa mean (95 % CI)b

Mean of logβ SD of logβ Efficacy of antibiotic γ μTF σTF λTF μTI
1 −1.18 (−2.35, −0.782) 0.363 (0.216, 0.754) 0.891 (0.838, 0.944) 0.127 (0.0561, 0.191) 0.816 (0.634, 0.995) 0.245 (0.19, 0.32) 0.571 (0.445, 0.664) 0.166 (0.1, 0.533)

2 −0.57 (−1.31, −0.145) 0.0987 (0.00192, 0.341) 0.888 (0.839, 0.952) 0.231 (0.057, 0.47) 0.657 (0.294, 0.983) 0.231 (0.178, 0.303) 0.55 (0.438, 0.644) -

3 −1.68 (−2.6, −1.06) 0.779 (0.418, 0.988) 0.937 (0.837, 0.978) 0.08 (0.055, 0.207) 0.358 (0.181, 0.994) 0.296 (0.188, 0.358) 0.591 (0.182, 0.665) 0.135 (0.0618, 0.436)

4 −0.922 (−7.48, −0.2) 0.117 (0.006, 0.711) 0.899 (0.838, 0.983) 0.264 (0.061, 0.461) 0.671 (0.107, 0.984) 0.249 (0.166, 0.413) 0.495 (0.302, 0.7) -

5 −1.24 (−2.52, −0.831) 0.629 (0.276, 0.756) 0.928 (0.843, 0.979) 0.352 (0.106, 0.419) 0.862 (0.616, 0.97) 0.295 (0.19, 0.34) 0.597 (0.244, 0.649) 0.272 (0.132, 0.513)

6 −2.84 (−9.56, −0.116) 0.184 (0.00647, 0.634) 0.964 (0.838, 0.995) 0.351 (0.0579, 0.472) 0.702 (0.211, 0.977) 0.308 (0.172, 0.384) 0.592 (0.314, 0.686) -

7 −0.309 (−1.31, −0.191) 0.161 (0.0695, 0.381) 0.883 (0.838, 0.903) 0.289 (0.156, 0.376) 0.583 (0.508, 0.994) 0.126 (0.112, 0.157) - 0.0881 (0.0592, 0.364)

8 −0.123 (−0.637, −0.0199) 0.0411 (0.001, 0.164) 0.859 (0.837, 0.896) 0.0995 (0.055, 0.271) 0.301 (0.251, 0.814) 0.121 (0.107, 0.141) - -

9 −3.73 (−9.74, −2.45) 0.774 (0.0932, 0.995) 0.886 (0.857, 0.911) 0.16 (0.149, 0.166) 0.652 (0.612, 0.823) 0.897 (0.879, 0.907) 0.315 (0.247, 0.356) 0.58 (0.509, 0.783)

10 −1.53 (−7.76, −1.16) 0.651 (0.0369, 0.953) 0.966 (0.855, 0.998) 0.0833 (0.0572, 0.165) 0.536 (0.501, 0.904) 0.903 (0.887, 0.916) 0.242 (0.18, 0.348) -

Model ID Estimated parametersa mean (95 % CI)b

σTI μPCR σPCR ηTF ηTI ηPCR
1 0.0457 (0.0389, 0.0555) 0.316 (0.185, 0.86) 0.0697 (0.0583, 0.0824) - - -

2 - - - - - -

3 0.0454 (0.0366, 0.057) 0.24 (0.152, 0.793) 0.0708 (0.058, 0.0849) 0.0225 (0.001, 0.062) 0.33 (0.145, 0.522) 0.182 (0.098, 0.328)

4 - - - 0.0248 (0.001, 0.068) - -

5 0.0385 (0.0329, 0.0443) 0.596 (0.368, 0.875) 0.0616 (0.0534, 0.0717) - - -

6 - - - - - -

7 0.0471 (0.0373, 0.0583) 0.183 (0.132, 0.609) 0.0703 (0.0583, 0.0844) - - -

8 - - - - - -

9 0.984 (0.98, 0.986) 0.627 (0.575, 0.887) 0.963 (0.957, 0.966) - - -

10 - - - - - -
a: please see Additional file 1 for the interpretations of parameters; for the observation model with sensitivity and specificity (models 9 and 10), μTF is the sensitivity of TF, σTF is the specificity of TF, μTI is the sensitivity
of TI, σTI is the specificity of TI, μPCR is the sensitivity of PCR, and σPCR is the specificity of PCR
b: 95 % CI was obtained from MCMC with 16384 steps after a burn-in including 8192 steps

