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Abstract
As is well known the proximal iterative method can be used to solve the lasso of
Tibshirani (J. R. Stat. Soc., Ser. B 58:267-288, 1996). In this paper, we first propose a
modified proximal iterative method based on the viscosity approximation method to
obtain strong convergence, then we apply this method to solve the lasso.
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1 Introduction
The lasso of Tibshirani [] is formulated as the minimization problem

min
x∈Rn



‖Ax – b‖

 subject to ‖x‖ ≤ t, (.)

where A is an m × n (real) matrix, b ∈R
m, t ≥  is a tuning parameter. The regularization

minimization problem which is equivalent to (.) is

min
x∈Rn



‖Ax – b‖

 + γ ‖x‖, (.)

where γ >  is a regularization parameter. As the � norm promotes the sparsity phe-
nomenon that occurs in practical problems such as image/signal processing, machine
learning and so on, the lasso has received much attention in recent years.

In fact, both (.) and (.) are equivalent to the basis pursuit (BP) of Chen et al. []:

min
x∈Rn

‖x‖ subject to Ax = b.

So we mathematically study the inverse linear system in R
n:

Ax = b, (.)

where A is an m × n matrix, b ∈ R
m is an input, and x ∈ R

n stands for the image of
interest to be recovered in imaging science. As m � n, the system (.) is underdeter-
mined. Donoho [], Candes, and others [–] pioneered the theory of compressed sensing
showing that under certain conditions the underdetermined system (.) can determine a
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unique k-sparse solution. Then Cipra [] pointed out that the � norm is ideal as it ensures
not only the parsimony of � but also the computation efficiency of � in sparse recovery.

However, the error of measurements always results in an inaccuracy of the system (.):

Ax = b + ε.

In this case, the BP (.) is reformulated as

min
x∈Rn

‖x‖ subject to ‖Ax – b‖ ≤ ε, (.)

where ε >  is the tolerance level of errors and ‖ · ‖ is a norm on R
n. If we let Q := Bε(b) be

the closed ball in R
n around b and with radius of ε, then (.) is rewritten as

min
x∈Rn

‖x‖ subject to Ax ∈ Q. (.)

As Q is a nonempty, closed, and convex subset of Rm, we let PQ be the projection from
R

m onto Q. The condition Ax ∈ Q is equivalent to the condition Ax – PQ(Ax) = , so the
problem (.) can be solved via

min
x∈Rn

‖x‖ subject to (I – PQ)Ax = .

Applying the Lagrange method, we obtain the so-called Q-lasso:

min
x∈Rn



∥
∥(I – PQ)Ax

∥
∥


 + γ ‖x‖, (.)

where γ >  is a Lagrangian multiplier.
The Q-lasso is connected with the split feasibility problem (SFP) of Censor and Elfving

[–]. The SFP is mathematically formulated as the problem of finding a point x with the
property:

x ∈ C and Ax ∈ Q, (.)

where C and Q are nonempty, closed, and convex subset of Rn and R
m, respectively. An

equivalent minimization formulation of the SFP (.) is given as

min
x∈C



‖Ax – PQAx‖

.

The � regularization is given as the minimization problem

min
x∈C



‖Ax – PQAx‖

 + γ ‖x‖, (.)

where γ >  is a regularization parameter. If the constrained set C is taken to be the entire
space R

n, then the problem (.) is equivalent to the problem (.).
Recently, Xu [] exploited the following proximal algorithm:

xn+ =
(

proxλng ◦ (I – λn∇f )
)

xn (.)



Tian and Gong Journal of Inequalities and Applications  (2015) 2015:161 Page 3 of 15

to solve lasso (.), and Alghamdi et al. [] also discussed an iterative algorithm for solving
Q-lasso (.) via a proximal-gradient method. However, their iterative algorithms only
obtain weak convergence.

Recall that Moudafi [] proposed the viscosity iterative method in  as follows:

xn+ = αnf (xn) + ( – αn)Txn, n ≥ , (.)

where f is a contraction on a real Hilbert space, {αn} is a sequence in (, ). In , Xu []
proved that if {αn} satisfies certain conditions, the sequence generated by (.) can con-
verge strongly to a fixed point x∗ of T , which is also the unique solution of the variational
inequality

〈

(I – f )x∗, x – x∗〉 ≥ , for x ∈ Fix(T).

