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Abstract

Background: Both angiotensin II type 1 receptor (AT1R) and nuclear factor-kappa B (NF-κB) play significant roles
in the pathogenesis of hypertension and type 2 diabetes. However, the role of NF-κB in perpetuating renal AT1
receptors dysfunction remains unclear. The aim of the present study to determine whether blockade of NF-κB,
could reverse the exaggerated renal AT1R function, reduce inflammatory state and oxidative stress, lower blood
pressure in Zucker diabetic fatty (ZDF) rats.

Methods: Pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor (150 mg/kg in drinking water)or vehicle was
administered orally to 12-weeks-old ZDF rats and their respective control lean Zucker (LZ) rats for 4 weeks. Blood
pressure was measured weekly by tail-cuff method. AT1R functions were determined by measuring diuretic and
natriuretic responses to AT1R antagonist (candesartan; 10 μg/kg/min iv). The mRNA and protein levels of NF-κB,
oxidative stress maker and AT1R were determined using quantitative real-time PCR and Western blotting, respectively.
The NF-κB-DNA binding activity in renal cortex was measured by Electrophoretic mobility shift assay (EMSA).

Results: As compared with LZ rats, ZDF rats had higher blood pressure, impaired natriuresis and diuresis, accompanied
with higher levels of oxidative stress and inflammation. Furthermore, AT1R expression was higher in renal cortex from
ZDF rats; candesartan induced natriresis and diuresis, which was augmented in ZDF rats. Treatment with PDTC lowered
blood pressure and improved diuretic and natriuretic effects in ZDF rats; meanwhile, the increased oxidative stress and
inflammation were reduced; the increased AT1R expression and augmented candesartan-mediated natriuresis and
diuresis were recoverd in ZDF rats. Our further study investigated the mechanisms of PDTC on AT1R receptor
expression. It resulted that PDTC inhibited NF-κB translocation from cytosol to nucleus, inhibited binding of NF-κB
with AT1R promoter, therefore, reduced AT1R expression and function.

Conclusions: Our present study indicates blockade of NF-κB, via inhibition of binding of NF-κB with AT1R promoter,
reduces renal AT1R expression and function, improves oxidative stress and inflammatory/anti-inflammatory balance,
therefore, lowers blood pressure and recovers renal function in ZDF rats.
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Background
Type 2 diabetes and hypertension are two of the most
common diseases and their incidences are increasing
dramatically worldwide with concomitant obesity [1].
Obesity promotes insulin resistance, which may further
contribute to development of type 2 diabetes and hyper-
tension [2]. However, the mechanisms involved in obesity-
related development of hypertension and accompanying
complications are not clearly understood. Hypertension in
patients and animal models with obesity and insulin resist-
ance is usually associated with increased sodium retention,
leading to development of hypertension [3].
Renin-angiotensin-aldosterone system (RAS) plays a

critical role in the regulation of renal sodium excretion
through a variety of physiological pathways [4, 5]. Angio-
tensin II (ANG II) is the main effector peptide of RAS,
which mediates its antinatriuretic effects via ANG II
type 1 (AT1) receptors [6], whereas activation of ANG II
type 2 (AT2) receptors produces natriuresis [6]. Within
the kidney, 95 % of the receptors are of AT1 subtype,
altered functioning of which has been linked to various
forms of hypertension [7]. In spontaneously hypertensive
rats (SHR), a commonly used animal model of human
essential hypertension, and ZDF rats, old Fischer 344 x
Brown Norway F1 hybrid rats, the high blood pressure is
associated with renal AT1 receptor up-regulation [8–10].
However, the mechanisms leading to the up-regulated
renal AT1R expression and function are not clear.
Although the mechanisms of obesity-related hyperten-

