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Background
Topological indices are found to be very useful in chemistry, biochemistry and nano-
technology in isomer discrimination, structure–property relationship, structure-activ-
ity relationship and pharmaceutical drug design. Let G be a simple connected graph 
with vertex set V(G) and edge set E(G) respectively. Let, for any vertex v ∈ V (G), dG(v) 
denotes its degree, that is the number of adjacent vertices of v in G. The complement 
of a graph G is denoted by Ḡ and is the simple graph with the same vertex set V(G) 
and any two vertices uv ∈ E(Ḡ) if and only if uv /∈ E(G). Thus E(G) ∪ E(Ḡ) = E(Kn) 
and |E(Ḡ)| =

|V (G)|(|V (G)|−1)
2 − |E(G)|. Also the degree of a vertex v in Ḡ is given by 

dḠ(v) = |V (G)| − 1− dG(v).

The first and second Zagreb indices of a graph are among the most studied vertex-
degree based topological indices. These indices were introduced by Gutman and 
Trinajstić (1972) to study the structure-dependency of the total π-electron energy (ε) 
and are denoted by M1(G) and M2(G) respectively. They are defined as

and

Another vertex-degree based topological index was defined in the same paper where the 
Zagreb indices were introduced, and that was shown to influence ε. This index was not 

M1(G) =
∑

v∈V (G)

dG(v)
2 =

∑

uv∈E(G)

[dG(u)+ dG(v)]

M2(G) =
∑

uv∈E(G)

dG(u)dG(v).
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further studied until it was studied by Furtula and Gutman (2015) in a recent article. 
They named this index as “forgotten topological index” or “F-index”. F-index of a graph 
G is denoted by F(G) and is defined as the sum of cubes of the vertex degrees of the 
graph.

It can be easily shown that the above definition is equivalent to

Very recently the present authors have studied the F-index of different graph opera-
tions in De et al. (2016).

Doslic (2008) introduced Zagreb coindices while computing weighted Wiener polyno-
mial of certain composite graphs. In this case the sum runs over the edges of the com-
plement of G. Thus the Zagreb coindices of G are defined as

and

Like Zagreb coindices, corresponding to F-index, we introduce here a new invariant, 
the F-coindex which is defined as follows.

Like Zagreb coindices, F-coindex of G is not the F-index of Ḡ. Here the sum runs over 
E(Ḡ), but the degrees are with respect to G.

Motivation
According to the International Academy of Mathematical Chemistry, to identify whether 
any topological index is useful for prediction of chemical properties, the coorelation 
between the values of that topological index for different octane isomers and param-
eter values related to certain physicochemical property of them should be considered. 
Generally octane isomers are convenient for such studies, because the number of the 
structural isomers of octane is large (18) enough to make the statistical conclusion reli-
able. Furtula and Gutman (2015) showed that for octane isomers both M1 and F yield 
correlation coefficient greater than 0.95 in case of entropy and acentric factor. They also 
improved the predictive ability of these index by considering a simple linear model in the 
form (M1 + �F), where � varies from −20 to 20.

i.e., F(G) =
∑

v∈V (G)

dG(v)
3.

F(G) =
∑

uv∈E(G)

[

dG(u)
2 + dG(v)

2
]

.

M̄1(G) =
∑

uv∈E
(

Ḡ
)

[dG(u)+ dG(v)]

M̄2(G) =
∑

uv∈E
(

Ḡ
)

dG(u)dG(v).

F̄(G) =
∑

uv∈E
(

Ḡ
)

[

dG(u)
2 + dG(v)

2
]

.
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In this paper, we find the correlation between the logarithm of the octanol-water parti-
tion coefficient (P) and the corresponding F-coindex values of octane isomers. The dataset 
of octane isomers (first three columns of Table 1) are taken from www.moleculardescrip-
tors.eu/dataset/dataset.htm and the last two columns of Table 1 are computed from the 
definitions of F(G) and F̄(G). F-coindex values against log P values are plotted in Fig. 1. 
Here we find that the correlation coefficient between log P and F̄ is 0.966, whereas the cor-
relation coefficient between log P and M1 and that between log P and F are 0.077 and 0.065 
respectively. Thus using this F-coindex, we can predict the log P values with high accuracy.

