CORE

Higher order derivatives of approximation polynomials on \mathbb{R}

Hee Sun Jung ${ }^{1 *}$ and Ryozi Sakai ${ }^{2}$

"Correspondence:
hsun90@skku.edu
${ }^{1}$ Department of Mathematics
Education, Sungkyunkwan
University, Seoul, 110-745, Republic of Korea
Full list of author information is available at the end of the article

Abstract

Leviatan has investigated the behavior of higher order derivatives of approximation polynomials of a differentiable function f on $[-1,1]$. Especially, when P_{n} is the best approximation of f, he estimates the differences $\left\|f^{(k)}-P_{n}^{(k)}\right\|_{L_{\infty}([-1,1])}, k=0,1,2, \ldots$. In this paper, we give the analogies for them with respect to the differentiable functions on \mathbb{R}.

MSC: 41A10; 41A50

Keywords: the polynomial of best approximation; the exponential-type weight

1 Introduction

Let $\mathbb{R}=(-\infty, \infty)$ and $\mathbb{R}^{+}=[0, \infty)$. We say that $f:(0, \infty) \rightarrow \mathbb{R}^{+}$is quasi-increasing in $(0, \infty)$ if there exists $C>0$ such that $f(x) \leq C f(y)$ for $0<x<y$. The notation $f(x) \sim g(x)$ means that there are positive constants C_{1}, C_{2} such that for the relevant range of x, $C_{1} \leq f(x) / g(x) \leq C_{2}$. A similar notation is used for sequences and sequences of functions. Throughout C, C_{1}, C_{2}, \ldots denote positive constants independent of n, x, t. The same symbol does not necessarily denote the same constant in different occurrences. We denote the class of polynomials with degree n by \mathcal{P}_{n}.

First, we introduce some classes of weights. Levin and Lubinsky [1] introduced the class of weights on \mathbb{R} as follows.

Definition 1.1 Let $Q: \mathbb{R} \rightarrow[0, \infty)$ be a continuous even function, and satisfy the following properties:
(a) $Q^{\prime}(x)>0$ for $x>0$ and is continuous in \mathbb{R}, with $Q(0)=0$.
(b) $Q^{\prime \prime}(x)$ exists and is positive in $\mathbb{R} \backslash\{0\}$.
(c) $\lim _{x \rightarrow \infty} Q(x)=\infty$.
(d) The even function

$$
T_{w}(x):=\frac{x Q^{\prime}(x)}{Q(x)}, \quad x \neq 0
$$

is quasi-increasing in $(0, \infty)$, with

$$
T_{w}(x) \geq \Lambda>1, \quad x \in \mathbb{R} \backslash\{0\} .
$$

(e) There exists $C_{1}>0$ such that

$$
\frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \leq C_{1} \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \quad \text { a.e. } x \in \mathbb{R}
$$

Furthermore, if there also exist a compact subinterval $J(\ni 0)$ of \mathbb{R} and $C_{2}>0$ such that

$$
\frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \geq C_{2} \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \quad \text { a.e. } x \in \mathbb{R} \backslash
$$

then we write $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$.
For convenience, we denote T instead of T_{w}, if there is no confusion. Next, we give some typical examples of $\mathcal{F}\left(C^{2}+\right)$.

Example 1.2 [2]

(1) If $T(x)$ is bounded, then we call the weight $w=\exp (-Q(x))$ the Freud-type weight and we write $w \in \mathcal{F}^{*} \subset \mathcal{F}\left(C^{2}+\right)$.
(2) When $T(x)$ is unbounded, then we call the weight $w=\exp (-Q(x))$ the Erdös-type weight: For $\alpha>1, l \geq 1$ we define

$$
Q(x):=Q_{l, \alpha}(x)=\exp _{l}\left(|x|^{\alpha}\right)-\exp _{l}(0)
$$

where $\exp _{l}(x)=\exp (\exp (\exp \cdots \exp x) \cdots)(l$ times $)$. More generally, we define

$$
Q_{l, \alpha, m}(x)=|x|^{m}\left\{\exp _{l}\left(|x|^{\alpha}\right)-\tilde{\alpha} \exp _{l}(0)\right\}, \quad \alpha+m>1, m \geq 0, \alpha \geq 0
$$

where $\tilde{\alpha}=0$ if $\alpha=0$, and otherwise $\tilde{\alpha}=1$. We note that $Q_{l, 0, m}$ gives a Freud-type weight, and $Q_{l, \alpha, m}(\alpha>0)$ gives an Erdös-type weight.
(3) For $\alpha>1, Q_{\alpha}(x)=(1+|x|)^{|x|^{\alpha}}-1$ gives also an Erdös-type weight.

For a continuous function $f:[-1,1] \rightarrow \mathbb{R}$, let

$$
E_{n}(f)=\inf _{P \in \mathcal{P}_{n}}\|f-P\|_{L_{\infty}([-1,1])}=\inf _{P \in \mathcal{P}_{n}} \max _{x \in[-1,1]}|f(x)-P(x)| .
$$

Leviatan [3] has investigated the behavior of the higher order derivatives of approximation polynomials for the differentiable function f on $[-1,1]$, as follows.

Theorem (Leviatan [3]) For $r \geq 0$ we let $f \in C^{(r)}[-1,1]$, and let $P_{n} \in \mathcal{P}_{n}$ denote the polynomial of best approximation off on $[-1,1]$. Then for each $0 \leq k \leq r$ and every $-1 \leq x \leq 1$,

$$
\left|f^{(k)}(x)-P_{n}^{(k)}(x)\right| \leq \frac{C_{r}}{n^{k}} \Delta_{n}^{-k}(x) E_{n-k}\left(f^{(k)}\right), \quad n \geq k
$$

where $\Delta_{n}(x):=\sqrt{1-x^{2}} / n+1 / n^{2}$ and C_{r} is an absolute constant which depends only on r.
In this paper, we will give an analogy of Leviatan's theorem for some exponential-type weight. In Section 2, we give the theorems in the space $L_{\infty}(\mathbb{R})$, and we also make a certain assumption and some notations which are needed in order to state the theorems. In Section 3, we give some lemmas and the proofs of the theorems.

