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Abstract
In this paper, we study the parabolic Monge-Ampère equation

–ut det(D2u) = f (t,u) in � × (0, T ].

Using the method of moving planes, we show that any parabolically convex solution
is symmetric with respect to some hyperplane. We also give a counterexample in
R

n × (0, T ] and an example in a cylinder to illustrate the results.
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1 Introduction
TheMonge-Ampère equation has been of much importance in geometry, optics, stochas-
tic theory, mass transfer problem, mathematical economics and mathematical finance
theory. In optics, the reflector antenna system satisfies a partial differential equation of
Monge-Ampère type. In [, ], Wang showed that the reflector antenna design problem
was equivalent to an optimal transfer problem. An optimal transportation problem can be
interpreted as providing a weak or generalized solution to the Monge-Ampère mapping
problem []. More applications of the Monge-Ampère equation and the optimal trans-
portation can be found in [, ]. In the meantime, the Monge-Ampère equation turned
out to be the prototype for a class of questions arising in differential geometry.
For the study of elliptic Monge-Ampère equations, we can refer to the classical pa-

pers [–] and the study of parabolic Monge-Ampère equations; see the references [–
] etc. The parabolic Monge-Ampère equation –ut det(Du) = f was first introduced by
Krylov [] together with the other parabolic versions of elliptic Monge-Ampère equa-
tions; see [] for a complete description and related results. It is also relevant in the
study of deformation of surfaces by Gauss-Kronecker curvature [, ] and in a maxi-
mum principle for parabolic equations []. Tso [] pointed out that the parabolic equa-
tion –ut det(Du) = f is the most appropriate parabolic version of the elliptic Monge-
Ampère equation det(Du) = f in the proof of Aleksandrov-Bakelmanmaximum principle
of second-order parabolic equations. In this paper, we study the symmetry of solutions to
the parabolic Monge-Ampère equation

–ut det
(
Du

)
= f (t,u), (x, t) ∈Q, (.)
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u = , (x, t) ∈ SQ, (.)

u = u(x), (x, t) ∈ BQ, (.)

where Du is the Hessian matrix of u in x, Q = � × (,T], � is a bounded and convex
open subset in R

n, SQ = ∂� × (,T) denotes the side of Q, BQ = � × {} denotes the
bottom of Q, and ∂pQ = SQ∪BQ denotes the parabolic boundary of Q, f and u are given
functions.
There is vast literature on symmetry and monotonicity of positive solutions of elliptic

equations. In , Gidas et al. [] first studied the symmetry of elliptic equations, and
they proved that if � = R

n or � is a smooth bounded domain in R
n, convex in x and

symmetric with respect to the hyperplane {x ∈ R
n : x = }, then any positive solution of

the Dirichlet problem

�u + f (u) = , x ∈ �,

u = , x ∈ ∂�

satisfies the following symmetry and monotonicity properties:

u(–x,x, . . . ,xn) = u(x,x, . . . ,xn), (.)

ux (x,x, . . . ,xn) <  (x > ). (.)

The basic technique they applied is the method of moving planes first introduced by
Alexandrov [] and then developed by Serrin []. Later the symmetry results of elliptic
equations have been generalized and extended by many authors. Especially, Li [] con-
sidered fully nonlinear elliptic equations on smooth domains, and Berestycki and Niren-
berg [] found a way to deal with general equations with nonsmooth domains using the
maximum principles on domains with small measure. Recently, Zhang andWang [] in-
vestigated the symmetry of the elliptic Monge-Ampère equation det(Du) = e–u and they
got the following results.
Let � be a bounded convex domain in R

n with smooth boundary and symmetric with
respect to the hyperplane {x ∈R

n : x = }, then each solution of the Dirichlet problem

det
(
Du

)
= e–u, x ∈ �,

u = , x ∈ ∂�

has the above symmetry andmonotonicity properties (.) and (.). Extensions in various
directions including degenerate problems [] or elliptic systems of equations [] were
studied by many authors.
For the symmetry results of parabolic equations on bounded and unbounded domains,

the reader can be referred to [, , ] and the references therein. In particular, when
Q = � × J , J = (,T], Gidas et al. [] studied parabolic equations –ut +�u + f (t, r,u) = 
and –ut + F(t,x,u,Du,Du) = , and they proved that parabolic equations possessed the
same symmetry as the above elliptic equations. When J = (,∞), Hess and Poláčik []

http://www.boundaryvalueproblems.com/content/2013/1/185
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first studied the asymptotic symmetry results for classical, bounded, positive solutions of
the problem

ut –�u = f (t,u), (x, t) ∈ � × J , (.)

u = , (x, t) ∈ ∂� × J . (.)