Graph operations play an important role in chemical graph theory. Different chemically 
important graphs can be obtained by applying graph operations on some general or particu-
lar graphs. For example, the linear polynomial chain (or the ladder graph Ln) is the molecular 
graph related to the polynomial structure obtained by the Cartesian product of P2 and Pn+1.  

Table 1  Experimental values of  the logarithm of  the octanol–water partition coefficient 
and the corresponding values of different topological indices of octane isomers

Molecules Log P M1(G) F(G) F̄(G)

Octane 3.67 26 50 132

2-Methyl-heptane 3.61 28 62 134

3-Methyl-heptane 3.61 28 62 134

4-Methyl-heptane 3.61 28 62 134

3-Ethyl-hexane 3.61 28 62 134

2,2-Dimethyl-hexane 3.65 32 92 132

2,3-Dimethyl-hexane 3.54 30 74 136

2,4-Dimethyl-hexane 3.54 30 74 136

2,5-Dimethyl-hexane 3.54 30 74 136

3,3-Dimethyl-hexane 3.65 32 92 132

3,4-Dimethyl-hexane 3.54 30 74 136

2-Methyl-3-ethyl-pentane 3.54 30 74 136

3-Methyl-3-ethyl-pentane 3.65 32 92 132

2,2,3-Trimethyl-pentane 3.58 34 104 134

2,2,4-Trimethyl-pentane 3.58 34 104 134

2,3,3-Trimethyl-pentane 3.58 34 104 134

2,3,4-Trimethyl-pentane 3.48 32 86 138

2,2,3,3-Tetramethyl-butane 3.62 38 134 132

Fig. 1  Experimental values of log P versus calculated values of F-coindices of octane isomers

http://www.moleculardescriptors.eu/dataset/dataset.htm
http://www.moleculardescriptors.eu/dataset/dataset.htm
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The C4 nanotube TUC4(m, n) is the Cartesian product of Pn and Pm and the C4 nanotorus 
TC4(m, n) is the Cartesian product of Cn and Cm. For a given graph G, one of the hydrogen 
suppressed molecular graph is the bottleneck graph, which is the corona product of K2 and 
G. There are several studies on various topological indices under different graph operations 
available in the literature. Khalifeh et al. (2009) derived some exact formulae for computing 
first and second Zagreb indices under some graph operations. Das et al. (2013), derived some 
upper bounds for multiplicative Zagreb indices for different graph operations. Veylaki et al. 
(2015), computed third and hyper-Zagreb coindices of some graph operations. In De et al. 
(2014), the present authors computed some bounds and exact formulae of the connective 
eccentric index under different graph operations. Azari and Iranmanesh (2013) presented 
explicit formulas for computing the eccentric-distance sum of different graph operations. 
Interested readers are referred to Ashrafi et al. (2010), Khalifeh et al. (2008), Tavakoli et al. 
(2014), De et al. (2015a, b, c, d, Eskender and Vumar (2013) for other studies in this regard.

In this paper, we first derive some basic properties of F-coindex and hence present 
some exact expressions for the F-coindex of different graph operations such as union, 
join, Cartesian product, composition, tensor product, strong product, corona product, 
disjunction, symmetric difference of graphs. Also we apply our results to compute the 
F-coindex for some important classes of molecular graphs and nano-structures.

Basic properties of F‑coindex
From definition, the F-coindex for some special graphs such as complete graph, empty 
graph, path, cycle and complete bipartite graph on n vertices can be easily obtained as 
follows.

(i)		  F̄(Kn) = F̄
(

K̄n

)

= 0,
(ii)		 F̄(Cn) = 4n(n− 3),
(iii)	 F̄(Pn) = 4n2 − 18n+ 20,
(iv)	 F̄(Km,n) = mn(2mn−m− n).

Let for the graph G we use the notation |V (G)| = n and |E(G)| = m. Also let 
|E(Ḡ)| = m̄. Now first we explore some basic properties of F-coindex.