2 Theorems and preliminaries

First, we introduce some well-known notations. If f is a continuous function on \mathbb{R}, then we define

$$
\|f w\|_{L_{\infty}(\mathbb{R})}:=\sup _{t \in \mathbb{R}}|f(t) w(t)|,
$$

and for $1 \leq p<\infty$ we denote

$$
\|f w\|_{L_{p}(\mathbb{R})}:=\left(\int_{\mathbb{R}}|f(t) w(t)|^{p} d t\right)^{1 / p} .
$$

Let $1 \leq p \leq \infty$. If $\|w f\|_{L_{p}(\mathbb{R})}<\infty$, then we write $w f \in L_{p}(\mathbb{R})$, and here if $p=\infty$, we suppose that $f \in C(\mathbb{R})$ and $\lim _{|x| \rightarrow \infty}|w(x) f(x)|=0$. We denote the rate of approximation of f by

$$
E_{p, n}(w, f):=\inf _{P \in \mathcal{P}_{n}}\|(f-P) w\|_{L_{p}(\mathbb{R})}
$$

The Mhaskar-Rakhmanov-Saff numbers a_{x} is defined as follows:

$$
x=\frac{2}{\pi} \int_{0}^{1} \frac{a_{x} u Q^{\prime}\left(a_{x} u\right)}{\sqrt{1-u^{2}}} d u, \quad x>0
$$

To write our theorems we need some preliminaries. We need further assumptions.
Definition 2.1 Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$ and let $r \geq 1$ be an integer. Then for $0<\lambda<$ $(r+2) /(r+1)$ we write $w \in \mathcal{F}_{\lambda}\left(C^{r+2}+\right)$ if $Q \in C^{(r+2)}(\mathbb{R} \backslash\{0\})$ and there exist two constants $C>1$ and $K \geq 1$ such that for all $|x| \geq K$,

$$
\frac{\left|Q^{\prime}(x)\right|}{Q^{\lambda}(x)} \leq C \quad \text { and } \quad\left|\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}\right| \sim\left|\frac{Q^{(k+1)}(x)}{Q^{(k)}(x)}\right|
$$

for every $k=2, \ldots, r$ and also

$$
\left|\frac{Q^{(r+2)}(x)}{Q^{(r+1)}(x)}\right| \leq C\left|\frac{Q^{(r+1)}(x)}{Q^{(r)}(x)}\right|
$$

In particular, $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ means that $Q \in C^{(3)}(\mathbb{R} \backslash\{0\})$ and

$$
\frac{\left|Q^{\prime}(x)\right|}{Q^{\lambda}(x)} \leq C \quad \text { and } \quad\left|\frac{Q^{\prime \prime \prime}(x)}{Q^{\prime \prime}(x)}\right| \leq C\left|\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}\right|
$$

hold for $|x| \geq K$. In addition, let $\mathcal{F}_{\lambda}\left(C^{2}+\right):=\mathcal{F}\left(C^{2}+\right)$.
From [2], we know that Example 1.2(2), (3) satisfy all conditions of Definition 2.1. Under the same condition as of Definition 2.1 we obtain an interesting theorem as follows.

Theorem 2.2 ([4], Theorems 4.1, 4.2 and (4.11)) Let r be a positive integer, $0<\lambda<(r+$ $2) /(r+1)$ and let $w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{r+2}+\right)$. Then, for any $\mu, \nu, \alpha, \beta \in \mathbb{R}$, we can construct a new weight $w_{\mu, v, \alpha, \beta} \in \mathcal{F}_{\lambda}\left(C^{r+1}+\right)$ such that

$$
T_{w}^{\mu}(x)\left(1+x^{2}\right)^{v}(1+Q(x))^{\alpha}\left(1+\left|Q^{\prime}(x)\right|\right)^{\beta} w(x) \sim w_{\mu, v, \alpha, \beta}(x)
$$

on \mathbb{R}, and for some $c \geq 1$,

$$
\begin{aligned}
& a_{n / c}(w) \leq a_{n}\left(w_{\mu \cdot v, \alpha, \beta}\right) \leq a_{c n}(w), \\
& T_{w_{\mu, v, \alpha, \beta}}(x) \sim T_{w}(x)
\end{aligned}
$$

hold on $\mathbb{R} \backslash\{0\}$.
For a given $\mu \in \mathbb{R}$ and $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)(0<\lambda<3 / 2)$, we let $w_{\mu} \in \mathcal{F}\left(C^{2}+\right)$ satisfy $w_{\mu}(x) \sim$ $T_{w}^{\mu}(x) w(x)$ (see Theorem 4.1 in [4]). Let $P_{n f ; w_{\mu}} \in \mathcal{P}_{n}$ be the best approximation of f with respect to the weight w_{μ}, that is,

$$
\left\|\left(f-P_{n_{i} f, w_{\mu}}\right) w_{\mu}\right\|_{L_{\infty}(\mathbb{R})}=E_{n}\left(w_{\mu}, f\right):=\inf _{P \in \mathcal{P}_{n}}\left\|(f-P) w_{\mu}\right\|_{L_{\infty}(\mathbb{R})} .
$$

Then we have the main result as follows.
Theorem 2.3 Let $r \geq 0$ be an integer. Let $w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{r+3}+\right)$, where $0<\lambda<(r+$ 3)/($r+2$). Suppose that $f \in C^{(r)}(\mathbb{R})$ with

$$
\lim _{|x| \rightarrow \infty} T^{1 / 4}(x) f^{(r)}(x) w(x)=0 .
$$

Then there exists an absolute constant $C_{r}>0$ which depends only on r such that, for $0 \leq$ $k \leq r$ and $x \in \mathbb{R}$,

$$
\begin{aligned}
\left|\left(f^{(k)}(x)-P_{n f, w}^{(k)}(x)\right) w(x)\right| & \leq C_{r} T^{k / 2}(x) E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) \\
& \leq C_{r} T^{k / 2}(x)\left(\frac{a_{n}}{n}\right)^{r-k} E_{n-r}\left(w_{1 / 4}, f^{(r)}\right) .
\end{aligned}
$$

When $w \in \mathcal{F}^{*}$, we can replace $w_{1 / 4}$ with $c w$ (c is a constant) in the above.
Applying Theorem 2.3 with w or $w_{-1 / 4}$, we have the following corollaries.