The symmetry of general positive solutions of parabolic equations was investigated in [,
, ] and the references therein. A typical theorem of J =R is as follows.
Let � be convex and symmetric in x. If u is a bounded positive solution of (.) and

(.) with J =R satisfying

inf
t∈R

u(x, t) >  (x ∈ �, t ∈ J),

then u has the symmetry and monotonicity properties for each t ∈R:

u
(
–x,x′, t

)
= u

(
x,x′, t

) (
x =

(
x,x′) ∈ �, t ∈ R

)
,

ux (x, t) <  (x ∈ �,x > , t ∈R).

The result of J = (,∞) is as follows.
Assume that u is a bounded positive solution of (.) and (.) with J = (,∞) such that

for some sequence tn → ∞,

lim inf
n→∞ u(x, tn) >  (x ∈ �).

Then u is asymptotically symmetric in the sense that

lim
t→∞

(
u
(
–x,x′, t

)
– u

(
x,x′, t

))
=  (x ∈ �),

lim sup
t→∞

ux (x, t)≤  (x ∈ �,x > ).

In this paper, using the method of moving planes, we obtain the same symmetry of solu-
tions to problem (.), (.) and (.) as elliptic equations.

2 Maximum principles
In this section, we prove somemaximumprinciples. Let� be a bounded domain inR

n, let
aij(x, t), b(x, t), c(x, t) be continuous functions inQ,Q = �× (,T]. Suppose that b(x, t) < ,
c(x, t) is bounded and there exist positive constants λ and � such that

λ|ξ | ≤ aij(x, t)ξiξj ≤ �|ξ |, ∀ξ ∈R
n.

Here and in the sequel, we always denote

Di =
∂

∂xi
, Dij =

∂

∂xi ∂xj
.

We use the standard notation Ck,k(Q) to denote the class of functions u such that the
derivatives Di

xD
j
tu are continuous in Q for i + j ≤ k.

http://www.boundaryvalueproblems.com/content/2013/1/185
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Theorem . Let λ(x, t) be a bounded continuous function on Q, and let the positive func-
tion ϕ ∈ C,(Q) satisfy

b(x, t)ϕt + aij(x, t)Dijϕ – λ(x, t)ϕ ≤ . (.)

Suppose that u ∈ C,(Q)∩C(Q) satisfies

b(x, t)ut + aij(x, t)Diju – c(x, t)u≤ , (x, t) ∈Q, (.)

u≥ , (x, t) ∈ ∂pQ. (.)

If

c(x, t) > λ(x, t), (x, t) ∈ Q, (.)

then u ≥  in Q.

Proof We argue by contradiction. Suppose there exists (x, t) ∈Q such that u(x, t) < . Let

v(x, t) =
u(x, t)
ϕ(x, t)

, (x, t) ∈Q.

Then v(x, t) < . Set v(x, t) = minQ v(x, t), then x ∈ � and v(x, t) < . Since v(·, t) at-
tains its minimum at x, we have Dv(x, t) = , Dv(x, t) ≥ . In addition, we have
vt(x, t)≤ . A direct calculation gives

vt =
utϕ – uϕt

ϕ ,

Dijv =

ϕ
Diju –

u
ϕDijϕ –


ϕ
DivDjϕ –


ϕ
DjvDiϕ.

Taking into account u(x, t) < , we have at (x, t),

 ≤ ϕaijDijv = aijDiju –
aijDijϕ

ϕ
u

≤ aijDiju +
u
ϕ
(bϕt – λϕ)

≤ aijDiju +
b
ϕ
utϕ – λu

= aijDiju + but – λu

< aijDiju + but – cu

≤ .

