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Abstract
In this paper, we provide a more general regularization method for seeking a solution
to a class of monotone variational inequalities in a real Hilbert space, where the
regularizer is a hemicontinuous and strongly monotone operator. As a discretization
of the regularization method, we propose an iterative method. We then prove that
the proposed iterative method converges in norm to a solution of the class of
monotone variational inequalities. We also apply our results to the constrained
minimization problem and the minimum-norm fixed point problem for a generalized
Lipschitz continuous and pseudocontractive mapping. The results presented in the
paper improve and extend recent ones in the literature.
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1 Introduction
The present paper is devoted to presenting a more general regularization method for a
class of monotone variational inequality problems (MVIPs) with a monotone and hemi-
continuous operator F over a nonempty, closed, and convex subset C of a real Hilbert
space H . The so-called MVIP is to find a point x∗ ∈ C such that

〈
Fx∗, x – x∗〉 ≥ , for all x ∈ C. (.)

The set of solutions for MVIP (.) is denoted by VI(C, F).
The monotone variational inequalities were initially investigated by Kinderlehrer and

Stampacchia in [] and have been widely studied by many authors ever since, due to the
fact that they cover as diverse disciplines as partial differential equations, optimization,
optimal control, mathematical programming, mechanics, and finance (see [–]).

Over the past five decades years or so, the researchers designed various iterative algo-
rithms for solving MVIP (.); see [–] and the references therein. An early and typi-
cal iterative algorithm for solving MVIP (.) seems to be the projected gradient method
(PGM), see, for instance, [, ], which generates a sequence {xn} by the recursive proce-
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dure

x ∈ C and xn+ = PC
[
(I – μF)xn

]
, n ≥ , (.)

where PC stands for the metric projection from H onto C, I is the identity mapping on H ,
and μ is an arbitrarily positive number.

It is well known that if F is k-Lipschitz continuous and η-strongly monotone, then MVIP
(.) has a unique solution. Moreover, if one chooses μ ∈ (, η

k ), then the sequence {xn}
generated by PGM (.) converges in norm to the unique solution to MVIP (.); see, for
instance, [, ].

However, if F is simply k-Lipschitz continuous and monotone, but not η-strongly mono-
tone, then MVIP (.) may fail to have a solution, which can be seen from the following
counterexample.

Example . Let H = C = R = (–∞,∞) and consider the function F : C → H defined by
F(x) = arctan(x) – π

 , x ∈ C. Then F is -Lipschitz continuous and monotone. It is clear that
the equation F(x) =  has no solutions in H , and hence MVIP (.) has no solutions.

For a k-Lipschitz continuous and monotone operator F , even though MVIP (.) has a
solution, the PGM (.) associated with F does not yet necessarily converge to the solution
of the MVIP (.).

Example . Let H = R
, C = B = {x ∈ H : ‖x‖ ≤ }, B = {x ∈ B : ‖x‖ ≤ 

 }, and B = {x ∈
B : 

 ≤ ‖x‖ ≤ }. If x = (a, b) ∈ H , we write x⊥ = (b, –a) ∈ H . Define F : C → H by

Fx =

{
–x⊥, x ∈ B,
x – x

‖x‖ – x⊥, x ∈ B.

Then, from Chidume and Mutangadura [], we know that F : C → H is a -Lipschitz
continuous and monotone operator with the unique zero point θ = (, ) ∈ C, but PGM
(.) does not converge to θ for any μ ∈ (, ).

The Example . tells us that PGM (.) is invalid for a k-Lipschitz continuous and
monotone operator F , and therefore further modifications to PGM (.) are needed. In
this regard, we pick up the following several known results.

In , Korpelevich [] made a kind of modification to PGM (.) by introducing the
following extragradient method (EM):

⎧
⎪⎨

⎪⎩

x ∈ C,
yn = PC[xn – λFxn],
xn+ = PC[xn – λFyn],

(.)

for all n ≥ , where λ ∈ (, 
k ), C is a nonempty, closed, and convex subset of RN and F is a

k-Lipschitz continuous and monotone operator of C into RN , where N is a positive integer.



Zhou et al. Journal of Inequalities and Applications  (2015) 2015:68 Page 3 of 17

He proved that if VI(C, F) is nonempty, then the sequences {xn} and {yn}, generated by EM
(.), converge to the same point p ∈ VI(C, F) which is a solution to MVIP (.).

