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Abstract
As is well known the proximal iterative method can be used to solve the lasso of
Tibshirani (J. R. Stat. Soc., Ser. B 58:267-288, 1996). In this paper, we first propose a
modified proximal iterative method based on the viscosity approximation method to
obtain strong convergence, then we apply this method to solve the lasso.
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1 Introduction
The lasso of Tibshirani [] is formulated as the minimization problem

min
x∈Rn



‖Ax – b‖

 subject to ‖x‖ ≤ t, (.)

where A is an m × n (real) matrix, b ∈R
m, t ≥  is a tuning parameter. The regularization

minimization problem which is equivalent to (.) is

min
x∈Rn



‖Ax – b‖

 + γ ‖x‖, (.)

where γ >  is a regularization parameter. As the � norm promotes the sparsity phe-
nomenon that occurs in practical problems such as image/signal processing, machine
learning and so on, the lasso has received much attention in recent years.

In fact, both (.) and (.) are equivalent to the basis pursuit (BP) of Chen et al. []:

min
x∈Rn

‖x‖ subject to Ax = b.

So we mathematically study the inverse linear system in R
n:

Ax = b, (.)

where A is an m × n matrix, b ∈ R
m is an input, and x ∈ R

n stands for the image of
interest to be recovered in imaging science. As m � n, the system (.) is underdeter-
mined. Donoho [], Candes, and others [–] pioneered the theory of compressed sensing
showing that under certain conditions the underdetermined system (.) can determine a
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unique k-sparse solution. Then Cipra [] pointed out that the � norm is ideal as it ensures
not only the parsimony of � but also the computation efficiency of � in sparse recovery.

However, the error of measurements always results in an inaccuracy of the system (.):

Ax = b + ε.

In this case, the BP (.) is reformulated as

min
x∈Rn

‖x‖ subject to ‖Ax – b‖ ≤ ε, (.)

where ε >  is the tolerance level of errors and ‖ · ‖ is a norm on R
n. If we let Q := Bε(b) be

the closed ball in R
n around b and with radius of ε, then (.) is rewritten as

min
x∈Rn

‖x‖ subject to Ax ∈ Q. (.)

As Q is a nonempty, closed, and convex subset of Rm, we let PQ be the projection from
R

m onto Q. The condition Ax ∈ Q is equivalent to the condition Ax – PQ(Ax) = , so the
problem (.) can be solved via

min
x∈Rn

‖x‖ subject to (I – PQ)Ax = .

Applying the Lagrange method, we obtain the so-called Q-lasso:

min
x∈Rn



∥
∥(I – PQ)Ax

∥
∥


 + γ ‖x‖, (.)

where γ >  is a Lagrangian multiplier.
The Q-lasso is connected with the split feasibility problem (SFP) of Censor and Elfving

[–]. The SFP is mathematically formulated as the problem of finding a point x with the
property:

x ∈ C and Ax ∈ Q, (.)

where C and Q are nonempty, closed, and convex subset of Rn and R
m, respectively. An

equivalent minimization formulation of the SFP (.) is given as

min
x∈C



‖Ax – PQAx‖

.

The � regularization is given as the minimization problem

min
x∈C



‖Ax – PQAx‖

 + γ ‖x‖, (.)

where γ >  is a regularization parameter. If the constrained set C is taken to be the entire
space R

n, then the problem (.) is equivalent to the problem (.).
Recently, Xu [] exploited the following proximal algorithm:

xn+ =
(

proxλng ◦ (I – λn∇f )
)

xn (.)
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to solve lasso (.), and Alghamdi et al. [] also discussed an iterative algorithm for solving
Q-lasso (.) via a proximal-gradient method. However, their iterative algorithms only
obtain weak convergence.

Recall that Moudafi [] proposed the viscosity iterative method in  as follows:

xn+ = αnf (xn) + ( – αn)Txn, n ≥ , (.)

where f is a contraction on a real Hilbert space, {αn} is a sequence in (, ). In , Xu []
proved that if {αn} satisfies certain conditions, the sequence generated by (.) can con-
verge strongly to a fixed point x∗ of T , which is also the unique solution of the variational
inequality

〈

(I – f )x∗, x – x∗〉 ≥ , for x ∈ Fix(T).

