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Abstract

Background: Similarity measures have application in many scenarios of digital image processing. The correntropy is
a robust and relatively new similarity measure that recently has been employed in various engineering applications.
Despite other competitive characteristics, its computational cost is relatively high and may impose hard-to-cope time
restrictions for high-dimensional applications, including image analysis and computer vision.

Methods: We propose a parallelization strategy for calculating the correntropy on multi-core architectures that may
turn the use of this metric viable in such applications. We provide an analysis of its parallel efficiency and scalability.

Results: The simulation results were obtained on a shared memory system with 24 processing cores for input images
of different dimensions. We performed simulations of various scenarios with images of different sizes. The aim was to
analyze the parallel and serial fraction of the computation of the correntropy coefficient and the influence of these
fractions in its speedup and efficiency.

Conclusions: The results indicate that correntropy has a large potential as a metric for image analysis in the
multi-core era due to its high parallel efficiency and scalability.
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Background
Introduction
Similarity measures have been widely used in computer
vision and digital image processing [1]. Principe et al. [2]
developed a similarity measure sensitive to high-order
statistics and temporal structures of random processes [3],
called correntropy, that was inspired by the work of
Parzen [4]. The presence of high-order statistics and tem-
poral structures in the measure makes it suitable for many
different applications.
In recent years, the concept of correntropy has been suc-

cessfully applied to the solution of many problems related
to digital image processing, such as automatic face recog-
nition [5,6], facial recognition with occlusion [7], image
recognition using MACE filter (correntropy minimum
average correlation energy (CMACE) [8], and classifica-
tion of sidescan sonar imagery [9]. Nevertheless, depend-
ing on the input size, the correntropy can demand a high
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computational cost. In order to exemplify, the output of
the CMACE filter proposed in [8] is obtained by comput-
ing the product of two matrices, which depends on the
image size and the number of training images which can
restrict its application. In [10] and in [11], in order to alle-
viate the computational complexity, the authors proposed
a method to estimate the correntropy using the fast Gauss
transform (FGT) and the incomplete Cholesky decom-
position (ICD), respectively. The FGT has been applied
to many areas including astrophysics, kernel density esti-
mation, and machine learning algorithms decreasing the
computation from O(NM) to O(N + M), where N is the
number of samples (sources) and M is the number of
points where the evaluation is required [12]. Moreover,
the correntropy can be expressed in terms of positive def-
inite matrices, and ICD can be directly applied to reduce
the computational burden.
In addition, there are some methods to estimate the

correntropy based on the additive form of half-quadratic
minimization and nonconvex relaxation [13-15]. There is,
therefore, a quest to improve the computational cost of the
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correntropy that may, or may not, involve approximations
of the measure.
Another way to allow the use of the correntropy mea-

sure in more demanding applications is to find a strategy
to make its computation scalable and efficient for a given
architecture. This way, the scaling of the architecture will
guarantee a faster computation of the measure. Scalability
was a common characteristic of all algorithms before the
multi-core era [16,17] for conventional architectures: any
scaling or advance in the computer architecture technol-
ogy generated a gain in the speed of computation. In the
advent of the multi-core era, the scaling of the technol-
ogy - provided by the increasing number of transistors per
die - is realized by increasing the number of processing
cores per chip and not by faster cores. The computational
flow has now multiple paths that need to be subjected
to synchronization, communication, and load balancing.
The result is that scalability of algorithms in the multi-
core era is no longer a common attribute of all algorithms.
Now, scalability arises from intrinsic characteristics of the
computation and from the programmer’s ability to cope
with synchronization, communication, and load balanc-
ing among the multiple computational flows. Therefore,
computational work flows, such as the calculation of the
correntropy, need to be evaluated to investigate what are
the benefits or the drawbacks of employing it in this new
computational era.
In single-core processors, the calculation of correntropy

demands a large amount of time, mainly due to its O(n2)
quadratic computational complexity. Depending on the
amount of data, the response time can limit or even pre-
vent the use of themetric in applications with higher input
dimensions, which unfortunately includes the majority of
applications involving computer vision and image analy-
sis.
In this paper, we propose a strategy to calculate the cor-

rentropy metric in the form of a parallel algorithm for
multi-core architectures.We provide an analysis of its par-
allel efficiency and scalability. The simulation results were
obtained on a shared memory system with 24 processing
cores for input images of different dimensions. The results
show that correntropy has a large potential as a metric for
image analysis in the multi-core era due to its high parallel
efficiency and scalability.
The rest of the paper is organized as follows.

Section ‘Correntropy’ has a brief description of the cor-
rentropy metric. In Section ‘Parallel efficiency and scala-
bility’, we present the parallel performance measures used
in the analysis of parallel efficiency and scalability. The
implementation of parallel correntropy is presented in
Section ‘Parallel implementation of the correntropy coef-
ficient’, and the results are described in Section ‘Results
and discussion’, while Section ‘Conclusions’ is intended to
the conclusions of this work.

