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Lipopolysaccharide significantly influences the
hepatic triglyceride metabolism in growing pigs
Zhiqing Liu, Weifeng Liu, Yanping Huang, Jun Guo, Ruqian Zhao and Xiaojing Yang*
Abstract

Background: In the practical commercial pig farms, inflammation is a perennial problem, yet most of studies
on inflammation are focused on immune response. Actually, inflammation can induce body metabolism disorder
which will finally influence animals’ growth. In this study, we investigated the effect of acute inflammation on the
triglyceride (TG) metabolism in the liver of growing pigs and the possible underlying mechanisms.

Methods: Twelve male growing pigs were randomly divided into two groups, a control group (received saline)
and a LPS group (intramuscular injected with 15 μg/kg LPS). Six hours after LPS injection, the pigs were euthanized
and sampled. Biochemical indexes, inflammation factors, lipid metabolism related parameters and mitochondrial
function were evaluated. The relationship between glucocorticoid receptor (GR) and the key enzymes of de novo
lipogenesis were also investigated by chromatin immunoprecipitation assay (ChIP).

Results: LPS induced a serious inflammation in the liver of growing pigs proved by liver morphologic changes, the
up-regulated plasma cortisol, tumor necrosis factor-α (TNF-α) content and gene expression of inflammation related
genes in liver. For de novo lipogenesis, LPS significantly decreased the gene expression of fatty acid synthase (FAS),
Acetyl-CoA carboxylase-1 (ACC-1) and Stearoyl-CoA desaturase-1 (SCD-1), and the protein expression of ACC-1 and
SCD-1. For lipolysis, only the gene expression of adipose triglyceride lipase (ATGL) was decreased. LPS did nothing
to the gene expression of hormone-sensitive lipase (HSL) and the lipolytic enzymes activities. For β-oxidation, LPS
significantly increased the protein expression of CPT-1α, but the gene expression of mitochondrial DNA-encoded
genes and the activities of mitochondrial complex IV and V demonstrated no obviously changes. Furthermore,
ChIP results showed that LPS significantly decreased the level of GR binding to ACC-1 promoter.

Conclusion: LPS infection has a profound impact on hepatic TG metabolism. This impact is mainly demonstrated
by the significantly deceased de novo lipogenesis, and GR may involve in its regulation.
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Background
In the clinical practice of modern intensive farms, pigs
are often exposure to various harmful microbes and the
inflammation easily exists. However, most of investigations
concerning infection in pigs were focused on the changes
of immune response and organ pathology [1, 2]. Actually,
the host response to infection is usually associated with
multiple disturbances in intermediary metabolism which
will finally result in animal growth retard or decreased
products quality. Therefore, understanding the metabolism
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changes induced by inflammation is vital to livestock
husbandry.
Triglyceride (TG) is extremely essential for growing

pigs except as energy storage [3]. It participates in various
functions, including structure, signaling and, thermal
insulation [4], and functions as a deposit for essential and
non-essential fatty acids [5]. The liver is the main site of
TG metabolism [6]. It has been reported that the impaired
TG metabolism is association with many hepatic diseases,
including non-alcoholic steatosis, steatohepatitis, fibrosis,
cirrhosis and cancer in human and rodent models [7, 8].
However, how the TG metabolism changes in growing
pigs after infection are still largely unclear.
distributed under the terms of the Creative Commons Attribution
by/4.0), which permits unrestricted use, distribution, and reproduction in
operly credited. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

https://core.ac.uk/display/194701496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12944-015-0064-8&domain=pdf
mailto:yangxj@njau.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Liu et al. Lipids in Health and Disease  (2015) 14:64 Page 2 of 10
TG metabolism composes by synthesis (de novo lipo-
genesis) and catabolism (lipolysis and ß-oxidation).
Acetyl-CoA carboxylase-1 (ACC-1), Fatty acid synthase
(FAS) and stearoyl-CoA desaturase-1 (SCD-1) are key
enzymes of de novo lipogenesis. Hormone-sensitive lipase
(HSL) and adipose TG lipase (ATGL) are the en-
zymes that catalyze the rate limiting hydrolysis step
[9]. For ß-oxidation, carnitine palmitoyltransferase-1α
(CPT-1α) serves as a key regulator and transports
the fatty acid into mitochondria [10]. Mitochondria
function will finally influence the fatty acid oxidation.
If inflammation influences the porcine hepatic lipid
metabolism, which step of lipid metabolism can be
affected is unknown.
Meanwhile, inflammation can induce a significant