Proposition 1  Let G be a simple graph with n vertices and m edges, then

Proof  From definition of F-index, we have

F
(

Ḡ
)

= 2(n− 1)2(m̄− 2m)+ 3(n− 1)M1(G)− F(G).

F
(

Ḡ
)

=
∑

v∈V
(

Ḡ
)

dḠ(v)
3

=
∑

v∈V (G)

[n− 1− dG(v)]
3

=
∑

v∈V (G)

[

(n− 1)3 − 3(n− 1)2dG(v)+ 3(n− 1)dG(v)
2 − dG(v)

3
]

= n(n− 1)3 − 6m(n− 1)2 + 3(n− 1)M1(G)− F(G)

= 2(n− 1)2(m̄− 2m)+ 3(n− 1)M1(G)− F(G).

�
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Proposition 2  Let G be a simple graph with n vertices and m edges, then

Proof  From definition of F-coindex, we have

� �

An alternative expression for F̄(G) can be obtained by considering sum over the edges 
of G and Ḡ respectively as follows.

Proposition 3  Let G be a simple graph with n vertices and m edges, then

Proof  From definition of F-index and F-coindex, it follows that

from where the desired result follows. � �

Proposition 4  Let G be a simple graph with n vertices and m edges, then

Proof  From definition of F-coindex, we have

F̄(G) = F
(

Ḡ
)

− 2(n− 1)M1

(

Ḡ
)

+ 2m̄(n− 1)2.

F̄(G) =
∑

uv/∈E(G)

[

dG(u)
2 + dG(v)

2

]

=
∑

uv∈E
(

Ḡ
)

[

{

n− 1− d
Ḡ
(u)

}2
+

{

n− 1− d
Ḡ
(v)

}2
]

=
∑

uv∈E
(

Ḡ
)

[

(n− 1)2 + d
Ḡ
(u)2 − 2(n− 1)d

Ḡ
(u)+ (n− 1)2 + d

Ḡ
(v)2 − 2(n− 1)d

Ḡ
(v)

]

= 2m̄(n− 1)2 +
∑

uv∈E
(

Ḡ
)

[

d
Ḡ
(u)2 + d

Ḡ
(v)2

]

− 2(n− 1)
∑

uv∈E
(

Ḡ
)

[

d
Ḡ
(u)+ d

Ḡ
(v)

]

= 2m̄(n− 1)2 + F
(

Ḡ
)

− 2(n− 1)M1

(

Ḡ
)

.

F̄(G) = (n− 1)M1(G)− F(G).

F(G)+ F̄(G) =
∑

uv∈E(G)

[

dG(u)
2 + dG(v)

2
]

+
∑

uv/∈E(G)

[

dG(u)
2 + dG(v)

2
]

=
∑

u,v∈V (G)

[

dG(u)
2 + dG(v)

2
]

= (n− 1)
∑

v∈V (G)

dG(v)
2 = (n− 1)M1(G),

F̄
(

Ḡ
)

= 2m(n− 1)2 − (n− 1)M1(G)− F̄(G).
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� �

Main results
In the following, we study F-coindex of various graph operations like union, join, Car-
tesian product, composition, tensor product, strong product, corona product, disjunc-
tion, symmetric difference of graphs. These operations are binary and if not indicated 
otherwise, we use the notation V (Gi) for the vertex set, E(Gi) for the edge set, ni for the 
number of vertices and mi for the number of edges of the graph Gi respectively. Also let 
m̄i denote the number of edges of the graph Ḡi.

Union

The union of two graphs G1 and G2 is the graph denoted by G1 ∪ G2 with the vertex set 
V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). In this case we assume that V (G1) and 
V (G2) are disjoint. The degree of a vertex v of G1 ∪ G2 is equal to that of the vertex in the 
component Gi (i = 1, 2) which contains it. In the following preposition we calculate the 
F-coindex of G1 ∪ G2.

