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Abstract

Background: The high error rate of next generation sequencing (NGS) restricts some of its applications, such as
monitoring virus mutations and detecting rare mutations in tumors. There are two commonly employed sequencing
library preparation strategies to improve sequencing accuracy by correcting sequencing errors: read-pairing method
and tag-clustering method (i.e. primer ID or UID). Here, we constructed a homogeneous library from a single clone,
and compared the variant calling accuracy of these error-correction methods.

Result: We comprehensively described the strengths and pitfalls of these methods. We found that both read-pairing
and tag-clustering methods significantly decreased sequencing error rate. While the read-pairing method was more
effective than the tag-clustering method at correcting insertion and deletion errors, it was not as effective as the
tag-clustering method at correcting substitution errors. In addition, we observed that when the read quality was poor,
the tag-clustering method led to huge coverage loss. We also tested the effect of applying quality score filtering to
the error-correction methods and demonstrated that quality score filtering was able to impose a minor, yet
statistically significant improvement to the error-correction methods tested in this study.

Conclusion: Our study provides a benchmark for researchers to select suitable error-correction methods based on
the goal of the experiment by balancing the trade-off between sequencing cost (i.e. sequencing coverage
requirement) and detection sensitivity.
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Background
Next-generation sequencing is being widely used in
biomedical research. Several sequencing technologies,
such as chained ligation (SOLiD), pyrosequencing
(454), reversible dye (Illumina), fluorescent nucleotides
(PacBio), and ion semiconductor (Ion Torrent) have been
developed and commercialized. While different tech-
nologies have their own features (e.g. long read-length for
PacBio and high output for Illumina), high sequencing
error rate is a common problem for all existing next
generation sequencing platforms. The high error rate
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significantly impedes the application of these technolo-
gies to detect rare variants in genetically heterogeneous
populations.
To resolve the problems associated with the high error

rate, experimental methods have been developed for dis-
tinguishing real mutations from sequencing errors. One
such method is to take advantage of the paired-end fea-
ture of Illumina sequencing by removing the inconsistent
forward and reverse read pairs [1–5]. Another common
approach is to use nucleotide tags [6–12]. Although vari-
ations of sequencing library prepration method using
nucleotide tags have been proposed, the underlying phi-
losophy is the same. Briefly, a highly heterogeneous
pool of random oligonucleotides (also known as tags or
Primer IDs) is assigned to the individual nucleic acid
molecules to label the original template copy. Subse-
quently, the same tag would be observed in different reads.

© 2016 Zhang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194702201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2388-9-x&domain=pdf
mailto: rsun@mednet.ucla.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Zhang et al. BMC Genomics  (2016) 17:108 Page 2 of 9

This can be considered as resampling of the same orig-
inal DNA template. By comparing the sequence reads
that share the same tag, a corrected consensus sequence
can be generated, and stochastic sequencing errors can
be distinguished from real mutations. Recently, another
innovative approach, known as circle sequencing [13], has
been developed. With a similar design to tag-clustering
methods, circle sequencing allows each DNA template to
be read multiple times on a single read. These sequencing
error-correction methods have been successfully applied
to detect rare mutations in heterogeneous cancer tis-
sues [14], mixed microbe populations [15], and viral
quasispecies [10].
In this study, a highly uniform plasmid template from

a single bacteria clone was sequenced. We applied the
read-pairing correction method, as well as tag-clustering
correction method to the same template. We systemati-
cally compared the error profiles and sequencing coverage
of different methods to describe the pros and cons of each
strategy.