Methods
Correntropy
In [18], the use of metrics based on information theory in
problems of machine learning was introduced. Originally,
these problems were solved using measurements of the
mean square error. The new methodology became known
as information-theoretic learning (ITL). The idea of ITL
is to use metrics based on nonparametric estimates of
Renyi’s quadratic entropy as cost functions for the design
of adaptive systems. In the past few years, this concept
has been successfully applied in the solution of various
engineering problems, e.g., automatic modulation classi-
fication [19], prediction method for network traffic [20],
adaptive filtering [21], and face recognition [22].
Renyi’s definition of entropy is a generalization of

Shannon’s entropy, given by [12]

Hα(X) = 1
1 − α

log
( m∑
k=1

pα
k

)
, (1)

where pk is defined from the probability distribution of
random variable X and α is a parameter that specifies the
order of the Renyi’s entropy. When the probability distri-
bution of X is estimated from a finite set of n measured
data, (xi)ni=1, by a Gaussian kernel, Gσ (·), with standard
deviation σ , the Renyi’s quadratic entropy (for α = 2) can
be estimated as [4]

Ĥ2(X) = −log

⎡
⎣ 1
n2

n∑
i=1

n∑
j=1

Gσ
√
2(xj − xi)

⎤
⎦ , (2)

where,

Gσ (xj − xi) = 1√
2πσ

exp
[
− (xj − xi)2

2σ 2

]
. (3)

The argument of Renyi’s quadratic entropy in
Equation (2) is called information potential (IP) of the r.v.
X, given by [12]

V̂σ (X) = 1
n2

n∑
i=1

n∑
j=1

Gσ
√
2(xj − xi). (4)

The information potential can be generalized to two
random variables, giving rise to the cross-information
potential (CIP), defined by

V̂σ (X,Y ) = 1
n2

n∑
i=1

n∑
j=1

Gσ
√
2(xi − yj). (5)

For independent random variables, it can be demon-
strated that [12]

1
n2

n∑
i=1

n∑
j=1

Gσ
√
2(xi − yj) ≈ 1

n

n∑
i=1

Gσ
√
2(xi − yi), (6)
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which is an approximation of CIP with algorithmic
complexity O(n).
From the viewpoint of kernel methods, the right-hand

side of Equation (6) can be seen as a sample estimator
of a generalized similarity measure between two arbitrary
scalar random variables X and Y, called cross-correntropy
and defined by [2]

vσ (X,Y ) = EXY [Gσ (X − Y )]

=
∫∫

Gσ (X − Y )pX,Y (x, y)dxdy,
(7)

where E[ ·] is the expectation operator and σ is the kernel
size.
By estimating the joint probability density function

(pdf) of Equation (7) by the Parzen method from a
finite number of data {(xi, yi)}ni=1, the right-hand side of
Equation (6) is obtained

v̂σ (X,Y ) = 1
n

n∑
i=1

Gσ
√
2(xi − yi). (8)

It is interesting to notice the link between cross-
correntropy estimators and information-theoretic estima-
tors, when the variables X and Y are independent.
By applying the Taylor series expansion on the Gaussian

function in Equation (7) and assuming that all the
moments of the joint pdf are finite, Equation (7) yields

vσ (X,Y ) = 1√
2πσ

∞∑
k=0

(−1)k

2kσ 2kk!
E[ (X − Y )2k] . (9)

This expression affirms that the cross-correntropy
is sensitive to the sum of second-order moment and
higher-order moment of the difference variable. Thus,
cross-correntropy is considered a generalization of the
correlation [2], and as well as correlation, it can be used as
a measure of similarity between random variables. In fact,
since cross-correntropy is sensitive to the sum of all even
moments of the random variables, in many applications,
it may quantify the relationships between these variables
better than correlation, as in non-Gaussian and nonlinear
problems [2].
The kernel size in Equation (9) appears as a param-

eter that weighs the second-order moment and the
higher-order moment. For sufficiently, large values of σ ,
the second-order moment dominates and the measure
approaches correlation.
Due to nonlinear transformations produced by the

Gaussian kernel, cross-correntropy has no guarantee of
zero mean, even when the input data are centered at zero.

The definition of centered cross-correntropy overcomes
this limitation [12]

ûσ (X,Y ) = 1
n

n∑
i=1

Gσ
√
2(xi − yi)− 1

n2
n∑

i=1

n∑
j=1

Gσ
√
2(xi − yj).