In this paper, based on the viscosity iterative algorithm (.), we propose a modified
formulation of the proximal algorithm (.). It is proved that the algorithm we propose
can obtain strong convergence. Then we also apply this algorithm to solve the lasso and
Q-lasso.

2 Preliminaries
Let H be a Hilbert space and let � be the space of convex functions in H that are proper,
lower semicontinuous, and convex.

Definition . The proximal operator of ϕ ∈ �(H) is defined by

proxϕ(x) = arg min
v∈H

{

ϕ(v) +


‖v – x‖

}

, x ∈ H .

The proximal operator of order λ >  is defined as the proximal operator of λϕ, that is,

proxλϕ(x) = arg min
v∈H

{

ϕ(v) +


λ
‖v – x‖

}

, x ∈ H .

Proposition . Let ϕ ∈ �(H) and λ ∈ (,∞).
(i) proxλϕ is firmly nonexpansive (hence nonexpansive). Recall that a mapping

T : H → H is firmly nonexpansive if

‖Tx – Ty‖ ≤ 〈Tx – Ty, x – y〉, x, y ∈ H .

(ii) proxλϕ = (I + λ∂ϕ)– = J∂ϕ
λ , the resolvent of the subdifferential ∂ϕ of ϕ.

Combettes and Wajs [] shows that the proximal operator proxλϕ can have a closed-
form expression in some important cases, for example, if we take ϕ to be the norm of H ,
then

proxλ‖·‖(x) =

{

( – λ
‖x‖ )x, if ‖x‖ > λ,

, if ‖x‖ ≤ λ.
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In particular, if H = R, then the above operator is reduced to the scalar soft-thresholding
operator:

proxλ|·|(x) = sgn(x) max
{|x| – λ, 

}

.

Lemma . [] The proximal identity

proxλϕ x = proxμϕ

(
μ

λ
x +

(

 –
μ

λ

)

proxλϕ x
)

holds for ϕ ∈ �(H), x ∈ H , λ > , and μ > .

Recall that the function H → H is convex if

f
(

( – λ)x + λy
) ≤ ( – λ)f (x) + λf (y)

for all λ ∈ (, ) and x, y ∈ H . (Note that we consider finite-valued functions.)
The subdifferential of a convex function f is defined as the operator ∂f given by

∂f (x) =
{

ξ ∈ H : f (y) ≥ f (x) + 〈ξ , y – x〉, y ∈ H
}

. (.)

The inequality in (.) is referred to as the subdifferential inequality of f at x. We say that f
is subdifferentiable at x if ∂f (x) is nonempty. We know that for an everywhere finite-valued
convex function f on H , f is everywhere subdifferentiable.

Example
(i) If f (x) = |x| for x ∈R, then ∂f () = [–, ];

(ii) if f (x) = ‖x‖, for x ∈R
n, then ∂f (x) is given componentwise by

(

∂f (x)
)

j =

{

sgn(xj), if xj �= ,
ξj ∈ [–, ], if xj = ,

for  ≤ j ≤ n.
Consider the unconstrained minimization problem:

min
x∈H

f (x). (.)

Proposition . Let f be everywhere finite-valued convex on H and z ∈ H . Support f is
bounded below (i.e., inf{f (x) : x ∈ H} > –∞). Then z is a solution to minimization (.) if
and only if it satisfies the first-order optimality condition:

 ∈ ∂f (z).

Lemma . [] Assume that {an}∞n= is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn + βn, n ≥ ,

where {γn}∞n= and {βn}∞n= are sequence in (, ) and {δn}∞n= is a sequence in R such that
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(i)
∑∞

n= γn = ∞;
(ii) either lim supn→∞ δn ≤  or

∑∞
n= γn|δn| < ∞;

(iii)
∑∞

n= βn < ∞.
Then limn→∞ an = .

Lemma . Let H be a Hilbert space, then, for all x, y ∈ H , we have the inequality

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉.

Lemma . [] Let H be a Hilbert space, C a closed convex subset of H , and T : C → C a
nonexpansive mapping with Fix(T) �= ∅. If {xn}∞n= is a sequence in C weakly converging to
x and if {(I – T)xn}∞n= converges strongly to y, then (I – T)x = y. In particular, if y = , then
x ∈ Fix(T).