increase of endogenous glucocorticoid level, and the
previous studies confirm a link between the increased
glucocorticoid and TG metabolism in mice and chicken
[11, 12]. At the same time, glucocorticoid receptor
(GR) plays a significant role in the anti-inflammatory
effect of glucocorticoid on target tissues [13].
Whether the alteration of TG metabolism, if changed,
is correlated with the GR in the liver of growing pigs
is also unknown. Therefore, in the present study, we
investigated the effect of acute inflammation on the
TG metabolism in the liver of growing pigs after the
injection with lipopolysaccharide (LPS), and unravel
the possible underlying mechanisms. The results offer
a clue to understand the hepatic metabolism after
inflammation in pigs.

Results
The effect of LPS on plasma parameters
LPS significantly increased plasma aspartate aminotransfer-
ase (AST), cortisol and tumor necrosis factor-α (TNF-α)
content but not alanine aminotransferase (ALT) content
compared to Control (Con) group. LPS didn’t influence
TG content in plasma compared to Con group (Table 1).

The effect of LPS on liver morphologic changes and
inflammation pathways
The hematoxylin and eosin staining revealed that the
morphology changes of liver tissues after LPS injection
Table 1 Concentrations of metabolites in plasma

Parameter Con LPS

ALT in plasma(U/L) 46.78 ± 1.86 37.22 ± 9.9

AST in plasma(U/L) 99.89 ± 16.9 172.89 ± 22.22*

Cortisol in plasma (μg/L) 35.85 ± 2 108.25 ± 24.27*

TNF-α in plasma (fmol/L) 4.03 ± 0.24 7.48 ± 0.46*

TG in plasma (μmol/L) 855 ± 68.06 731.67 ± 156.38

Results are presented as mean ± SEM
*P < 0.05 versus Con
compared to the control pigs. After LPS treatment, the
heptocytes arranged extremely disordered with unclear
nucleus, while the cytoplasmic staining was uneven, and
a large number of red blood cells overflowed (Fig. 1a).
For inflammation related genes expression, LPS signifi-
cantly increased the expression of toll-like receptor 2
(TLR2), toll-like receptor 4 (TLR4), TNF-α, nuclear
factor kappa B (NF-κB) and interleukin-1α (IL-1α) in
liver (Fig. 1b).
The effect of LPS on de novo lipogenesis in liver
LPS dramatically decreased the gene expression of ACC-1,
FAS and SCD-1 compared with Con group (Fig. 2a).
Consistent with gene expression, LPS also significantly
decreased the protein expression of ACC-1 and SCD-1
(Fig. 2b). For transcription factors of lipid synthesis, LPS
significantly increased the gene expression of CEBP-β and
PPAR-γ (Fig. 2c). But there is no difference in protein
expression of CEBP-β and PPAR-γ between Con and LPS
group (Fig. 2d).
The effect of LPS on lipolysis and β-oxidation in liver
For lipolysis, the gene expression of adipose TG
lipase (ATGL) was significantly decreased by LPS
compared to Con group (Fig. 3a). But LPS did
nothing to the gene expression of hormone-sensitive
lipase (HSL) and the lipolytic enzymes activities
(Fig. 3a and b). For β-oxidation, LPS tended to increase
the gene expression of CPT-1α (p = 0.073) compared
to Con. And the protein expression of CPT-1α was
significantly increased by LPS compared to Con group
(Fig. 3c and d).
The effect of LPS on mitochondrial function
LPS did not change the gene expression of mito-
chondrial DNA-encoded genes. The gene expression
of NADH dehydrogenase subunit 1 (ND1), NADH
dehydrogenase subunit 2 (ND2), NADH dehydrogen-
ase subunit 3 (ND3), NADH dehydrogenase subunit
4 (ND4), NADH dehydrogenase subunit 4 L (ND4L),
NADH dehydrogenase subunit 5 (ND5), NADH de-
hydrogenase subunit 6 (ND6), cytochrome C oxidase
subunit 1 (COX1), cytochrome C oxidase subunit 2
(COX2), ATP synthase F0 subunit 6 (ATP6), ATP
synthase F0 subunit 8 (ATP8) and cytochrome b
(CYTB) all showed no difference between Con group
and LPS group. The gene expression of cytochrome
oxidase subunit 3 (COX3) was tend to be up-
regulated (p = 0.09) by LPS compared to Con group
(Fig. 4a). Consistent with gene expression, LPS had no
effect on mitochondrial complex IV and V activities
(Fig. 4b and c).