In this paper, based on the viscosity iterative algorithm (.), we propose a modified
formulation of the proximal algorithm (.). It is proved that the algorithm we propose
can obtain strong convergence. Then we also apply this algorithm to solve the lasso and
Q-lasso.

2 Preliminaries
Let H be a Hilbert space and let � be the space of convex functions in H that are proper,
lower semicontinuous, and convex.

Definition . The proximal operator of ϕ ∈ �(H) is defined by

proxϕ(x) = arg min
v∈H

{

ϕ(v) +


‖v – x‖

}

, x ∈ H .

The proximal operator of order λ >  is defined as the proximal operator of λϕ, that is,

proxλϕ(x) = arg min
v∈H

{

ϕ(v) +


λ
‖v – x‖

}

, x ∈ H .

Proposition . Let ϕ ∈ �(H) and λ ∈ (,∞).
(i) proxλϕ is firmly nonexpansive (hence nonexpansive). Recall that a mapping

T : H → H is firmly nonexpansive if

‖Tx – Ty‖ ≤ 〈Tx – Ty, x – y〉, x, y ∈ H .

(ii) proxλϕ = (I + λ∂ϕ)– = J∂ϕ
λ , the resolvent of the subdifferential ∂ϕ of ϕ.

Combettes and Wajs [] shows that the proximal operator proxλϕ can have a closed-
form expression in some important cases, for example, if we take ϕ to be the norm of H ,
then

proxλ‖·‖(x) =

{

( – λ
‖x‖ )x, if ‖x‖ > λ,

, if ‖x‖ ≤ λ.
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In particular, if H = R, then the above operator is reduced to the scalar soft-thresholding
operator:

proxλ|·|(x) = sgn(x) max
{|x| – λ, 

}

.

Lemma . [] The proximal identity

proxλϕ x = proxμϕ

(
μ

λ
x +

(

 –
μ

λ

)

proxλϕ x
)

holds for ϕ ∈ �(H), x ∈ H , λ > , and μ > .

Recall that the function H → H is convex if

f
(

( – λ)x + λy
) ≤ ( – λ)f (x) + λf (y)

for all λ ∈ (, ) and x, y ∈ H . (Note that we consider finite-valued functions.)
The subdifferential of a convex function f is defined as the operator ∂f given by

∂f (x) =
{

ξ ∈ H : f (y) ≥ f (x) + 〈ξ , y – x〉, y ∈ H
}

. (.)

The inequality in (.) is referred to as the subdifferential inequality of f at x. We say that f
is subdifferentiable at x if ∂f (x) is nonempty. We know that for an everywhere finite-valued
convex function f on H , f is everywhere subdifferentiable.

Example
(i) If f (x) = |x| for x ∈R, then ∂f () = [–, ];

(ii) if f (x) = ‖x‖, for x ∈R
n, then ∂f (x) is given componentwise by

(

∂f (x)
)

j =

{

sgn(xj), if xj �= ,
ξj ∈ [–, ], if xj = ,

for  ≤ j ≤ n.
Consider the unconstrained minimization problem:

min
x∈H

f (x). (.)

Proposition . Let f be everywhere finite-valued convex on H and z ∈ H . Support f is
bounded below (i.e., inf{f (x) : x ∈ H} > –∞). Then z is a solution to minimization (.) if
and only if it satisfies the first-order optimality condition:

 ∈ ∂f (z).

Lemma . [] Assume that {an}∞n= is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn + βn, n ≥ ,

where {γn}∞n= and {βn}∞n= are sequence in (, ) and {δn}∞n= is a sequence in R such that
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(i)
∑∞

n= γn = ∞;
(ii) either lim supn→∞ δn ≤  or

∑∞
n= γn|δn| < ∞;

(iii)
∑∞

n= βn < ∞.
Then limn→∞ an = .

Lemma . Let H be a Hilbert space, then, for all x, y ∈ H , we have the inequality

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉.

Lemma . [] Let H be a Hilbert space, C a closed convex subset of H , and T : C → C a
nonexpansive mapping with Fix(T) �= ∅. If {xn}∞n= is a sequence in C weakly converging to
x and if {(I – T)xn}∞n= converges strongly to y, then (I – T)x = y. In particular, if y = , then
x ∈ Fix(T).