EM (.) contains two metric projections and it is indeed a composite of two classical
projected gradient methods. We also remark in passing that in an infinite-dimensional
Hilbert space, Korpelevich’s EM (.) has only weak convergence, in general, moreover, it
cannot be used to seek the minimum-norm solution of MVIP (.).

Recently, Xu and Xu [] provided a general regularization method for solving MVIP
(.), where the regularizer is a Lipschitz continuous and strongly monotone operator.
They also introduced an iterative method as discretization of the regularization method.
They proved that both regularization and iterative methods converge in norm to a solution
to MVIP (.) under some conditions.

Very recently, Iemoto et al. [] studied a variational inequality for a hemicontinuous
and monotone operator over the fixed point set of a strongly nonexpansive mapping in a
real Hilbert space. They proposed an iterative algorithm and analyzed the weak conver-
gence of the proposed algorithm.

On the other hand, the construction of fixed points for pseudocontractive mappings
has been studied extensively by several authors since . A good number of results was
reported recently; see, for instance, [–].

Question Can the Lipschitz continuity assumptions be removed or weakened in the re-
sults mentioned above?

The purpose of this paper is to answer the question mentioned above. In order to re-
alize this objective, we first establish a new existence and uniqueness theorem for MVIP
(.), where F : C → H is a hemicontinuous and strongly monotone operator. By using the
established existence and uniqueness theorem, we then introduce an implicit method for
seeking a solution of MVIP (.). We also introduce an explicit iterative method. We prove
that both the implicit and the explicit iterative methods converge in norm to the same
solution of MVIP (.). Some applications are also included.

The rest of the paper is organized as follows. Section  contains some necessary concepts
and useful facts. The new existence and uniqueness theorem for MVIP (.) and several
convergence results of the proposed algorithms are established in Section . Finally, in
Section , we provide some applications to the constrained minimization problem for a
convex and continuously Fréchet differentiable functional and the minimum-norm fixed
point problem for a generalized Lipschitz continuous and pseudocontractive mapping.

2 Preliminaries
Throughout this paper, we will assume that H is a real Hilbert space with inner product
〈·, ·〉 and its induced norm ‖ · ‖. Let C be a nonempty, closed, and convex subset of H .
We denote the strong convergence and weak convergence of {xn} to x ∈ H by xn → x and
xn ⇀ x, respectively. We use R to denote the set of real numbers. Let T : C → H be a
mapping. We use Fix(T) to denote the set of fixed points of T . We also denote by D(T)
and R(T) the domain and range of T , respectively. The letter I stands for the identity
mapping on H .

In what follows, we shall collect some important concepts, facts, and tools, which will
be used in Section .
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It is well known that the following equalities hold:

‖x ± y‖ = ‖x‖ ± 〈x, y〉 + ‖y‖ (.)

for all x, y ∈ H .
Recall that the metric projection from a real Hilbert space H onto a nonempty, closed,

and convex subset C of H is defined as follows: for each x ∈ H , there exists a unique ele-
ment PCx ∈ C with the property

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C, (.)

that is, for any x ∈ H , x̄ = PCx if and only if

x̄ ∈ C and ‖x – x̄‖ = inf
{‖x – y‖ : y ∈ C

}
. (.)

Lemma . (see []) Let PC be the metric projection from H onto a nonempty, bounded,
and closed and convex subset C of a real Hilbert space H . Then the following conclusions
hold true:

(C) Given x ∈ H and z ∈ C.Then z = PCx if and only if the inequality

〈x – z, y – z〉 ≤ , ∀y ∈ C (.)

holds.
(C)

‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉, ∀x, y ∈ H , (.)

in particular, one has

‖PCx – PCy‖ ≤ ‖x – y‖, ∀x, y ∈ H . (.)

(C)

∥∥(I – PC)x – (I – PC)y
∥∥ ≤ 〈

(I – PC)x – (I – PC)y, x – y
〉
, ∀x, y ∈ H , (.)

in particular, one has

∥∥(I – PC)x – (I – PC)y
∥∥ ≤ ‖x – y‖, ∀x, y ∈ H . (.)

