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Abstract
In this paper, we establish the Nagumo theorems for boundary value problems
associated with a class of third-order singular nonlinear equations:
(p(t)x′)′′ = f (t, x,p(t)x′, (p(t)x′)′), ∀t ∈ (0, 1) by the method of upper and lower solutions
and the Schauder fixed point theorem. We also consider the multiplicity of the
solutions by using topological degree theory. There are some examples to illustrate
how the results of this paper can be applied.
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1 Introduction
The singular differential equations arise in the fields of fluid mechanics, gas dynamics and
so on. In recent years, several authors investigated the existence problems of solutions for
third-order nonlinear differential equations [–]. The method of upper and lower solu-
tions has become a standard tool in studying the solvability of boundary value problems
associated with the differential equations [–]. Specially, the existence of a solution for
the boundary value problem

y′′′ = g
(
x, y, y′, y′′), x ∈ (a, c),

y(a) = α, y′(a) = α′, y′(c) = γ ′, a < c,

is investigated in article []. For two-point BVPs, Yao and Feng employed the upper and
lower solution method to prove the existence of solutions for a kind of third-order non-
linear differential equations []. For a class of third-order nonlinear boundary value prob-
lems, Du et al. used an a priori estimate, Nagumo condition, upper and lower solutions,
and the Leray-Schauder degree to obtain the existence of solutions []. In this paper, we
establish several general existence theorems for boundary value problems associated with
the following singular nonlinear differential equation:

(
p(t)x′)′′ = f

(
t, x, p(t)x′,

(
p(t)x′)′), ∀t ∈ (, ) (.)

by applying the method of lower and upper solutions, where the singularity of p(t) is at
t = . We only consider the case of p(t)|t= =  and p(t) >  on (, ]. To overcome the
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difficulty of a singularity, we give some suitable hypotheses and obtain the main result by
the Schauder fixed point theorem.

Basically, the functions ψ(t),φ(t) ∈ C[, ] are called upper and lower solutions of (.)
on [, ], if ψ ′(t),φ′(t) ∈ C(, ), p(t)ψ ′, p(t)φ′ ∈ C[, ], and

(
p(t)φ′)′′ ≥ f

(
t,φ, p(t)φ′,

(
p(t)φ′)′),

(
p(t)ψ ′)′′ ≤ f

(
t,ψ , p(t)ψ ′,

(
p(t)ψ ′)′), on (, ),

φ(t) ≤ ψ(t), p(t)φ′(t) ≤ p(t)ψ ′(t), on [, ].

For (.), we adopt the following hypotheses on p and f .

Hypothesis . � = {x ∈ R; there exists t ∈ [, ], such that φ(t) ≤ x ≤ ψ(t)}, � = {(t, x,
y, z);  ≤ t ≤ ,φ(t) ≤ x ≤ ψ(t), p(t)φ′(t) ≤ y ≤ p(t)ψ ′(t), z ∈ R}, p(t) ∈ C([, ]; [, +∞))
and

∫ 
 p–(t) dt < ∞.

Hypothesis . f ∈ C([, ] × � × R
;R), f (t, x, y, z) are nondecreasing in x. There exist

continuous positive-valued functions Ai ∈ C([, ] × �;R), Ki ∈ C(�,R) (i = , ) and
h ∈ C([, +∞); (, +∞)), such that

(i) |f (t, x, y, z)| ≤ A(t, x)K(t, x, y, z) + A(t, x)K(t, x, y, z), ∀(t, x, y, z) ∈ �,
(ii) r = sup{A(t, x); (t, x) ∈ [, ] × �} < +∞,

(iii) there exist positive numbers n and N satisfying K(t, x, y, z) ≤ |z|h(|z|),
K(t, x, y, z) ≤ Nh(|z|), for |z| ≥ n and (t, x, y, z) ∈ �,

(iv)
∫ +∞

 h–(t) dt = ∞.

In this paper, we study the following four kinds of boundary value problems:

{
(p(t)x′)′′ = f (t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = α, p(t)x′(t)|t= = α′, p(t)x′(t)|t= = β ′,

(.)

{
(p(t)x′)′′ = f (t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = α, g(p(t)x′, (p(t)x′)′)|t= = , p(t)x′(t)|t= = β ′,

(.)