Corollary 2.4

(1) Let $w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{r+3}+\right)$ and $0<\lambda<(r+3) /(r+2), r \geq 0$. We suppose that $f \in C^{(r)}(\mathbb{R})$ with

$$
\lim _{|x| \rightarrow \infty} T^{1 / 4}(x) f^{(r)}(x) w(x)=0,
$$

then for $0 \leq k \leq r$ we have

$$
\begin{aligned}
\left\|\left(f^{(k)}-P_{n f, w}^{(k)}\right) w_{-k / 2}\right\|_{L_{\infty}(\mathbb{R})} & \leq C_{r} E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) \\
& \leq C_{r}\left(\frac{a_{n}}{n}\right)^{r-k} E_{n-r}\left(w_{1 / 4}, f^{(r)}\right) .
\end{aligned}
$$

(2) Let $w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{r+4}+\right), 0<\lambda<(r+4) /(r+3), r \geq 0$. We suppose that $f \in C^{(r)}(\mathbb{R})$ with

$$
\lim _{|x| \rightarrow \infty} f^{(r)}(x) w(x)=0,
$$

then for $0 \leq k \leq r$ we have

$$
\begin{aligned}
\left\|\left(f^{(k)}-P_{n f, f, w_{-1 / 4}}^{(k)}\right) w_{-(2 k+1) / 4}\right\|_{L_{\infty}(\mathbb{R})} & \leq C_{r} E_{n-k}\left(w, f^{(k)}\right) \\
& \leq C_{r}\left(\frac{a_{n}}{n}\right)^{r-k} E_{n-r}\left(w, f^{(r)}\right) .
\end{aligned}
$$

When $w \in \mathcal{F}^{*}$, we can replace $w_{\mu}(\mu=-k / 2, \mu=-(2 k+1) / 4,0 \leq k \leq r$, and $\mu=1 / 4)$ with $c w$ (c is a constant) in the above.

Corollary 2.5 Let $r \geq 0$ be an integer. Let $w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{r+4}+\right), 0<\lambda<(r+4) /(r+$ 3), and let $w_{(2 r+1) / 4} f^{(r)} \in L_{\infty}(\mathbb{R})$. Then, for each $k(0 \leq k \leq r)$ and the best approximation polynomial $P_{n: f, w_{k / 2}}$;

$$
\left\|\left(f-P_{n f ; w_{k / 2}}\right) w_{k / 2}\right\|_{L_{\infty}(\mathbb{R})}=E_{n}\left(w_{k / 2}, f\right),
$$

we have

$$
\begin{aligned}
\left\|\left(f^{(k)}-P_{n: f, w_{k / 2}}^{(k)}\right) w\right\|_{L_{\infty}(\mathbb{R})} & \leq C_{r} E_{n-k}\left(w_{(2 k+1) / 4}, f^{(k)}\right) \\
& \leq C_{r}\left(\frac{a_{n}}{n}\right)^{r-k} E_{n-r}\left(w_{(2 k+1) / 4}, f^{(r)}\right) .
\end{aligned}
$$

When $w \in \mathcal{F}^{*}$, we can replace $w_{\mu}(\mu=k / 2, \mu=(2 k+1) / 4,0 \leq k \leq r)$ with $c w$ (c is a constant) in the above.

3 Proofs of theorems

We give the proofs of the theorems. First, we give some lemmas to prove the theorems. We construct the orthonormal polynomials $p_{n}(x)=p_{n}\left(w^{2}, x\right)$ of degree n for $w^{2}(x)$, that is,

$$
\int_{-\infty}^{\infty} p_{n}\left(w^{2}, x\right) p_{m}\left(w^{2}, x\right) w^{2}(x) d x=\delta_{m n} \quad \text { (Kronecker delta). }
$$

Let $f w \in L_{2}(\mathbb{R})$. The Fourier-type series of f is defined by

$$
\tilde{f}(x):=\sum_{k=0}^{\infty} a_{k}\left(w^{2}, f\right) p_{k}\left(w^{2}, x\right), \quad a_{k}\left(w^{2}, f\right):=\int_{-\infty}^{\infty} f(t) p_{k}\left(w^{2}, t\right) w^{2}(t) d t .
$$

We denote the partial sum of $\tilde{f}(x)$ by

$$
s_{n}(f, x):=s_{n}\left(w^{2}, f, x\right):=\sum_{k=0}^{n-1} a_{k}\left(w^{2}, f\right) p_{k}\left(w^{2}, x\right) .
$$

Moreover, we define the de la Vallée Poussin means by

$$
v_{n}(f, x):=\frac{1}{n} \sum_{j=n+1}^{2 n} s_{j}\left(w^{2}, f, x\right) .
$$

Theorem 3.1 (Theorem 1.1, (1.5), Corollary 6.2, (6.5) in [5]) Let $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right), 0<\lambda<3 / 2$, and let $1 \leq p \leq \infty$. When $T^{1 / 4} w f \in L_{p}(\mathbb{R})$, we have, for $n \geq 1$,

$$
\left\|v_{n}(f) w\right\|_{L_{p}(\mathbb{R})} \leq C\left\|T^{1 / 4} w f\right\|_{L_{p}(\mathbb{R})},
$$

and so

$$
\left\|\left(f-v_{n}(f)\right) w\right\|_{L_{p}(\mathbb{R})} \leq C E_{p, n}\left(T^{1 / 4} w, f\right)
$$

So, equivalently,

$$
\left\|v_{n}(f) w\right\|_{L_{p}(\mathbb{R})} \leq C\left\|w_{1 / 4} f\right\|_{L_{p}(\mathbb{R})},
$$

and so

$$
\begin{equation*}
\left\|\left(f-v_{n}(f)\right) w\right\|_{L_{p}(\mathbb{R})} \leq C E_{p, n}\left(w_{1 / 4}, f\right) . \tag{3.1}
\end{equation*}
$$

When $w \in \mathcal{F}^{*}$, we can replace $w_{1 / 4}$ with $c w$.

Lemma 3.2 Let $w \in \mathcal{F}\left(C^{2}+\right)$.
(1) (Lemma 3.5(a) in [1]) Let $L>0$ be fixed. Then, uniformly for $t>0$,

$$
a_{L t} \sim a_{t} .
$$

(2) (Lemma 3.4, (3.17) in [1]) For $x>1$, we have

$$
\left|Q^{\prime}\left(a_{x}\right)\right| \sim \frac{x \sqrt{T\left(a_{x}\right)}}{a_{x}} \text { and }\left|Q\left(a_{x}\right)\right| \sim \frac{x}{\sqrt{T\left(a_{x}\right)}} .
$$

(3) (Proposition 3 in [6]) If $T(x)$ is unbounded, then for any $\eta>0$ there exists $C(\eta)>0$ such that for $t \geq 1$,

$$
a_{t} \leq C(\eta) t^{\eta} .
$$

To prove the results, we need the following notations. We set

$$
\sigma(t):=\inf \left\{a_{u}: \frac{a_{u}}{u} \leq t\right\}, \quad t>0
$$

and

$$
\Phi_{t}(x):=\sqrt{\left|1-\frac{|x|}{\sigma(t)}\right|}+T^{-1 / 2}(\sigma(t)), \quad x \in \mathbb{R} .
$$

Define for $f w \in L_{p}(\mathbb{R}), 0<p \leq \infty$,

$$
\begin{aligned}
\omega_{p}(f, w, t):= & \sup _{0<h \leq t}\left\|w(x)\left\{f\left(x+\frac{h}{2} \Phi_{t}(x)\right)-f\left(x-\frac{h}{2} \Phi_{t}(x)\right)\right\}\right\|_{L_{p}(|x| \leq \sigma(2 t))} \\
& +\inf _{c \in \mathbb{R}}\|w(x)(f-c)(x)\|_{L_{p}(|x| \geq \sigma(4 t))}
\end{aligned}
$$

(see $[7,8]$).