Recall that an operator F : C → H is said to be
(i) monotone if

〈Fx – Fy, x – y〉 ≥  (.)

for all x, y ∈ C;



Zhou et al. Journal of Inequalities and Applications  (2015) 2015:68 Page 5 of 17

(ii) η-strongly monotone if there exists an η >  such that

〈Fx – Fy, x – y〉 ≥ η‖x – y‖ (.)

for all x, y ∈ C;
(iii) k-Lipschitz continuous if there exists a positive number k such that

‖Fx – Fy‖ ≤ k‖x – y‖ (.)

for all x, y ∈ C;
(iv) generalized Lipschitz continuous if there exists a positive number c such that

‖Fx – Fy‖ ≤ c
(
 + ‖x – y‖) (.)

for all x, y ∈ C;
(v) demicontinuous if Fxn ⇀ Fx as n → ∞, whenever xn → x for any {xn} ⊂ C and x ∈ C;
(vi) hemicontinuous if for any x, y ∈ C and z ∈ H , the function

t �
〈
z, F

(
tx + ( – t)y

)〉

of [, ] into R is continuous;
(vii) a mapping T : C → H is said to be pseudocontractive if

〈Tx – Ty, x – y〉 ≤ ‖x – y‖ (.)

for all x, y ∈ C;
(viii) an operator A ⊂ H × H is called maximal monotone if it is monotone and it is not

properly contained in any other monotone. We denote by G(A) the graph of A.
It is well known that T is pseudocontractive if and only if F = I – T is monotone.

Example . Let f : H →R be a convex and continuously Fréchet differentiable function.
Then the gradient ∇f of f is maximal monotone and hemicontinuous.

It is clear that the following implication relation holds:
F : C → H is k-Lipschitz continuous ⇒ F is continuous ⇒ F is demicontinuous ⇒ F

is hemicontinuous, however, the converse relation does not hold true, which can be seen
from the following counterexample.

Example . Consider a function ϕ : R → R of two variables ϕ(x, y) = xy(x + y)– for
(x, y) ∈R

\{(, )} and ϕ(, ) = . Then ϕ is hemicontinuous but demicontinuous.

If F : D(F) = H → H is monotone, then F is demicontinuous if and only if it is hemicon-
tinuous; see, for instance, [].

We remark that if an operator F : C → H is either k-Lipschitz continuous or has a
bounded range R(F), then it is generalized Lipschitz continuous. However, a generalized
Lipschitz continuous mapping may be not continuous.
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Example . Consider the sign function F : R→R defined by

Fx =

⎧
⎪⎨

⎪⎩

, x > ,
, x = ,
–, x < .

Then F is generalized Lipschitz continuous but continuous.

Lemma . (see []) Let A ⊂ H × H be a maximal monotone operator and let (x, y) ∈
H × H . If

〈a – x, b – y〉 ≥  (.)

for all (a, b) ∈G(A), then (x, y) ∈ G(A).

Lemma . (see []) Let A ⊂ H ×H be a monotone operator. Then A is maximal monotone
if and only if

R(I + rA) = H (.)

for all r > .
Let C be a nonempty, closed, and convex subset of H and x ∈ C. Then we define set NC(x)

of H by

NC(x) =
{

z ∈ H : 〈u – x, z〉 ≤ ,∀u ∈ C
}

. (.)

Such a set NC(x) is called the normal cone of C at x.

Lemma . (see []) Let F : C → H be monotone and hemicontinuous and let NC(x) de-
note the normal cone of C at x ∈ C. Define

Tx =

{
Fx + NC(x), x ∈ C,
∅, x /∈ C.

(.)

Then, T ⊂ H × H is maximal monotone, moreover, T– = VI(C, F).

From Lemma ., we know that VI(C, F) is closed convex, since T– is closed convex.

Lemma . (see [, ]) Let F : C → H be a hemicontinuous monotone operator and
x∗ ∈ C. Then, the following variational inequalities are equivalent:

(i) 〈Fx, x – x∗〉 ≥ , ∀x ∈ C;
(ii) 〈Fx∗, x – x∗〉 ≥ , ∀x ∈ C.

From Lemma ., we also deduce that VI(C, F) is closed convex.

Lemma . (see []) Let {an} be a sequence of nonnegative real numbers satisfying

an+ ≤ ( – γn)an + γnσn, n ≥ ,
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where {γn} ⊂ (, ) and {σn} satisfy
(i)

∑∞
n= γn = ∞;

(ii) either lim supn→∞σn ≤  or
∑∞

n= |γnσn| < ∞.
Then limn→∞ an = .