Lemma . [] Let H be a Hilbert space, h : H → H a contraction with coefficient
 < ρ < . Then

〈

x – y, (I – h)x – (I – h)y
〉 ≥ ( – ρ)‖x – y‖, x, y ∈ H .

That is, I – h is strong monotone with coefficient  – ρ .

We will use the notation ⇀ for weak convergence and → for strong convergence.

3 Strong convergence of proximal algorithms
Let H be a real Hilbert space and let � be the space of convex functions in H that are
proper, lower semicontinuous, and convex. Consider the following minimization problem:

min
x∈H

f (x) + g(x), (.)

where f , g ∈ �(H).

Proposition . [] Let f , g ∈ �(H). Let x∗ ∈ H and λ > . Assume that f is finite-valued
and differentiable on H . Then x∗ is a solution to (.) if and only if x∗ solves the fixed point
equation:

x∗ =
(

proxλg ◦ (I – λ∇f )
)

x∗.

Consider a mapping St on H defined by

St(x) = th(x) + ( – t)
(

proxλg ◦ (I – λt∇f )
)

x, (.)

where h is a contraction with the coefficient  < ρ < , t ∈ (, ),  < λt ≤ 
L . Assume that

∇f is L-Lipschitzian.

Proposition . The mapping proxλtg ◦ (I – λt∇f ) is nonexpansive.



Tian and Gong Journal of Inequalities and Applications  (2015) 2015:161 Page 6 of 15

Proof We show it in two cases.
Case : As λt = 

L , we have

∥
∥(I – λt∇f )x – (I – λt∇f )y

∥
∥



=
∥
∥
∥
∥

(

I –

L

∇f
)

x –
(

I –

L

∇f
)

y
∥
∥
∥
∥



=
〈

x – y –

L

(∇f (x) – ∇f (y)
)

, x – y –

L

(∇f (x) – ∇f (y)
)
〉

= ‖x – y‖ +

L

∥
∥∇f (x) – ∇f (y)

∥
∥

 –

L

〈

x – y,∇f (x) – ∇f (y)
〉

–

L

〈∇f (x) – ∇f (y), x – y
〉

≤ ‖x – y‖ +

L

∥
∥∇f (x) – ∇f (y)

∥
∥

 –

L

· 
L

∥
∥∇f (x) – ∇f (y)

∥
∥



–

L

· 
L

∥
∥∇f (x) – ∇f (y)

∥
∥



≤ ‖x – y‖.

Hence,

∥
∥(I – λt)∇f (x) – (I – λt)∇f (y)

∥
∥ ≤ ‖x – y‖.

As the mapping proxλt is nonexpansive, we get

∥
∥
(

proxλtg ◦ (I – λt∇f )
)

x –
(

proxλtg ◦ (I – λt∇f )
)

y
∥
∥

≤ ∥
∥(I – λt)∇f (x) – (I – λt)∇f (y)

∥
∥

≤ ‖x – y‖.

Case :  < λt < 
L . We follow the proof of []. Since ∇f is L-Lipschitzian, ∇f is (/L)-ism

[], which then implies that λt∇f is (/λtL)-ism. So I – λt∇f is (λtL/)-averaged. Since
the proximal mapping proxλt g is (/)-averaged, the composite proxλt g ◦ (I – λt)∇f is (( +
λtL)/)-averaged for  < λt < /L, so the mapping proxλtg ◦ (I – λt)∇f is nonexpansive. �

By Proposition . it is not hard to see that St is a contraction on H . For x, y ∈ H , we
have

∥
∥St(x) – St(y)

∥
∥

=
∥
∥t

[

h(x) – h(y)
]

+ ( – t)
[(

proxλt g ◦ (I – λt∇f )
)

x –
(

proxλt g ◦ (I – λt∇f )
)

y
]∥
∥

≤ tρ‖x – y‖ + ( – t)‖x – y‖
=

(

 – t( – ρ)
)‖x – y‖.