Proposition 3.3 (cf. Theorem 1.2 in [8], Corollary 1.4 in [7]) Let $w \in \mathcal{F}\left(C^{2}+\right)$. Let $0<p \leq$ ∞. Then for $: \mathbb{R} \rightarrow \mathbb{R}$ such that fw $\in L_{p}(\mathbb{R})$ (where for $p=\infty$, we requiref to be continuous, and fw to vanish at $\pm \infty)$, we have, for $n \geq C_{3}$,

$$
E_{p, n}(w, f) \leq C_{1} \omega_{p}\left(f, w, C_{2} \frac{a_{n}}{n}\right),
$$

where $C_{j}, j=1,2,3$, do not depend on f and n.

Proof Damelin and Lubinsky [8] or Damelin [7] have treated a certain class \mathcal{E}_{1} of weights containing the ones satisfying conditions (a)-(d) in Definition 1.1 and

$$
\begin{equation*}
\frac{y Q^{\prime}(y)}{x Q^{\prime}(x)} \leq\left(\frac{Q(y)}{Q(x)}\right)^{C}, \quad y \geq x>0 \tag{3.2}
\end{equation*}
$$

where $C>0$ is a constant, and they obtain this Proposition for $w \in \mathcal{E}_{1}$. Therefore, we may show $\mathcal{F}\left(C^{2}+\right) \subset \mathcal{E}_{1}$. In fact, from Definition 1.1(d) and (e), we have, for $y \geq x>0$,

$$
\frac{Q^{\prime}(y)}{Q^{\prime}(x)}=\exp \left(\int_{x}^{y} \frac{Q^{\prime \prime}(t)}{Q^{\prime}(t)} d t\right) \leq \exp \left(C_{1} \int_{x}^{y} \frac{Q^{\prime}(t)}{Q(t)} d t\right)=\left(\frac{Q(y)}{Q(x)}\right)^{C_{1}}
$$

and

$$
\frac{y}{x}=\exp \left(\int_{x}^{y} \frac{1}{t} d t\right) \leq \exp \left(\frac{1}{\Lambda} \int_{x}^{y} \frac{Q^{\prime}(t)}{Q(t)} d t\right)=\left(\frac{Q(y)}{Q(x)}\right)^{\frac{1}{\Lambda}}
$$

Therefore, we obtain (3.2) with $C=C_{1}+\frac{1}{\Lambda}$, that is, we see $\mathcal{F}\left(C^{2}+\right) \subset \mathcal{E}_{1}$.
Theorem 3.4 Let $w \in \mathcal{F}\left(C^{2}+\right)$.
(1) Iff is a function having bounded variation on any compact interval and if

$$
\int_{-\infty}^{\infty} w(x)|d f(x)|<\infty
$$

then there exists a constant $C>0$ such that, for every $t>0$,

$$
\omega_{1}(f, w, t) \leq C t \int_{-\infty}^{\infty} w(x)|d f(x)|
$$

and so

$$
E_{1, n}(w, f) \leq C \frac{a_{n}}{n} \int_{-\infty}^{\infty} w(x)|d f(x)| .
$$

(2) Iff is continuous and $\lim _{|x| \rightarrow \infty}|(\sqrt{T} w f)(x)|=0$, then we have

$$
\lim _{t \rightarrow 0} \omega_{\infty}(f, w, t)=0
$$

To prove this theorem we need the following lemma.

Lemma 3.5 (Lemma 2.5(b) in [7] and Lemma 7 in [6]) Let $w \in \mathcal{F}\left(C^{2}+\right)$. Uniformly for $u>0$ large enough and $|x|,|y| \leq a_{u}$ such that

$$
|x-y| \leq t \Phi_{t}(x), \quad t=a_{u} / u
$$

then

$$
w(x) \sim w(y) .
$$

Proof of Theorem 3.4 (1) Let $g(x):=f(x)-f(0)$. For $t>0$ small enough let $0<h \leq t$ and $|x| \leq \sigma(2 t)<\sigma(t)$. Hence we have $\Phi_{t}(x) \leq 2$ for $|x| \leq \sigma(2 t)$. Then by Lemma 3.5,

$$
\begin{aligned}
& \int_{|x| \leq \sigma(2 t)} w(x)\left|g\left(x+\frac{h}{2} \Phi_{t}(x)\right)-g\left(x-\frac{h}{2} \Phi_{t}(x)\right)\right| d x \\
& \quad=\int_{|x| \leq \sigma(2 t)} w(x)\left|\int_{x-\frac{h}{2} \Phi_{t}(x)}^{x+\frac{h}{2} \Phi_{t}(x)} d f(v)\right| d x \leq C \int_{|x| \leq \sigma(2 t)}\left|\int_{x-\frac{h}{2} \Phi_{t}(x)}^{x+\frac{h}{2} \Phi_{t}(x)} w(v) d f(v)\right| d x \\
& \quad \leq \int_{-\infty}^{\infty} \int_{x-h}^{x+h} w(v)|d f(v)| d x \leq \int_{-\infty}^{\infty} w(v) \int_{v-h \leq x \leq v+h} d x|d f(v)| \\
& \quad \leq 2 h \int_{-\infty}^{\infty} w(v)|d f(v)|
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\int_{|x| \leq \sigma(2 t)} w(x)\left|g\left(x+\frac{h}{2} \Phi_{t}(x)\right)-g\left(x-\frac{h}{2} \Phi_{t}(x)\right)\right| d x \leq 2 t \int_{-\infty}^{\infty} w(x)|d f(x)| . \tag{3.3}
\end{equation*}
$$