Lemma . [] Let H be a Hilbert space, h : H → H a contraction with coefficient
 < ρ < . Then

〈

x – y, (I – h)x – (I – h)y
〉 ≥ ( – ρ)‖x – y‖, x, y ∈ H .

That is, I – h is strong monotone with coefficient  – ρ .

We will use the notation ⇀ for weak convergence and → for strong convergence.

3 Strong convergence of proximal algorithms
Let H be a real Hilbert space and let � be the space of convex functions in H that are
proper, lower semicontinuous, and convex. Consider the following minimization problem:

min
x∈H

f (x) + g(x), (.)

where f , g ∈ �(H).

Proposition . [] Let f , g ∈ �(H). Let x∗ ∈ H and λ > . Assume that f is finite-valued
and differentiable on H . Then x∗ is a solution to (.) if and only if x∗ solves the fixed point
equation:

x∗ =
(

proxλg ◦ (I – λ∇f )
)

x∗.

Consider a mapping St on H defined by

St(x) = th(x) + ( – t)
(

proxλg ◦ (I – λt∇f )
)

x, (.)

where h is a contraction with the coefficient  < ρ < , t ∈ (, ),  < λt ≤ 
L . Assume that

∇f is L-Lipschitzian.

Proposition . The mapping proxλtg ◦ (I – λt∇f ) is nonexpansive.
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Proof We show it in two cases.
Case : As λt = 

L , we have

∥
∥(I – λt∇f )x – (I – λt∇f )y

∥
∥



=
∥
∥
∥
∥

(

I –

L

∇f
)

x –
(

I –

L

∇f
)

y
∥
∥
∥
∥



=
〈

x – y –

L

(∇f (x) – ∇f (y)
)

, x – y –

L

(∇f (x) – ∇f (y)
)
〉

= ‖x – y‖ +

L

∥
∥∇f (x) – ∇f (y)

∥
∥

 –

L

〈

x – y,∇f (x) – ∇f (y)
〉

–

L

〈∇f (x) – ∇f (y), x – y
〉

≤ ‖x – y‖ +

L

∥
∥∇f (x) – ∇f (y)

∥
∥

 –

L

· 
L

∥
∥∇f (x) – ∇f (y)

∥
∥



–

L

· 
L

∥
∥∇f (x) – ∇f (y)

∥
∥



≤ ‖x – y‖.

Hence,

∥
∥(I – λt)∇f (x) – (I – λt)∇f (y)

∥
∥ ≤ ‖x – y‖.

As the mapping proxλt is nonexpansive, we get

∥
∥
(

proxλtg ◦ (I – λt∇f )
)

x –
(

proxλtg ◦ (I – λt∇f )
)

y
∥
∥

≤ ∥
∥(I – λt)∇f (x) – (I – λt)∇f (y)

∥
∥

≤ ‖x – y‖.

Case :  < λt < 
L . We follow the proof of []. Since ∇f is L-Lipschitzian, ∇f is (/L)-ism

[], which then implies that λt∇f is (/λtL)-ism. So I – λt∇f is (λtL/)-averaged. Since
the proximal mapping proxλt g is (/)-averaged, the composite proxλt g ◦ (I – λt)∇f is (( +
λtL)/)-averaged for  < λt < /L, so the mapping proxλtg ◦ (I – λt)∇f is nonexpansive. �

By Proposition . it is not hard to see that St is a contraction on H . For x, y ∈ H , we
have

∥
∥St(x) – St(y)

∥
∥

=
∥
∥t

[

h(x) – h(y)
]

+ ( – t)
[(

proxλt g ◦ (I – λt∇f )
)

x –
(

proxλt g ◦ (I – λt∇f )
)

y
]∥
∥

≤ tρ‖x – y‖ + ( – t)‖x – y‖
=

(

 – t( – ρ)
)‖x – y‖.

Hence, St has a unique point, we denote it by xt . Thus xt is the unique solution of the fixed
point equation

xt = th(xt) + ( – t)
(

proxλt g ◦ (I – λt∇f )
)

xt . (.)
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We will use the following notation in Proposition . and Theorem .:

Vt = Vλt = proxλtg ◦ (I – λt∇f );

V = Vλ = proxλg ◦ (I – λ∇f ).