Hence, St has a unique point, we denote it by xt . Thus xt is the unique solution of the fixed
point equation

xt = th(xt) + ( – t)
(

proxλt g ◦ (I – λt∇f )
)

xt . (.)
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We will use the following notation in Proposition . and Theorem .:

Vt = Vλt = proxλtg ◦ (I – λt∇f );

V = Vλ = proxλg ◦ (I – λ∇f ).

The properties of Vt and V are helpful for the following proof [].

Proposition . Assume that (.) is consistent, and let S denote its solution set. Assume
that λt is continuous with respect to t. Since  < λt ≤ /L, we assume that λtj → λ (tj → )
and that λ > . Let xt be defined by (.), we have

(i) {xt} is bounded for t ∈ (, );
(ii) limt→ ‖xt – (proxλg ◦ (I – λ∇f ))xt‖ = ;

(iii) xt defines a continuous curve from (, ) into H .

Proof (i) Take a p ∈ S, then we have p ∈ Fix(V ), and

‖xt – p‖
=

∥
∥th(xt) + ( – t)Vtxt – p

∥
∥

≤ ( – t)‖Vtxt – p‖ + t
∥
∥h(xt) – p

∥
∥

= ( – t)‖Vtxt – Vtp‖ + t
∥
∥h(xt) – p

∥
∥

≤ ( – t)‖xt – p‖ + t
∥
∥h(xt) – p

∥
∥.

It follows that

‖xt – p‖
≤ ∥

∥h(xt) – p
∥
∥

≤ ∥
∥h(xt) – h(p)

∥
∥ +

∥
∥h(p) – p

∥
∥

≤ ρ‖xt – p‖ +
∥
∥h(p) – p

∥
∥.

Hence, ‖xt – p‖ ≤ 
–ρ

‖h(p) – p‖, and {xt} is bounded, so are {proxλg ◦ (I – λ∇f )xt} and
{h(xt)}.

(ii) By the definition of {xt}, we have, for any {tj} → ,

∥
∥xtj –

(

proxλg ◦ (I – λ∇f )
)

xtj

∥
∥

=
∥
∥tjh(xtj ) + ( – tj)Vtj xtj – Vxtj

∥
∥

≤ tj
∥
∥h(xtj ) – Vtj xtj

∥
∥ + ‖Vtj xtj – Vxtj‖

and

‖Vtj xtj – Vxtj‖
=

∥
∥
(

proxλtj g ◦ (I – λtj∇f )
)

xtj –
(

proxλg ◦ (I – λ∇f )
)

xtj

∥
∥
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=
∥
∥
∥
∥

(

proxλg

(
λ

λtj

(I – λtj∇f )
)

xtj +
(

 –
λ

λtj

)
(

proxλtj g ◦ (I – λtj∇f )
)

xtj

)

–
(

proxλg ◦ (I – λ∇f )
)

xtj

∥
∥
∥
∥

≤
∥
∥
∥
∥

λ

λtj

(I – λtj∇f )xtj +
(

 –
λ

λtj

)
(

proxλtj g ◦ (I – λtj∇f )
)

xtj – (I – λ∇f )xtj

∥
∥
∥
∥

=
∥
∥
∥
∥

(
λ

λtj

– 
)

xtj +
(

 –
λ

λtj

)
(

proxλtj g ◦ (I – λtj∇f )
)

xtj

∥
∥
∥
∥

=
∣
∣
∣
∣
 –

λ

λtj

∣
∣
∣
∣
· ‖xtj – Vtj xtj‖.

Then we obtain

∥
∥xtj – proxλg(I – λ∇f )xtj

∥
∥ ≤ tj

∥
∥h(xtj ) – Vtj xtj

∥
∥ +

∣
∣
∣
∣
 –

λ

λtj

∣
∣
∣
∣
· ‖xtj – Vtj xtj‖. (.)

Since {xt}, {h(xt)}, and {Vtxt} are bounded, and λtj → λ (tj → ), we can obtain by (.)
that

lim
tj→

∥
∥xtj – proxλg ◦ (I – λ∇f )xtj

∥
∥ = .

By the arbitrariness of tj, we get

lim
t→

∥
∥xt – proxλg ◦ (I – λ∇f )xt

∥
∥ = .