Moreover, we see

$$
\begin{equation*}
\inf _{c \in \mathbb{R}}\|w(x)(f-c)(x)\|_{L_{1}(|x| \geq \sigma(4 t))} \leq \frac{1}{Q^{\prime}(\sigma(4 t))}\left\|Q^{\prime}(x) w(x) g(x)\right\|_{L_{1}(|x| \geq \sigma(4 t))} \tag{3.4}
\end{equation*}
$$

From Lemma 3.2(2), for $4 t=: \frac{a_{u}}{u}$,

$$
Q^{\prime}(\sigma(4 t))=Q^{\prime}\left(a_{u}\right) \sim \frac{u \sqrt{T\left(a_{u}\right)}}{a_{u}} \sim \frac{\sqrt{T(\sigma(4 t))}}{t} .
$$

On the other hand, we have

$$
\begin{aligned}
\int_{0}^{\infty} Q^{\prime}(x) w(x)|g(x)| d x & =\int_{0}^{\infty} Q^{\prime}(x) w(x)\left|\int_{0}^{x} d g(u)\right| d x \\
& \leq \int_{0}^{\infty} Q^{\prime}(x) w(x) \int_{0}^{x}|d f(u)| d x \\
& =-w(x) \int_{0}^{x}|d f(u)|_{0}^{\infty}+\int_{0}^{\infty} w(u)|d f(u)|
\end{aligned}
$$

Here we see

$$
\left|-w(x) \int_{0}^{x}\right| d f(u)\left|\left|\leq \int_{0}^{x} w(u)\right| d f(u)\right| .
$$

Therefore, we have

$$
\int_{0}^{\infty} Q^{\prime}(x) w(x)|g(x)| d x \leq 2 \int_{0}^{\infty} w(u)|d f(u)|
$$

Similarly, for $x<0$ we see

$$
\int_{-\infty}^{0}\left|Q^{\prime}(x) w(x) g(x)\right| d x \leq 2 \int_{-\infty}^{0} w(x)|d f(x)|
$$

Consequently, we have

$$
\int_{-\infty}^{\infty}\left|Q^{\prime}(x) w(x) g(x)\right| d x \leq 2 \int_{-\infty}^{\infty} w(x)|d f(x)|
$$

Hence we have

$$
\begin{equation*}
\left\|Q^{\prime} w g\right\|_{L_{1}(\mathbb{R})} \leq 2 \int_{-\infty}^{\infty} w(u)|d f(u)| \tag{3.5}
\end{equation*}
$$

Therefore, using (3.4) and (3.5), we have

$$
\begin{equation*}
\inf _{c \in \mathbb{R}}\|w(x)(f-c)(x)\|_{L_{1}(|x| \geq \sigma(4 t))}=O(t) \int_{-\infty}^{\infty} w(x)|d f(x)| . \tag{3.6}
\end{equation*}
$$

Consequently, by (3.3) and (3.6) we have

$$
\omega_{1}(f, w, t) \leq C t \int_{-\infty}^{\infty} w(x)|d f(x)|
$$

Hence, setting $t=C_{2} \frac{a_{n}}{n}$, if we use Proposition 3.3, then

$$
E_{1, n}(w, f) \leq C \frac{a_{n}}{n} \int_{-\infty}^{\infty} w(x)|d f(x)|
$$

(2) Given $\varepsilon>0$, and let us take $L=L(\varepsilon)>0$ such that

$$
\sup _{|x| \geq L}|w(x) f(x)| \leq \sup _{|x| \geq L}|\sqrt{T(x)} w(x) f(x)|<\varepsilon,
$$

since $T(x)>1$. Hence, if $|x| \geq 2 L$ and $0<t<t_{0}$, then

$$
\begin{aligned}
& \left|w(x)\left\{f\left(x+\frac{h}{2} \Phi_{t}(x)\right)-f\left(x-\frac{h}{2} \Phi_{t}(x)\right)\right\}\right| \\
& \quad \leq C\left[\left|\sqrt{T\left(x+\frac{h}{2} \Phi_{t}(x)\right)} w\left(x+\frac{h}{2} \Phi_{t}(x)\right) f\left(x+\frac{h}{2} \Phi_{t}(x)\right)\right|\right. \\
& \left.\quad+\left|\sqrt{T\left(x-\frac{h}{2} \Phi_{t}(x)\right)} w\left(x-\frac{h}{2} \Phi_{t}(x)\right) f\left(x-\frac{h}{2} \Phi_{t}(x)\right)\right|\right] \\
& \quad \leq 2 C \varepsilon
\end{aligned}
$$

where for the first inequality we used Lemma 3.5(2), and for the second inequality we used the fact that $\left|x \pm \frac{h}{2} \Phi_{t}(x)\right| \geq L$. On the other hand,

$$
\lim _{t \rightarrow 0} \sup _{0<h \leq t}\left\|w(x)\left\{f\left(x+\frac{h}{2} \Phi_{t}(x)\right)-f\left(x-\frac{h}{2} \Phi_{t}(x)\right)\right\}\right\|_{L_{\infty}(|x| \leq 2 L)}=0 .
$$

Finally, we will show

$$
\begin{equation*}
\inf _{c \in \mathbb{R}}\|w(f-c)\|_{L_{\infty}(|x| \geq \sigma(4 t))} \rightarrow 0, \quad t \rightarrow 0 \tag{3.7}
\end{equation*}
$$

If we let $4 t:=\frac{a_{n}}{n}$, then we see $n \rightarrow \infty$ and $\sigma(4 t)=a_{n} \rightarrow \infty$ as $t \rightarrow 0$. Hence using $\lim _{|x| \rightarrow \infty}|(\sqrt{T} w f)(x)|=0$, we have for $|x| \geq \sigma(4 t)$,

$$
a_{n}<x \rightarrow \infty \Rightarrow|f(x) w(x)| \leq\left|T^{1 / 2}(x) f(x) w(x)\right| \rightarrow 0
$$

and $|c w(x)| \leq c w\left(a_{n}\right) \rightarrow 0$ as $t \rightarrow 0$. Therefore, (3.7) is proved. Consequently, we have the result.