Results
Experimental design
To compare the efficiency of different error-correction
methods, the sequencing library was prepared from a
clonal plasmid carrying the protein G antibody interacting

domain (Fig. 1). An 88 bp region of this domain was
amplified through PCR. The sequence is shown in
Additional file 1: Figure S1. The length of the target region
in this study was similar to the read-length being used in
amplicon-based deep sequencing cancer studies [16, 17].
The target region contained 54.5% GCs. In comparison,
the average GC content of human genes ranges from 34%
to 66% [18]. Therefore, the properties of the target region
in this study resembled that of the sequences of interest in
other applications.
The target region was first amplified by PCR. A tag,

comprising eight random nucleotides “N”, was included
in both forward and reverse primers. Thus, a total of 16
random nucleotides were present in the resultant PCR
product. The complexity of the tags was∼4×109 per sam-
ple. Around 6×106 tagged molecules were then amplified
to generate identical copies of each tagged molecule.
The product from this second PCR was subjected to
deep sequencing on the Illumina HiSeq 2500 platform. In
this study, two technical replicates from the same clone
were included. We were expecting ∼5 copies per tagged
molecule to be sequenced, with ∼30 million sequenc-
ing reads in total. This experimental design allowed us
to perform two independent error-correction approaches,
namely read-pairing consensus and tag-clustering con-
sensus. Read-pairing consensus, which was based on the

Fig. 1 Schematic representation of the experimental design. To compare the efficiency of different error-correction methods, we generated the
sequencing library in the following steps. Step 1: Linking tags to the templates. Step 2: Amplifying templates with paired end sequencing adapter.
Step 3: Sequencing the library on Illumina Hiseq platform. After sequencing, we compared the efficiency of different error-correction methods.
Paired-end consensus was to filter out the pairs of reads that were not identical. Tag consensus was to filter out groups of reads that were with same
tags but not identical. Combined consensus used both methods for filtering. The real low frequency variants are indicated as yellow dots. And the
sequencing errors are indicated as pink dots
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sequence identities of the forward and reverse reads, was
used to filter out read pairs that were unmatched. Tag-
clustering consensus was 1) to group the reads by the
tag sequence, and 2) to filter out groups that carried
reads with different sequence identities. Based on these
two error-correction approaches, we compared the results
from four types of analyses: Scheme 1: Raw reads; Scheme
2: Read-pairing consensus; Scheme 3: Tag-clustering con-
sensus; Scheme 4: Combined consensus (read-pairing
consensus, followed with tag-clustering consensus).

Error rate profiling
In this study, sequencing errors were categorized into four
types namely transition (A↔G and C↔T), transversion
(A↔C, A↔T, G↔C, and G↔T), insertion and deletion.
In the raw sequencing data, all four error types were

identified. They distributed with a peak at 10−4 per nt
and a long tail to 10−2 per nt (Fig. 2a, Scheme 1 forward
and reverse). The error rate was not normally distributed
(Additional file 2: Figure S2, p< 2.2 × 10−16, Shapiro-
Wilk normality test). The transition rate had a median
of 3.3× 10−4 per nt and a mean of 1.5× 10−3 per nt.
The transversion rate had a median of 5.7× 10−4 per
nt and a mean of 3.1× 10−3 per nt, which was ∼2-fold

higher than transition rate. The rates of insertion and
deletion errors were not normally distributed either. The
rates of insertions and deletions were 10-fold lower than
that of substitutions (i.e. transition and transversion),
confirming that the insertion and deletion errors in Illu-
mina platform were relatively low [19]. The insertion
rate had a median of 3.2 × 10−5 per nt and a mean
of 2.9 × 10−4 per nt, while the deletion rate had a
median of 1.3 × 10−4 pert nt and a mean of 5.3 × 10−4

per nt.
All error-correction schemes improved the sequenc-

ing results significantly. But different schemes showed
different advantages for correcting different error types
(Fig. 2a). Read-pairing consensus (Scheme 2) signifi-
cantly reduced insertion and deletion rates by ∼100-fold
(p= 9.6×10−60, Wilcoxon signed-rank test). In contrast,
transition and transversion rates were only reduced by no
more than 10-fold (p= 2.0× 10−59, Wilcoxon signed-rank
test). Tag-clustering consensus (Scheme 3) reduced sub-
stitution error rates ∼20 fold (p= 3.9× 10−58, Wilcoxon
signed-rank test), but the decrease in insertion and dele-
tion rates was only significant at the middle region of the
sequencing reads (p= 9.6×10−60, Wilcoxon signed-rank
test).