(iii) For any given t, t ∈ (, ),

‖xt – xt‖
=

∥
∥th(xt) + ( – t)Vtxt – th(xt ) – ( – t)Vt xt

∥
∥

≤ ∥
∥(t – t)h(xt) + t

(

h(xt) – h(xt )
)∥
∥

+
∥
∥( – t)Vt xt – ( – t)Vt xt + ( – t)Vtxt – ( – t)Vt xt

∥
∥

≤ |t – t| ·
∥
∥h(xt)

∥
∥ + tρ‖xt – xt‖ + ( – t)‖xt – xt‖

+ ‖Vtxt – Vt xt‖ + ‖tVtxt – tVt xt‖

≤ |t – t| ·
∥
∥h(xt)

∥
∥ + tρ‖xt – xt‖ + ( – t)‖xt – xt‖ +

∣
∣
∣
∣
 –

λt

λt

∣
∣
∣
∣
· ‖xt – Vtxt‖

+ ‖tVtxt – tVt xt‖ + ‖tVtxt – tVtxt‖

≤ (

 – t( – ρ)
)‖xt – xt‖ + (t + )

∣
∣
∣
∣
 –

λt

λt

∣
∣
∣
∣
· ‖xt – Vtxt‖

+ |t – t|
(∥
∥h(xt)

∥
∥ + ‖Vtxt‖

)

.

Hence,

‖xt – xt‖ ≤ (‖h(xt)‖ + ‖Vtxt‖)
t( – ρ)

|t – t| +
(t + )

t( – ρ)

∣
∣
∣
∣
 –

λt

λt

∣
∣
∣
∣
· ‖xt – Vtxt‖. (.)
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Since λt is continuous with respect to t, we can obtain by (.) that xt → xt as t → t, that
is, {xt} defines a continuous curve from (, ) into H . �

Theorem . Let {xt} be defined by (.). Assume that the minimization problem (.) is
consistent, and let S denote its solution set. Assume that limt→ λt = λ >  and that λt is
continuous with respect to t. Assume that ∇f is L-Lipschitzian. Then xt converges as t → 
to a solution x∗ of (.), which also solves the variational inequality

〈

(I – h)x∗, x̃ – x∗〉 ≥ , x̃ ∈ S. (.)

Proof By Lemma . we know that I – h is strongly monotone, so the variational inequality
(.) has only one solution. Below we use x∗ ∈ S to denote the unique solution of (.).

To prove that xt → x∗ (t → ), we write, for a given x̃ ∈ S,

xt – x̃ = th(xt) + ( – t)Vtxt – x̃ = t
(

h(xt) – x̃
)

+ ( – t)(Vtxt – x̃);

‖xt – x̃‖

= 〈xt – x̃, xt – x̃〉
= ( – t)〈Vtxt – x̃, xt – x̃〉 + t

〈

h(xt) – x̃, xt – x̃
〉

≤ ( – t)‖xt – x̃‖ + t
〈

h(xt) – h(x̃), xt – x̃
〉

+ t
〈

h(x̃) – x̃, xt – x̃
〉

≤ (

 – t( – ρ)
)‖xt – x̃‖ + t

〈

h(x̃) – x̃, xt – x̃
〉

.

Hence,

‖xt – x̃‖ ≤ 〈h(x̃) – x̃, xt – x̃〉
 – ρ

. (.)

Since {xt} is bounded as t → , it is obvious that if {tj} is a sequence in (, ) such that tj → 
(j → ∞) and xtj ⇀ x̄, then by (.) we get xtj → x̄. Since  < λt ≤ 

L , we may assume that
λtj → λ ∈ (, 

L ] and that λ > , then by the proof of Proposition . we see that proxλg(I –
λ∇f ) is also nonexpansive. Applying Lemma . and Proposition .(ii), we get x̄ ∈ S.

Next, we show that x̄ ∈ S solves the variational inequality (.). Indeed, we notice that
xt solves the fixed point equation

xt = th(xt) + ( – t)
(

proxλt g ◦ (I – λt∇f )
)

xt ,

h(xt) =

t
[

xt – ( – t)Vtxt
]

,

(I – h)xt = –
 – t

t
(I – Vt)xt .