Now we are in a proposition to state and prove the main results in this paper.

3 Main results
In this section we first establish a new existence and uniqueness theorem to MVIP (.)
with F being a hemicontinuous and η-strongly monotone operator. We then introduce
two kinds of algorithms (one implicit and the other explicit) for solving MVIP (.).

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let F : C → H be a hemicontinuous and η-strongly monotone operator. Let y ∈ H be an
arbitrary but fixed element. Then the monotone variational inequality

〈
Fx∗ – y, x – x∗〉 ≥ , ∀x ∈ C, (.)

has a unique solution.

Proof Let T be defined by (.). Then T ⊂ H × H is maximal monotone by Lemma ..
By taking rn >  with rn →  as n → ∞, in view of Lemma ., we have R(rnI + T) = H for
all n ≥ . Consequently, for any y ∈ H , there exist xn ∈ C such that

y ∈ rnxn + Txn (.)

for all n ≥ . We plan to prove that {xn} is bounded. To end this, using (.) and (.), we
get

y ∈ rnxn + Fxn + NC(xn) (.)

for all n ≥ , in particular, we have

y ∈ rx + Fx + NC(x). (.)

Then we can write them by

y = rnxn + Fxn + zn, and zn ∈ NC(xn), (.)

y = rx + Fx + z, and z ∈ NC(x). (.)

Since F is η-strongly monotone, zn ∈ NC(xn) and z ∈ NC(x), from (.) and (.) we
have

 = 〈rnxn – rx, xn – x〉 + 〈Fxn – Fx, xn – x〉 + 〈zn – z, xn – x〉
≥ rn‖xn – x‖ – |rn – r|‖x‖‖xn – x‖ + η‖xn – x‖

= (rn + η)‖xn – x‖ – |rn – r|‖x‖‖xnx‖,
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from which it turns out that

‖xn – x‖ ≤ |rn – r|‖x‖
rn + η

(.)

for all n ≥ . Equation (.) shows that {xn} is bounded. Without loss of generality, we may
assume that xn ⇀ x∗ as n → ∞. Since T is monotone, and y – rnxn ∈ Txn, we have

〈a – xn, b – y + rnxn〉 ≥  (.)

for all (a, b) ∈ G(T) and all n ≥ . Letting n → ∞ and taking the limit in (.) yield

〈
a – x∗, b – y

〉 ≥ 

for all (a, b) ∈ G(T). By Lemma ., we conclude that (x∗, y) ∈ G(T), that is, y ∈ Tx∗, and
hence we have y – Fx∗ ∈ NC(x∗) by (.), i.e., 〈Fx∗ – y, x – x∗〉 ≥ , ∀x ∈ C, that is, x∗ is
a solution of (.). We have proven that the monotone variational inequality (.) has a
solution. We next prove that the monotone variational inequality (.) has a unique solu-
tion. Suppose x∗∗ is another solution of (.), then 〈Fx∗∗ – y, x – x∗∗〉 ≥ , ∀x ∈ C. Thus we
have 〈Fx∗ – y, x∗∗ – x∗〉 ≥  and 〈Fx∗∗ – y, x∗ – x∗∗〉 ≥ . Adding up these two inequalities
yields 〈Fx∗ – Fx∗∗, x∗∗ – x∗〉 ≥ , from which one derives that x∗∗ = x∗ by using the strong
monotonicity of F . This completes the proof. �

From Theorem ., we deduce immediately the following important result.

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let F : C → H be a hemicontinuous and η-strongly monotone operator. Then the MVIP
(.) has a unique solution.

Let F : C → H be hemicontinuous and monotone and R : H → H be hemicontinuous
and η-strongly monotone. Choose arbitrarily a point u ∈ H and a sequence of positive
numbers {γn} with γn →  as n → ∞. Then γn(R – u) + F are hemicontinuous and ηγn-
strongly monotone for all n ≥ . By using Theorem ., we conclude that the variational
inequality problem

〈
γn(Ry – u) + Fy, x – y

〉 ≥ , ∀x ∈ C, (.)

has a unique solution {yn} ⊂ C for every fixed n ≥ .
Take γn = αn

βn
in (.). Then (.) yields

〈
αn(Ryn – u) + βnFyn, x – yn

〉 ≥ , ∀x ∈ C, (.)

and hence

〈
yn – αn(Ryn – u) – βnFyn – yn, x – yn

〉 ≤ , ∀x ∈ C. (.)