a b

Fig. 2 Error rates in different error-correction methods. a Detailed profiling of error rate on every nucleotides. Every dot represents the observed error
rate on a certain nucleotide. Blue, green, orange and purple represents transition, transversion, insertion and deletion, respectively. The dashed lines
represent the value of local regression. Blue arrows indicate some high rate errors. Red arrows indicate a highly possible real mutation. Two technical
replicates are plotted on the same subgraph. b Barplot of medians of different error-correction schemes. The labels, ec1f, ec1r, ec2, ec3f, ec3r, and
ec4 represent Scheme 1 forward reads, Scheme 1 reverse reads, Scheme 2, Scheme 3 forward reads, Scheme 3 reverse read, Scheme 4, respectively
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Read-pairing consensus showed significantly lower
insertion and deletion rates than tag-clustering consensus
(p= 8.0× 10−53, Wilcoxon signed-rank test), while
transition and transversion rates were lower in tag-
clustering consensus than that in read-pairing consensus
(p= 2.4× 10−12, Wilcoxon signed-rank test). Combined
consensus performed the best for both substitution
rates (p= 1.5× 10−38, Wilcoxon signed-rank test) and
insertion and deletion rates (p= 2.9× 10−25, Wilcoxon
signed-rank test). The medians for all four categories of
errors in different analysis scheme were shown in Fig. 2b.
In conclusion, the tag-clustering correction method was
very effective for substitution errors, but not for insertion
and deletion errors. In contrast, the read-pairing method
was very effective for insertion and deletion errors, but
not for substitution errors.
In the unfiltered dataset, the error rate of reverse

reads was ∼3 times higher than that of forward reads
(p= 1.0× 10−91, Wilcoxon signed-rank test). This is likely
due to a lower quality of reverse reads, which resulted
from oxidation during the sequencing run [20]. Notably,
there were some high rate errors in the reverse reads,
marked as blue arrows in Fig. 2a. At position 57, the
transversion error rate was as high as 12.4%. In the
raw sequencing reads, this position often displayed as
‘N’, which resulted from poor base-calling quality during
the sequencing run. After tag-clustering correction, this
error was significantly decreased, but was still at 3.4%.
Although our analysis showed that tag-clustering con-
sensus performed better than read-pairing consensus in
handling substitution errors, this advantage was not seen
in this particular case, which implied the low robust-
ness of tag-clustering method. In conclusion, high quality
reads are necessary for avoiding erroneous results from
tag-clustering scheme and achieving effective information
utilization.
Notably, there were some real mutations in the tem-

plates that may arise from potential sources, including
mutation accumulation during bacteria clonal forma-
tion, PCR procedures, and cross contamination of single
mutant samples. Those mutations were buried in the
unfiltered dataset but were easily identified after error
correction, as indicated by the red arrows in Fig. 2a. The
frequencies of real mutations did not change significantly
before and after error-correction. This result showed the
necessity of error-correction methods for detecting low
frequency variants.

Reproducibility
To confirm the reproducibility of our result, we com-
pared two technical replicates from the same template. All
four categories of errors were highly correlated between
the technical replicates (Fig. 3a). The high correlation
between the error profiles of the raw data implied a

sequence-specific error pattern for Illumina sequencing
platform [21]. This correlation remained high after error-
correction, suggesting that the error-correction methods
retained the sequence-specific error patterns.
The prevalence of sequence-specific errors was also

evident in the correlation between the forward reads
and reverse reads (Fig. 3b). Even for the exact same
batch of templates, error patterns between forward reads
and reverse reads differed dramatically, as shown by the
low correction coefficient. The correlation remained low
after tag correction, implying its weakness at correcting
sequence-specific errors.
To further examine the error reproducibility, we did