Lemma 3.6 (cf. Lemma 4.4 in [9]) Let g be a real valued function on \mathbb{R} satisfying $\|g w\|_{L_{\infty}(\mathbb{R})}<\infty$ and, for some $n \geq 1$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} g P w^{2} d t=0, \quad P \in \mathcal{P}_{n} \tag{3.8}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left\|w(x) \int_{0}^{x} g(t) d t\right\|_{L_{\infty}(\mathbb{R})} \leq C \frac{a_{n}}{n}\|g w\|_{L_{\infty}(\mathbb{R})} . \tag{3.9}
\end{equation*}
$$

Especially, if $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right), 0<\lambda<3 / 2$ and $T^{1 / 4} w f^{\prime} \in L_{\infty}(\mathbb{R})$, then we have

$$
\begin{equation*}
\left\|w(x) \int_{0}^{x}\left(f^{\prime}(t)-v_{n}\left(f^{\prime}\right)(t)\right) d t\right\|_{L_{\infty}(\mathbb{R})} \leq C \frac{a_{n}}{n} E_{n}\left(w_{1 / 4}, f^{\prime}\right) \tag{3.10}
\end{equation*}
$$

When $w \in \mathcal{F}^{*}$, we also have (3.10) replacing $w_{1 / 4}$ with $c w$.

Proof We let

$$
\phi_{x}(t)= \begin{cases}w^{-2}(t), & 0 \leq t \leq x \tag{3.11}\\ 0, & \text { otherwise }\end{cases}
$$

then we have, for arbitrary $P_{n} \in \mathcal{P}_{n}$,

$$
\begin{align*}
\left|\int_{0}^{x} g(t) d t\right| & =\left|\int_{-\infty}^{\infty} g(t) \phi_{x}(t) w^{2}(t) d t\right| \\
& =\left|\int_{-\infty}^{\infty} g(t)\left(\phi_{x}(t)-P_{n}(t)\right) w^{2}(t) d t\right| \tag{3.12}
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
\left|\int_{0}^{x} g(t) d t\right| & \leq\|g w\|_{L_{\infty}(\mathbb{R})} \inf _{P_{n} \in \mathcal{P}_{n}} \int_{-\infty}^{\infty}\left|\phi_{x}(t)-P_{n}(t)\right| w(t) d t \\
& =\|g w\|_{L_{\infty}(\mathbb{R})} E_{1, n}\left(w, \phi_{x}\right) .
\end{aligned}
$$

Here, from Theorem 3.4 we see that

$$
\begin{aligned}
E_{1, n}\left(w, \phi_{x}\right) & \leq C \frac{a_{n}}{n} \int_{-\infty}^{\infty} w(t)\left|d \phi_{x}(t)\right| \\
& \leq C \frac{a_{n}}{n} \int_{0}^{x} w(t)\left|Q^{\prime}(t)\right| w^{-2}(t) d t \\
& =C \frac{a_{n}}{n} \int_{0}^{x} Q^{\prime}(t) w^{-1}(t) d t \\
& \leq C \frac{a_{n}}{n} w^{-1}(x) .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\left|w(x) \int_{0}^{x} g(t) d t\right| & \leq\|g w\|_{L_{\infty}(\mathbb{R})} w(x) E_{1, n}\left(w, \phi_{x}\right) \\
& \leq C \frac{a_{n}}{n}\|g w\|_{L_{\infty}(\mathbb{R})}
\end{aligned}
$$

Therefore, we have (3.9). Next we show (3.10). Since

$$
v_{n}\left(f^{\prime}\right)(t)=\frac{1}{n} \sum_{j=n+1}^{2 n} s_{j}\left(f^{\prime}, t\right)
$$

and, for any $P \in \mathcal{P}_{n}, j \geq n+1$,

$$
\int_{-\infty}^{\infty}\left(f^{\prime}(t)-s_{j}\left(f^{\prime} ; t\right)\right) P(t) w^{2}(t) d t=0
$$

we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(f^{\prime}(t)-v_{n}\left(f^{\prime}\right)(t)\right) P(t) w^{2}(t) d t=0 \tag{3.13}
\end{equation*}
$$

Using (3.9) and (3.1), we have (3.10).

Lemma 3.7 Let $w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{3}+\right), 0<\lambda<3 / 2$. Let $\left\|w_{1 / 4} f^{\prime}\right\|_{L_{\infty}(\mathbb{R})}<\infty$, and let $q_{n-1} \in$ $\mathcal{P}_{n-1}(n \geq 1)$ be the best approximation off f^{\prime} with respect to the weight w, that is,

$$
\left\|\left(f^{\prime}-q_{n-1}\right) w\right\|_{L_{\infty}(\mathbb{R})}=E_{n-1}\left(w, f^{\prime}\right)
$$

Now we set

$$
F(x):=f(x)-\int_{0}^{x} q_{n-1}(t) d t
$$

then there exists $S_{2 n} \in \mathcal{P}_{2 n}$ such that

$$
\left\|w\left(F-S_{2 n}\right)\right\|_{L_{\infty}(\mathbb{R})} \leq C \frac{a_{n}}{n} E_{n}\left(w_{1 / 4}, f^{\prime}\right)
$$

and

$$
\left\|w S_{2 n}^{\prime}\right\|_{L_{\infty}(\mathbb{R})} \leq C E_{n-1}\left(w_{1 / 4}, f^{\prime}\right)
$$

When $w \in \mathcal{F}^{*}$, we have the same results replacing $w_{1 / 4}$ with $c w$.

Proof Let

$$
\begin{equation*}
S_{2 n}(x)=f(0)+\int_{0}^{x} v_{n}\left(f^{\prime}-q_{n-1}\right)(t) d t \tag{3.14}
\end{equation*}
$$

then, by Lemma 3.6 and (3.10),

$$
\begin{aligned}
\| & w\left(F-S_{2 n}\right) \|_{L_{\infty}(\mathbb{R})} \\
& =\left\|w\left(f-\int_{0}^{x} q_{n-1}(t) d t-f(0)-\int_{0}^{x} v_{n}\left(f^{\prime}-q_{n-1}\right)(t) d t\right)\right\|_{L_{\infty}(\mathbb{R})} \\
& =\left\|w\left(\int_{0}^{x}\left[f^{\prime}(t)-v_{n}\left(f^{\prime}\right)(t)\right] d t\right)\right\|_{L_{\infty}(\mathbb{R})} \leq C \frac{a_{n}}{n} E_{n}\left(w_{1 / 4}, f^{\prime}\right) .
\end{aligned}
$$