It follows from Lemma .(C) that

yn = PC
[
(I – αnR)yn + αnu – βnFyn

]
, n ≥ . (.)
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Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
F : C → H be a hemicontinuous monotone operator and R : H → H be a hemicontinuous
and η-strongly monotone operator. Let {αn} and {βn} be two sequences in (, ] that satisfy
the following condition:

αn

βn
→  as n → ∞.

Assume that VI(C, F) �= ∅. Then, the sequence {yn} generated by (.) converges in norm
to x∗ = PVI(C,F)((I – R)x∗ + u), in particular, if we take R = I and u =  in (.), then the se-
quence {yn} generated by (.) converges in norm to the minimum-norm solution to MVIP
(.).

Proof Since VI(C, F) is nonempty, we see that VI(C, F) is nonempty, closed, and convex,
and hence PVI(C,F)h is well defined for any h ∈ H . Let {yn} be defined by (.). Then (.)
is equivalent to (.). By Lemma ., we have

〈αnRx – αnu + βnFx, x – yn〉 ≥ , ∀x ∈ C (.)

for all n ≥ . ∀x∗ ∈ VI(C, F), we have

〈
Fx∗, x – x∗〉 ≥ , ∀x ∈ C. (.)

By Lemma ., we have

〈
Fx, x – x∗〉 ≥ , ∀x ∈ C. (.)

Taking x = yn in (.), we have

〈
Fyn, yn – x∗〉 ≥ , (.)

for all n ≥ .
Taking x = x∗ in (.), we have

〈
αnRyn – αnu + βnFyn, yn – x∗〉 ≤ , (.)

for all n ≥ .
By using (.), (.), and the strong monotonicity of F , we get

 ≥ 〈
αnRyn – αnu + βnFyn, yn – x∗〉

= αn
〈
Ryn – Rx∗, yn – x∗〉 + αn

〈
Rx∗ – u, yn – x∗〉

+ βn
〈
Fyn, yn – x∗〉

≥ ηαn‖yn – x∗‖ + αn
〈
Rx∗ – u, yn – x∗〉,

from which it turns out that

∥∥yn – x∗∥∥ ≤ 
η

〈
Rx∗ – u, x∗ – yn

〉
, ∀x∗ ∈ VI(C, F), (.)
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in particular,

∥∥yn – x∗∥∥ ≤ 
η

∥∥Rx∗ – u
∥∥, ∀x∗ ∈ VI(C, F), (.)

for all n ≥ .
Equation (.) shows that {yn} is bounded. Without loss of generality, we may assume

that yn ⇀ ŷ as n → ∞; then ŷ ∈ VI(C, F). Indeed, using (.), we have

〈
αn

βn
(Rx – u) + Fx, x – yn

〉
≥ , ∀x ∈ C. (.)

Letting n → ∞ and taking the limit in (.) yield

〈Fx, x – ŷ〉 ≥ , ∀x ∈ C. (.)

It follows from (.) and Lemma . that

〈Fŷ, x – ŷ〉 ≥ , ∀x ∈ C.

that is, ŷ ∈ VI(C, F).
Replace x∗ by ŷ in (.) to yield

‖yn – ŷ‖ ≤ 
η
〈Rŷ – u, ŷ – yn〉, (.)

for all n ≥ .
Use yn ⇀ ŷ and (.) to conclude that yn → ŷ as n → ∞.
In view of (.), we have

〈
Rx∗ – u, x∗ – yn

〉 ≥ , ∀x∗ ∈ VI(C, F), (.)

for all n ≥ .
Letting n → ∞ and taking the limit in (.) yield

〈
Rx∗ – u, x∗ – ŷ

〉 ≥ , ∀x∗ ∈ VI(C, F),

which implies that

〈
Rŷ – u, x∗ – ŷ

〉 ≥ , ∀x∗ ∈ VI(C, F). (.)

Theorem . tells us that ŷ is the unique solution of (.), which ensures that the whole
sequence {yn} converges in norm to ŷ as n → ∞. Moreover, it follows from Lemma .(C)
and (.) that ŷ = PVI(C,F)[(I – R)ŷ + u]. This completes the proof. �

We next introduce an explicit iterative method for solving MVIP (.).
It is natural to consider the following iteration method that generates a sequence {xn}

according to the recursion:

xn+ = PC
[
(I – αnR)xn + αnu – βnFxn

]
, n ≥ , (.)
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where the initial guess x ∈ C and u ∈ H are selected arbitrarily, while {αn} and {βn} are
two sequences of positive numbers in (, ].