{
(p(t)x′)′′ = f (t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = α, p(t)x′(t)|t= = α′, h(p(t)x′, (p(t)x′)′)|t= = ,

(.)

{
(p(t)x′)′′ = f (t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = α, g(p(t)x′, (p(t)x′)′)|t= = , h(p(t)x′, (p(t)x′)′)|t= = .

(.)

Here,

p(t)x′|t= = lim
t→+

p(t)x′,
(
p(t)x′)′|t= = lim

t→+

(
p(t)x′)′,

p(t)x′|t= = lim
t→–

p(t)x′,
(
p(t)x′)′|t= = lim

t→–

(
p(t)x′)′,

g(x, y), h(x, y) are nondecreasing in y for the fixed x, respectively.
A function x(t) is said to be a solution of (.), if x(t) is continuous on [, ] satisfying (.)

and its corresponding boundary value conditions, and x′ is continuous on (, ), p(t)x′ is
twice continuously differentiable on [, ].
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The paper is organized as follows. We give some necessary lemmas in Section  which
are main tools to prove the theorems. Then we establish the main results. In Section , the
multiplicity of the solutions is concerned by using topological degree theory. Also, there
are some examples to illustrate how the results of this paper can be applied.

2 Nagumo theorem
Lemma . Let ψ , φ be the upper and lower solutions of (.), respectively, and suppose
that Hypotheses . and . hold. Then for any solution x(t) of boundary value problem (.)
with p(t)φ′ ≤ p(t)x′ ≤ p(t)ψ ′, ∀t ∈ [, ], there always exists L > , such that |(p(t)x′)′| < L,
∀t ∈ [, ].

Proof Let

μ =
∫ 


A(t, x) dt, σ = max

{
p(t)ψ ′(t) – p(s)φ′(s); t, s ∈ [, ]

}
.

There exists t ∈ [, ], such that |(p(t)x′(t))′|t=t < σ +  by the mean value theorem. Sup-
pose not. Then we have σ and N satisfying

σ, N > n + (σ + ),
∫ N

σ

h–(s) ds > (σ + )r + Nμ,

such that (p(t)x′)′ keeps the same sign on [t, t] ⊂ [, ] and (p(t)x′)′|t = σ, (p(t)x′)′|t =
N, or inversely. Let the former hold and (p(t)x′)′ be positive on [t, t] ⊂ [, ]. Therefore

(σ + )r + Nμ <
∫ N

σ

h–(s) ds

=
∫ t

t

h–((p(t)x′)′)∣∣(p(t)x′)′′∣∣dt

≤
∫ t

t

A(t, x)
(
p(t)x′)′ + A(t, x)N dt

< (σ + )r + Nμ,

which is a contradiction. The result is concluded. �

Next, we consider the auxiliary problem as follows:

fL
(
t, x, p(t)x′,

(
p(t)x′)′) =

⎧
⎪⎨

⎪⎩

f (t, x, p(t)x′, L), (p(t)x′)′ > L,
f (t, x, p(t)x′, (p(t)x′)′), |(p(t)x′)′| ≤ L,
f (t, x, p(t)x′, –L), (p(t)x′)′ < L,

FL
(
t, x, p(t)x′,

(
p(t)x′)′)

=

⎧
⎪⎨

⎪⎩

fL(t, x, p(t)ψ ′, (p(t)x′)′) + p(t)x′–p(t)ψ ′
+p(t)x′–p(t)ψ ′ , p(t)x′ > p(t)ψ ′,

fL(t, x, p(t)x′, (p(t)x′)′), p(t)φ ≤ p(t)x′ ≤ p(t)ψ ′,
fL(t, x, p(t)φ′, (p(t)x′)′) – p(t)φ′–p(t)x′

+p(t)φ′–p(t)x′ , p(t)x′ < p(t)φ′,
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F
(
t, x, p(t)x′,

(
p(t)x′)′) =

⎧
⎪⎨

⎪⎩

FL(t,ψ , p(t)x′, (p(t)x′)′), x > ψ ,
FL(t, x, p(t)x′, (p(t)x′)′), φ ≤ x ≤ ψ ,
FL(t,φ, p(t)x′, (p(t)x′)′), φ > x,

{
(p(t)x′)′′ = F(t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = α, p(t)x′(t)|t= = α′, p(t)x′(t)|t= = β ′.