Now by Theorem 3.1, (3.1),

$$
\begin{aligned}
\left\|w S_{2 n}^{\prime}\right\|_{L_{\infty}(\mathbb{R})} & =\left\|w\left(v_{n}\left(f^{\prime}-q_{n-1}\right)\right)\right\|_{L_{\infty}(\mathbb{R})} \\
& \leq\left\|\left(f^{\prime}-v_{n}\left(f^{\prime}\right)\right) w\right\|_{L_{\infty}(\mathbb{R})}+\left\|\left(f^{\prime}-q_{n-1}\right) w\right\|_{L_{\infty}(\mathbb{R})} \\
& \leq E_{n}\left(w_{1 / 4}, f^{\prime}\right)+E_{n-1}\left(w, f^{\prime}\right) \leq 2 E_{n-1}\left(w_{1 / 4}, f^{\prime}\right) .
\end{aligned}
$$

To prove Theorem 2.3 we need the following theorems with $p=\infty$.
Theorem 3.8 (Corollary 3.4 in [6]) Let $w \in \mathcal{F}\left(C^{2}+\right)$, and let $r \geq 0$ be an integer. Let $1 \leq$ $p \leq \infty$, and let $w f^{(r)} \in L_{p}(\mathbb{R})$. Then we have, for $n \geq r$,

$$
E_{p, n}(f, w) \leq C\left(\frac{a_{n}}{n}\right)^{k}\left\|f^{(k)} w\right\|_{L_{p}(\mathbb{R})}, \quad k=1,2, \ldots, r,
$$

and equivalently,

$$
E_{p, n}(w, f) \leq C\left(\frac{a_{n}}{n}\right)^{k} E_{p, n-k}\left(w, f^{(k)}\right)
$$

Theorem 3.9 (Corollary 6.2 in [4]) Let $r \geq 1$ be an integer and $w \in \mathcal{F}_{\lambda}\left(C^{r+2}+\right), 0<\lambda<$ $(r+2) /(r+1)$, and let $1 \leq p \leq \infty$. Then there exists a constant $C>0$ such that, for any $1 \leq k \leq r$, any integer $n \geq 1$, and any polynomial $P \in \mathcal{P}_{n}$,

$$
\left\|P^{(k)} w\right\|_{L_{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{k}\left\|T^{k / 2} P w\right\|_{L_{p}(\mathbb{R})}
$$

Proof of Theorem 2.3 We show that for $k=0,1, \ldots, r$,

$$
\begin{equation*}
\left|\left(f^{(k)}(x)-P_{n ; f, w}^{(k)}\right) w(x)\right| \leq C T^{k / 2}(x) E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) \tag{3.15}
\end{equation*}
$$

If $r=0$, then (3.15) is trivial. For some $r \geq 0$ we suppose that (3.15) holds, and let $f \in$ $C^{(r+1)}(\mathbb{R})$ be satisfying

$$
\lim _{|x| \rightarrow \infty} T^{1 / 4}(x) f^{(r+1)}(x) w(x)=0
$$

Then $f^{\prime} \in C^{(r)}(\mathbb{R})$, and

$$
\lim _{|x| \rightarrow \infty} T^{1 / 4}(x)\left(f^{\prime}\right)^{(r)}(x) w(x)=0
$$

So we may apply the induction assumption to f^{\prime}, for $0 \leq k \leq r$. Let $q_{n-1} \in \mathcal{P}_{n-1}$ be the polynomial of best approximation of f^{\prime} with respect to the weight w. Then from our assumption we have, for $0 \leq k \leq r$,

$$
\left|\left(f^{(k+1)}(x)-q_{n-1}^{(k)}(x)\right) w(x)\right| \leq C T^{k / 2}(x) E_{n-1-k}\left(w_{1 / 4}, f^{(k+1)}\right)
$$

that is, for $1 \leq k \leq r+1$,

$$
\begin{equation*}
\left|\left(f^{(k)}(x)-q_{n-1}^{(k-1)}(x)\right) w(x)\right| \leq C T^{\frac{k-1}{2}}(x) E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) \tag{3.16}
\end{equation*}
$$

Let

$$
\begin{equation*}
F(x):=f(x)-\int_{0}^{x} q_{n-1}(t) d t=f(x)-Q_{n}(x) \tag{3.17}
\end{equation*}
$$

then

$$
\left|F^{\prime}(x) w(x)\right| \leq C E_{n-1}\left(w, f^{\prime}\right)
$$

As (3.14) we set $S_{2 n}=\int_{0}^{x}\left(v_{n}\left(f^{\prime}\right)(t)-q_{n-1}(t)\right) d t+f(0)$, then from Lemma 3.7

$$
\begin{equation*}
\left\|\left(F-S_{2 n}\right) w\right\|_{L_{\infty}(\mathbb{R})} \leq C \frac{a_{n}}{n} E_{n}\left(w_{1 / 4}, f^{\prime}\right) \tag{3.18}
\end{equation*}
$$

and

$$
\left\|S_{2 n}^{\prime} w\right\|_{L_{\infty}(\mathbb{R})} \leq C E_{n-1}\left(w_{1 / 4}, f^{\prime}\right)
$$

Here we apply Theorem 3.9 with the weight $w_{-(k-1) / 2}$. In fact, by Theorem 2.2 we have $w_{-(k-1) / 2} \in \mathcal{F}_{\lambda}\left(C^{r+2}+\right)$. Then, noting $a_{2 n} \sim a_{n}$ from Lemma 3.2(1), we see

$$
\begin{aligned}
\left|S_{2 n}^{(k)}(x) w_{-(k-1) / 2}(x)\right| & \leq C\left(\frac{n}{a_{n}}\right)^{k-1}\left\|S_{2 n}^{\prime} w\right\|_{L_{\infty}(\mathbb{R})} \\
& \leq C\left(\frac{n}{a_{n}}\right)^{k-1} E_{n-1}\left(w_{1 / 4}, f^{\prime}\right)
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left|S_{2 n}^{(k)}(x) w(x)\right| \leq C\left(\frac{n \sqrt{T(x)}}{a_{n}}\right)^{k-1} E_{n-1}\left(w_{1 / 4}, f^{\prime}\right), \quad 1 \leq k \leq r+1 \tag{3.19}
\end{equation*}
$$