a linear regression for the different schemes (Additional
file 3: Figure S3). We used the results from the com-
bined consensus to approximate the true mutation rates.
According to the previous conclusion, the rates of real
mutations remain similar after error-correction, which
mapped on the diagonal lines of Additional file 3: Figure
S3a. But the sequencing errors were reduced significantly
using combined consensus which mapped on the up-
left panel of Additional file 3: Figure S3a. Thus, most
observed insertions and deletions were due to sequencing
errors. However, most observed substitutions comprise
both sequencing errors andmutations from the templates.

Quality score and coverage loss
Coverage loss was one of the major concerns in using
the error-correction methods. We counted the read num-
ber after each error-correction schemes (Fig. 4a). The
coverage of read-pairing correction was 42% of the raw
sequencing data, which was similar to the ideal 50% loss.
Forward reads of tag-clustering correction reached a cov-
erage of 12% (20% in the ideal case), while the reverse
reads had only 0.4%. Combined consensus had 6% cover-
age of the original data (ideally 10%). Therefore, our study
has shown that using correction methods increases the
sequencing cost per nucleotide∼2.4 fold (1/0.42≈ 2.4) for
read-pairing correction, ∼8.3 fold (1/0.12 ≈ 8.3) for tag-
clustering method (based on forward reads), and ∼17 fold
(1/0.06≈ 17) for combined consensus. There was a signif-
icant trade-off between detection sensitivity and coverage.
Researchers needs to consider the balance between cov-
erage loss and detection limit when choosing a suitable
error-correction method.
To further analyze the coverage loss of the tag-clustering

correction scheme, we examined the cluster size distri-
bution of each unique tag (Additional file 4: Figure S4).
In the unfiltered dataset, the cluster size of tags had a
bell-shaped distribution if we disregard the high number
of single-occurrence tags. The high number of single-
occurrence tags was attributed to the sequencing errors at
tag regions. With a sequencing error rate of 0.1% to 1%
at each nucleotide, the chance of having at least one error
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Fig. 3 Error reproducibility. a The error rate correlation between two technical replicates. Every dot represents a certain position on the target
templates. Values on x-axis and y-axis represent error rate at replicate 1 and replicate 2 respectively. b The error rate correlation between forward
and reverse reads. Every dot represents a certain position on the target templates. Values on x-axis and y-axis represent error rate at forward reads
and reverse reads respectively. r is Pearson’s correlation coefficient. The dashed lines are references of complete reproducibility

within the 16-nucleotide tag will be 1.9% to 10%. The size
for the rest of the read groups distributed smoothly, with a
mean of 3.5 for replicate 1, and 4.1 for replicate 2. For the
forward reads, where read quality was moderate, tag dis-
tribution remained intact after error-correction. For the
reverse reads, the number of read groups decreased sig-
nificantly due to the high inconsistency among sequences
within individual read groups. In this study, a given read
group would be discarded if the reads within the read
group were not completely identical. Therefore, the abun-
dance of low quality reads would cause many read groups
being discarded, hence loss of sequencing coverage under
tag-clustering correction scheme. In conclusion, the tag-
clustering correction method highly depends on precise
base-calling at the tag region and high quality reads, which
restrict its applications.
Quality score filtering was widely used in error-

free sequencing and detecting low frequency variants
[15, 22, 23]. We aimed to test the effect of quality score fil-
tering in different analysis schemes. Here we filtered out
reads that contained at least one low quality nucleotide
(Phred quality score < 30) at the target 88 bp region.
In general, the quality score filtering decreased the error
rates. Such decrease can be observed by the magnitude of
shift of data points to the right of the diagonal line when