Theorem . Let F : C → H be a hemicontinuous, generalized Lipschitz continuous and
monotone operator. Let R : H → H be a hemicontinuous, generalized Lipschitz continuous,
and η-strongly monotone operator. Assume that {αn} and {βn} are two sequences in (, ]
that satisfy the following conditions:

(i) αn
βn

→ , βn

αn
→  as n → ∞;

(ii) αn →  as n → ∞,
∑∞

n= αn = ∞;
(iii) |αn–αn–|+|βn–βn–|

αn →  as n → ∞.
Assume that VI(C, F) �= ∅. Then, the sequence {xn} generated by (.) converges in norm

to x∗ = PVI(C,F)((I – R)x∗ + u).

Proof Let {yn} be defined by (.). By using Theorem ., we know that {yn} converges in
norm to x∗ = PVI(C,F)((I – R)x∗ + u). It is sufficient to show that xn+ – yn →  as n → ∞.
To end this, we first show that {xn} is bounded.

For any p ∈ VI(C, F), we have

p = PC
[
( – αn)p + αnp – βnFp

]
. (.)

By using (.), (.), (.), and Lemma .(C), we have

‖xn+ – p‖ =
∥∥PC

[
(I – αnR)xn + αnu – βnFxn

]
– PC

[
( – αn)p + αnp – βnFp

]∥∥

≤ ∥∥xn – p – αn(Rxn – p) + αn(u – p) – βn(Fxn – Fp)
∥∥

= ‖xn – p‖ – αn〈Rxn – p, xn – p〉
+ αn〈u – p, xn – p〉 – βn〈Fxn – Fp, xn – p〉
+

∥∥αn(Rxn – u) + βn(Fxn – Fp)
∥∥

= ‖xn – p‖ – αn〈Rxn – Rp, xn – p〉 – αn〈Rp – p, xn – p〉
+ αn〈u – p, xn – p〉 – βn〈Fxn – Fp, xn – p〉
+

∥∥αn(Rxn – u) + βn(Fxn – Fp)
∥∥

≤ ( – ηαn)‖xn – p‖ – αn〈Rp – u, xn – p〉
+ α

n‖Rxn – u‖ + β
n‖Fxn – Fp‖. (.)

Observe that


∣∣〈Rp – u, xn – p〉∣∣ ≤ η

‖Rp – u‖
η

‖xn – p‖ ≤ η

(‖Rp – u‖

η + ‖xn – p‖
)

. (.)

Since both F and R are generalized Lipschitz continuous, we have

‖Fxn – Fp‖ ≤ c( + ‖xn – p‖)

≤ c( + ‖xn – p‖) (.)



Zhou et al. Journal of Inequalities and Applications  (2015) 2015:68 Page 12 of 17

and

‖Rxn – Rp‖ ≤ c( + ‖xn – p‖) ≤ c( + ‖xn – p‖). (.)

Observe also that

‖Rxn – u‖ ≤ 
(‖Rxn – Rp‖ + ‖Rp – u‖). (.)

In view of conditions (i) and (ii), without loss of generality, we may assume that

cα
n + cββ

n ≤ 

ηαn, (.)

for all n ≥ .
Substitute (.)-(.) into (.) and simplify to yield

‖xn+ – p‖ ≤ (
 – ηαn + cα

n + cβ
n
)‖xn – p‖ +



ηαn

(

η +  +

c

η

)
‖Rp – u‖

≤
(

 –


ηαn

)
‖xn – p‖ +



ηαn

(

η +  +

c

η

)
‖Rp – u‖

≤ max

{
‖x – p‖,

(

η +  +

c

η

)
‖Rp – u‖

}
= M,

for all n ≥ . We have shown that {xn} is bounded. Next, we shall prove that xn+ – yn → 
as n → ∞.