TLR2
TLR4

TNF-
NF- IL

-1

0

2

4

6
40

50

60

70

80 Con
LPS

*

** *

*

F
o

ld
 c

h
an

g
e 

o
f 

C
o

n

Con LPS

Fig. 1 Liver morphologic changes (a) and the gene expression of TLR2, TLR4, TNF-α, NF-κB, IL-1α (b) in Con and LPS groups. *P < 0.05 versus Con
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The effect of LPS on the level of GR binding to ACC-1
promoter in liver
LPS significantly decreased the level of GR binding
to ACC-1 promoter in liver compared to Con group
(Fig. 5b).

Discussion
The hepatic TG disorder is a major health problem, and
much attention has been paid on its pathogenesis and
etiology [14, 15]. The disorder can influence the liver
function and animals’ growth. However, for growing
pigs under inflammation, most of previous studies
focus on the immune response [1, 2]. There is no
study until now focused on the hepatic TG changes
in growing pigs after infection. Results form the
present study showed that LPS induced a dramatic
effect on hepatic TG metabolism of growing pigs, and
the effect mainly on de novo lipogenesis. Moreover,
GR is partly involved in this process.
Consistent with the results of previous researches on

liver injuries induced by LPS [16, 17], in this experiment,
LPS also induced serious liver injury demonstrated by
morphology changes and up-regulated AST level. It has
been shown that endotoxin can active macrophages
and induce the expression of inflammation related
genes in the liver of numerous models [18–20]. In the
present study, LPS significantly increased the plasma
cortisol and TNF content, and the gene expression of
TLR2, TLR4, TNF-α, NF-κB and IL-1α in liver also
showed significantly increase. The results indicated
LPS treatment led to the hepatic local inflammation
and acute injury.
Inflammation is usually associated with multiple dis-

turbances in intermediary metabolism, including TG
metabolism. In mice model, it has been demonstrated
that the content of serum TG in endotoxin-poisoned
mice is decreased slightly 2 h postintoxication compared
with Con group. Thereafter, the level of serum TG in
poisoned mice changed to elevation, and markedly
increased after 12–24 h [21]. In the present study,
TG content in plasma had no change 6 h after LPS
treatment in growing pigs. In subsequently time, the
plasma TG content may increase in LPS group compared
to Con group.
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Fig. 2 The gene expression of ACC-1, FAS, SCD-1 (a), the protein expression of ACC-1 and SCD-1 (b), the gene expression of PPAR-γ and C/EBP-β
(c), the protein expression of PPAR-γ and C/EBP-β (d) in Con and LPS groups. *P < 0.05 versus Con
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The liver plays a key role in TG metabolism. Hepatic
TG metabolism disorder is now understood to have an
important action in the development of advanced liver
disease [22, 23]. So we investigated the effect of acute
inflammation on the TG metabolism in the liver of
growing pigs. For hepatic de novo lipogenesis, the
gene expression of ACC-1, FAS SCD-1 and protein
content of ACC-1 and SCD-1 were significantly de-
creased by LPS in our study. It was consistent with
previous studies in other tissues [24–26]. C/EBP-β
and PPAR-γ are well-established transcription factors
involved in lipid metabolism during adipogenesis
[27]. Excepted as lipid transcription factor, it has
been shown that these two genes are involved in the
anti-inflammatory regulation. Previous studies dem-
onstrated that C/EBP-β could be activated by LPS in
osteoblasts [28] and the live of rat [29]. Meanwhile,
LPS also increased the expression of PPAR-γ in rat
brain [30]. Consistent with the previously reports, in
the present study, the gene expression of C/EBP-β
and PPAR-γ in porcine liver increased significantly,
while the protein expression of both C/EBP-β and
PPAR-γ demonstrated no difference. Whatever, given the
important role of C/EBP-β and PPAR-γ in adipogenesis, it
is possible that the aberrant lipid accumulation will come
out in subsequently time.
Lipolysis is the breakdown of lipids and involves