plotting the error rate before quality score filtering against
that of after the quality score filtering (Fig. 4b). Such
shift is statistically significant in all analysis schemes in
this study (Scheme 1 forward: p= 1.4× 10−116, Scheme 1
reverse: p= 1.4×10−116, Scheme 2: p= 9.1×10−96, Scheme
3 forward: p= 1.6×10−87, Scheme 3 reverse: p= 4.5×10−59,
and Scheme 4: p= 9.9×10−46,Wilcoxon signed-rank test).
Nonetheless, the magnitude of improvement (magnitude
of shift of data points to the right of the diagonal line)
was generally milder when error-correction schemes were
used (Scheme 2, 3, 4). This result indicates that in general,
quality score filtering is able to improve the accuracy of
read-pairing or tag-clustering error-correction, although
the effect is not as dramatic as that of the raw reads.

Discussion
Over the last decade, next-generation sequencing has
become a popular technique in biomedical research due
to its increasing throughput and decreasing cost. Illu-
mina sequencing platform is the most widely used next
generation sequencing platform, having two shortcom-
ings: high error rate and short read-length.While Illumina
has been increasing its read-length through the recent
development of MiSeq platform, the error rate remains
at ∼0.1% to 1% per nt. This error rate may be negligible
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a b

Fig. 4 The effect of quality score and coverage. a Barplot of coverage in different error-correction schemes, before and after quality score filtering.
The labels, ec1f, ec1r, ec2, ec3f, ec3r, and ec4 represent Scheme 1 forward reads, Scheme 1 reverse reads, Scheme 2, Scheme 3 forward reads,
Scheme 3 reverse read, Scheme 4, respectively. b The errors rate correlation between original data and quality score filtered data. The dashed lines
represent complete identical error rates before and after quality score filtering

in certain applications that only require the information of
consensus sequence, such as cellular genome sequencing
and transcriptome profiling. However, such error rate will
significantly impede those applications that require the
detection of rare mutations.
Consequently, different experimental approaches

have been implemented to overcome this drawback
[4–8, 10, 11, 13, 24]. In general, these approaches sacrifice
read coverage for a higher sensitivity. Thus, error-
correction indirectly increases the per nucleotide cost
of sequencing. Therefore, the type of error-correction
method should be selected based on the desired sensitiv-
ity to minimize the sequencing cost. Here, we proposed
several guidelines for choosing an error-correction
method, for Illumina HiSeq platform.

1. Error-correction methods should be applied if the
required detection limit is lower than 1%.

2. Read-pairing method is sufficient for detecting
variants with frequencies higher than 0.1 %, and is
effective for detecting rare insertions and deletions.

3. Tag-clustering method is necessary for detecting
variants with frequencies lower than 0.1 %. However,
extra depth and high-quality data is needed for
carrying out tag-clustering method.

4. Coupling tag-clustering method and read-pairing
method is recommended.

We notice that tag-clustering error-correction methods
could not avoid certain types of errors.We propose several
reasons. Firstly, the sequencing platforms use the first few
nucleotides to estimate the parameters for phasing correc-
tion. The sequence of tags could induce systematic errors.
The templates with the same tags would have the same
error in this phasing process [21]. Secondly, the templates
with tags were all sequenced at the same time. Thus the
buffer quality could result in quality drop at the same posi-
tion of all reads, which could make tags unable to correct
the errors. Thirdly, tags were not amplified or sampled
evenly during library preparation. The DNA polymerase
had bias for certain primers. In this study, we achieved
a polynomial distribution of tags (Additional file 4:
Figure S4), which reduced the third systematic error. But
tag region itself generated bias.
There are some caveats that limit the power of this

study. Firstly, random nucleotide tags were added to the
template by PCR. Thus, errors that emerged during the
PCR steps cannot be corrected. Such errors should exist
here despite a high fidelity DNA polymerase was being
used to minimize the PCR errors. The true mutations
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are therefore comprised of mutations in the original tem-
plates (within clone variation), and PCR induced errors.
Moreover, there may be cross-contamination from other
experiments being performed in the lab that involved
mutagenesis. Sampling during plasmid extraction, tem-
plate amplification, and dilution will also add to the het-
erogeneity of the templates. In short, the true mutation
rate of the sequencing template is not known in this study,
which prevents us from precisely quantifying the error
rate in each error correction scheme.
While not being addressed in this study, there are