Since R is η-strongly monotone and F is monotone, we have

〈Rxn – Ryn, xn – yn〉 ≥ η‖xn – yn‖ (.)

and

〈Fxn – Fyn, xn – yn〉 ≥ , (.)

for all n ≥ . Since both R and F are generalized Lipschitz continuous, we have

‖Rxn – Ryn‖ ≤ c( + ‖xn – yn‖) (.)

and

‖Fxn – Fyn‖ ≤ c( + ‖xn – yn‖), (.)

for all n ≥ .
By using (.), Lemma .(C), the strong monotonicity of R, and the monotonicity

of F , we have

‖yn – yn–‖

≤ 〈
yn – yn–, (I – αnR)yn – (I – αn–R)yn– + (αn – αn–)u – βnFyn – βn–Fyn–

〉
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= ‖yn – yn–‖ – αn〈Ryn – Ryn–, yn – yn–〉
– (αn – αn–)〈Ryn– – u, yn – yn–〉
– βn〈Fyn – Fyn–, yn – yn–〉 – (βn – βn–)〈Fyn–, yn – yn–〉

≤ ( – ηαn)‖yn – yn–‖ + |αn – αn–|‖Ryn–‖‖yn – yn–‖
+ |αn – αn–|‖u‖‖yn – yn–‖ + |βn – βn–|‖Fyn–‖‖yn – yn–‖, (.)

which implies that

‖yn – yn–‖ ≤ M
η

|αn – αn–| + |βn – βn–|
αn

, (.)

where M is a positive constant such that M ≥ max{‖Ryn–‖ + ‖u‖,‖Fyn–‖}.
In view of conditions (i) and (ii), without loss of generality, we may assume that

α
n + β

n ≤ η

c αn, (.)

for all n ≥ .
By using (.), (.), (.), Lemma .(C), and (.)-(.), we get

‖xn+ – yn‖ ≤ ∥∥xn – yn – αn(Rxn – Ryn) – βn(Fxn – Fyn)
∥∥

= ‖xn – yn‖ – αn〈Rxn – Ryn, xn – yn〉 – βn〈Fxn – Fyn, xn – yn〉
+

∥∥αn(Rxn – Ryn) + βn(Fxn – Fyn)
∥∥

≤ ( – ηαn)‖xn – yn‖ + α
n‖Rxn – Ryn‖ + β

n‖Fxn – Fyn‖

≤ ( – ηαn)‖xn – yn‖ + cα
n‖

(
 + ‖xn – yn‖) + cβ

n
(
 + ‖xn – yn‖)

=
(
 – ηαn + c(α

n + β
n
))‖xn – yn‖ + c(α

n + β
n
)

≤ ( – ηαn)
(‖xn – yn–‖ + ‖xn – yn–‖‖yn – yn–‖

+ ‖yn – yn–‖) + c(α
n + β

n
)

≤ ( – ηαn)‖xn – yn–‖ + M
|αn – αn–| + |βn – βn–|

αn
+ c(α

n + β
n
)

≤ ( – ηαn)‖xn – yn–‖ + ◦(ηαn),

where we have used conditions (i)-(iii) and M is a fixed positive number.
By Lemma ., we conclude that ‖xn+ – yn‖ → , as n → ∞, which means that {xn}

converges in norm to x∗ = PVI(C,F)((I – R)x∗ + u). This completes the proof. �

Remark . Theorem . extends Theorem . of Xu and Xu [] to the more general
case, moreover, the choice of the iterative parameter sequences {αn} and {βn} does not
depend on the generalized Lipschitz constants of R and F .

Remark . Choose the sequences {αn} and {βn} such that

αn =


na and βn =


nb , n ≥ ,
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where a < b+
 ,  < b < a and a < b. Then it is clear that conditions (i)-(iii) of Theorem .

are satisfied.

4 Applications
In this section, we give some applications of the results established in Section .

Consider the constrained convex minimization problem:

min
{
ϕ(x) : x ∈ C

}
, (.)

where C is a closed convex subset of a real Hilbert space H and ϕ : H → R is a real-valued
convex function. Assume that ϕ is continuously Fréchet differentiable with a generalized
Lipschitz continuous gradient:

∥∥∇ϕ(x) – ∇ϕ(y)
∥∥ ≤ c

(
 + ‖x – y‖), (.)

for all x, y ∈ H , where c is a positive constant.
It is well known that the minimization problem (.) is equivalent to the following vari-

ational inequality problem:

x∗ ∈ C,
〈∇ϕ

(
x∗), x – x∗〉 ≥ , ∀x ∈ C. (.)