The properties of Vt and V are helpful for the following proof [].

Proposition . Assume that (.) is consistent, and let S denote its solution set. Assume
that λt is continuous with respect to t. Since  < λt ≤ /L, we assume that λtj → λ (tj → )
and that λ > . Let xt be defined by (.), we have

(i) {xt} is bounded for t ∈ (, );
(ii) limt→ ‖xt – (proxλg ◦ (I – λ∇f ))xt‖ = ;

(iii) xt defines a continuous curve from (, ) into H .

Proof (i) Take a p ∈ S, then we have p ∈ Fix(V ), and

‖xt – p‖
=

∥
∥th(xt) + ( – t)Vtxt – p

∥
∥

≤ ( – t)‖Vtxt – p‖ + t
∥
∥h(xt) – p

∥
∥

= ( – t)‖Vtxt – Vtp‖ + t
∥
∥h(xt) – p

∥
∥

≤ ( – t)‖xt – p‖ + t
∥
∥h(xt) – p

∥
∥.

It follows that

‖xt – p‖
≤ ∥

∥h(xt) – p
∥
∥

≤ ∥
∥h(xt) – h(p)

∥
∥ +

∥
∥h(p) – p

∥
∥

≤ ρ‖xt – p‖ +
∥
∥h(p) – p

∥
∥.

Hence, ‖xt – p‖ ≤ 
–ρ

‖h(p) – p‖, and {xt} is bounded, so are {proxλg ◦ (I – λ∇f )xt} and
{h(xt)}.

(ii) By the definition of {xt}, we have, for any {tj} → ,

∥
∥xtj –

(

proxλg ◦ (I – λ∇f )
)

xtj

∥
∥

=
∥
∥tjh(xtj ) + ( – tj)Vtj xtj – Vxtj

∥
∥

≤ tj
∥
∥h(xtj ) – Vtj xtj

∥
∥ + ‖Vtj xtj – Vxtj‖

and

‖Vtj xtj – Vxtj‖
=

∥
∥
(

proxλtj g ◦ (I – λtj∇f )
)

xtj –
(

proxλg ◦ (I – λ∇f )
)

xtj

∥
∥
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=
∥
∥
∥
∥

(

proxλg

(
λ

λtj

(I – λtj∇f )
)

xtj +
(

 –
λ

λtj

)
(

proxλtj g ◦ (I – λtj∇f )
)

xtj

)

–
(

proxλg ◦ (I – λ∇f )
)

xtj

∥
∥
∥
∥

≤
∥
∥
∥
∥

λ

λtj

(I – λtj∇f )xtj +
(

 –
λ

λtj

)
(

proxλtj g ◦ (I – λtj∇f )
)

xtj – (I – λ∇f )xtj

∥
∥
∥
∥

=
∥
∥
∥
∥

(
λ

λtj

– 
)

xtj +
(

 –
λ

λtj

)
(

proxλtj g ◦ (I – λtj∇f )
)

xtj

∥
∥
∥
∥

=
∣
∣
∣
∣
 –

λ

λtj

∣
∣
∣
∣
· ‖xtj – Vtj xtj‖.

Then we obtain

∥
∥xtj – proxλg(I – λ∇f )xtj

∥
∥ ≤ tj

∥
∥h(xtj ) – Vtj xtj

∥
∥ +

∣
∣
∣
∣
 –

λ

λtj

∣
∣
∣
∣
· ‖xtj – Vtj xtj‖. (.)

Since {xt}, {h(xt)}, and {Vtxt} are bounded, and λtj → λ (tj → ), we can obtain by (.)
that

lim
tj→

∥
∥xtj – proxλg ◦ (I – λ∇f )xtj

∥
∥ = .

By the arbitrariness of tj, we get

lim
t→

∥
∥xt – proxλg ◦ (I – λ∇f )xt

∥
∥ = .