Proposition 5   Let G be a simple graph with n vertices and m edges, then

Proof  From definition of F-coindex, it is clear that, the F-coindex of G1 ∪ G2 is equal to 
the sum of the F-coindices of the components Gi(i = 1, 2), in addition to the contribu-
tions of the missing edges between the components which form the edge set of the com-
plete bipartite graph Kn1,n2. The contribution of these missing edges is given by

from where the desired result follows. � �

Join

The join of two graphs G1 and G2 with disjoint vertex sets V (G1) and V (G2) is 
the graph denoted by G1 + G2 with the vertex set V (G1) ∪ V (G2) and edge set 
E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}. Thus in the sum of two graphs, all the 

F̄
(

Ḡ
)

=
∑

uv/∈E
(

Ḡ
)

[

d
Ḡ
(u)2 + d

Ḡ
(v)2

]

=
∑

uv∈E(G)

[

{

n− 1− dG(u)
}2

+
{

n− 1− dG(v)
}2

]

=
∑

uv∈E(G)

[

(n− 1)2 + dG(u)
2 − 2(n− 1)dG(u)+ (n− 1)2 + dG(v)

2 − 2(n− 1)dG(v)

]

= 2m(n− 1)2 +
∑

uv∈E(G)

[

dG(u)
2 + dG(v)

2

]

− 2(n− 1)
∑

uv∈E(G)

[dG(u)+ dG(v)]

= 2m(n− 1)2 + F(G)− 2(n− 1)M1(G)

= 2m(n− 1)2 − (n− 1)M1(G)− F̄(G).

F̄(G1 ∪ G2) = F̄(G1)+ F̄(G2)+ n2M1(G1)+ n1M1(G2).

�

u∈V (G1)





�

v∈V (G2)

�

dG(u)
2 + dG(v)

2
�



 = n2M1(G1)+ n1M1(G2),
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vertices of one graph is connected with all the vertices of the other graph, keeping all the 
edges of both graphs. Thus the degree of the vertices of G1 + G2 is given by

In the following proposition the F-coindex of G1 + G2 is calculated.

Proposition 6  Let G be a simple graph with n vertices and m edges, then

Proof  From definition of G1 + G2, it is clear that the contribution of the edges connect-
ing the vertices of G1 with those of G2 is zero. So the F-coindex of G1 + G2 is given by

Now,

Similarly, we get

Combining J1 and J2 we get the desired result after simplification. � �

Example 1  The complete bipartite graph Kp,q can be defined as Kp,q = K̄p + K̄q. So its 
F-coindex can be calculated from the previous proposition as F̄(Kp,q) = pq(2pq − p− q).

The suspension of a graph G is defined as sum of G with a single vertex. So from the 
previous proposition the following corollary follows.

dG1+G2(v) =

{

dG1(v)+ n2, v ∈ V (G1)

dG2(v)+ n1, v ∈ V (G2).

F̄(G1 + G2) = F̄(G1)+ F̄(G2)+ 2n2M̄1(G1)+ 2n1M̄1(G2)+ 2n2
2m̄1 + 2n1

2m̄2.

F̄(G1 + G2) =
∑

uv/∈E(G1+G2)

[

d(G1+G2)(u)
2 + d(G1+G2)(v)

2
]

=
∑

uv/∈E(G1)

[

d(G1+G2)(u)
2 + d(G1+G2)(v)

2
]

+
∑

uv/∈E(G2)

[

d(G1+G2)(u)
2 + d(G1+G2)(v)

2
]

= J1 + J2.

J1 =
∑

uv/∈E(G1)

[

d(G1+G2)(u)
2 + d(G1+G2)(v)

2
]

=
∑

uv/∈E(G1)

[

(dG1(u)+ n2)
2
+ (dG1(v)+ n2)

2
]

=
∑

uv/∈E(G1)

[

dG1(u)
2 + n2

2 + 2n2dG1(u)+ dG1(v)
2 + n2

2 + 2n2dG1(v)
]

=
∑

uv/∈E(G1)

[

dG1(u)
2 + dG1(v)

2
]

+ 2n2
∑

uv/∈E(G1)

[

dG1(u)+ dG1(v)
]

+ 2n2
2m̄1

= F̄(G1)+ 2n2M̄1(G1)+ 2n2
2m̄1.