From Example ., we know that ∇ϕ : H → H is maximal monotone and hemicontinuous.
By virtue of Theorem ., we can deduce the following convergence result.

Theorem . Assume that (.) has a solution. Let {xn} be generated by the following re-
cursion:

∀x ∈ H , xn+ = PC
[
( – αn)xn – βn∇ϕ(xn)

]
, n ≥ , (.)

where {αn} and {βn} are two sequences in (, ] that satisfy conditions (i)-(iii) in Theo-
rem .. Then {xn} converges in norm to the minimum-norm solution of the constrained
minimization problem (.).

Proof Apply Theorem . to the case where F = ∇ϕ, R = I , and u =  to get the conclu-
sion. �

Finally, we apply our results to the minimum-norm fixed point problem for pseudocon-
tractive mappings.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
T : C → C be a generalized Lipschitz continuous, hemicontinuous, and pseudocontractive
mapping with Fix(T) �= ∅. Assume that {αn} and {βn} are two sequences in (, ] that satisfy
the following conditions:

(i) αn
βn

→ , βn

αn
→  as n → ∞;

(ii) αn →  as n → ∞,
∑∞

n= αn = ∞;
(iii) |αn–αn–|+|βn–βn–|

αn →  as n → ∞.
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Then the sequence {xn} generated by

x ∈ C, u ∈ H , xn+ = PC
[(

 – (αn + βn)
)
xn + αnu + βnTxn

]
, n ≥ , (.)

converges in norm to x∗ = PFix(T)u, in particular, if we take u =  in (.), then the sequence
{xn} generated by (.) converges in norm to the minimum-norm fixed point of T .

Proof Write F = I – T . Then (.) reduces to the following iterative algorithm:

x ∈ C, u ∈ H , xn+ = PC
[
( – αn)xn + αnu – βnFxn

]
, n ≥ . (.)

Since T : C → C is a generalized Lipschitz continuous, hemicontinuous, and pseudo-
contractive mapping, we deduce that F is a generalized Lipschitz continuous, hemecontin-
uous, and monotone operator. By Lemma .(C), noting that T : C → C is a self-mapping,
we see that VI(C, F) = Fix(PCT) = Fix(T) �= ∅ by our assumption. Apply Theorem . to
the case where F = I – T and R = I to derive the desired conclusion. �

Corollary . Let C be a nonempty, bounded, and closed convex subset of a real Hilbert
space H . Let T : C → C be a hemicontinuous and pseudocontractive mapping. Let {αn} and
{βn} be the same as in Theorem .. Then the sequence {xn} generated by (.) converges in
norm to x∗ = PFix(T)u.

Proof Write F = I – T . Then F : C → H is a generalized Lipschitz continuous, hemicon-
tinuous, and monotone operator. Indeed, since C is bounded, we see that there exists a
positive number c such that

‖Fx – Fy‖ ≤ c
(
 + ‖x – y‖)

for all x, y ∈ C. Since T : C → C is a hemicontinuous and pseudocontractive mapping, we
also know that F is a hemicontinuous and monotone operator. By Minty [], we know that
VI(C, F) �= ∅. Since VI(C, F) = Fix(T), we have Fix(T) �= ∅. Apply Theorem . to derive the
desired conclusion. This completes the proof. �

Remark . Theorem . and Corollary . improve and extend the main results of [–
] and [] in the sense that the mapping T under consideration is hemicontinuous and
generalized Lipschitz continuous.

Remark . Our main results presented in this paper can be used to solve the split feasi-
bility problem and the split equality problem; see, for instance, [–] for the details.

5 Conclusion
We studied a class of monotone variational inequality problems (MVIPs) for generalized
Lipschitz continuous, hemicontinuous, and monotone operators defined on a nonempty,
closed, and convex subset of a real Hilbert space. Firstly, by using the maximal monotone
theory, we established a new existence and uniqueness theorem for a variational inequal-
ity problem with a hemicontinuous and strongly monotone operator. Then, by virtue of
the existence and uniqueness theorem, we introduced an implicit method and analyzed
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its strong convergence. We also introduced an explicit iterative method as discretization
of the implicit method. We proved that both the implicit and the explicit methods con-
verge in norm to the same solutions to the MVIPs. Finally, we applied our main results to
the constrained minimization problems and the minimum-norm fixed point problems for
generalized Lipschitz continuous, hemicontinuous, and pseudocontractive mappings.
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