(iii) For any given t, t ∈ (, ),

‖xt – xt‖
=

∥
∥th(xt) + ( – t)Vtxt – th(xt ) – ( – t)Vt xt

∥
∥

≤ ∥
∥(t – t)h(xt) + t

(

h(xt) – h(xt )
)∥
∥

+
∥
∥( – t)Vt xt – ( – t)Vt xt + ( – t)Vtxt – ( – t)Vt xt

∥
∥

≤ |t – t| ·
∥
∥h(xt)

∥
∥ + tρ‖xt – xt‖ + ( – t)‖xt – xt‖

+ ‖Vtxt – Vt xt‖ + ‖tVtxt – tVt xt‖

≤ |t – t| ·
∥
∥h(xt)

∥
∥ + tρ‖xt – xt‖ + ( – t)‖xt – xt‖ +

∣
∣
∣
∣
 –

λt

λt

∣
∣
∣
∣
· ‖xt – Vtxt‖

+ ‖tVtxt – tVt xt‖ + ‖tVtxt – tVtxt‖

≤ (

 – t( – ρ)
)‖xt – xt‖ + (t + )

∣
∣
∣
∣
 –

λt

λt

∣
∣
∣
∣
· ‖xt – Vtxt‖

+ |t – t|
(∥
∥h(xt)

∥
∥ + ‖Vtxt‖

)

.

Hence,

‖xt – xt‖ ≤ (‖h(xt)‖ + ‖Vtxt‖)
t( – ρ)

|t – t| +
(t + )

t( – ρ)

∣
∣
∣
∣
 –

λt

λt

∣
∣
∣
∣
· ‖xt – Vtxt‖. (.)
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Since λt is continuous with respect to t, we can obtain by (.) that xt → xt as t → t, that
is, {xt} defines a continuous curve from (, ) into H . �

Theorem . Let {xt} be defined by (.). Assume that the minimization problem (.) is
consistent, and let S denote its solution set. Assume that limt→ λt = λ >  and that λt is
continuous with respect to t. Assume that ∇f is L-Lipschitzian. Then xt converges as t → 
to a solution x∗ of (.), which also solves the variational inequality

〈

(I – h)x∗, x̃ – x∗〉 ≥ , x̃ ∈ S. (.)

Proof By Lemma . we know that I – h is strongly monotone, so the variational inequality
(.) has only one solution. Below we use x∗ ∈ S to denote the unique solution of (.).

To prove that xt → x∗ (t → ), we write, for a given x̃ ∈ S,

xt – x̃ = th(xt) + ( – t)Vtxt – x̃ = t
(

h(xt) – x̃
)

+ ( – t)(Vtxt – x̃);

‖xt – x̃‖

= 〈xt – x̃, xt – x̃〉
= ( – t)〈Vtxt – x̃, xt – x̃〉 + t

〈

h(xt) – x̃, xt – x̃
〉

≤ ( – t)‖xt – x̃‖ + t
〈

h(xt) – h(x̃), xt – x̃
〉

+ t
〈

h(x̃) – x̃, xt – x̃
〉

≤ (

 – t( – ρ)
)‖xt – x̃‖ + t

〈

h(x̃) – x̃, xt – x̃
〉

.

Hence,

‖xt – x̃‖ ≤ 〈h(x̃) – x̃, xt – x̃〉
 – ρ

. (.)

Since {xt} is bounded as t → , it is obvious that if {tj} is a sequence in (, ) such that tj → 
(j → ∞) and xtj ⇀ x̄, then by (.) we get xtj → x̄. Since  < λt ≤ 

L , we may assume that
λtj → λ ∈ (, 

L ] and that λ > , then by the proof of Proposition . we see that proxλg(I –
λ∇f ) is also nonexpansive. Applying Lemma . and Proposition .(ii), we get x̄ ∈ S.

Next, we show that x̄ ∈ S solves the variational inequality (.). Indeed, we notice that
xt solves the fixed point equation

xt = th(xt) + ( – t)
(

proxλt g ◦ (I – λt∇f )
)

xt ,

h(xt) =

t
[

xt – ( – t)Vtxt
]

,

(I – h)xt = –
 – t

t
(I – Vt)xt .