(.)

Lemma . Let ψ , φ be the upper and lower solutions of (.), respectively, and sup-
pose that Hypotheses . and . hold, φ() ≤ α ≤ ψ(), p(t)φ′(t)|t= ≤ α′ ≤ p(t)ψ ′(t)|t=,
p(t)φ′(t)|t= ≤ β ′ ≤ p(t)ψ ′(t)|t=. Then for any solution x(t) of problem (.), we have φ ≤
x ≤ ψ , p(t)φ′ ≤ p(t)x′ ≤ p(t)ψ ′ on [, ].

Proof First, we prove p(t)x′(t) ≤ p(t)ψ ′(t) on [, ]. Assume that our conclusion is not true.
Then there exists t̂ ∈ (, ), such that p(t̂)x′(t̂) > p(t̂)ψ ′(t̂). Hence, p(t)x′ – p(t)ψ ′ has a pos-
itive maximum at t ∈ (, ). We have

(
p(t)x′)′|t=t =

(
p(t)ψ ′)′|t=t ,

(
p(t)x′)′′|t=t ≤ (

p(t)ψ ′)′′|t=t .

But

(
p(t)x′)′′|t=t =

⎧
⎪⎪⎨

⎪⎪⎩

fL(t,ψ , p(t)ψ ′, (p(t)x′)′) + p(t)x′–p(t)ψ ′
+p(t)x′–p(t)ψ ′ |t=t , x > ψ ,

fL(t, x, p(t)ψ ′, (p(t)x′)′) + p(t)x′–p(t)ψ ′
+p(t)x′–p(t)ψ ′ |t=t , φ ≤ x ≤ ψ ,

fL(t,φ, p(t)ψ ′, (p(t)x′)′) + p(t)x′–p(t)ψ ′
+p(t)x′–p(t)ψ ′ |t=t , x ≤ φ.

By the definition of ψ and the monotonicity of f , we have
(
p(t)x′)′′|t=t >

(
p(t)ψ ′)′′|t=t ,

which is a contradiction. Then p(t)x′(t) ≤ p(t)ψ ′(t), ∀t ∈ [, ]. The case of p(t)x′ ≥
p(t)φ′(t), ∀t ∈ [, ] is similar. We get φ′ ≤ x′ ≤ ψ ′, ∀t ∈ (, ). Notice that x, ψ , φ are con-
tinuous on [, ] and φ() ≤ α ≤ ψ(), we can conclude that φ(t) ≤ x(t) ≤ ψ(t), ∀t ∈ [, ].

�
Lemma . If f of the boundary value problem (.) is continuous and bounded on [, ] ×
� ×R

, problem (.) has a solution.

Proof Let

Y =
{

x ∈ C[, ]; x′ ∈ C(, ), p(t)x′ ∈ C[, ]
}

.

We define a norm on Y :

‖x‖ = max
t∈[,]

{∣∣x(t)
∣
∣} + max

t∈[,]

{∣∣p(t)x′(t)
∣
∣} + max

t∈[,]

{∣∣(p(t)x′(t)
)′∣∣}, x ∈ Y .

Under this norm, Y is a Banach space.
Let

X =
{

x ∈ C[, ]; x′ ∈ C(, ), p(t)x′ ∈ C[, ], x() = α, p(t)x′(t)|t= = α′,

p(t)x′(t)|t= = β ′}.

We see that X is a convex subset of Y .
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Define a mapping T : X → X by

[Tx](t) =
∫ t



∫ s



∫ τ


p–(s)f

(
σ , x, px′,

(
px′)′)dσ dτ ds

+ δ + λ

∫ t


p–(s) ds + ω

∫ t


p–(s)s ds,

where

δ = α, λ = p(t)x′(t)|t=,

ω = p(t)x′(t)|t= – λ –
∫ 



∫ τ


f
(
σ , x, p(σ )x′,

(
p(σ )x′)′)dσ dτ .