sion are complicated, hypertension and obesity, to some
extent, are taken as inflammatory diseases. Recent stud-
ies suggest that NF-κB is the major transcription factor
for AT1R gene [11]. Preliminary computer analysis of
the AT1R 5′-flanking region (GenBankTMaccession num-
ber S66402) has revealed two putative NF-κB binding
sites at-365 and-2540 [12]. There are reports showing
that NF-κB activation could increase AT1R expression
[13]. For example, previous studies have shown that ANG
II infusion activates NF-κB in the hypothalamic paraven-
tricular nucleus (PVN) and increases hypertensive re-
sponse, which are associated with the increases of AT1R
expression in the PVN [14]. Central blockade of NF-κB at-
tenuates blood pressure, and decreases NF- κB activation
and AT1R expression in the PVN of ANG II-infused rats
[14], suggesting an interaction between NF-κB activation
and AT1R in the cardiovascular regulatory centres. Our
previous studies demonstrate that blockade of NF-κB with
a NF-κB inhibitor, would decrease AT1R expression and
decrease augmented AT1R-mediated vasoconstriction and
sodium retension G-protein–coupled receptor kinase 4
(GRK4) γ variant 142 V, a hypertensive transgenic animal
model [15]. Therefore, we wonder whether or not block-
ade of NF-kB would reduce the AT1R expression and
reverse the AT1R-mediated augmented sodium retention,
and then reduce blood pressure in ZDF rats. Our present
study would use pyrrolidine dithiocarbamate (PDTC) to
treat ZDF rats, observe the effect of PDTC on AT1R ex-
pression and function in kidney, and investigate the pos-
sible underlying mechanisms. PDTC, a NF-κB inhibitor, is
believed to exert its inhibitory effects on NF-κB/DNA-
binding activities by directly impeding IκBα degradation
and IκBα phosphorylation, precluding the dissociation of
NF-κB from IκB and subsequent NF-κB translocation
from the nucleus [16].

Materials and methods
Animals
Male Zucker diabetic fatty (ZDF) and age matched lean
Zucker (LZ) rats (Charles River Laboratory, Wilmington,
MA) were housed in a temperature-controlled room under
a 12/12 h light/dark cycle and had free access to food and
water. These experiments were reviewed and approved by
The Third Military Medical University Animal Care and
Use Committee and conformed to the Guidelines for the
Guide for the Care and Use of Laboratory Animals pub-
lished by the US National Institutes of Health (NIH Pub-
lication No. 85–23, revised 1996).

Experimental protocol
ZDF and LZ rats were randomized into two groups
respectively at the age of 12 weeks: control group and
group treated with PDTC. Control rats were received
treatment with vehicle (tap water) for 4 weeks, while,
PDTC group treated with PDTC (150 mg · kg boby wt−1 ·
day−1), dissolved in drinking water; the treatment period
was lasted for 4 weeks.
Blood pressure for all animals was measured at base-

line (12 week-old of age) and then every week until the
end of the study by tail-cuff plethysmography (BP-98A;
Softron, Tokyo, Japan) method. During experiment, the
rats were placed in metabolic cages for 24 h urine col-
lection. Normal tap water for drinking was provided ad
libitum, daily 24-h water intake and urine volume and
sodium excretion were recorded during the study. Before
sacrificed, fasting blood glucose was measured using a
commercially available glucometer (Roche Diagnostics,
Indianapolis, IN). Insulin level was determined by a rat
insulin ELISA kit (Millipore, Darmstadt, Germany). Tri-
glycerides were measured by a triglyceride analyzer
(Polymer Technology Systems, Cardiochek, IN). Urinary
albumin was quantified using the Nephrat kit according
to manufacturer’s instructions.

Surgical procedures for renal function studies
The rats were anesthetized with pentobarbital (50 mg/kg,
intraperitoneally; Sigma), and a tracheotomy (PE-240) was
performed to facilitate breathing. For measurement of sys-
temic arterial pressure and heart rate, catheters (PE-50)
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were placed into carotid artery and connected to a pres-
sure transducer (Grass Instrument, Quincy, MA). The left
jugular vein was catheterized with PE-50 tubing to infuse
normal saline for fluid replacement. A midline abdominal
incision was made, the right suprarenal artery was cathe-
terized (PE-10); and the vehicle (saline)/reagents were
infused at a rate of 40 μl/h, and both the right and left
ureters were catheterized (PE-10) to collect urine. The
duration of surgical preparation was about 60 min. To
maintain a stable urinary output, 5 % albumin was used to
replace blood extracted during each period and normal
saline solution equal to 1 % body weight per hour for in-
sensible fluid loss was maintained. Rats were allowed to
stabilize for 120 min after surgery prior to 40-min urine
collections for clearance measurements.