hydrolysis of TG into glycerol and free fatty acids. In
adipose tissue, previous study showed that HSL activ-
ity in poisoned mice increased appreciably 2 h after
injection, but after 18 h, it was less than control mice
[21]. In our study, it seems that LPS had no obviously
effect on lipolysis which evidenced by the unaffected
gene expression of HSL and the activities of the lipo-
lytic enzymes. It is well-known that fatty acid degrad-
ation includes three major steps: activation and
transport into the mitochondria, β-oxidation and elec-
tron transport chain. Fatty acids are transported
across the outer mitochondrial membrane by CPT-1α,
which is believed to be the rate-limiting step in fatty
acid oxidation [10]. Previous study showed that the
activity and protein expression of CPT-1α was significantly



Fig. 3 The gene expression of HSL and ATGL (a), the hepatic lipolytic enzymes activities (b), the gene expression of CPT-1α (c), the protein
expression of CPT-1α (d) in Con and LPS groups. *P < 0.05 versus Con
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increased in LPS induced acute liver failure in rats [31].
Also, in our study, CPT-1α protein expression was
increased in growing pigs. Beta-oxidation is to gener-
ate acetyl-coA, which enters the citric acid cycle, and
NADH and FADH2, which are used by the electron
transport chain. So, we investigated the mitochondrial
function. Previous study showed that mitochondrial
complex IV were not altered in rat brain and liver
after sepsis [32, 33]. Our results showed that, in
growing pigs, LPS did not change the gene expression
of mitochondrial DNA-encoded genes, and the mito-
chondrial complex IV and V activities didn’t demon-
strate significantly difference. Anyway, the state of
fatty acid catabolism in the mitochondria still need
further investigate. All the results above indicated that
the effect of LPS on the hepatic TG metabolism of
growing pigs are mainly on de novo lipogenesis that
significantly down-regulated.
Glucocorticoid receptor (GR) is the receptor for

glucocorticoid and also acts as a transcription factor
for distinct target genes through both direct DNA
binding and protein–protein interactions with other
transcription factors [34]. In the present study, the
level of corticosteroid increased significantly after LPS
infection, and the gene and protein level of GR were sig-
nificantly decreased (date was shown in other unpublished
paper). So we try to investigate the relationship between
GR and the key enzymes of de novo lipogenesis. Previous
study suggests that there is glucocorticoid receptor
element (GRE) lies within the 2.1-kb region upstream
from transcription start site in the rat FAS gene [35].
GRE in or nearby the mouse ACC-1 and SCD-1
genes in 3 T3-L1 mouse adipocytes were also identi-
fied by chromatin immunoprecipitation sequencing
(ChIPseq) [36]. In our study, we predict the GREs in the
promoters of them: ACC-1 is “AGGACA” (−1885, −1879),
FAS is “AGAACA” (−1082, −1076), SCD-1 are “TGTTCT”
(−1678, −1672) and “TGTACA” (−990, −984). The ChIP
results showed that LPS significantly decreased the
level of GR binding to ACC-1 promoter in the livers
of growing pigs compared to Con group. But GR is
not binding on the promoter of FAS and SCD-1. The
results show that GR is partly involved in the effect
of inflammation on de novo lipogenesis.



Fig. 4 The gene expression of mitochondrial DNA-encoded genes (a) and the activities of mitochondrial complex IV (b) and V (c) in Con and LPS
groups. *P < 0.05 versus Con
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Conclusions
In conclusion, LPS have a profound effect on hepatic
TG metabolism. And the effect is mainly on de novo
lipogenesis genes which are significantly down-regulated.
GR may involve in the process.