Since Vt is nonexpansive, I – Vt is monotone, so for any x̃ ∈ S,

〈

(I – h)xt , xt – x̃
〉

= –
 – t

t
〈

(I – Vt)xt , xt – x̃
〉

= –
 – t

t
〈

(I – Vt)xt – (I – Vt)x̃, xt – x̃
〉

–
 – t

t
〈

(I – Vt)x̃, xt – x̃
〉
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≤ –
 – t

t
〈

(I – Vt)x̃, xt – x̃
〉

= .

Taking the limit through t = tn → , we obtain

〈

(I – h)x̄, x̄ – x̃
〉 ≤ .

Therefore x̄ = x∗ by uniqueness. �

Initialize x ∈ H and iterate

xn+ = αnh(xn) + ( – αn)
(

proxλng ◦ (I – λn∇f )
)

xn, (.)

where {αn} is a sequence in (, ),  < λn ≤ 
L , lim infn→∞ λn > , and h : H → H is a con-

traction with the coefficient  < ρ < .

Theorem . Let f , g ∈ �(H). Assume that the minimization problem (.) is consistent
and let S denote its solution set. Assume in addition that

(C) ∇f is L-Lipschitzian on H ;
(C) αn → ;
(C)

∑∞
n= αn = ∞;

(C)
∑∞

n= |αn+ – αn| < ∞;
(C)

∑∞
n= |λn+ – λn| < ∞.

Then the sequence {xn}∞n= generated by (.) converges to x∗ as defined in Theorem ..

Proof Putting

Vn = Vλn = proxλng ◦ (I – λn∇f );

V = Vλ = proxλg ◦ (I – λ∇f ).

We then get xn+ = αnh(xn) + ( – αn)Vnxn.
First we show that the sequence {xn}∞n= is bounded. Indeed, we have, for x̄ ∈ S,

‖xn+ – x̄‖
=

∥
∥αnh(xn) + ( – αn)Vnxn – x̄

∥
∥

=
∥
∥αn

(

h(xn) – h(x̄)
)

+ αn
(

h(x̄) – x̄
)

+ ( – αn)(Vnxn – x̄)
∥
∥

≤ αnρ‖xn – x̄‖ + αn
∥
∥h(x̄) – x̄

∥
∥ + ( – αn)‖xn – x̄‖

=
(

 – αn( – ρ)
)‖xn – x̄‖ + αn

∥
∥h(x̄) – x̄

∥
∥

≤ max
{‖xn – x̄‖,

∥
∥h(x̄) – x̄

∥
∥/( – ρ)

}

.

So, an induction argument shows that

‖xn – x̄‖ ≤ max
{‖x – x̄‖,

∥
∥h(x̄) – x̄

∥
∥/( – ρ)

}

, n ≥ .
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We next prove that ‖xn+ – xn‖ →  as n → ∞. For the sake of simplicity, we assume
that  < a ≤ λn ≤ b ≤ 

L .
We compute

‖xn+ – xn‖
=

∥
∥αnh(xn) + ( – αn)Vnxn – αn–h(xn–) – ( – αn–)Vn–xn–

∥
∥

≤ ∥
∥αn

[

h(xn) – h(xn–)
]

+
[

αnh(xn–) – αn–h(xn–)
]∥
∥

+
∥
∥( – αn)(Vnxn – Vnxn–) + ( – αn)Vnxn– – ( – αn–)Vn–xn–

∥
∥

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥
∥h(xn–)

∥
∥ + ( – αn)‖xn – xn–‖

+ ( – αn)‖Vnxn– – Vn–xn–‖ + ‖αnVn–xn– – αn–Vn–xn–‖
≤ (

 – αn( – ρ)
)‖xn – xn–‖ + |αn – αn–|

(∥
∥h(xn–)

∥
∥ + ‖Vn–xn–‖

)

+ ‖Vnxn– – Vn–xn–‖

and

‖Vnxn– – Vn–xn–‖ ≤
∣
∣
∣
∣
 –

λn

λn–

∣
∣
∣
∣
· ‖xn– – Vnxn–‖

≤ |λn – λn–|
a

‖xn– – Vnxn–‖,

so we obtain

‖xn+ – xn‖ ≤ (

 – αn( – ρ)
)‖xn – xn–‖ + M

(|αn – αn–| + |λn – λn–|
)

, (.)

where M ≤ max{‖h(xn–)‖ + ‖Vn–xn–‖,‖xn– – Vnxn–‖/a}. By assumptions (C)-(C)
in the theorem, we have