Experimental protocol for renal function studies
For determination of effect of candesartan-mediated
diuresis and natriuresis, rats were stabilized for 120 min
after surgery and followed by five consecutive 40-min
collection periods; basal, reagent treatment (3 periods),
recovery. During basal, vehicle alone was infused through
the right suprarenal artery; during reagent treatment
period, candesartan (10 μg/kg/min, i.v.), an AT1 receptor
antagonist was infused; and during recovery, only vehicle
was infused. Blood samples (200 μl; replaced by equal vol-
ume of 5 % albumin) were collected at the end of each
period. At the end of the experiment, plasma was sepa-
rated by centrifuging blood samples at 1500 g for 15 min
at 4 °C. Sodium and potassium concentrations in urine
samples were measured by a flame photometer 480 (Ciba
Corning Diagnostics, Norwood, MA). Creatinine levels in
the plasma and urine were measured by a creatinine
analyzer (Beckman, Fullerton, CA). The glomerular fil-
tration rate (GFR) (milliliters per minute) was calculated
from creatinine clearance [17].

Renal cortex IL-β, IL-10, TNF-α measurements
IL-β, IL-10 and TNF-α in the renal cortex were measured
by ELISA using a commercially available kit (Boster,
Wuhan, China) according to the manufacturer’s protocol.

Activity of NADPH oxidase by lucigenin-enhanced
chemiluminescence
The NADPH oxidase activity was measured by the
lucigenin-enhanced chemiluminescence method [18].
Briefly, NADPH (100 μM, Sigma) and lucigenin (5 μM,
Sigma) were added into 1 ml microcentrifugal tubes.
Superoxide production was measured every 20 s for 10 min
and values were expressed as relative luminescence units
per minute per milligram of protein. Using this method,
the superoxide anion production also represents NADPH
oxidase activity.
Real-time quantitative RT-PCR (qRT-PCR) analysis
qRT-PCR was used to determine mRNA levels of AT1R;
oxidative stress markers viz. gp91phox (also known as
NOX2), and iNOS in the renal cortex by using specific
primers. The primer sequences used for qRT-PCR were
listed in the Additional file 1: Table S1. Total RNA was
isolated from the kidneys using SV total RNA isolation
system from Promega (Madison, WI), and cDNA was syn-
thesized using reverse transcript reagents from Bio-Rad
Laboratories (Hercules, CA). The mRNA level was quanti-
fied using Bio-Rad iCyCler real-time PCR machine. Gene
expression was measured by the ΔΔCT method and was
normalized to GAPDH mRNA levels. The data were pre-
sented as the fold change of the gene of interest relative to
that of control animals.
Nuclear/cytosolic fractionation
Nuclear and cytosolic proteins were extracted from
renal cortex, using NE-PER reagents (Thermo Scientific,
Lafayette, CO). Briefly the cortex homogenates were
suspended in CER I lysis buffer, CER II buffer was added
and further vortexed to ensure complete mixing. The
cortex suspension was centrifuged and the supernatant
yielded the cytosolic fraction. NER I buffer was added
and further vortexed for nuclear membrane lysis. The
suspension was centrifuged and the supernatant col-
lected as the nuclear fraction. Total protein in both frac-
tions was determined by BCA assay, and equivalent
proteins were loaded.
Western blot analysis
The expression of AT1R, NF-κB p65 and phosphoryl-
ation of IKKα/β, IκBα, oxidative stress markers (NOX2,
iNOS), and GAPDH in the renal cortex were determined
by Western blotting. The renal cortices were homogenized
in ice-cold lysis buffer (PBS with 1 % NP40, 1 mmol/L
EDTA, 1 mmol/L PMSF, 10 μg /ml leupeptin and 10 μg/
ml aprotinin inhibitor). Equal amounts of total extracted
proteins (50 μg) were separated on SDS-PAGE and were
transferred onto nitrocellulose membranes (Amersham
Life Science, Arlington, TX). The blots were subjected to
immunoblot analyses with the primary polyclonal anti-
bodies for rabbit anti-AT1R, anti-IKKα/β, phospho-IKKα/
β, anti-IκBα, phospho-IκBα, NOX2 and iNOS (1:300;
Santa Cruz Biotechnology, Santa Cruz, CA), anti-NF-κB
p65 (1:400; BD Transduction Laboratory, Minneapolis,
MN, USA), anti-Histone and anti-GAPDH (1:500, Santa
Cruz Biotechnology). Immunodetection was accomplished
by incubating the blots in horseradish peroxidase-
conjugated anti-rabbit secondary antibody (1:10,000 di-
lution). The bands were visualized using enhanced
chemiluminescece kit (Amersham, Arlington, TX), and
the band intensities were quantified by densitometry



