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Abstract
In this paper, we introduce new q-analogs of the Changhee numbers and
polynomials of the first kind and of the second kind. We also derive some new
interesting identities related to the Stirling numbers of the first kind and of the second
kind, the Euler polynomials of higher order and the q-analogs of Euler polynomials by
applying the p-adic integrals method and some summation transform techniques. It
turns out that some well-known results are derived as special cases.
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1 Introduction
In mathematics, special functions (or special polynomials) are known as ‘useful functions’.
Because of their remarkable properties, special functions have been used for centuries. For
instance, since they have numerous applications in astronomy, trigonometric functions
have been studied for over a thousand years. Since then, the theory of special functions has
been continuously developed with contributions by a host of mathematicians, including
Euler, Legendre, Laplace, Gauss, Kummer, Eisenstein, Riemann, Ramanujan, and so on.

In the past years, the development of new special functions and of applications of special
functions to new areas of mathematics have initiated a resurgence of interest in the p-adic
analysis, q-analysis, analytic number theory, combinatorics, and so on. Moreover, in recent
years, the various generalizations of the familiar special polynomials have been defined by
using p-adic q-integral on Zp and p-adic fermionic q-deformed integrals on Zp introduced
and investigated by Kim [–]. Srivastava and Todorov [] derived an interesting extension
of a representation for the generalized Bernoulli numbers in order to obtain interesting
special cases considered earlier by Gould []. For more on these issues, e.g., see [–].

Let p be chosen as a fixed odd prime number. Throughout this paper, we make use of
the following notations. Zp denotes the ring of integers, Qp denotes the field of p-adic
numbers, and Cp denotes the completion of the algebraic closure of Qp. The p-adic norm
| · |p is normalized by

|p|p = p–.
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Let C(Zp) be the space of continuous functions on Zp. For f ∈ C(Zp), the fermionic p-
adic q-invariant integral on Zp is defined by Kim [, ], as follows:

I–q(f ) =
∫
Zp

f (x) dμ–q(x) = lim
n→∞

pn–∑
x=

f (x)
(–q)x

[pn]–q
. (.)

It follows from (.) that

qI–q(f) + I–q(f ) = []qf (), (.)

where f(x) := f (x + ). Obviously

lim
q→

I–q(f ) = I–(f ) = lim
n→∞

pn–∑
x=

f (x)(–)x cf. [, ]. (.)

In [], the Changhee polynomials are defined by substituting f (x) = ( + t)x into (.)
with the case |t|p < p– 

p– , as follows:

∫
Zp

( + t)x+y dμ–(y) =
∞∑

n=

(∫
Zp

(x + y)n dμ–(y)
)

tn

n!

=
∞∑

n=

Chn(x)
tn

n!

=


 + t
( + t)x, (.)

where (x)n is known as the Pochhammer symbol (or decreasing factorial) defined by

(x)n = x(x – ) · · · (x – n + )

=
n∑

k=

S(n, k)xk (.)

and here S(n, k) is the Stirling number of the first kind (see [–]).
In [], Kim et al. introduced using p-adic integral techniques the idea that the Changee

numbers are closely related to the Euler numbers as follows:

Em =
m∑

n=

ChnS(n, m),

where S(n, m) is the Stirling number of the second kind defined by the following gener-
ating series:

∞∑
n=m

S(n, m)
tn

n!
=

(et – )m

m!
cf. [, ]. (.)
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In [], Srivastava extended the Stirling numbers of the second kind to λ-Stirling num-
bers of the second kind as follows:

(λet – )m

m!
=

∞∑
n=

S(n, m;λ)
tn

n!
(
m ∈N

∗ and λ ∈C
)

with, of course,

S(n, m; ) := S(n, m).

In [], the Euler polynomials of (real or complex) order α

E(α)
n (x)

(sometimes called the Euler polynomials of higher order) are introduced by the following
generating function:

(


et + 

)α

ext =
∞∑

n=

E(α)
n (x)

tn

n!
(|t| < π

)
(.)

with, of course,

E()
n (x) := En(x) and E(α)

n () := E(α)
n ,

where En(x) and E(α)
n are the nth Euler polynomials and the nth Euler numbers of order α.