J2 = F̄(G2)+ 2n1M̄1(G2)+ 2n1
2m̄2.
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Corollary 1   The F-coindex of suspension of G is given by

Example 2  The star graph Sn with n vertices is the suspension of empty graph K̄n−1. So 
its F-coindex can be calculated from the previous corollary as F̄(Sn) = (n− 1)(n− 2).

Example 3  The wheel graph Wn on (n+ 1) vertices is the suspension of Cn. So from the 
previous corollary its F-coindex is given by F̄(Wn) = 9n(n− 3).

Example 4  The fan graph Fn on (n+ 1) vertices is the suspension of Pn. So from the 
previous corollary its F-coindex is given by F̄(Wn) = 9n2 − 37n+ 38.

We now extend the join operation to more than two graphs. Let G1, G2, . . . ,Gk 
be k graphs. Then, the degree of a vertex v in G1 + G2 + · · · + Gk is given by 
dG1+G2+···+Gk

(v) = dGi(v)+ n− ni, where v is originally a vertex of the graph Gi and 
n = n1 + n2 + · · · + nk. Also let n̄i = n− ni.

Proposition 7  The F-coindex of G1 + G2 + · · · + Gk is given by

Proof  We have from definition of F-coindex

which completes the proof. � �

Cartesian product

The Cartesian product of G1 and G2, denoted by G1 × G2, is the graph with vertex set 
V (G1)× V (G2) and any two vertices (up, vr) and (uq , vs) are adjacent if and only if 
[up = uq ∈ V (G1) and vrvs ∈ E(G2)] or [vr = vs ∈ V (G2) and upuq ∈ E(G1)]. Thus we 

F̄(G + K1) = F̄(G)+ 2M̄1(G)+ 2m̄.

F̄(G1 + G2 + · · · + Gk) =

k
∑

i=1

F̄(Gi)+ 2

k
∑

i=1

n̄iM̄1(Gi)+ 2

k
∑

i=1

n̄2i m̄i.

F̄(G1 + G2 + · · · + Gk ) =

k
∑

i=1

∑

uv/∈E(Gi)

[

d(G1+G2+···+Gk )(u)
2 + d(G1+G2+···+Gk )(v)

2

]

=

k
∑

i=1

∑

uv/∈E(G1)

[

(

dGi
(u)+ n̄i

)2
+

(

dGi
(v)+ n̄i

)2
]

=

k
∑

i=1

∑

uv/∈E(G1)

[

dGi
(u)2 + n̄

2

i + 2n̄idGi
(u)+ dGi

(v)2 + n̄
2

i + 2n̄idGi
(v)

]

=

k
∑

i=1

∑

uv/∈E(G1)

[

dGi
(u)2 + dGi

(v)2
]

+

k
∑

i=1

2n̄i

∑

uv/∈E(G1)

[

dGi
(u)+ dGi

(v)
]

+

k
∑

i=1

2n̄
2

i m̄i

=

k
∑

i=1

F̄(Gi)+ 2

k
∑

i=1

n̄iM̄1(Gi)+ 2

k
∑

i=1

n̄
2

i m̄i,
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have, dG1×G2(a, b) = dG1(a)+ dG2(b). In the following preposition we calculate the 
F-coindex of G1 × G2.

Proposition 8  The F-coindex of G1 × G2 is given by

Proof  Applying Theorem 1 of Khalifeh et al. (2009) and Theorem 3 of De et al. in Prop-
osition 3 we get

from where the desired result follows after simplification. � �

Example 5  The Ladder graph Ln (linear polynomial chain) is the Cartesian product of 
P2 and Pn+1. Thus from the last proposition the following result follows

Example 6  TUC4(m, n) and TC4(m, n) denote a C4 nanotube and nanoto-
rus respectively. Then TUC4(m, n) ∼= Pn × Cm and TC4(m, n) ∼= Cn × Cm, and so 
F̄(TUC4(m, n)) = 16m2n2 − 14m2n− 80mn+ 88m and F̄(TC4(m, n)) = 16mn(mn− 5) .