Then T(X) ⊂ X.
Now, for any t, t ∈ [, ], we have

∣
∣[Tx](t) – [Tx](t)

∣
∣

=
∣∣
∣∣

∫ t

t

∫ s



∫ τ


p–(s)f

(
σ , x, px′,

(
px′)′)dσ dτ ds + λ

∫ t

t

p–(s) ds + ω

∫ t

t

p–(s)s ds
∣∣
∣∣,

∣∣p(t)[Tx]′(t) – p(t)[Tx]′(t)
∣∣ =

∣
∣∣∣ω(t – t) +

∫ t

t

∫ τ


f
(
σ , x, p(σ )x′,

(
p(σ )x′)′)dσ dτ

∣
∣∣∣,

∣∣(p(t)[Tx]′(t)
)′ –

(
p(t)[Tx]′(t)

)′∣∣ =
∣
∣∣
∣

∫ t

t

f
(
σ , x, p(σ )x′,

(
p(σ )x′)′)dσ

∣
∣∣
∣.

The function f is bounded. We see that T(X) is bounded and equicontinuous and hence
relatively compact in X. Let xk be a sequence which converges in X uniformly to z ∈ X.
Then f (t, xk , px′

k , (px′
k)′) → f (t, z, pz′, (pz′)′) in [, ] because f is uniformly continuous in

bounded subsets of [, ] × � ×R
. Therefore, Txk → Tz, k → ∞, which shows that T is

continuous. By the Schauder fixed point theorem, T has at least one fixed point x(t) on X.
Then x(t) is the desired solution. �

Now, we prove our main results.

Theorem . Let ψ , φ be the upper and lower solutions of (.) on [, ], respectively, and
suppose that Hypotheses . and . hold. Then, for any α, α′, β ′ with φ() ≤ α ≤ ψ(),
p(t)φ′(t)|t= ≤ α′ ≤ p(t)ψ ′(t)|t=, p(t)φ′(t)|t= ≤ β ′ ≤ p(t)ψ ′(t)|t=, the boundary value
problem (.) has a solution x(t) with φ ≤ x ≤ ψ , p(t)φ′ ≤ p(t)x′ ≤ p(t)ψ ′ on [, ].

Proof By Lemmas . and ., the solution of problem (.) is also the solution of problem
(.). Furthermore, F of problem (.) is bounded and continuous. There exists a solu-
tion x(t) of problem (.) by Lemma .. x(t) is also the solution of problem (.). This
completes the proof. �

Theorem . Let ψ , φ be the upper and lower solutions of (.) on [, ], respectively, and
suppose that Hypotheses . and . hold. Then for any α, β ′, g with φ() ≤ α ≤ ψ(),
p(t)φ′(t)|t= ≤ β ′ ≤ p(t)ψ ′(t)|t=, g(p(t)φ′, (p(t)φ′)′)|t= ≥  ≥ g(p(t)ψ ′, (p(t)ψ ′)′)|t=, the
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boundary value problem (.) has a solution x(t) with φ ≤ x ≤ ψ , p(t)φ′ ≤ p(t)x′ ≤ p(t)ψ ′

on [, ].

Proof If we can prove that for any ε > , φ() ≤ α ≤ ψ(), p(t)φ′(t)|t= ≤ β ′ ≤ p(t)ψ ′(t)|t=,
problem (.) has a solution x(t, ε) on [, ] satisfying x(, ε) = α, p(t)x′(t, ε)|t= = β ′,
|g(p(t)x′(t, ε), (p(t)x′(t, ε))′)|t= < ε, and φ ≤ x(t, ε) ≤ ψ , p(t)φ′ ≤ p(t)x(t, ε)′ ≤ p(t)ψ ′ on
[, ], the result is concluded.

We shall prove the modified theorem. For the fixed α, β ′ with φ() ≤ α ≤ ψ(),
p(t)φ′(t)|t= ≤ β ′ ≤ p(t)ψ ′(t)|t=, let

�
(
α′) =

{
x ∈ C

(
[, ];�

)
;
(
p(t)x′)′′ = f

(
t, x, p(t)x′,

(
p(t)x′)′), p(t)x′ ∈ C[, ],

x() = α, p(t)x′(t)|t= = α′, p(t)x′(t)|t= = β ′, x′ ∈ C(, ),φ ≤ x ≤ ψ ,

p(t)φ′ ≤ p(t)x′ ≤ p(t)ψ ′,∀t ∈ [, ]
}

.