Methods
Ethics statement
The experiment was conducted following the guidelines
of Animal Ethics Committee at Nanjing Agricultural
University, China. The euthanasia and sampling procedures
complied with the “Guidelines on Ethical Treatment of
Experimental Animals” (2006) No. 398 set by the Ministry
of Science and Technology, China and “the Regulation
regarding the Management and Treatment of Experimental
Animals” (2008) No. 45 set by the Jiangsu Provincial
People’s Government.

Animals and experimental design
Twelve (Duroc × Landrace × Large White) male growing
pigs with the average body weight of 12 ± 0.5 kg were
used in this experiment, which were randomly divided
into two groups, a control group and a LPS group. Pigs
were fed 3 times a day with a commercial diet. Water
was available ad libitum. After 1 week adaption, the LPS
group pigs were intramuscular injected with 2 mL LPS
(E.Coliserotype, Sigma Aldrich Ireland.Ltd, Dubin,
Ireland ) at a dose of 15 μg/kg bodyweight, while the
control received the same volume of saline. Six hours
after LPS injection, the pigs were euthanized and
sampled. 10 mL blood was collected into tubes con-
taining EDTA-Na2, then centrifuged at 3500 rpm for
10 min for plasma collecting. Small portions of livers
were taken within 20 min postmortem and immediately
frozen in liquid nitrogen. The plasma and liver was stored
at −20 °C and −80 °C respectively until further analysis.
Liver samples for histochemical analysis were kept in 10 %
formaldehyde.

Hematoxylin and eosin staining
After being dehydrated through an ethanol-xylene series,
the liver specimens were embedded in paraffin. Sections



Fig. 5 The location of glucocorticoid receptor element (GRE) on
the ACC-1 promoter (a), the level of glucocorticoid receptor (GR)
bingding to ACC-1 promoter (b) in Con and LPS groups. *P < 0.05
versus Con
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were cut (5 μm thick) and mounted on slides, each
section was de-waxed in xylene and dehydrated with
a graded alcohol series. After being washed with distilled
water for 3 min, the sections were counter-stained with
hematoxylin for 3 min, washed in distilled water for 5 min
and incubated in the eosin staining solution for 3 min,
dehydrated with a graded alcohol series followed by
xylene, air-dried and coverslipped with neutral gum.
All specimens were observed and photomicrographed
under a microscope.

Analyses of biochemical indexes in plasma
Plasma ALT, AST and TG levels were analysed using an
automatic biochemical analyser (Olympus AU2700) by
Nanjing General Hospital of Nanjing Military Command
(Nanjing, China).

Radioimmunoassay for plasma cortisol and TNF-α
Plasma cortisol and TNF-α concentrations were mea-
sured in duplicates using a commercially available
125I-RIA kit (Technology Research Institute of the
Northern biological Inc., Beijing, China). Cross-reactivities
of antibody used to any potentially competing plasma
steroids of the kits were lower than 10 %. The assay
was validated for use with porcine plasma. Sensitivity
of the cortisol assay was 2 ng/mL, and the TNF-α kit
was 6 fmol/mL respectively.

Real-time RT-PCR for mRNA quantification
Total RNA was isolated from liver samples using TRIzol
Reagent (no. 15596026, Invitrogen) according to the
manufacturer’s instruction. Total RNA extracts were
then treated with DNase I (D2215, Takara) to eliminate
possible contamination of genomic DNA. Two micrograms
of total RNA were reverse transcribed and 2 μL of diluted
cDNA (1:20) were used for real-time PCR analysis.
Peptidylprolyl isomerase A (PPIA) was chosen as a refer-
ence gene. All primers were synthesized by Generay
Biotech and listed in Table 2. The method of 2-ΔΔCt was
used to analyse the real-time PCR data.