Since Vt is nonexpansive, I – Vt is monotone, so for any x̃ ∈ S,

〈

(I – h)xt , xt – x̃
〉

= –
 – t

t
〈

(I – Vt)xt , xt – x̃
〉

= –
 – t

t
〈

(I – Vt)xt – (I – Vt)x̃, xt – x̃
〉

–
 – t

t
〈

(I – Vt)x̃, xt – x̃
〉
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≤ –
 – t

t
〈

(I – Vt)x̃, xt – x̃
〉

= .

Taking the limit through t = tn → , we obtain

〈

(I – h)x̄, x̄ – x̃
〉 ≤ .

Therefore x̄ = x∗ by uniqueness. �

Initialize x ∈ H and iterate

xn+ = αnh(xn) + ( – αn)
(

proxλng ◦ (I – λn∇f )
)

xn, (.)

where {αn} is a sequence in (, ),  < λn ≤ 
L , lim infn→∞ λn > , and h : H → H is a con-

traction with the coefficient  < ρ < .

Theorem . Let f , g ∈ �(H). Assume that the minimization problem (.) is consistent
and let S denote its solution set. Assume in addition that

(C) ∇f is L-Lipschitzian on H ;
(C) αn → ;
(C)

∑∞
n= αn = ∞;

(C)
∑∞

n= |αn+ – αn| < ∞;
(C)

∑∞
n= |λn+ – λn| < ∞.

Then the sequence {xn}∞n= generated by (.) converges to x∗ as defined in Theorem ..

Proof Putting

Vn = Vλn = proxλng ◦ (I – λn∇f );

V = Vλ = proxλg ◦ (I – λ∇f ).

We then get xn+ = αnh(xn) + ( – αn)Vnxn.
First we show that the sequence {xn}∞n= is bounded. Indeed, we have, for x̄ ∈ S,

‖xn+ – x̄‖
=

∥
∥αnh(xn) + ( – αn)Vnxn – x̄

∥
∥

=
∥
∥αn

(

h(xn) – h(x̄)
)

+ αn
(

h(x̄) – x̄
)

+ ( – αn)(Vnxn – x̄)
∥
∥

≤ αnρ‖xn – x̄‖ + αn
∥
∥h(x̄) – x̄

∥
∥ + ( – αn)‖xn – x̄‖

=
(

 – αn( – ρ)
)‖xn – x̄‖ + αn

∥
∥h(x̄) – x̄

∥
∥

≤ max
{‖xn – x̄‖,

∥
∥h(x̄) – x̄

∥
∥/( – ρ)

}

.

So, an induction argument shows that

‖xn – x̄‖ ≤ max
{‖x – x̄‖,

∥
∥h(x̄) – x̄

∥
∥/( – ρ)

}

, n ≥ .
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We next prove that ‖xn+ – xn‖ →  as n → ∞. For the sake of simplicity, we assume
that  < a ≤ λn ≤ b ≤ 

L .
We compute

‖xn+ – xn‖
=

∥
∥αnh(xn) + ( – αn)Vnxn – αn–h(xn–) – ( – αn–)Vn–xn–

∥
∥

≤ ∥
∥αn

[

h(xn) – h(xn–)
]

+
[

αnh(xn–) – αn–h(xn–)
]∥
∥

+
∥
∥( – αn)(Vnxn – Vnxn–) + ( – αn)Vnxn– – ( – αn–)Vn–xn–

∥
∥

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥
∥h(xn–)

∥
∥ + ( – αn)‖xn – xn–‖

+ ( – αn)‖Vnxn– – Vn–xn–‖ + ‖αnVn–xn– – αn–Vn–xn–‖
≤ (

 – αn( – ρ)
)‖xn – xn–‖ + |αn – αn–|

(∥
∥h(xn–)

∥
∥ + ‖Vn–xn–‖

)

+ ‖Vnxn– – Vn–xn–‖

and

‖Vnxn– – Vn–xn–‖ ≤
∣
∣
∣
∣
 –

λn

λn–

∣
∣
∣
∣
· ‖xn– – Vnxn–‖

≤ |λn – λn–|
a

‖xn– – Vnxn–‖,

so we obtain

‖xn+ – xn‖ ≤ (

 – αn( – ρ)
)‖xn – xn–‖ + M

(|αn – αn–| + |λn – λn–|
)

, (.)

where M ≤ max{‖h(xn–)‖ + ‖Vn–xn–‖,‖xn– – Vnxn–‖/a}. By assumptions (C)-(C)
in the theorem, we have