By Theorem ., �(α′) is not empty for all p(t)φ′(t)|t= ≤ α′ ≤ p(t)ψ ′(t)|t=. Assume that
the modified theorem is not true. There exists ε > , such that

∣
∣g

(
p(t)x′(t, ε),

(
p(t)x′(t, ε)

)′)∣∣
t= ≥ ε,

for all p(t)φ′(t)|t= ≤ α′ ≤ p(t)ψ ′(t)|t=, x(t) ∈ �
(
α′).

It is easy to prove that

(
p(t)x′)′|t= ≤ (

p(t)ψ ′)′|t=, for all x(t) ∈ �
(
p(t)ψ ′(t)|t=

)
.

By the monotonicity of g , we have

g
(
p(t)x′,

(
p(t)x′)′)|t= ≤ g

(
p(t)ψ ′,

(
p(t)ψ ′)′)|t= ≤ –ε.

The case of g(p(t)φ′, (p(t)φ′)′)|t= ≥ ε for x(t) ∈ �(p(t)φ′(t)|t=) is similar.
Let

C =
{

x(t) ∈ �
(
α′); p(t)φ′(t)|t= ≤ α′ ≤ p(t)ψ ′(t)|t=, g

(
p(t)φ′,

(
p(t)φ′)′)|t= ≥ ε

}
,

α′
 = sup

{
p(t)x′(t)|t=; x(t) ∈ C

}
.

Obviously, we have α′
 < p(t)ψ ′(t)|t=. Assume that x(t) is the solution of (.) satisfying

g(p(t)x′
, (p(t)x′

)′)|t= ≥ ε, x() = α, p(t)x′
(t)|t= = α′

, p(t)x′
(t)|t= = β ′. There exists N >

, such that α′
 +/N < p(t)ψ ′(t)|t=. Choose xn ∈ �(α′

 +/n) satisfying p(t)x′
n(t) ≥ p(t)x′

(t)
on [, ], ∀n ≥ N . Then xn → x̂ ∈ �(α′

) and p(t)x̂′ ≥ p(t)x′
 on [, ]. By the definition of

α′
, we have g(p(t)x′

n, (p(t)x′
n)′)|t= ≤ –ε. Hence,

g
(
p(t)x̂′,

(
p(t)x̂′)′)|t= ≤ –ε.

We have

(
p(t)x̂′)′|t= <

(
p(t)x′


)′|t=,
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which contradicts p(t)x̂′(t) ≥ p(t)x′
(t), ∀t ∈ [, ], p(t)x̂′(t)|t= = p(t)x′

(t)|t= = α′
. This

completes the proof. �

In the same way, we can get Theorem ..

Theorem . Let ψ , φ be the upper and lower solutions of (.) on [, ], respectively, and
suppose that Hypotheses . and . hold. Then, for any α, α′, h with φ() ≤ α ≤ ψ(),
p(t)φ′(t)|t= ≤ α′ ≤ p(t)ψ ′(t)|t=, h(p(t)φ′, (p(t)φ′)′)|t= ≤  ≤ h(p(t)ψ ′, (p(t)ψ ′)′)|t=, the
boundary value problem (.) has a solution x(t) with φ ≤ x ≤ ψ , p(t)φ′ ≤ p(t)x′ ≤ p(t)ψ ′

on [, ].

In the following, we prove our main theorem.

Theorem . Let ψ , φ be the upper and lower solutions of (.), respectively, and sup-
pose that Hypotheses . and . hold. Then, for any g(x, y), h(x, y), α with φ() ≤
α ≤ ψ(), g(p(t)φ′, (p(t)φ′)′)|t= ≥  ≥ g(p(t)ψ ′, (p(t)ψ ′)′)|t=, h(p(t)φ′, (p(t)φ′)′)|t= ≤  ≤
h(p(t)ψ ′, (p(t)ψ ′)′)|t=, the boundary value problem (.) has a solution x(t) with φ ≤ x ≤ ψ ,
p(t)φ′ ≤ p(t)x′ ≤ p(t)ψ ′ on [, ].