Western blotting for protein quantification
Liver samples were homogenized in RIPA buffer
(50 mM Tris–HCl pH 7.4, 150 mM NaCl, 1 % NP40,
0.25 % Na-deoxycholate, 1 mM PMSF, 1 mM sodium
orthovanadate with Roche EDTA-free complete mini
protease inhibitor cocktail, no. 11836170001). Protein
concentrations were determined with a Pierce BCA
Protein Assay kit (no. 23225, Thermo). Western-blot
analysis for target proteins was carried out according to
the protocols provided by the primary antibody sup-
pliers. β-actin was selected as loading control. Anti-
CCAAT/enhancer-binding protein-β (C/EBP-β) antibody
(sc-150×, Santa Cruz, 1:200) was purchased from Santa
Cruz Biotechnology; anti-SCD-1 antibody (ab39969,
abcam, 1:1000) was purchased from abcam; anti-ACC-1
ntibody (BS1377, Bioworld, 1:500); anti-Peroxisome
proliferator-activated receptor-γ (PPAR-γ) antibody
(MB0080, Bioworld, 1:500); anti-CPT-1α antibody (BS7744,
Bioworld, 1:500) and anti-β-actin antibody (AP0060,
Bioworld, 1:10,000) was purchased from Bioworld.
Chemiluminescent substrate (ECL) kit (34080, Pierce)
was used to visualize protein bands of interest. ECL
signal intensities were quantified using a VersaDoc
MP 4000 system (BioRad). The content of detected
proteins was presented as the fold change relative to
the average content of the control group.

Enzyme assay for mitochondrial complex IV and V
activities
Liver mitochondria were isolated following previously
published protocols [37] with minor modifications. Two
hundred micrograms of chopped liver samples was
homogenized in buffer (0.1 M Tris–MOPS, 0.1 M
EGTA/Tris, and 1 M sucrose with protease inhibitor
cocktail (11697498001, Roche), pH 7.4), with 12 strokes
of a loose pestle in a glass Dounce homogenizer. The
homogenates were centrifuged at 600 g for 10 min at 4 °C,
and supernatant was collected for further centrifugation