∑∞
n= αn = ∞, and

∑∞
n=(|αn – αn–| + |λn – λn–|) < ∞. Hence,

Lemma . is applicable to (.) and we conclude that ‖xn+ – xn‖ → .
Since {xn} is bounded, there exists a subsequence {xnj} such that xnj ⇀ z; below we will

prove that z ∈ S. Since  < λn ≤ 
L , we may assume that λnj → λ. We have

∥
∥xnj – proxλg ◦ (I – λ∇f )xnj

∥
∥ ≤ ‖xnj – xnj+‖ +

∥
∥xnj+ – proxλg ◦ (I – λ∇f )xnj

∥
∥. (.)

We compute

∥
∥xnj+ – proxλg ◦ (I – λ∇f )xnj

∥
∥

=
∥
∥αnj h(xnj ) + ( – αnj )

(

proxλnj g ◦ (I – λnj∇f )
)

xnj – proxλg ◦ (I – λ∇f )xnj

∥
∥

≤ αnj

∥
∥h(xnj ) – Vxnj

∥
∥ + ( – αnj )‖Vnj xnj – Vxnj‖

and

‖Vnj xnj – Vxnj‖
=

∥
∥proxλnj g ◦ (I – λnj∇f )xnj – proxλg ◦ (I – λ∇f )xnj

∥
∥



Tian and Gong Journal of Inequalities and Applications  (2015) 2015:161 Page 12 of 15

≤
∥
∥
∥
∥

λ

λnj

(I – λnj∇f )xnj +
(

 –
λ

λnj

)
(

proxλnj g ◦ (I – λnj∇f )
)

xnj – (I – λ∇f )xnj

∥
∥
∥
∥

=
∥
∥
∥
∥

(
λ

λnj

– 
)

xnj +
(

 –
λ

λnj

)

proxλnj g(I – λnj∇f )xnj

∥
∥
∥
∥

=
∣
∣
∣
∣
 –

λ

λnj

∣
∣
∣
∣
· ‖xnj – Vnj xnj‖

≤ |λnj – λ| ‖xnj – Vnj xnj‖
a

.

So we obtain

∥
∥xnj+ – proxλg ◦ (I – λ∇f )xnj

∥
∥

≤ αnj

∥
∥h(xnj ) – Vxnj

∥
∥ + ( – αnj )|λnj – λ| ‖xnj – Vnj xnj‖

a
. (.)

Combining (.) and (.) we get

∥
∥xnj –

(

proxλg ◦ (I – λ∇f )
)

xnj

∥
∥

≤ ‖xnj – xnj+‖ + αnj

∥
∥h(xnj ) – Vxnj

∥
∥ + ( – αnj )|λnj – λ| ‖xnj – Vnj xnj‖

a
. (.)

Since λnj → λ, and αn → , by (.) we get

∥
∥xnj –

(

proxλg ◦ (I – λ∇f )
)

xnj

∥
∥ → . (.)

By the proof of Theorem . we know that proxλg ◦ (I – λ∇f ) is nonexpansive. It follows
from Lemma . and (.) that z ∈ S.

We next show that

lim sup
n→∞

〈

h
(

x∗) – x∗, xn – x∗〉 ≤ , (.)

where x∗ is obtained in Theorem .. Indeed, replacing n with nj in (.), and letting
j → ∞, we have

lim sup
n→∞

〈

h
(

x∗) – x∗, xn – x∗〉 = lim
j→∞

〈

h
(

x∗) – x∗, xnj – x∗〉.

Hence, by (.), we obtain

lim sup
n→∞

〈

h
(

x∗) – x∗, xn – x∗〉 =
〈

h
(

x∗) – x∗, z – x∗〉 ≤ .