Let $R_{n} \in \mathcal{P}_{n}$ denote the polynomial of best approximation of F with w. By Theorem 3.9 with $w_{-\frac{k}{2}}$ again, for $0 \leq k \leq r+1$, we have

$$
\begin{align*}
\left|\left(R_{n}^{(k)}-S_{2 n}^{(k)}(x)\right) w_{-\frac{k}{2}}(x)\right| & \leq C\left(\frac{n}{a_{n}}\right)^{k}\left\|\left(R_{n}-S_{2 n}\right) w_{-\frac{k}{2}}(x) T^{k / 2}(x)\right\|_{L_{\infty}(\mathbb{R})} \\
& \leq C\left(\frac{n}{a_{n}}\right)^{k}\left\|\left(R_{n}-S_{2 n}\right) w\right\|_{L_{\infty}(\mathbb{R})} \tag{3.20}
\end{align*}
$$

and by (3.18)

$$
\begin{align*}
\left\|\left(R_{n}-S_{2 n}\right) w\right\|_{L_{\infty}(\mathbb{R})} & \leq C\left[\left\|\left(F-R_{n}\right) w\right\|_{L_{\infty}(\mathbb{R})}+\left\|\left(F-S_{2 n}\right) w\right\|_{L_{\infty}(\mathbb{R})}\right] \\
& \leq C\left[E_{n}(w, F)+\frac{a_{n}}{n} E_{n}\left(w_{1 / 4}, f^{\prime}\right)\right] \\
& \leq C\left[\frac{a_{n}}{n} E_{n-1}\left(w, f^{\prime}\right)+\frac{a_{n}}{n} E_{n-1}\left(w_{1 / 4}, f^{\prime}\right)\right] \\
& \leq C \frac{a_{n}}{n} E_{n-1}\left(w_{1 / 4}, f^{\prime}\right) . \tag{3.21}
\end{align*}
$$

Hence, from (3.20) and (3.21) we have, for $0 \leq k \leq r+1$,

$$
\begin{align*}
\left|\left(R_{n}^{(k)}-S_{2 n}^{(k)}(x)\right) w(x)\right| & \leq C\left|T^{k / 2}(x)\right|\left|\left(R_{n}^{(k)}-S_{2 n}^{(k)}(x)\right) w_{-\frac{k}{2}}(x)\right| \\
& \leq C\left(\frac{n \sqrt{T(x)}}{a_{n}}\right)^{k} \frac{a_{n}}{n} E_{n-1}\left(w_{1 / 4}, f^{\prime}\right) . \tag{3.22}
\end{align*}
$$

Therefore by (3.19), (3.22), and Theorem 3.8,

$$
\begin{align*}
\left|R_{n}^{(k)}(x) w(x)\right| & \leq C T^{k / 2}(x)\left(\frac{n}{a_{n}}\right)^{k-1} E_{n-1}\left(w_{1 / 4}, f^{\prime}\right) \\
& \leq C T^{k / 2}(x) E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) \tag{3.23}
\end{align*}
$$

Since $E_{n}(w, F)=E_{n}(w, f)$ and

$$
\begin{equation*}
E_{n}(w, F)=\left\|w\left(F-R_{n}\right)\right\|_{L_{\infty}(\mathbb{R})}=\left\|w\left(f-Q_{n}-R_{n}\right)\right\|_{L_{\infty}(\mathbb{R})} \tag{3.24}
\end{equation*}
$$

(see (3.17)), we know that $P_{n ; f, w}:=Q_{n}+R_{n}$ is the polynomial of best approximation of f with w. Now, from (3.16), (3.17), and (3.23) we have, for $1 \leq k \leq r+1$,

$$
\begin{aligned}
\left|\left(f^{(k)}(x)-P_{n ; f, w}^{(k)}(x)\right) w(x)\right| & =\left|\left(f^{(k)}(x)-Q_{n}^{(k)}(x)-R_{n}^{(k)}(x)\right) w(x)\right| \\
& \leq\left|\left(f^{(k)}(x)-q_{n-1}^{(k-1)}(x)\right) w(x)\right|+\left|R_{n}^{(k)}(x) w(x)\right| \\
& \leq C T^{k / 2}(x) E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) .
\end{aligned}
$$

For $k=0$ it is trivial. Consequently, we have (3.15) for all $r \geq 0$. Moreover, using Theorem 3.8, we conclude Theorem 2.3.

Proof of Corollary 2.4 It follows from Theorem 2.3.

Proof of Corollary 2.5 Applying Theorem 2.3 with $w_{k / 2}$, we have, for $0 \leq j \leq r$,

$$
\left\|\left(f^{(j)}-P_{n ; f, w_{k / 2}}^{(j)}\right) w\right\|_{L_{\infty}(\mathbb{R})} \leq C E_{n-k}\left(w_{(2 k+1) / 4}, f^{(j)}\right)
$$

Especially, when $j=k$, we obtain

$$
\left\|\left(f^{(k)}-P_{n ; f, w_{k / 2}}^{(k)}\right) w\right\|_{L_{\infty}(\mathbb{R})} \leq C E_{n-k}\left(w_{(2 k+1) / 4}, f^{(k)}\right) .
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript and participated in the sequence alignment. All authors read and approved the final manuscript.

Author details

'Department of Mathematics Education, Sungkyunkwan University, Seoul, 110-745, Republic of Korea. ${ }^{2}$ Department of Mathematics, Meijo University, Nagoya, 468-8502, Japan.

Acknowledgements

The authors thank to Prof. Dany Leviatan for many kind suggestions and comments.
Received: 20 March 2015 Accepted: 18 August 2015 Published online: 04 September 2015

References

1. Levin, AL, Lubinsky, DS: Orthogonal Polynomials for Exponential Weights. Springer, New York (2001)
2. Jung, HS, Sakai, R: Specific examples of exponential weights. Commun. Korean Math. Soc. 24(2), 303-319 (2009)
3. Leviatan, D: The behavior of the derivatives of the algebraic polynomials of best approximation. J. Approx. Theory 35, 169-176 (1982)
4. Sakai, R, Suzuki, N: Mollification of exponential weights and its application to the Markov-Bernstein inequality. Pioneer J. Math. Math. Sci. 7(1), 83-101 (2013)
5. Itoh, K, Sakai, R, Suzuki, N: The de la Vallée Poussin mean and polynomial approximation for exponential weight. Int. J. Anal. 2015, Article ID 706930 (2015). doi:10.1155/2015/706930
6. Sakai, R, Suzuki, N: Favard-type inequalities for exponential weights. Pioneer J. Math. Math. Sci. 3(1), 1-16 (2011)
7. Damelin, SB: Converse and smoothness theorems for Erdös weights in $L_{p}(0<p \leq \infty)$. J. Approx. Theory 93, 349-398 (1998)
8. Damelin, SB, Lubinsky, DS: Jackson theorem for Erdös weights in $L_{p}(0<p \leq \infty)$. J. Approx. Theory 94, 333-382 (1998)
9. Freud, G: On Markov-Bernstein-type inequalities and their applications. J. Approx. Theory 19, 22-37 (1977)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