Proof For any β ′ with p(t)φ′(t)|t= ≤ β ′ ≤ p(t)ψ ′(t)|t=, let

�
(
β ′) =

{
x ∈ C[, ]; x′ ∈ C(, ),

(
p(t)x′)′′ = f

(
t, x, p(t)x′,

(
p(t)x′)′), p(t)x′ ∈ C[, ],

g
(
p(t)x′,

(
p(t)x′)′)|t= = , x() = α, p(t)x′(t)|t= = β ′,φ() ≤ α ≤ ψ(),

φ ≤ x ≤ ψ , p(t)φ′ ≤ p(t)x′ ≤ p(t)ψ ′,∀t ∈ [, ]
}

.

Suppose not, there exists h(p(t)x′, (p(t)x′)′)|t= �= , ∀x ∈ �(β ′). We easily get

h
(
p(t)x′,

(
p(t)x′)′)|t= < , ∀x ∈ �

(
p(t)φ′(t)|t=

)
,

h
(
p(t)x′,

(
p(t)x′)′)|t= > , ∀x ∈ �

(
p(t)ψ ′(t)|t=

)
.

Let

β ′
 = sup

{
p(t)x′(t)|t=; x(t) ∈ �

(
β ′), p(t)φ′(t)|t= ≤ β ′ ≤ p(t)ψ ′(t)|t=,

h
(
p(t)x′,

(
p(t)x′)′)|t= < 

}
.

Then β ′
 < p(t)ψ ′(t)|t=. By Theorem ., there exists a solution x(t) of the func-

tion (.) satisfying φ(t) ≤ x(t) ≤ ψ(t), p(t)φ′(t) ≤ p(t)x′
(t) ≤ p(t)ψ ′(t) on [, ], and

g(p(t)x′
, (p(t)x′

)′)|t= = , h(p(t)x′
, (p(t)x′

)′)|t= < , p(t)x′
(t)|t= = β ′

, x() = α. We re-
place φ(t) by x(t) in Theorem .. Then

D =
{

x(t); x(t) ∈ �
(
β ′),β ′

 ≤ β ′ ≤ p(t)ψ ′(t)|t=, x ≤ x ≤ ψ ,

p(t)x′
 ≤ p(t)x′ ≤ p(t)ψ ′, t ∈ [, ]

}
,

is not empty. For x(t) ∈ D, we have

h
(
p(t)x′,

(
p(t)x′)′)|t= > , inf

x(t)∈D

{
p(t)x′(t)|t=

}
= β ′

.
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There exists N > , such that β ′
 + /N < p(t)ψ ′(t)|t=. Now, choose xn ∈ �(β ′

 + /n)
satisfying p(t)x′

n ≥ p(t)x′
, ∀n ≥ N. Then xn → x̂ ∈ �(β ′

), p(t)x̂′ ≥ p(t)x′
 on [, ] and

h(p(t)x′
n, (p(t)x′

n)′)|t= > . Hence,

h
(
p(t)x̂′,

(
p(t)x̂′)′)|t= ≥ .

By the monotonicity of h and h(p(t)x′
, (p(t)x′

)′)|t= < , we have

(
p(t)x′


)′|t= <

(
p(t)x̂′)′|t=,

which contradicts p(t)x̂′ ≥ p(t)x′
, ∀t ∈ [, ], p(t)x̂′(t)|t= = p(t)x′

(t)|t= = β ′
. This com-

pletes the proof. �

Here, we give an example to show how the results are applied.
Consider the following boundary value problem:

{
(p(t)x′)′′ = f (t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = , g(p(t)x′, (p(t)x′)′)|t= = , h(p(t)x′, (p(t)x′)′)|t= = ,

(.)

where g(x, y) = x, h(x, y) = x + y, p(t) = t 
 , f (t, x, y, z) = x + sin y + z.

Let ψ(t) = , φ(t) = – 
 t 

 . Then

(
(
t



)
(

–



t



)′)′′
=  ≥ –




t

 + sin(–t) + (–),

(
t


 ()′

)′′ =  ≤ , ∀t ∈ (, ).

Namely, ψ(t), φ(t) are the upper and lower solutions of problem (.).
Obviously, the function f of problem (.) is continuous on [, ] × � × R

 satisfying
|f | ≤ AK + AK, where A(t, x) = , A(t, x) = , K(t, x, y, z) = z, K(t, x, y, z) = x + sin y. Let
r = sup{A(t, x)} = , h(t) = t + . Therefore, Hypotheses . and . hold. Moreover, g(x, y),
h(x, y) are nondecreasing in y for the fixed x and

g
(
p(t)φ′(t),

(
p(t)φ′(t)

)′)|t= ≥  ≥ g
(
p(t)ψ ′(t),

(
p(t)ψ ′(t)

)′)|t=

and

h
(
p(t)φ′(t),

(
p(t)φ′(t)

)′)|t= ≤  ≤ h
(
p(t)ψ ′(t),

(
p(t)ψ ′(t)

)′)|t=

hold. There exists a solution for the boundary value problem (.) by Theorem ..