(10)

We can notice that the centering term in Equation (10)
is numerically equal to the estimator of the cross-
information potential in Equation (5). Thus, from the
Equation (6), centered cross-correntropy reduces to zero
if X and Y are independent random variables.
In applications involving signals with unknown ampli-

tudes, conducting some type of normalization can be
required. To avoid this process, Xu et al. [3] presented
a new similarity measure called correntropy coefficient,
estimated by

η̂ = ûσ (X,Y )√
ûσ (X,X)

√
ûσ (Y ,Y )

(11)

The correntropy coefficient η̂ can be considered a gen-
eralization of the known correlation coefficient. It can be
verified that its value reduces to zero if the two random
variables X and Y are statistically independent, and its
absolute value is close to one as they become statistically
related.
In this paper, we propose a parallel algorithm for cal-

culating the correntropy coefficient. We analyze its par-
allel efficiency and scalability toward very large input
dimensions. For each image size, we constructed two
random images and measured the similarity using the
proposed parallel correntropy coefficient. We choose ran-
dom images over other types of images because we are
not actually interested in the similarity measures them-
selves but rather in the computational performance of
these measures.

Parallel efficiency and scalability
In parallel computing, speedup is defined as the ratio
between the sequential execution time Ts and the parallel
execution time Tp, given by

S = Ts
Tp

. (12)

It indicates how many times the parallel algorithm is
faster than sequential one.
A linear or ideal speedup is obtained for example

when by doubling the number of processors also dou-
bles the speed of processing [23]. Thus, the goal for
parallel algorithms is trying to achieve linear speedup.
However, according to Amdahl’s law [24], the par-
allel speedup is limited by the sequential fraction of
the execution time. The sequential fraction Fs of an
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algorithm executing in a given architecture with p proces-
sors can be estimated by the following expression

Fs = pTp − Ts
pTs − Ts

. (13)

Parallel efficiency is a value, typically between zero
and one, that expresses the percentage of the speedup
achieved by the algorithm compared to the linear
speedup. It represents the percentage of processing power
that is actually being used to perform the calculation. The
complement of the efficiency indicates howmuch effort is
being wasted due to parallelization overhead. Efficiency E
is expressed by

E = Ts
pTp

(14)

where p is the number of processing elements used in the
parallel execution. Note that, if Tp = Ts/p, we would have
all processors doing useful work, leading to an efficiency
of 100%.
When analyzing the scalability of a parallel algorithm, it

is important to observe the values of the sequential frac-
tion and the parallel efficiency when the number of pro-
cessor and the problem size scales. Generally, we would
expect that the sequential fraction do not scale together
with these numbers. As for the parallel efficiency, since
its value is inversely proportional to p, commonly, we
observe a decreasing value with an increase in the number
of processing elements. For this reason, the scalability of
a parallel algorithm is generally associated, especially for
larger problems, with the scaling of the problem size [25].
In this work, we study the speedup, the efficiency, and

the scalability of a parallel algorithm for the calculation
of correntropy. Also, a study of the sequential fraction of
the algorithm is performed in order to provide insights on
how much time is spent with communication, synchro-
nization, and load balancing.

Parallel implementation of the correntropy coefficient
The correntropy coefficient was implemented in parallel
using the OpenMP framework [26]. In order to facilitate
the parallelization, we organized the sequence of opera-
tions for the calculation of the correntropy coefficient.
Substituting the definitions of the cross correntropy

Equation (8) and the cross information potential Equation (5)
into the correntropy coefficient Equation (12), the following
expression is obtained

η̂ = v̂σ (X,Y ) − V̂σ (X,Y )√[
v̂σ (X,X) − V̂σ (X,X)

] [
v̂σ (Y ,Y ) − V̂σ (Y ,Y )

] ,
(15)

where v̂σ (X, X) = v̂σ (Y , Y ) = 1
n

∑n
i=1Gσ

√
2(0) is a con-

stant that depends only on the kernel size σ and is denoted
herein by κσ , and V̂σ (X, X) and V̂σ (Y , Y ) are the IP esti-
mators for X and Y, respectively. Thus, the correntropy
coefficient can be obtained by

η̂ = v̂σ (X,Y ) − V̂σ (X,Y )√[
κσ − V̂σ (X)

] [
κσ − V̂σ (Y )

] , (16)

where v̂σ (X, Y ) is calculated by a single summation in the
index i, while V̂σ (X, Y ), V̂σ (X), and V̂σ (Y ) are calculated
by double summations in the indexes i and j.
Figure 1 illustrates the pseudo-code of the parallelized

calculation of this metric. The first step of the algo-
rithm is responsible for loading the characteristics of the
images and is not considered for execution time measure-
ments. In the second step, the data are divided among the
threads for computation. Note that, only two loops are
used to compute all summations. While the inner and the
outer loops are used to compute all information poten-
tials, V̂σ (X, Y ), V̂σ (X), and V̂σ (Y ), the cross correntropy,
v̂σ (X,Y ), is computed only in the outer loop. In the last