Table 1 Physiological parameters

Parameter LZ Control LZ PDTC ZDF Control ZDF PDTC

Food intake
(g/day)

23.4 ± 1.4 24.0 ± 1.7 37.7 ± 1.6* 36.7 ± 1.2*

Body weight (g) 290.1 ± 6.5 288.6 ± 4.3 435.3 ± 7.3* 431.1 ± 7.5*

Blood glucose
(mmol/L)

5.5 ± 0.2 5.3 ± 0.3 8.6 ± 0.3* 7.0 ± 0.1*#

Insulin (nmol/L) 0.63 ± 0.04 0.60 ± 0.04 4.17 ± 0.20* 1.67 ± 0.14*#

Triglycerides
(mg/dl)

61.8 ± 5.0 57.4 ± 4.3 315.9 ± 13.3* 132.2 ± 15.5*#

Heart rate (bpm) 370.6 ± 5.9 367.8 ± 5.6 363.3 ± 4.2 362.4 ± 4.6

Effect of PDTC on physiological characteristics in LZ and ZDF rats. Data are
expressed as mean ± SEM (n = 8/group). P < 0.05 was considered statistically
significant. *P <0.05 vs. LZ control; #P < 0.05 vs. ZDF control

Fig. 1 Effect of PDTC on blood pressure in LZ and ZDF rats. Mean
blood pressure (MBP ) was recorded in LZ and ZDF rats with different
ages (12–16 weeks). The rats were treated with PDTC (150 mg · kg
body wt-1 · day-1) or vehicle for 4 weeks. *P <0.05 vs LZ control;
#P < 0.05 vs ZDF control (n = 8)
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using Quantity-One software (Bio-Rad, Hercules, CA),
and normalized with GAPDH expression.

Electrophoretic mobility shift assay (EMSA)
The NF-κB-DNA binding activity in renal cortex was mea-
sured by EMSA. EMSA was performed with the Light-shift
Chemilunminescent EMSA kit (Prerce Chemical Co,
Rockford, IL) according to the manufacturer’s protocol. A
synthetic double-stranded oligonucleotides probe (NF-
κB:5′-AGTTGAGGGGACTTTCCCAGGC-3′) containing
the rat AT1R gene promoter with the sequence between
nucleotides −350 bp and −363 bp (5′-AAGGGAGTT
CCCTA-3′), and NF-κB mutant oligonucleotides (5′-A
GTTGAGGGATCTTTCCCAGGC-3′) were labeled with
biotin and incubated with the nuclear extracts.

Statistical analysis
Data are expressed as the mean ± SEM. Statistical signifi-
cance between experimental groups was determined using
the unpaired t test or ANOVA with Newman-Keuls mul-
tiple test, as appropriate. Statistical analysis was carried
out using a software program (GraphPad Prism version 5;
GraphPad Software, San Diego, CA). P < 0.05 was consid-
ered statistically significant.

Results
Physiological parameters
In order to determine the metabolic characteristics of
the LZ and ZDF rats, we measured their body weight,
plasma levels of insulin, glucose, triglyceride and blood
pressure. As shown in Table 1, body weight, food intake,
plasma levels of insulin, glucose and triglyceride were
significantly higher in ZDF than in LZ rats, but heart
rate had no difference. PDTC treatment for 4 weeks low-
ered plasma levels of insulin, glucose and triglyceride in
ZDF rats, but not in LZ rats. As expected, the blood
pressure was significantly higher in ZDF than LZ rats at
baseline. PDTC treatment prevented the increase in
blood pressure with age in ZDF rats although the blood
pressure remained higher than those observed in lean
Zucker rats (Fig. 1).