Composition

The composition of two graphs G1 and G2 is denoted by G1[G2] and any two vertices 
(u1,u2) and (v1, v2) are adjacent if and only if u1v1 ∈ E(G1) or [u1 = v1 and u2v2 ∈ E(G2)

]. The vertex set of G1[G2] is V (G1)× V (G2) and the degree of a vertex (a, b) of G1[G2] is 
given by dG1[G2](a, b) = n2dG1(a)+ dG2(b). In the following proposition we compute the 
F-coindex of the composition of two graphs.

Proposition 9  The F-coindex of G1[G2] is given by

The proof of the above proposition follows from the expressions of first Zagreb index 
and F-index of strong product graphs given in Theorems 3 and 4 of Khalifeh et al. (2009) 
and De et al. respectively.

Example 7  The fence graph is the composition of Pn and P2 and the Closed fence graph 
is the composition of Cn and P2. Thus, we have

F̄(G1 × G2) = {n2(n1n2 − 1)− 6m2}M1(G1)+ {n1(n1n2 − 1)

− 6m1}M1(G2)− n2F(G1)− n1F(G2)+ 8m1m2(n1n2 − 1).

F̄(G1 × G2) = (|V (G1 × G2)| − 1)M1(G1 × G2)− F(G1 × G2)

= (n1n2 − 1)[n2M1(G1)+ n1M1(G2)+ 8m1m2]− [n2F(G1)+ n1F(G2)

+ 6m2M1(G1)+ 6m1M1(G2)]

= (n1n2 − 1)n2M1(G1)+ (n1n2 − 1)n1M1(G2)+ 8m1m2(n1n2 − 1)

− n2F(G1)− n1F(G2)− 6m2M1(G1)− 6m1M1(G2),

F̄(Ln) = 36n2 − 40n+ 20.

F̄(G1[G2]) = n2
2{n2(n1n2 − 1)− 6m2}M1(G1)+ {n1(n1n2 − 1)− 6n2m1}M1(G2)

− n2
4F(G1)− n1F(G2)+ 8n2m1m2(n1n2 − 1).
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(i)	 F̄(Pn[P2]) = 100n2 − 428n+ 456,
(ii)	F̄(Cn[P2]) = 100n2 − 300n.

Tensor product

The tensor product of two graphs G1 and G2 is denoted by G1 ⊗ G2 and any two vertices 
(u1, v1) and (u2, v2) are adjacent if and only if u1u2 ∈ E(G1) and v1v2 ∈ E(G2). The degree 
of a vertex (a, b) of G1 ⊗ G2 is given by dG1⊗G2(a, b) = dG1(a)dG2(b). In the following 
proposition, the F-coindex of the tensor product of two graphs is computed.

Proposition 10  The F-coindex of G1 ⊗ G2 is given by

The proof follows from the expressions M1(G1 ⊗ G2) = M1(G1)M1(G2) established 
in Theorem  2.1 of Yarahmadi (2011) and F(G1 ⊗ G2) = F(G1)F(G2) established in 
Theorem 7 of De et al.

Example 8  (i)	F̄(Pn ⊗ Pm) = 4(mn− 1)(2n− 3)(2m− 3)− 4(4n− 7)(4m− 7)

(ii)	 F̄(Cn ⊗ Cm) = 16mn(mn− 5)

(iii)	 F̄(Kn ⊗ Km) = nm(n− 1)2(m− 1)2(m+ n− 1)

(iv)	 F̄(Pn ⊗ Cm) = 4m(mn− 1)(2n− 3)(2m− 3)− 4(4n− 7)(4m− 7)

(v)	 F̄(Pn ⊗ km) = m(mn− 1)(4n− 6)(m− 1)2 −m(8n− 14)(m− 1)3

(vi)	 F̄(Cn ⊗ Km) = 4nm(m− 1)2(mn− 2m+ 1).