Liu
et

al.Parasites
&
Vectors

 (2015) 8:535 
Page

6
of

8



evaluated the sensitivity and specificity of diagnostic tests
for ocular chlamydia infection including the clinical signs of
TF and TI and PCR-based assay in the absence of a gold
standard [3, 5, 25]. Recently, a regression model was used
to forecast the TF prevalence after a number of years of
mass drug administration given the ITI database [26]. A
hidden Markov model was used to estimate the sensitivity
and specificity of TF test based on the data collected from
East and West Africa [5]. A latent class analysis was per-
formed to estimate the sensitivity and specificity of TF test
based on the data from randomly selected 40 villages in
Ethiopia (the Trachoma Elimination Follow-up study) [3].
In [26], linear and logistic regression modeling was applied
to a comprehensive database of trachoma prevalence to in-
vestigate the effect of MDA on baseline TF prevalence. In
our previous study [27], we compared the forecasts of
trachoma prevalence by expert opinion, statistical regres-
sion and transmission models using the data from 24 vil-
lages in Niger (PRET study). However, the delay in TF
recovery was not included in [3, 5, 26] and [27]; [3] and
[26] did not use the process model; the forecasts made by
[27] were only based on the observed PCR data.
Here, we forecasted trachoma in the short term of

6 months. Longer term models would be of more practical
use to control programs and can be studied in the future.
The process model used in this study did not include
strain diversity [28], household-level risk factors [29], and
infection from outside the population of children aged 0–
5 years in each community [23]. Models could be further
refined to reflect age-structured transmission. In this set-
ting, the older children and adults were being treated as
well, and other studies have shown consistently higher
prevalence in small children than in other age groups (e.g.
[30, 31]). The use of results from 24 communities
allowed us to separate the performance of several
models—larger studies should be able to discriminate
smaller differences. It should be noted that here, due
to the available study data, we studied 0–5 year-old
children, whereas the WHO criteria are defined in
terms of 1–9 year-old children. Communities were
geographically separated villages, although we cannot
rule out transmission between villages.

In this study, we used a transmission model to forecast
TF prevalence. The results demonstrated that using the
delay in TF recovery in the model could improve the fore-
casts of TF prevalence. Because a recovery period may fol-
low the clearance of infection and the follicles so
characteristic of active trachoma may linger for weeks, in
which case the clinical exam would falsely indicate the
presence of Chlamydia trachomatis [32]. We did not find
a significant difference between the forecasts of TF preva-
lence based on the observed TF data and based on the ob-
served TF, TI and PCR data. Current WHO guidelines for
starting MDA are based on the district prevalence of TF
in children (aged 1–9 years), and the results in this study
(based on children aged 0–5 years) suggest that future
studies could consider use of the delay in TF recovery and
TF data to assess forecasting at district level.
In many districts worldwide, the assessment of 2020

goals will likely include estimation of TF prevalence
from surveys that had been done earlier than 2020.
These estimations could take into account the features
found here to be useful in forecasting. It is also possible
that as we near elimination, a laboratory indication of
infection status supplants clinical signs such as TF—for-
ecasting of a laboratory sign of infection might require a
different analysis than that presented here.
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in different colors (as listed in legends). (TIFF 1931 kb)

Competing interests
The authors declare that they have no competing interests.

Table 3 Estimated sensitivity and specificity

Test Sensitivity Specificity Delay in TF recovery (per six-month)

Mean (95 % CI)a Mean (95 % CI)a Mean (95 % CI)a

Model 9

TF 0.65 (0.61, 0.82) 0.90 (0.88, 0.91) 0.32 (0.25, 0.36)

TI 0.58 (0.51, 0.78) 0.98 (0.98, 0.99) -

PCR 0.63 (0.58, 0.89) 0.96 (0.96, 0.97) -

Model 10

TF 0.54 (0.50, 0.90) 0.90 (0.89, 0.92) 0.24 (0.18, 0.35)
a: 95 % CI was obtained from MCMC with 16384 steps after a burn-in including 8192 steps
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