Effect of PDTC on renal function in ZDF rats
Compared with LZ rats, ZDF rats consumed more water
over 24 h urine collection period. PDTC treatment did
not affect water intake in both rat strains. As indicator
of renal insufficiency, as compared with LZ rats, ZDF
rats had increased renal weights, plasma creatinine, and
urine albumin excretion, urinary volume output and so-
dium excretion. After adjusting for body weight, urinary
volume output and sodium excretion were indeed lower
in ZDF than LZ rats. Moreover, ZDF rats had lower glom-
erular filtration rate (GFR) than ZL rats. PDTC treatment
significantly prevented the increased plasma creatinine
and urinary albumin, normalized urinary volume output,
urinary sodium excretion and GFR in ZDF rats (Table 2).
Effect of PDTC on inflammation and oxidative stress in
kidney of ZDF rats
Given role of inflammation and oxidative stress in the
development of type-2 diabetes and hypertension, we
checked inflammation and oxidative stress in those rats.
It showed that the increase in blood pressure was accom-
panied by an increased production of local proinflamma-
tion and a reduction of anti-inflammatory makers in ZDF
rats than LZ rats, i.e., ZDF rats had an increased abun-
dance of IL-1β, TNF-α, and a decreased level of IL-10
(Fig. 2a and c).
Consistent with inflammatory change, oxidative stress

was also increased in ZDF rats. NOX2, a subunit of
NAD(P)H oxidase as oxidative stress marker, and



Table 2 Renal function analysis

Group LZ Control LZ PDTC ZDF Control ZDF PDTC

Kidney weight (g) 1.02 ± 0.03 1.01 ± 0.02 1.83 ± 0.04* 1.80 ± 0.03*

Water intake (ml/day) 17.3 ± 0.64 16.9 ± 0.84 22.3 ± 0.69* 21.8 ± 0.74*

Creatinine (mg/dl) 0.62 ± 0.05 0.63 ± 0.05 1.25 ± 0.13* 0.77 ± 0.04#

Urinary albumin (mg/24 h) 10.69 ± 0.97 10.36 ± 1.55 60.49 ± 4.93* 36.19 ± 3.23*#

Urine Volume (ml/day) 7.09 ± 0.48 6.83 ± 0.64 8.28 ± 0.50* 10.02 ± 0.90*#

Normalized urine volume (ml/day/kg · body wt) 24.74 ± 2.17 24.10 ± 2.44 19.42 ± 1.50* 23.95 ± 1.21#

UNaV (mmol/day) 224.5 ± 13.3 227.8 ± 20.4 264.4 ± 11.4* 298.9 ± 14.5*#

Normalized UnaV (μmol/day /kg · body wt) 782.8 ± 62.9 801.8 ± 74.5 596.3 ± 37.8* 730.1 ± 58.2#

GFR (ml/min) 1.01 ± 0.04 0.96 ± 0.05 0.75 ± 0.03* 0.88 ± 0.04#

Effect of PDTC on renal function in LZ and ZDF rats. Data are expressed as mean ± SEM (n = 5/group). P < 0.05 was considered statistically significant. *P <0.05 vs.
LZ control; #P < 0.05 vs. ZDF control
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inducible nitric oxide synthase (iNOS) were significantly
higher in the renal cortices of ZDF rats as compared
with LZ rats (Fig. 3a and c). In order to confirm that the
increase on iNOS and Nox-2 expression correlates with
an increase in the activity, the activity of NADPH oxi-
dase in renal cortices was measured by using lucigenin-
enhanced chemiluminescence (Fig. 3d). The NADPH
oxidase activity was increased by 221 ± 43 % in ZDF
compared to LZ rats. PDTC treatment normalized the
above-mentioned abnormal inflammation and oxidative
stress in ZDF rats.
Fig. 2 Effect of PDTC on the levels of inflammatory markers in the renal co
TNF-α (b) and IL-10 (c). The rats were treated with PDTC (150 mg · kg body
ZDF control (n = 6)
Effect of PDTC on AT1 receptor expression and function
in ZDF rats
Due to the important role of AT1R on renal function, we
determined its expression in kidney, it resulted that AT1R
protein and mRNA expressions were higher in renal cor-
tex from ZDF rats than LZ rats. PDTC treatment for
4 weeks significantly decreased AT1R expression in kidney
from ZDF rats, not from LZ rats (Fig. 4a and b).
The increased AT1R was pathophysiological signifi-