Recently, Kim et al. have studied the various generalizations of Changhee polynomials
cf. [, , ]. Our q-analogs of the Changhee numbers and polynomials in the present
paper are different from Kim et al.’s q-analogs of the Changhee numbers and polynomials.
In this paper, we introduce a q-analog of the Changhee polynomials and derive some new
interesting identities.

2 On a q-analog of Changhee numbers and polynomials
Let us now consider the following p-adic q-integral representation in accordance with the
Pochhammer symbol:

∫
Zp

q–y(x + y)n dμ–q(y)
(
n ∈ Z+ = N∪ {}). (.)

From (.), we have

∞∑
n=

(∫
Zp

q–y(x + y)n dμ–q(y)
)

tn

n!
=

∫
Zp

q–y

( ∞∑
n=

(
x + y

n

)
tn

)
dμ–q(y)

=
∫
Zp

q–y( + t)x+y dμ–q(y), (.)

where t ∈Cp with |t|p < p– 
p– . Applying (.) to (.) gives

∫
Zp

q–y( + t)x+y dμ–q(y) =
 + q

 + ( + t)– ( + t)x–. (.)
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Let

Fq(x, t) =
 + q

 + ( + t)– ( + t)x–.

Then

lim
q→

Fq(x, t) =


 + t
( + t)x.

Notice that Fq(x, t) seems to be a new q-extension of the generating function for afore-
mentioned Changhee polynomials of the first kind. Therefore, from (.) and (.), we
obtain the following definition.

Definition  Let Fq(x, t) =
∑∞

n= Chn(x | q) tn

n! , where Chn(x | q) is called a q-analog of the
nth Changhee polynomials of the first kind. Then we have for n ≥ 

∞∑
n=

Chn(x | q)
tn

n!
=

 + q
 + ( + t)– ( + t)x–.

Moreover,

Chn(x | q) =
∫
Zp

q–y(x + y)n dμ–q(y).

In the case x =  in Definition , we have Chn( | q) := Chn(q), which stands for the q-
analog of the nth Changhee numbers of the first kind. It follows from (.) and Definition 
that

 + q


Chn(x) = Chn(x | q). (.)

Equation (.) shows that our q-analog of the Changhee polynomials of the first kind is
closely related to the Changhee polynomials. From (.) we have

Chn(q) =
n∑

k=

S(n, k)Ek(q), (.)

where Ek(q) are the q-Euler polynomials derived from

Ek(q) =
∫
Zp

q–yyk dμ–q(y).

From (.), we have

Chn(x | q) =
∫
Zp

q–y(x + y)n dμ–q(y)

=
n∑

k=

S(n, k)Ek(x | q), (.)
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where Ek(x | q) are the q-Euler polynomials introduced by

Ek(x | q) =
∫
Zp

q–y(x + y)k dμ–q(y).

From Definition , we have

 + q
qet + 

=
∞∑

n=

Chn(q)

n!

(
et

q
– 

)n

=
∞∑

n=

Chn(q)

n!

n!
∞∑

m=n
S(m, n)

(t – log q)m

m!

=
∞∑

m=

( m∑
n=

Chn(q)S(m, n)

)
(t – log q)m

m!
. (.)

It follows from (.) that

∞∑
m=

(
 + q
 + q Em

(
q)) tm

m!
=

∞∑
m=

( m∑
n=

Chn(q)S(m, n)

)
tm

m!
.

When we compare the coefficients tn

n! of both sides of the above we have

 + q
 + q Em

(
q) =

m∑
n=

Chn(q)S(m, n).

Therefore, we obtain the following theorem.

Theorem  For m ≥ , we have

 + q
 + q Em

(
q) =

m∑
n=

Chn(q)S(m, n).

The increasing factorial sequence is known as

x(n) = x(x + )(x + ) · · · (x + n – )
(
n ∈N

∗).

For more information as regards this sequence, see [, , , , ].
Let us define the q-analog of the Changhee numbers of the second kind as follows:

Ĉhn(q) =
∫
Zp

q–y(–y)n dμ–q(y)
(
n ∈N

∗). (.)

It is easy to observe that

x(n) = (–)n(–x)n =
n∑

k=

S(n, k)(–)n–kxk . (.)
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By virtue of (.) and (.), it leads to

Ĉhn(q) =
∫
Zp

q–y(–y)n dμ–q(y)

=
∫
Zp

q–yy(n)(–)n dμ–q(y)

=
n∑

k=

S(n, k)(–)kEk(q). (.)