∑∞
n= αn = ∞, and

∑∞
n=(|αn – αn–| + |λn – λn–|) < ∞. Hence,

Lemma . is applicable to (.) and we conclude that ‖xn+ – xn‖ → .
Since {xn} is bounded, there exists a subsequence {xnj} such that xnj ⇀ z; below we will

prove that z ∈ S. Since  < λn ≤ 
L , we may assume that λnj → λ. We have

∥
∥xnj – proxλg ◦ (I – λ∇f )xnj

∥
∥ ≤ ‖xnj – xnj+‖ +

∥
∥xnj+ – proxλg ◦ (I – λ∇f )xnj

∥
∥. (.)

We compute

∥
∥xnj+ – proxλg ◦ (I – λ∇f )xnj

∥
∥

=
∥
∥αnj h(xnj ) + ( – αnj )

(

proxλnj g ◦ (I – λnj∇f )
)

xnj – proxλg ◦ (I – λ∇f )xnj

∥
∥

≤ αnj

∥
∥h(xnj ) – Vxnj

∥
∥ + ( – αnj )‖Vnj xnj – Vxnj‖

and

‖Vnj xnj – Vxnj‖
=

∥
∥proxλnj g ◦ (I – λnj∇f )xnj – proxλg ◦ (I – λ∇f )xnj

∥
∥
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≤
∥
∥
∥
∥

λ

λnj

(I – λnj∇f )xnj +
(

 –
λ

λnj

)
(

proxλnj g ◦ (I – λnj∇f )
)

xnj – (I – λ∇f )xnj

∥
∥
∥
∥

=
∥
∥
∥
∥

(
λ

λnj

– 
)

xnj +
(

 –
λ

λnj

)

proxλnj g(I – λnj∇f )xnj

∥
∥
∥
∥

=
∣
∣
∣
∣
 –

λ

λnj

∣
∣
∣
∣
· ‖xnj – Vnj xnj‖

≤ |λnj – λ| ‖xnj – Vnj xnj‖
a

.

So we obtain

∥
∥xnj+ – proxλg ◦ (I – λ∇f )xnj

∥
∥

≤ αnj

∥
∥h(xnj ) – Vxnj

∥
∥ + ( – αnj )|λnj – λ| ‖xnj – Vnj xnj‖

a
. (.)

Combining (.) and (.) we get

∥
∥xnj –

(

proxλg ◦ (I – λ∇f )
)

xnj

∥
∥

≤ ‖xnj – xnj+‖ + αnj

∥
∥h(xnj ) – Vxnj

∥
∥ + ( – αnj )|λnj – λ| ‖xnj – Vnj xnj‖

a
. (.)

Since λnj → λ, and αn → , by (.) we get

∥
∥xnj –

(

proxλg ◦ (I – λ∇f )
)

xnj

∥
∥ → . (.)

By the proof of Theorem . we know that proxλg ◦ (I – λ∇f ) is nonexpansive. It follows
from Lemma . and (.) that z ∈ S.

We next show that

lim sup
n→∞

〈

h
(

x∗) – x∗, xn – x∗〉 ≤ , (.)

where x∗ is obtained in Theorem .. Indeed, replacing n with nj in (.), and letting
j → ∞, we have

lim sup
n→∞

〈

h
(

x∗) – x∗, xn – x∗〉 = lim
j→∞

〈

h
(

x∗) – x∗, xnj – x∗〉.

Hence, by (.), we obtain

lim sup
n→∞

〈

h
(

x∗) – x∗, xn – x∗〉 =
〈

h
(

x∗) – x∗, z – x∗〉 ≤ .