3 Multiplicity of the solutions
In this section, we study the multiplicity of the solutions by using topological degree the-
ory. First, assume that ψ̄ , φ̄ are strict upper and lower solutions of (.) with

(
p(t)φ̄′)′′ > f

(
t, φ̄, p(t)φ̄′,

(
p(t)φ̄′)′),

(
p(t)ψ̄ ′)′′ < f

(
t, ψ̄ , p(t)ψ̄ ′,

(
p(t)ψ̄ ′)′), on (, ),
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φ̄(t) < ψ̄(t), p(t)φ̄′(t) < p(t)ψ̄ ′(t), for t =  and

p(t)φ̄′(t) < p(t)ψ̄ ′(t), for t = .

Similar to (.), we consider the auxiliary problem

{
(p(t)x′)′′ = F(t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = α, p(t)x′(t)|t= = α′, p(t)x′(t)|t= = β ′,

(.)

where F is defined associated to the pairs of strict upper and lower solutions (ψ̄ , φ̄).

Lemma . Let ψ̄ , φ̄ be the strict upper and lower solutions of (.), respectively, and sup-
pose that Hypotheses . and . hold, φ̄() < α < ψ̄(), p(t)φ̄′(t)|t= < α′ < p(t)ψ̄ ′(t)|t=,
p(t)φ̄′(t)|t= < β ′ < p(t)ψ̄ ′(t)|t=. Then for any solution x(t) of problem (.), we have φ̄ < x <
ψ̄ , p(t)φ̄′ < p(t)x′ < p(t)ψ̄ ′ on [, ].

Proof From Lemma ., the solution x(t) of problem (.) satisfies φ̄ ≤ x ≤ ψ̄ , p(t)φ̄′ ≤
p(t)x′ ≤ p(t)ψ̄ ′ on [, ]. We will obtain the result by contradiction.

If there is t ∈ (, ) such that (p(t)x′ – p(t)φ̄′)|t=t = mint∈[,]{p(t)x′ – p(t)φ̄′} = . Then

(
p(t)x′ – p(t)φ̄′)′|t=t = ,

(
p(t)x′ – p(t)φ̄′)′′|t=t ≥ .

On the other hand, by the definition of φ̄, we have

(
p(t)x′)′′|t=t <

(
p(t)φ̄′)′′|t=t ,

which is a contradiction. Then p(t)φ̄′ < p(t)x′, ∀t ∈ [, ]. The case of p(t)x′ < p(t)ψ̄ ′,
∀t ∈ [, ] is similar. Note that φ̄() < x() < ψ̄(). Therefore, φ̄ < x < ψ̄ on [, ], which
completes the proof. �

Next, we only focus on the existence of at least three solutions to the boundary value
problem (.).

Theorem . Assume that φi, ψi, i = ,  are lower and upper solutions to (.), respectively.
φ and ψ are strict lower and upper solutions. For all t ∈ [, ], we have φ ≤ φ ≤ ψ, φ ≤
ψ ≤ ψ, p(t)φ′

 ≤ p(t)φ′
 ≤ p(t)ψ ′

, p(t)φ′
 ≤ p(t)ψ ′

 ≤ p(t)ψ ′
, and {t|φ ≥ ψ} ∪ {t|p(t)φ′

 ≥
p(t)ψ ′

} is not empty. Suppose that Hypotheses . and . associated to φi, ψi, i = ,  hold.
Then, for any α, α′, β ′ with maxi=,{φi()} ≤ α ≤ mini=,{ψi()}, maxi=,{p(t)φ′

i(t)|t=} ≤
α′ ≤ mini=,{p(t)ψ ′

i (t)|t=}, maxi=,{p(t)φ′
i(t)|t=} ≤ β ′ ≤ mini=,{p(t)ψ ′

i (t)|t=}, there exist
at least three solutions x(t), x(t), x(t) to the boundary value problem (.) such that