This is a contradiction and thus completes the proof of Theorem .. �

Theorem . is also valid in unbounded domains if u is nonnegative at infinity. Thus we
have the following corollary.

http://www.boundaryvalueproblems.com/content/2013/1/185
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Corollary . Suppose that � is unbounded, Q = � × (,T]. Besides the conditions of
Theorem ., we assume

lim inf|x|→∞ u(x, t)≥ . (.)

Then u≥  in Q.

Proof Still consider v(x, t) in the proof of Theorem .. Condition (.) shows that the
minimum of v(x, t) cannot be achieved at infinity. The rest of the proof is the same as the
proof of Theorem .. �

If � is a narrow region with width l,

� =
{
x ∈R

n| < x < l
}
,

then we have the following narrow region principle.

Corollary . (Narrow region principle) Suppose that u ∈ C,(Q) ∩ C(Q) satisfies (.)
and (.). Let the width l of � be sufficiently small. If on ∂pQ, u ≥ , then we have u ≥ 
in Q. If � is unbounded, and lim inf|x|→∞ u(x, t)≥ , then the conclusion is also true.

Proof Let  < ε < l,

ϕ(x, t) = t + sin
x + ε

l
.

Then ϕ is positive and

ϕt = ,

aijDijϕ = –
(

l

)

aϕ.

Choose λ(x, t) = –λ/l. In virtue of the boundedness of c(x, t), when l is sufficiently small,
we have c(x, t) > λ(x, t), and thus

bϕt + aijDijϕ – λϕ

= b –
(

l

)

aϕ –
(
–

λ

l

)
ϕ

= b –
(

l

)

aϕ +
λ

l
ϕ

≤ b < .

From Theorem ., we have u ≥ . �

http://www.boundaryvalueproblems.com/content/2013/1/185
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3 Main results
In this section, we prove that the solutions of (.), (.) and (.) are symmetric by the
method of moving planes.

Definition . A function u(x, t) :Q →R is called parabolically convex if it is continuous,
convex in x and decreasing in t.

Suppose that the following conditions hold.
(A) fu(t,u)/f (t,u) is bounded in [,T]×R.
(B) ∂u/∂x <  and

u(x)≤ u
(
xλ

)
, x ∈ �λ, (.)

where xλ = (λ – x,x, . . . ,xn), �λ = � ∩ {x ∈ � : x ≤ λ} (λ < ).

Theorem . Let � be a strictly convex domain in R
n and symmetric with respect to

the plane {x ∈ � : x = }, Q = � × (,T]. Assume that conditions (A) and (B) hold and
u ∈ C,(Q) ∩ C(Q) is any parabolically convex solution of (.), (.) and (.). Then
u(x,x′, t) = u(–x,x′, t), where (x, t) = (x,x′, t) ∈R

n+, and when x ≥ , ∂u(x, t)/∂x ≤ .

Proof Let in �λ × (,T], uλ(x, t) = u(xλ, t), that is,

uλ(x,x, . . . ,xn, t) = u(λ – x,x, . . . ,xn, t), (x, t) ∈ �λ × (,T].

Then

Duλ(x,x, . . . ,xn, t) = PTDu(λ – x,x, . . . ,xn, t)P,

where P = diag(–, , . . . , ). Therefore,

–uλ
t det

(
Duλ

)
= –ut(λ – x,x, . . . ,xn, t)det

(
Du(λ – x,x, . . . ,xn, t)

)
= f

(
t,u(λ – x,x, . . . ,xn, t)

)
= f

(
t,uλ

)
. (.)

We rewrite (.) in the form

log
(
–uλ

t
)
+ log

(
det

(
Duλ

))
= log f

(
t,uλ

)
. (.)

On the other hand, from (.), we have

log(–ut) + log
(
det

(
Du

))
= log f (t,u). (.)