numerous computational error-correction methods being
developed [25–28].Most, if not all, of these computational
approaches were developed to handle raw sequencing
reads. While this study indicates that read filtering based
on quality score may only slightly improve the sensitivity,
it is unknown whether the sensitivity for deep sequenc-
ing may benefit further from combining experimental
approach and computational approach. Benchmarking for
such integrative error-correction strategy is needed to be
done in the future.
Amplicon sequencing is becoming a more popular

approach in various research fields because of its high
sequencing coverage of a target region of interest.
Amplicon sequencing has been widely used in cancer
research for diagnosis and disease monitoring purposes
[16, 17, 29, 30]. In addition, amplicon sequencing on 16S
rDNA gene and other conserved regions is commonly
used to characterize the genetic structure ofmicrobe com-
munities [31–33]. Nonetheless, depending on the specific
goal, different studies may investigate different genetic
regions of interest from different sources of specimens,
and employ different sequencing platforms with different
read-lengths. In the future, the performance of error-
correction strategies should also be evaluated with the
consideration of additional parameters, such as samples
with extreme GC contents and various degree of genetic
diversity, and the usage of other sequencing platforms.

Methods
Sequencing library preparation
The target sequence was a synthetic construct of pro-
tein G on the pCR-Blunt vector [34] (Additional file 1:
Figure S1a). Clonal protein G sequencing template was
amplified by PCR using primer pair (replicate 1): 5’-CTA
CAC GAC GCT CTT CCG ATC TNN NN A CAN NNN
AGT ACG CTA ACG ACA ACG G-3’ and 5’-TGC TGA
ACC GCT CTT CCG ATC TNN NNA CAN NNN TCG
GAT CCT CCG GAT TCG G-3’, or primer pair (replicate
2): 5’-CTA CAC GAC GCT CTT CCG ATC TNN NN
G TGN NNN AGT ACG CTA ACG ACA ACG G-3’ and
5’-TGCTGAACCGCTCTTCCGATCTNNNNG TGN
NNN TCG GAT CCT CCG GAT TCG G-3’. The under-
lined nucleotides were served as distinguishing replicate

1 and 2. The eight randomized nucleotides, 4 Ns from
each of the forward and reverse primer were served as
the tag for error-correction. The entire amplified region
(including the primer annealing region) on protein G was
5’-AGTACGCTAACGACAACGGTGTCGACGGTG
AAT GGA CCT ACG ACG ACG CTA CCA AAA CCT
TCA CGG TTA CCG AAT CCG GAG GAT CCG A-3’.
The condition of this first PCR was as follow: 2 mins at
95 ◦C, then 18 three-step cycles of 20 seconds at 95 ◦C, 15
seconds at 58 ◦C, and 20 seconds at 68 ◦C, and a 1 min
final extension at 68 ◦C. The PCR product was purified
using PureLink PCR Purification Kit (Life Technologies,
Carlsbad, CA). For each sample, ∼6 million copies of the
purified PCR product were used for the second PCR. The
second PCR was performed using primer pair: 5’-AAT
GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT
TCC CTA CAC GAC GCT CTT CCG-3’ and 5’-CAA
GCA GAA GAC GGC ATA CGA GAT CGG TCT CGG
CAT TCC TGC TGA ACC GCT CTT CCG-3’. The con-
dition of the second PCR was the same as that of the
first PCR, except 22 cycles were performed instead of 18.
All PCRs were performed using KOD DNA polymerase
(EMD Millipore, Billerica, MA) with 1.5 mM MgSO4, 0.2
mM of each dNTP (dATP, dCTP, dGTP, and dTTP) and
0.5 μM each of the forward and reverse primers. The
resultant product was sequenced by Illumina HiSeq 2500
platform.