Strong product graphs

The strong product of two graphs G1 and G2 is denoted by G1 ⊠ G2. It has the ver-
tex set V (G1)× V (G2) and any two vertices (up, vr) and (uq , vs) are adjacent if and 
only if [up = uq ∈ V (G1) and vrvs ∈ E(G2)] or [vr = vs ∈ V (G2) and upuq ∈ E(G1)]  
or [upuq ∈ E(G1) and vrvs ∈ E(G2)]. Note that if both G1 and G2 are connected then 
G1 ⊠ G2 is also connected. The degree of a vertex (a, b) of G1 ⊠ G2 is given by

In the following proposition we compute the F-coindex of the strong product of two 
graphs.

Proposition 11  The F-coindex of G1 ⊠ G2 is given by

The proof follows from the expressions of first Zagreb index and F-index of strong 
product graphs from Theorems 2.6 and 6 of Tavakoli et  al. (2013) and De et  al. 
respectively.

Corona product

The corona product G1 ◦ G2 of two graphs G1 and G2 is obtained by taking one copy of G1 
and n1 copies of G2 and by joining each vertex of the ith copy of G2 to the ith vertex of G1 ,  

F̄(G1 ⊗ G2) = (n1n2 − 1)M1(G1)M1(G2)− F(G1)F(G2).

dG1⊠G2
(a, b) = dG1(a)+ dG2(b)+ dG1(a)dG2(b).

F̄(G1 ⊠G2) = {(n1n2 − 1)(n2 + 4m2)− 6m2}M1(G1)+ {(n1n2 − 1)(n1 + 4m1)− 6m1}M1(G2)

+ (n1n2 − 7)M1(G1)M1(G2)− (n2 + 6m2)F(G2)− 3F(G2)M1(G1)

− 3F(G1)M1(G2)− F(G1)F(G2)− 8m1m2(n1n2 − 1).
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where 1 ≤ i ≤ n1. The corona product of G1 and G2 has total (n1n2 + n1) number of 
vertices and (m1 + n1m2 + n1n2) number of edges. Different topological indices under 
the corona product of graphs have already been studied (Yarahmadi and Ashrafi 2012;  
De et al. 2015e; Pattabiraman and Kandan 2014). It is easy to see that the degree of a ver-
tex v of G1 ◦ G2 is given by

In the following proposition, the F-coindex of the corona product of two graphs is 
computed.

Proposition 12  The F-coindex of G1 ◦ G2 is given by

The proof of the above proposition follows from the relations

given in Theorem 2.8 of Yarahmadi and Ashrafi (2012) and

given in Theorem 7 of De et al.

Example 9  One of the hydrogen suppressed molecular graph is the bottleneck graph of 
a graph G, is the corona product of K2 and G, where G is a given graph. F-coindex of bot-
tleneck graph of G is given by

where n is the number of vertices of G.
A t-thorny graph is obtained by joining t-number of thorns (pendent edges) to each 

vertex of a given graph G. A variety of topological indices of thorn graphs have been 
studied by a number of researchers (De 2012a, b; Alizadeh et al. 2014). It is well known 
that, the t-thorny graph of G is defined as the corona product of G and complement of 
complete graph with t vertices K̄t. Thus from the previous theorem the following corol-
lary follows.

Corollary 2   The F-coindex of t-thorny graph of G is given by 

dG1◦G2(v) =

{

dG1(v)+ n2, v ∈ V (G1)

dG2,i(v)+ 1, v ∈ V (G2,i), i = 1, 2, . . . , n1.

F̄(G1 ◦ G2) = (n1n2 + n1 − 3n2 − 1)M1(G1)+ n1(n1n2 + n1 − 4)M1(G2)

− F(G1)− n1F(G2)+ 4(n1n2 + n1 − 1)(n1m2 + n2m1)+ n1n2(n1n2

+ n1 − 1)(n2 + 1)− 6n1m2 − 6n2
2m1 − n1n2

(

n2
2 + 1

)

.