cance. AT1R antagonist candesartan-mediated natriuretic
and diuretic effects were significantly higher in ZDF rats
rtex of LZ and ZDF rats. The inflammatory markers included IL-1β (a),
wt-1 · day-1) or vehicle for 4 weeks. *P <0.05 vs LZ control; #P < 0.05 vs
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Fig. 3 Effects of PDTC on Nox-2 and iNOS expression in the renal cortex of LZ and ZDF rats. mRNA level of Nox-2 (a) and iNOS (b) in the renal
cortex was measured using qRT-PCR and normalized to GAPDH expression. c Protein expression of Nox-2 and iNOS in the renal cortex of LZ and
ZDF rats was measured by western blot, and data were normalized using GAPDH expression. d The activity of NADPH oxidase in renal cortical
homogenates was measured by using lucigenin-enhanced chemiluminescence and expressed as percentage of relative luminescence units
(RLU)/μg protein. *P <0.05 vs LZ control; #P < 0.05 vs ZDF control (n = 5)
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than in LZ rats. Consistent with effect of PDTC on AT1R
expression, PDTC treatment normalized candesartan-
mediated natriuresis and diuresis in ZDF rats (Fig. 5a
and b). Heart rate and blood pressure were not signifi-
cantly different in all four groups of rats during candesar-
tan infusion (Additional file 2: Figure S1). To determine if
there was any systemic effect of the drugs selectively
infused into the right suprarenal artery, urine flow and
sodium excretion from the left kidney were also mea-
sured. We found that the renal function, including urine
flow and sodium excretion, in the left unperfused kidney
was not altered by any of the drug treatments (data not
shown).
PDTC inhibited the activation of NF-κB signaling and
reduced NF-κB–binding activity in ZDF rats
It is known that NF-κB is the vital signaling of oxidative
stress and inflammation on AT1R expression, we checked
NF-κB related pathway, it showed that there was a marked
increase in phosphorylation of IKK and IκBα in ZDF rats,
which was accompanied by decreased protein expression
of IκBα (Fig. 6a). Nuclear translocation of NF-κB was also
observed in the kidney of ZDF rats. This was reflected by
increased expression of NF-κB p65 subunits, in the nu-
clear fraction, and decreased expression of NF-κB p65
subunits in the cytosolic fraction (Fig. 6b and c). The
binding activity of NF-κB binding to the AT1R promoter



Fig. 4 Effect of PDTC on the expressions of AT1R mRNA and protein in renal cortex of LZ and ZDF rats. mRNA expression in the renal cortex was
measured using qRT-PCR and normalized to GAPDH expression (a). Protein expression was measured by western blot using specific antibodies
against AT1R and data were normalized using GAPDH expression (b). *P <0.05 vs LZ control; #P < 0.05 vs ZDF control (n = 5)
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was significantly higher in renal cortices of ZDF than in
LZ rats by EMSA analysis (Fig. 7). As an inhibitor of NF-
κB, PDTC inhibited phosphorylation of IKK and IκBα,
increased IκBα expression, blocked the translocation of
NF-κB from cytosolic to nuclear fraction, therefore, de-
creased the binding of NF-κB with AT1R promoter, and
decreased AT1R expression in kidney from ZDF rats
(Fig. 6 and 7).

Discussion
In this study, we examined the effects of chronic NF-κB
blockade with PDTC on kidney cortical inflammatory
cytokines production, oxidative stress and renal AT1 re-
ceptor expression and function in ZDF rats. The salient
findings of the present study are 1) the upregulation of
Fig. 5 Effect of PDTC on AT1 receptor function in LZ and ZDF rats. LZ or Z
vehicle for 4 weeks. Adjusting for kidney weight, urine flow (a) and urinary
candesartan (10 μg/kg body wt per min) infusion via the right supraenal ar
3) collections were averaged and were shown. Results are shown as mean
control within the same treatment; $P < 0.05 vs obese control within the sa
NF-κB contributed to AT1 receptor dysfunction and in-
creased inflammation and oxidative stress in ZDF rats.
2) NF-κB blockade improved the balance between pro-
and anti-inflammatory cytokine by attenuating proin-
flammatory cytokine (TNF-α, IL-1β) and upregulating
anti-inflammatory IL-10, and attenuated oxidative stress
(Nox-2, iNOS) in the renal cortex of ZDF rats. 3) NF-κB
blockade attenuated blood pressure partially by reducing
AT1R expression and normalizing renal AT1 receptor
function in ZDF rats. These data suggest that NF-κB
plays an important role in renal AT1 receptor function
in ZDF rats by increasing the binding of NF-κB with
AT1R promoter, and NF-κB blockade reduces AT1R ex-
pression and function in kidney, subsequently improves
sodium excretion, lowers blood pressure in ZDF rats.
DF rats were treated with PDTC (150 mg · kg body wt-1 · day-1) or
sodium excretion (UNaV) (b) were recorded during the vehicle or
tery of anesthetized rats. Values of three durg (drug 1, drug 2, and drug
± SEM (n = 6/group). *P < 0.05 vs respective basal; #P < 0.05 vs lean
me treatment