We finally show that xn → x∗. We have

∥
∥xn+ – x∗∥∥

=
∥
∥αnh(xn) + ( – αn)Vnxn – x∗∥∥

=
∥
∥αn

(

h(xn) – h
(

x∗)) + ( – αn)
(

Vnxn – x∗) + αn
(

h
(

x∗) – x∗)∥∥
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≤ ∥
∥αn

(

h(xn) – h
(

x∗)) + ( – αn)
(

Vnxn – x∗)∥∥ + 
〈

αn
(

h
(

x∗) – x∗), xn+ – x∗〉

≤ αn
∥
∥h(xn) – h

(

x∗)∥∥ + ( – αn)
∥
∥Vnxn – x∗∥∥ + 

〈

αn
(

h
(

x∗) – x∗), xn+ – x∗〉

≤ αnρ
∥∥xn – x∗∥∥ + ( – αn)

∥
∥xn – x∗∥∥ + 

〈

αn
(

h
(

x∗) – x∗), xn+ – x∗〉

≤ (

 – αn
(

 – ρ))∥∥xn – x∗∥∥ + αn
〈

h
(

x∗) – x∗, xn+ – x∗〉.

It then follows that

∥
∥αnh(xn) + ( – αn)Vnxn – x∗∥∥ ≤ (

 – αn
(

 – ρ))∥∥xn – x∗∥∥ + αnδn, (.)

where δn = 〈h(x∗) – x∗, xn+ – x∗〉. Applying Lemma . to the inequality (.), together
with (.), we get xn → x∗ as n → ∞. �

4 An application of proximal algorithm to the lasso and Q-lasso
Take f (x) = 

‖Ax – b‖
 and g(x) = γ ‖x‖, then lasso (.) can be solved by the proximal

algorithms (.). We have ∇f (x) = At(Ax – b), and we show that ∇f is Lipschitz continuous
with constant L = ‖A‖

 as follows:

∥
∥At(Ax – b) – At(Ay – b)

∥
∥

 =
∥
∥AtA(x – y)

∥
∥

 ≤ ‖A‖
‖x – y‖.

Then the proximal algorithm (.) is equivalent to

xn+ = αnh(xn) + ( – αn)
[

proxλnγ ‖·‖

(

I – λnAt(Ax – b)
)]

xn. (.)

Here we have, for α >  and x = (xi)t ∈R
n,

proxα‖·‖ (x) =
(

proxα|·|(x), . . . , proxα|·|(xn)
)t ,

and proxα|·|(β) = sgn(β) max{|β| – α, } for β ∈R.

Theorem . Assume that
(C)  < λn ≤ /‖A‖

;
(C) αn → ;
(C)

∑∞
n= αn = ∞;

(C)
∑∞

n= |αn+ – αn| < ∞;
(C)

∑∞
n= |λn+ – λn| < ∞.

Then the sequence {xn}∞n= generated by (.) converges to a solution x∗ of lasso (.), which
also solves the variational inequality (.).

For Q-lasso (.), we take f (x) = (/)‖(I – PQ)Ax‖
 and g(x) = γ ‖x‖. Since PQ is 

 -
averaged, I – PQ is nonexpansive, so we can show that ∇f (x) = At(I – PQ)Ax is Lipschitz
continuous with constant L = ‖A‖

 as follows:

∥
∥At(I – PQ)Ax – At(I – PQ)Ay

∥
∥



≤ ‖A‖
∥
∥(I – PQ)Ax – (I – PQ)Ay

∥
∥
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≤ ‖A‖‖Ax – Ay‖

≤ ‖A‖
‖x – y‖.

Then the proximal algorithm (.) is reduced to the following algorithm for Q-lasso (.):

xn+ = αnf (xn) + ( – αn)
[

proxλnγ ‖·‖

(

I – λnAt(I – PQ)A
)]

xn. (.)

The convergence of Theorem . reads as follows for Q-lasso (.).

Theorem . Assume that
(C)  < λn ≤ /‖A‖

;
(C) αn → ;
(C)

∑∞
n= αn = ∞;

(C)
∑∞

n= |αn+ – αn| < ∞;
(C)

∑∞
n= |λn+ – λn| < ∞.

Then the sequence {xn}∞n= generated by (.) converges to a solution x∗ of Q-lasso (.),
which is also a solution of the variational inequality (.).

5 Conclusion
. We modify the proximal-gradient algorithm based on the viscosity proximation

method; thus, we obtain strong convergence of results in []. Then we apply our
results to the lasso and the Q-lasso.

. Theorem . proves the continuous version of Theorem ., which is not presented
in [].

. In our main result, we extend the scope of L, that is, the condition in our main
results is weaker than the condition in [] and [].
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