According to (.) and (.), we have

log(–ut) – log
(
–uλ

t
)
+ log

(
det

(
Du

))
– log

(
det

(
Duλ

))
= log f (t,u) – log f

(
t,uλ

)
.

http://www.boundaryvalueproblems.com/content/2013/1/185
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Therefore

∫ 



d
ds

log
(
–sut – ( – s)uλ

t
)
ds +

∫ 



d
ds

logdet
(
sDu + ( – s)Duλ

)
ds

=
∫ 



d
ds

log f
(
t, su + ( – s)uλ

)
ds.

As a result, we have

b(x, t)
(
u – uλ

)
t + aij(x, t)

(
u – uλ

)
ij – c(x, t)

(
u – uλ

)
= , (x, t) ∈ �λ × (,T], (.)

where

b(x, t) =
∫ 



ds
sut + ( – s)uλ

t
,

aij(x, t) =
∫ 


gijs ds,

c(x, t) =
∫ 



fu
f

(
t, su + ( – s)uλ

)
ds,

gijs is the inverse matrix of sDu+ (– s)Duλ. Then b(x, t) < , c(x, t) is bounded and by the
a priori estimate [] we know there exist positive constants λ and � such that

λ|ξ | ≤ aijξiξj ≤ �|ξ |, ∀ξ ∈ R
n.

Let

wλ = u – uλ,

then from (.),

b(x, t)wλ
t + aij(x, t)wλ

ij – c(x, t)wλ = , (x, t) ∈ �λ × (,T]. (.)

Clearly,

wλ(x, t) = , x ∈ ∂�λ ∩ {x = λ},  < t ≤ T . (.)

Because the image of ∂� ∩ ∂�λ about the plane {x = λ} lies in �, according to the maxi-
mum principle of parabolic Monge-Ampère equations,

uλ(x, t)≤ , ∀x ∈ ∂� ∩ ∂�λ.

Thus

wλ(x, t) = u – uλ =  – uλ ≥ , x ∈ ∂� ∩ ∂�λ,  < t ≤ T . (.)

http://www.boundaryvalueproblems.com/content/2013/1/185
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On the other hand, from (.),

wλ(x, ) = u(x) – u
(
xλ

) ≥ , x ∈ �λ. (.)

From Corollary ., when the width of �λ is sufficiently small, wλ(x, t) ≥ , (x, t) ∈ �λ ×
(,T].
Now we start to move the plane to its right limit. Define

� = sup
{
λ < |wλ(x, t)≥ ,x ∈ �λ,  < t ≤ T

}
.

We claim that

� = .

Otherwise, we will show that the plane can be further moved to the right by a small dis-
tance, and this would contradict with the definition of �.
In fact, if � < , then the image of ∂� ∩ ∂�� under the reflection about {x = �} lies

inside �. According to the strong maximum principle of parabolic Monge-Ampère equa-
tions, for x ∈ �, u� < . Therefore, for x ∈ ∂�� ∩ ∂�, we have w� > . On the other hand,
by the definition of�, we have for x ∈ ��,w� ≥ . So, from the strongmaximumprinciple
[] of linear parabolic equations and (.), we have for (x, t) ∈ �� × (,T],

w�(x, t) > . (.)

Let d be the maximumwidth of narrow regions so that we can apply the narrow region
principle. Choose a small positive constant δ such that�+δ < , δ ≤ d/–�.We consider
the function w�+δ(x, t) on the narrow region

��+δ × (,T] =
(

��+δ ∩
{
x >� –

d


})
× (,T].

Then w�+δ(x, t) satisfies

b(x, t)w�+δ
t + aij(x, t)Dijw�+δ – c(x, t)w�+δ = , (x, t) ∈ ��+δ × (,T]. (.)

Now we prove the boundary condition

w�+δ(x, t)≥ , (x, t) ∈ ∂p
(
��+δ × (,T]

)
. (.)

Similar to boundary conditions (.), (.) and (.), boundary condition (.) is satisfied
for x ∈ ∂��+δ ∩ ∂�, x ∈ ∂��+δ ∩ {x = � + δ} and for t = . In order to prove (.) is
satisfied for x ∈ ∂��+δ ∩ {x = � – d/}, we apply the continuity argument. By (.) and
the fact that (�– d/,x, . . . ,xn) is inside ��, there exists a positive constant c such that

w�

(
� –

d

,x, . . . ,xn, t

)
≥ c.

http://www.boundaryvalueproblems.com/content/2013/1/185
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Because wλ is continuous in λ, then for small δ, we still have

w�+δ

(
� –

d

,x, . . . ,xn, t

)
≥ .