φ ≤ x ≤ ψ, p(t)φ′
 ≤ p(t)x′ ≤ p(t)ψ ′

,

φ ≤ x ≤ ψ, p(t)φ′
 ≤ p(t)x′ ≤ p(t)ψ ′

,

φ ≤ x ≤ ψ and
{

t ∈ [, ]|ψ ≤ x ≤ φ
} ∪ {

t ∈ [, ]|p(t)ψ ′
 ≤ p(t)x′

 ≤ p(t)φ′

}

is not empty.
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Proof Similar to (.), we consider the auxiliary problem
{

(p(t)x′)′′ = F(t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = α, p(t)x′(t)|t= = α′, p(t)x′(t)|t= = β ′,

(.)

where F is defined associated to (φ,ψ). Therefore, the solution x to problem (.) is the
fixed point of some operator T, i.e., (I – T)x = .

With a similar argument in Lemmas ., ., and ., there exist a constant M >  and
� = {x|‖x‖ < M} such that T(�) ⊂ �. By the Schauder fixed point theorem, we have

deg(I – T,�, θ ) = .

Let

�φ =
{

x ∈ �|x > φ, p(t)x′ > p(t)φ′

}

and

�ψ =
{

x ∈ �|x < ψ, p(t)x′ < p(t)ψ ′

}

.

By assumption, we have �φ ∩ �ψ = ∅. Therefore, � \ (�φ ∪ �ψ ) is not empty. From
Lemma ., there is no solution in ∂�φ ∪ ∂�ψ .

Hence,

deg(I – T,�, θ ) = deg(I – T,�φ , θ ) + deg(I – T,�ψ , θ )

+ deg
(
I – T,� \ (�φ ∪ �ψ ), θ

)
.

If deg(I – T,�φ , θ ) = deg(I – T,�ψ , θ ) = , then deg(I – T,� \ (�φ ∪ �ψ ), θ ) = –. The
result is obtained by using topological degree theory.

Indeed, similar to (.), we consider the auxiliary problem
{

(p(t)x′)′′ = F(t, x, p(t)x′, (p(t)x′)′), t ∈ (, ),
x() = α, p(t)x′(t)|t= = α′, p(t)x′(t)|t= = β ′,

(.)

where F is defined associated to (φ,ψ). Therefore, the solution x to problem (.) is the
fixed point of some operator T, i.e., (I – T)x = .

From Lemma ., we have x > φ, p(t)x′ > p(t)φ′
. Hence, x ∈ �φ . Note that F = F

in �φ . We have

 = deg(I – T,�, θ ) = deg(I – T,�φ , θ ) = deg(I – T,�φ , θ ).

Similarly, we get deg(I – T,�ψ , θ ) = , which completes the proof. �

Here, we give an example to show how the above theorem is applied. Note that the
boundary point t =  is not essential. Then one can consider the following problem:

{
(p(t)x′)′′ = –p(t)x′, t ∈ (, ),
x() = , p(t)x′|t= = , p(t)x′|t=π = ,

(.)

where p(t) = t 
 . A straightforward calculation shows Hypotheses . and . hold.
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On the one hand, we can see this problem has solutions

x(t) = C
∫ t


s– 

 sin s ds,

for any constant C.
On the other hand, φ = M, ψ = –M are upper and lower solutions for M >  large

enough.
Define

ψ(t) =
∫ t


s– 

 (λ cosλs – λk) ds + C′,

where C′ > ,  < λ < ,  – λ < cos πλ < , and  – λ < k < cos πλ < .
We check ψ(t) is a strict upper solution:

ψ() = C′ > ,

p(t)ψ ′
|t= = (λ cosλt – λk)|t= > ,

p(t)ψ ′
|t=π = (λ cosλt – λk)|t=π > ,

(
p(t)ψ ′


)′′ + p(t)ψ ′

 = –λ cosλt + λ cosλt – λk ≤ λ
(
 – λ) – λk < .

Define

φ(t) = –
∫ t


s– 

 (λ cosλs – λk) ds – C′.

With a similar calculation, φ(t) is a strict lower solution and {t|p(t)φ′
 ≥ p(t)ψ ′

} is not
empty.
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