M1(G1 ◦ G2) = M1(G1)+ n1M1(G2)+ 4(n2m1 + n1m2)+ n1n2(n2 + 1)

F(G1 ◦ G2) = F(G1)+ n1F(G2)+ 3n2M1(G1)+ 3n1M1(G2)

+ 6n2
2m1 + 6n1m2 + n1n2(n2

2 + 1)

F̄(K2 ◦ G) = 2F(G)+ 6M1(G)+ 2n3 + 6n2 + 8n+ 12m+ 2,

F̄
(

Gt
)

= (nt + n− 3t − 1)M1(G)− F(G)+ 4mt(nt + n− 1)− 6mt2

+ nt(t + 1)(nt + n− 1)− nt(t2 + 1).
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Example 10  The F-coindex of t-thorny graph of Cn and Pn are given by

(i)	 F̄
(

Cn
t
)

= n2t3 − nt3 + 6n2t2 − 7nt2 + 9n2t − 18nt + 4n2 − 12n

(ii)	F̄
(

Pn
t
)

= n2t3−nt3+ 6n2t2− 11nt2+ 9n2t− 28nt+ 4n2+ 6t2− 18n+ 22t+ 20.

Disjunction

The disjunction of two graphs G1 and G2, denoted by G1 ∧ G2, consists of the vertex set 
V (G1)× V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1u2 ∈ E(G1) 
or v1v2 ∈ E(G2). Clearly, the degree of a vertex (u1,u2) of G1 ∧ G2 is given by

In the following theorem we obtain the F-coindex of the disjunction of two graphs.

Proposition 13  The F-coindex of G1 ∧ G2 is given by

The proof of the above proposition follows from Proposition 3 with the relevant results 
from Khalifeh et al. (2009) and De et al.

Symmetric difference

The symmetric difference of two graphs G1 and G2 is denoted by G1 ⊕ G2, so that 
|V (G1 ⊕ G2)| = |V (G1)| × |V (G2)| and

From definition of symmetric difference it is clear that

In the following proposition we obtain the F-coindex of the symmetric difference of two 
graphs.

Proposition 14  The F-coindex of G1 ⊕ G2 is given by

Conclusion
In this paper, we have studied the F-coindex of different graph operations and also 
apply our results to find F-coindex of some special and chemically interesting graphs. 

dG1∧G2(u1,u2) = n1dG1(u1)+ n2dG2(u2)− dG1(u1)dG2(u2).

F̄(G1 ∧ G2) = n2
2
(

6m2 − n2
2
)

F(G1)+ n1
2
(

6m1 − n1
2
)

F(G2)+ F(G1)F(G2)

− 3n2F(G1)M1(G2)+ n2{(n1n2 − 1)(n1n2 − 4m2)− 6n1n2m2}M1(G1)

+ n1{(n1n2 − 1)(n1n2 − 4m1)− 6n1n2m1}M1(G2)− 3n1F(G2)M1(G1)

+ (7n1n2 − 1)M1(G1)M1(G2)+ 8n1n2m1m2(n1n2 − 1).

E(G1 ⊕ G2) =
{

(u1,u2)(v1, v2) : u1v1 ∈ E(G1) or u2v2 ∈ E(G2) but not both
}

.

dG1⊕G2(v1, v2) = n2dG1(v1)+ n1dG2(v2)− 2dG1(v1)dG2(v2).

F̄(G1 ⊕ G2) = n2
2
(

12m2 − n2
2
)

F(G1)+ n1
2
(

12m1 − n1
2
)

F(G2)+ 8F(G1)F(G2)

− 12n2F(G1)M1(G2)+ n2{(n1n2 − 1)(n1n2 − 8m2)− 6n1n2m2}M1(G1)

+ n1{(n1n2 − 1)(n1n2 − 8m1)− 6n1n2m1}M1(G2)− 12n1F(G2)M1(G1)

+ 4(4n1n2 − 1)M1(G1)M1(G2)+ 8n1n2m1m2(n1n2 − 1).



Page 13 of 13De et al. SpringerPlus  (2016) 5:221 

However, there are still many other graph operations and special classes of graphs which 
are not covered here. So, for further research, F-coindex of various other graph opera-
tions and composite graphs can be considered.
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