Table 2 Primer sequences used in real-time PCR analysis and ChIP assay

Target gene Sequence (F: forward, R: reverse) GenBank access Applications

TLR2 F: GACACCGCCATCCTCATTCT NC_010450 PCR

R: CTTCCCGCTGCGTCTCAT

TLR4 F: TCTACATCAAGTGCCCCTAC NR_024169.1 PCR

R: TAAATTCTCCCAAAACCAAC

TNF-α F:CCACGCTCTTCTGCCTACTGC JF831365.1 PCR

R:TCGGCTTTGACATTGGCTACAA

NF-κB F:GGGGACTACGACCTGAATGC EU399817.1 PCR

R:CACGGTTGTCAAAGATGGG

IL-1α F:TACTGACTATGGCTACCAA NM_214029.1 PCR

R:ATTCCAGCTGCTATTGTG

ACC-1 F:GGCCATCAAGGACTTCAACC NM_001114269.1 PCR

R:ACGATGTAAGCGCCGAACTT

FAS F: GTCCTGCTGAAGCCTAACTC EF589048 PCR

R: TCCTTGGAACCGTCTGTG

SCD-1 F: CCCAGCCGTCAAAGAGAA NM_213781 PCR

R: CGATGGCGTAACGAAGAAA

PPAR-γ F: GCCCTTCACCACTGTTGATT NM_138711 PCR

R: GAGTTGGAAGGCTCTTCGTG

C/EBP-β F: GACAAGCACAGCGACGAGTA NM_001199889 PCR

R: AGCTGCTCCACCTTCTTCTG

HSL F: ACCCTCGGCTGTCAACTTCTT AY686758 PCR

R: TCCTCCTTGGTGCTAATCTCGT

ATGL F: ACCTGTCCAACCTGCTGC EF583921 PCR

R: GCCTGTCTGCTCCTTTATCCA

CPT-1α F:ACAACGAGGTCTTCCGAT NM_001129805.1 PCR

R:AACGCAAAACCACCAAACCC

ND1 F: TCCTACTGGCCGTAGCATTCCT KF888634.1 PCR

R: TTGAGGATGTGGCTGGTCGTAG

ND2 F: ATCGGAGGGTGAGGAGGGCTAA KF888634.1 PCR

R: GTTGTGGTTGCTGAGCTGTGGA

ND3 F: AGCACGCCTCCCATTCTCAAT KF888634.1 PCR

R: TGCTAGGCTTGCTGCTAGTAGG

ND4 F: TCGCCTATTCATCAGTAAGTCA KF888634.1 PCR

R: GGATTATGGTTCGGCTGTGTA

ND4L F: GATCGCCCTTGCAGGGTTACTT KF888634.1 PCR

R: CTAGTGCAGCTTCGCAGGCT

ND5 F: CGGATGAGAAGGCGTAGGAA KF888634.1 PCR

R: GCGGTTGTATAGGATTGCTTGT

ND6 F: ACTGCTATGGCTACTGAGATGT KF888634.1 PCR

R: CTTCCTCTTCCTTCAACGCATA

COX1 F: TGGTGCCTGAGCAGGAATAGTG KF888634.1 PCR

R: ATCATCGCCAAGTAGGGTTCCG

COX2 F: GCTTCCAAGACGCCACTTCAC KF888634.1 PCR
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Table 2 Primer sequences used in real-time PCR analysis and ChIP assay (Continued)

R: TGGGCATCCATTGTGCTAGTGT

COX3 F: GGCTACAGGGTTTCACGGGTTG KF888634.1 PCR

R: TCAGTATCAGGCTGCGGCTTCA

ATP6 F: ACTCATTCACACCCACCACACA KF888634.1 PCR

R: CCTGCTGTAATGTTGGCTGTCA

ATP8 F: TGCCACAACTAGATACATCC KF888634.1 PCR

R: GCTTGCTGGGTATGAGTAG

CYTB F: CTGAGGAGCTACGGTCATCACA KF888634.1 PCR

R: GCTGCGAGGGCGGTAATGAT

PPIA F: TCCTCCTTGGTGCTAATCTCGT NM_214353.1 PCR

R: TGATCTTCTTGCTGGTCTT

ACC-1_promoter F: ACAGCATACGGAGTTCCTGG ChIP

R: TGTCTTCTGCAACAATGGGA
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(7000 g). The pellet was then resuspended in isolation
buffer and centrifuged at 7000 g for 10 min at 4 °C. The
final washed mitochondrial pellet was dispersed in isolation
buffer and stored at −70 °C until assayed. All the operations
were carried out on ice. Mitochondrial complex IV and V
activities were determined according to the instruc-
tions of commercial kits (GMS50010, GMS50083, Genmed
Scientifics, Inc.).

Chromatin immunoprecipitation (ChIP) assay
ChIP analysis was performed according to our previ-
ous publication [38] with some modifications. Briefly,
200 mg of frozen liver samples were ground in liquid
nitrogen and washed with phosphate-buffered saline
containing protease inhibitor cocktail (11697498001,
Roche). After cross-linking in 1 % formaldehyde, the
reaction was stopped with 2.5 M glycine. The pellets
were washed with PBS and lysed in SDS lysis buffer
containing protease inhibitors. The lysates were sonicated
on ice to yield DNA fragments of 200 to 500 bp in length.
After pre-clearance of the resulting chromatin with
salmon sperm DNA-protein A/G agarose (50 % slurry),
the immunoprecipitation was performed with 2 mg of a
specific GR antibody (sc-1004×, Santa Cruz) or normal
control IgG (12–370, Millipore) overnight at 4 °C. DNA
fragments were then released by reverse cross-linking
from the immunoprecipitated complex at 65 °C overnight.
The DNA fragments were then treated with Proteinase K
(Sunshine, China) at 45 °C for 1 h. Finally, the DNA was
purified and resuspended in 100 μl TE buffer (10 mM
Tris–HCl, 0.1 mM EDTA, pH 8.0). 2 μl of the immu-
noprecipitated DNA were used as a template for real-
time PCR detection. ChIP results were calculated
relative to the control input DNA and presented as
the fold change relative to the average value of the
control group. The primer is listed in Table 2. The
relative GR binding was calculated using the 2-ΔΔCt

method.

Statistical analysis
All statistical analyses were performed with SPSS 18.0 for
Windows. All data were expressed as the mean ± SEM,
and one-way ANOVA was used to assess effects. The level
of significance was set at P < 0.05 for all analyses.

Abbreviations
ACC-1: Acetyl-CoA carboxylase-1; ALT: Alanine aminotransferase;
AST: Aspartate aminotransferase; ATGL: Adipose TG lipase; ATGL: Adipose
triglyceride lipase; ATP6: ATP synthase F0 subunit 6; ATP8: ATP synthase F0
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