Therefore boundary condition (.) holds for small δ. From Corollary ., we have

w�+δ(x, t)≥ , x ∈ ��+δ ,  < t ≤ T . (.)

Combining (.) and the fact that wλ is continuous for λ, we know that w�+δ(x, t)≥  for
x ∈ �� when δ is small. Then from (.), we know that

w�+δ(x, t)≥ , x ∈ ��+δ ,  < t ≤ T .

This contradicts with the definition of �, and so � = .
As a result, w(x, t)≥  for x ∈ �, which means that as x < ,

u(x,x, . . . ,xn, t) ≥ u(–x,x, . . . ,xn, t).

Since � is symmetric about the plane {x = }, then for x ≥ , u(–x,x, . . . ,xn, t) also
satisfies (.). Thus we can move the plane from the right towards the left and get the
reverse inequality. Therefore

∂u(x, t)/∂x ≤ , x ≥ ,

u(x,x, . . . ,xn, t) = u(–x,x, . . . ,xn, t). (.)

Equation (.) means that u is symmetric about the plane {x = }. Theorem . is
proved. �

If we put the x axis in any direction, from Theorem ., we have the following.

Corollary . If � is a ball, Q = � × (,T], then any parabolically convex solution u ∈
C,(Q) of (.), (.) and (.) is radially symmetric about the origin.

Remark . Solutions of (.) in R
n × (,T] may not be radially symmetric. For example,

–ut det
(
Du

)
= e–u, (x, t) ∈ R

n × (,T] (.)

has a non-radially symmetric solution. In fact, we know that f (x) =  log( + e
√
x) –

√
x–

log (x > ) satisfies f ′′ = e–f in R
, and f (x) = f (–x), x < . Define

u(x, t) = log(T – t) + f (x) + f (x) + · · · + f (xn),

then u is a solution of (.) but not radially symmetric.

http://www.boundaryvalueproblems.com/content/2013/1/185
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We conclude this paper with a brief examination of Theorem .. Let B = B() be the
unit ball in R

n, and let radially symmetric function u(x) = u(r), r = |x| satisfy

u(r)(u′
(r))n–u′′

(r)
rn–

= –,  < r < , (.)

u() = u′
() = . (.)

Example . Let u satisfy (.) and (.). Then any solution of

–ut det
(
Du

)
= , (x, t) ∈ B× (,T], (.)

u = , (x, t) ∈ ∂B× (,T), (.)

u = u, (x, t) ∈ B× {} (.)

is of the form

u = –
[
(n + )t + 

] 
n+ u(r), (.)

where r = |x|.

Proof According to Corollary ., the solution is symmetric. Let

u(x, t) = u(r, t), r = |x|.

Then

ui =
∂u(r, t)

∂r
xi
r
,

uij =
∂u(r, t)

∂r
xixj
r

+
∂u(r, t)

∂r

(
δij

r
–
xixj
r

)
,

det
(
Du

)
=

(
∂u/∂r

r

)n–
∂u
∂r

.

Therefore (.) is

–
∂u
∂t

(
∂u/∂r

r

)n–
∂u
∂r

= . (.)

We seek the solution of the form

u(r, t) = T(t)u(r).

Then

–u(r)T ′(t)
(u′

(r)T(t))n–

rn–
u′′
(r)T(t) = .

That is,

u(r)(u′
(r))n–u′′

(r)
rn–

= –


T ′(t)(T(t))n
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/185
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Therefore

T ′(t)
(
T(t)

)n = . (.)

By (.), we know that

T() = . (.)

From (.) and (.), we have

T(t) =
[
(n + )t + 

] 
n+ .

As a result,

u(r, t) = –
[
(n + )t + 

] 
n+ u(r).

From the maximum principle, we know that the solution of (.)-(.) is unique. Thus
any solution of (.), (.) and (.) is of the form of (.). �
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