Data analysis
Illumina HiSeq paired-end reads were demultiplexed
using the three bp barcode on both forward read and
reverse read. The first 12 bp of the read was identified
as a tag. For downstream analysis of sequencing error,
this 12 bp region was trimmed. As a result, only 88 bp
was processed for calculating error rate. After the dataset
being processed by the indicated error-correction scheme,
pairwise local alignment against the reference protein G
sequence was performed. The alignment was carried out
using pairwise2 function in the Biopython package [35].
The alignment scoring was as follow: 1 for identical, –1
for mismatching, –1 for gap opening, –0.5 for gap extend-
ing. All downstream analyses were performed by custom
python scripts.

Error-correction Scheme 1 (no error-correction)
Errors were called from the raw read. No pairing or quality
score filtering was applied on the dataset.

Error-correction Scheme 2 (read-pairing)
Pairing was performed by comparing the nucleotide
sequence of the trimmed foward read and trimmed
reverse read (88 bp in both cases). Only those read
pairs with a reverse complementary match were used for
downstream analysis.
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Error-correction Scheme 3 (tag-clustering)
The tags for the forward read and reverse read were com-
bined and used for grouping reads as described [8]. Briefly,
reads that shared the same tag were grouped together as a
read group. Read grouping was performed independently
for forward read and reverse read. Read groups with a size
of less than three reads were discarded. A read group was
considered as a real read if all reads in the read group were
identical. Otherwise, the read group would be discarded.

Error-correction Scheme 4 (read-pairing and tag-clustering)
First, read-pairing was performed as described in Scheme
2. The paired reads were then subjected to tag grouping
as described in Scheme 3. Of note, under this scheme,
read grouping was performed on the paired read instead
of independently on forward read and reverse read.

Availability of supporting data
Raw sequencing data have been submitted to the NIH
Short Read Archive (SRA) under accession number: Bio-
Project PRJNA293914. Custom scripts for data analyzing
and plotting were deposited in https://github.com/Tian-
hao/errorcorrection.

Additional files

Additional file 1: Figure S1. Sequence properties of protein G. (a) The
sequence of 88 bp template was shown in DRuMS color schemes. The
overlapping region of target sequence and forward primer or reverse
primer was shown. (b) The A-T C-G density plot along the target sequence.
Matlab nucleotide sequence analysis toolbox was used to plot this figure.
(EPS 498 kb)

Additional file 2: Figure S2. Error rates distribution in the original
dataset. (a) The histogram of error rates. The error rates of four types of
errors on every nucleotides were counted. (b) Normal Q-Q plot of error rate
distribution. Sample quantiles showed great deviation from normal
distribution. (EPS 158 kb)

Additional file 3: Figure S3. Error rate correlation among different
error-correction schemes. (a) Linear regression between true mutations
and different error-correction methods. The model y ∼ x + a was adapted
to do regression. Every dot represents a position on the target sequence
and the values on x-axis and y-axis represent error rates of combined
consensus and certain consensus, respectively. Colored lines are regression
result. (b) Barplot of the intercepts a from the linear regression. Error bar is
standard error. The colors represents different error-correction schemes,
which are labeled in the graph. (EPS 477 kb)

Additional file 4: Figure S4. Tag distribution in different error-correction
schemes. The histogram of tags. Tags are random nucleotides for readout
consensus, comprising 8 nucleotides from each direction of reads. Every
bar represents the number of tags that appeared certain times. Scheme 1
means the tag distribution in the original dataset. (EPS 89 kb)

Abbreviations
NGS: Next-generation sequencing; PCR: Polymerase chain reaction; nt:
Nucleotide; Scheme 1: Raw reads; Scheme 2: Read-pairing consensus; Scheme
3: Tag-clustering (Primer ID) consensus; Scheme 4: Combined consensus
(read-pairing consensus, followed with tag-clustering consensus).
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