Figure 1 Pseudo-code of the parallel calculation of the correntropy coefficient implemented in OpenMP.
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Figure 2 Analysis of the parallel and serial fraction of the proposed parallel algorithm. To calculate the correntropy coefficient for images
with dimension 200 × 200.

step of the algorithm, the main thread is responsible to
calculate the final value of the correntropy coefficient.
The serial algorithm for the calculation of the corren-

tropy coefficient has an arithmetic complexity ofO(n2). In
the proposed method, each one of the p processors runs
the same program but with distinct data, yielding an arith-
metic complexity of the correntropy coefficient to O(n

2

p ).
Another important performance measure is the space

complexity defined as memory required by the algorithm.
The memory requirement of the proposed method is
2k(n × m), where n and m are image dimensions and k is
the number of bytes needed to stored the data type in the
memory.

Results and discussion
The experiments were performed on a system with two
AMD Opteron 6172, each with 12 cores running at

2.1 GHz. We performed simulations of various scenar-
ios with images of different sizes. The aim was to analyze
the parallel and serial fraction of the computation of the
correntropy coefficient and the influence of these frac-
tions in its speedup and efficiency. For the calculation
of the correntropy coefficient, we used a kernel size σ

equal to 1√
2π for all simulations. In order to evaluate the

performance of this measure for image analysis applica-
tions, we selected image sizes of 50 × 50, 100 × 100,
200×200, and 400×400 because they may well represent
a large range of sizes used in filtering and convolution of
images. For each image size, we constructed two random
images and measured the similarity using the proposed
parallel correntropy coefficient. Each value of execution
time used in the analysis was obtained through an arith-
metic average over five measurements for each image
size.
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Figure 3 Speedups of the proposed algorithm for images with sizes 50 × 50, 100 × 100, 200 × 200, and 400 × 400.
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Figure 4 Results of efficiency for different image sizes 50 × 50, 100 × 100, 200 × 200, and 400 × 400.

Sequential fraction
Generally, every parallel algorithm has a fraction of code
that needs to be executed sequentially. The complement
of this fraction can be concurrently executed. The increase
in processing speed obtained with the parallelization of
the algorithm is limited by this sequential fraction. Thus,
from Equation (13), we analyzed the serial fraction of the
proposed algorithm to discover its potential for paral-
lelization with images of size 200 × 200. The results are
shown in Figure 2.
From the results shown in Figure 2, we observed that

the sequential fraction of the algorithm is always much
smaller than the parallel fraction. It increases from two
to four processors but decreases asymptotically for higher
numbers of processors. The decreasing of the parallel frac-
tion of the proposed algorithm with the growing number
of processors indicates a potential for parallelization.

Speedup
With the objective to evaluate the speedup of the pro-
posed parallelization for the calculation of the correntropy
coefficient for each image set, we conducted simula-
tions for a varying number of processing elements. The
obtained results are presented in Figure 3.
We observe from Figure 3 that the performance of the

proposed algorithm with up to eight processing cores
reached nearly ideal speedup for the three largest image
sizes. From ten processing cores and up, the computa-
tion for smaller images, 50 × 50 and 100 × 100, had a
reduced speedup, probably due to the overhead of cre-
ation of threads only to process a limited amount of data.
On the other hand, for images larger than 200 × 200, the

speedups obtained by increasing the amount of process-
ing cores were ever increasing. However, for 50×50 image
size, we were not able to get linear speedup.

Parallel efficiency
The analysis of parallel efficiency has the objective of
verifying how much processing is actually being used
in relevant computation and how much is spent on the
parallelization effort itself, which is the extra time spent
on communication, synchronization, and load balancing.
Figure 4 illustrates the results of efficiency for different
image sizes.
Observe in Figure 4 that as the image sizes grow so does

the efficiency. Even for large numbers of processing cores,
where the efficiency is expected to drop, the value sus-
tains for larger image sizes. These results are evidence that
the proposed parallel implementation of the correntropy
coefficient has a very good scalability w.r.t. the scalings of
the multi-core era.

Conclusions
We presented a parallel algorithm for calculating the cor-
rentropy coefficient and analyzed its parallel efficiency
and scalability for image analysis in the context of the
multi-core era. The results show that the proposed imple-
mentation is scalable and efficient. Specially for the larger
image sizes that we analyzed, the efficiency and scalability
of the algorithm presented outstanding results. Another
important contribution of the results presented in the
paper, besides the methodology for devising an efficient
and scalable implementation for correntropy coefficient,
is the ratification of the correntropy coefficient as a robust
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measure of similarity. The metric can be safely employed
in parallel image analysis or computer vision applications
without threatening the overall performance of the appli-
cation. The designer of such applications can use the
measure of correntropy as a robust, efficient, and scal-
able building block, needing to worry only about the
performance of the rest of the application.
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