Thus, we state the following theorem.

Theorem  The following holds true:

Ĉhn(q) =
n∑

k=

S(n, k)(–)kEk(q).

Let us now consider the generating function of the q-Changhee numbers of the second
kind as follows:

∞∑
n=

Ĉhn(q)
tn

n!
=

∞∑
n=

(∫
Zp

q–y(–y)n dμ–q(y)
)

tn

n!

=
∫
Zp

q–y

( ∞∑
n=

(
–y
n

)
tn

)
dμ–q(y)

=
∫
Zp

q–y( + t)–y dμ–q(y), (.)

in which
∫
Zp

q–y( + t)–y dμ–q(y) equals

( + q)
 + ( + t)– . (.)

Then, combining (.) with (.), we state the following definition.

Definition  For n ≥ , we have

∞∑
n=

Ĉhn(q)
tn

n!
=

∫
Zp

q–y( + t)–y dμ–q(y)

=
( + q)

 + ( + t)– .

Let us consider the q-Changhee polynomials of the second kind as follows:

 + q
 + t

( + t)–x =
∞∑

n=

Ĉhn(x | q)
tn

n!
. (.)

Combining (.) with (.) at the value x = , we have

Ĉhn( | q) =
 + q


Chn = Chn(q).
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It follows from (.) that

∫
Zp

q–y( + t)–x–y dμ–q(y) =
∞∑

n=

Ĉhn(x | q)
tn

n!
. (.)

From (.) gives

Ĉhn(x | q) =
∫
Zp

q–y(–x – y)n dμ–q(y)

=
n∑

k=

(–)kS(n, k)Ek(x | q) (n ≥ ). (.)

Then, by (.), we have the following theorem.

Theorem  The following holds true:

Ĉhn(x | q) =
n∑

k=

(–)kS(n, k)Ek(x | q) (n ≥ ).

From (.) and (.), we have

q–x
(

 + q
qet + 

)
e(–x)t =

∞∑
n=

Ĉhn(x | q)

n!

(
qet – 

)n

=
∞∑

n=

Ĉhn(x | q)
∞∑

m=n
S(m, n; q)

tm

m!

=
∞∑

m=

( m∑
n=

Ĉhn(x | q)S(m, n; q)

)
tm

m!
. (.)

Further

q–x
∫
Zp

e(–x+y)t dμ–q(y) =
∞∑

n=

Ĉhn(x | q)
(qet – )n

n!

=
∞∑

m=

( m∑
n=

Ĉhn(x | q)S(m, n; q)

)
tm

m!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem  The following equality holds true:

q–xEm( – x | q) = (–)nq–xEm
(
x | q–) =

m∑
n=

Ĉhn(x | q)S(m, n; q),

where Em(x | q) may be called the mth q-Euler polynomials

Em(x | q) =
∫
Zp

(x + y)m dμ–q(y)
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because

lim
q→

Em(x | q) := Em(x).

From Definition  and (.) we have

(–)n Chn(q)
n!

= (–)n
∫
Zp

q–y
(

y
n

)
dμ–q(y)

=
∫
Zp

q–y
(

–y + n – 
n

)
dμ–q(y)

=
n∑

m=

(
n – 
n – m

)∫
Zp

q–y
(

–y
m

)
dμ–q(y)

=
n∑

m=

(
n – 
m – 

)
Ĉhm(q)

m!
(.)

and

(–)n Ĉhn(q)
n!

= (–)n
∫
Zp

q–y
(

–y
n

)
dμ–q(y)

=
∫
Zp

q–y
(

y + n – 
n

)
dμ–q(y)

=
n∑

m=

(
n – 
n – m

)∫
Zp

q–y
(

y
m

)
dμ–q(x)

=
n∑

m=

(
n – 
m – 

)
Ĉhm(q)

m!
. (.)

Therefore, we get the following theorem.

Theorem  The following holds:

(–)n Chn(q)
n!

=
n∑

m=

(
n – 
m – 

)
Ĉhm(q)

m!

and

(–)n Ĉhn(q)
n!

=
n∑

m=

(
n – 
m – 

)
Ĉhm(q)

m!
.
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