We finally show that xn → x∗. We have

∥
∥xn+ – x∗∥∥

=
∥
∥αnh(xn) + ( – αn)Vnxn – x∗∥∥

=
∥
∥αn

(

h(xn) – h
(

x∗)) + ( – αn)
(

Vnxn – x∗) + αn
(

h
(

x∗) – x∗)∥∥
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≤ ∥
∥αn

(

h(xn) – h
(

x∗)) + ( – αn)
(

Vnxn – x∗)∥∥ + 
〈

αn
(

h
(

x∗) – x∗), xn+ – x∗〉

≤ αn
∥
∥h(xn) – h

(

x∗)∥∥ + ( – αn)
∥
∥Vnxn – x∗∥∥ + 

〈

αn
(

h
(

x∗) – x∗), xn+ – x∗〉

≤ αnρ
∥∥xn – x∗∥∥ + ( – αn)

∥
∥xn – x∗∥∥ + 

〈

αn
(

h
(

x∗) – x∗), xn+ – x∗〉

≤ (

 – αn
(

 – ρ))∥∥xn – x∗∥∥ + αn
〈

h
(

x∗) – x∗, xn+ – x∗〉.

It then follows that

∥
∥αnh(xn) + ( – αn)Vnxn – x∗∥∥ ≤ (

 – αn
(

 – ρ))∥∥xn – x∗∥∥ + αnδn, (.)

where δn = 〈h(x∗) – x∗, xn+ – x∗〉. Applying Lemma . to the inequality (.), together
with (.), we get xn → x∗ as n → ∞. �

4 An application of proximal algorithm to the lasso and Q-lasso
Take f (x) = 

‖Ax – b‖
 and g(x) = γ ‖x‖, then lasso (.) can be solved by the proximal

algorithms (.). We have ∇f (x) = At(Ax – b), and we show that ∇f is Lipschitz continuous
with constant L = ‖A‖

 as follows:

∥
∥At(Ax – b) – At(Ay – b)

∥
∥

 =
∥
∥AtA(x – y)

∥
∥

 ≤ ‖A‖
‖x – y‖.

Then the proximal algorithm (.) is equivalent to

xn+ = αnh(xn) + ( – αn)
[

proxλnγ ‖·‖

(

I – λnAt(Ax – b)
)]

xn. (.)

Here we have, for α >  and x = (xi)t ∈R
n,

proxα‖·‖ (x) =
(

proxα|·|(x), . . . , proxα|·|(xn)
)t ,

and proxα|·|(β) = sgn(β) max{|β| – α, } for β ∈R.

Theorem . Assume that
(C)  < λn ≤ /‖A‖

;
(C) αn → ;
(C)

∑∞
n= αn = ∞;

(C)
∑∞

n= |αn+ – αn| < ∞;
(C)

∑∞
n= |λn+ – λn| < ∞.

Then the sequence {xn}∞n= generated by (.) converges to a solution x∗ of lasso (.), which
also solves the variational inequality (.).

For Q-lasso (.), we take f (x) = (/)‖(I – PQ)Ax‖
 and g(x) = γ ‖x‖. Since PQ is 

 -
averaged, I – PQ is nonexpansive, so we can show that ∇f (x) = At(I – PQ)Ax is Lipschitz
continuous with constant L = ‖A‖

 as follows:

∥
∥At(I – PQ)Ax – At(I – PQ)Ay

∥
∥



≤ ‖A‖
∥
∥(I – PQ)Ax – (I – PQ)Ay

∥
∥


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≤ ‖A‖‖Ax – Ay‖

≤ ‖A‖
‖x – y‖.

Then the proximal algorithm (.) is reduced to the following algorithm for Q-lasso (.):

xn+ = αnf (xn) + ( – αn)
[

proxλnγ ‖·‖

(

I – λnAt(I – PQ)A
)]

xn. (.)

The convergence of Theorem . reads as follows for Q-lasso (.).

Theorem . Assume that
(C)  < λn ≤ /‖A‖

;
(C) αn → ;
(C)

∑∞
n= αn = ∞;

(C)
∑∞

n= |αn+ – αn| < ∞;
(C)

∑∞
n= |λn+ – λn| < ∞.

Then the sequence {xn}∞n= generated by (.) converges to a solution x∗ of Q-lasso (.),
which is also a solution of the variational inequality (.).

5 Conclusion
. We modify the proximal-gradient algorithm based on the viscosity proximation

method; thus, we obtain strong convergence of results in []. Then we apply our
results to the lasso and the Q-lasso.

. Theorem . proves the continuous version of Theorem ., which is not presented
in [].

. In our main result, we extend the scope of L, that is, the condition in our main
results is weaker than the condition in [] and [].
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