Fig. 6 Effect of PDTC on NF-κB signaling in the renal cortex of LZ and ZDF rats. LZ or ZDF rats were treated with PDTC (150 mg · kg body wt-1 ·
day-1) or vehicle for 4 weeks. a: Phosphorylation and expression of IKK and IκBα were determined by Western blot, and data were normalized
using GAPDH expression. Nuclear and cytosol protein were prepared from the renal cortex and the expression of NF-κB in nuclear (Nu) (b) and
cytosol (Cyto) (c) fractions were determined by Western blot. *P <0.05 vs LZ control; #P < 0.05 vs ZDF control (n = 5)
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The contribution of metabolic factor to hypertension: role
of NF-κB
A variety of different factors probably contribute to the
pathogenesis of hypertension in ZDF rats. The ZDF rats,
a model of metabolic syndrome, which is typified by
hyperglycemia, hyperinsulinemia, hyperlipidemia, and in-
sulin resistance [19]. Hyperglycemia is a key initiator of
the cardiovascular complications associated with diabetes
mellitus. Hyperglycemia leads to an increase in oxidative
stress, by exacerbating glucose oxidation and inducing ac-
tivation of renal RAS components [20]. Insulin induces
cardiac and renal hypertrophy and remodeling during
insulin resistance and hyperinsulinemia in type 2 diabetes
by NF-κB activation, which may further contribute to de-
velopment of hypertension [21]. Hyperlipidemia-induced
intracellular generation of ROS can act as signal transduc-
tion molecules to activate various signaling pathways,
which ultimately lead to inflammation [22]. Increased lipi-
demia has been consistently associated with renal damage,
and the NF-κB-blocking properties of PDTC led to
significant decreases in plasma lipids [23]. In addition, re-
cent study has demonstrated that vaspin and adiponectin
are significantly decreased in metabolic syndrome, which
may lead to cytokine-induced NF-κB activation, increasing
inflammatory response and oxidative stress [24, 25]. In ac-
cordance with the observations of previous studies, our
present results showing PDTC treatment improved insulin
sensitivity, reduced plasma insulin and normalized blood
glucose levels, decreased blood pressure in ZDF rats.
Therefore, we speculate the possibility that the decrease in
circulating insulin, glucose and plasma lipids with PDTC
treatment can further decrease the inflammatory status
and oxidative stress, and could be also responsible for re-
ducing blood pressure in ZDF rats.

Role of NF-κB activation in altering AT1R expression and
function
NF-κB plays an important role in the pathogenesis of
cardiovascular diseases, including hypertension. However,
the mechanism by which NF-κB in the kidney contributes



Fig 7 Effect of PDTC on NF-κB-DNA binding activities in the renal cortex of LZ and ZDF rats. Binding activity of NF-κB was examined in nuclear
proteins from the renal cortex of LZ and ZDF rats by Electrophoretic Mobility Shift Assay (EMSA). a: DNA-binding ability of NF-κB to the promoters
of AT1R gene. No nuclear extracts (negative controls) (lane 1), mutant probe (lane 2) and cold probe (lane 3). b: Densitometric analysis of NF-κB-DNA
binding activities in the renal cortex from each group of rats. *P <0.05 vs LZ control; #P < 0.05 vs ZDF control (n = 5)
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to the progression of hypertension is not known. Hyper-
tension is characterized by impaired sodium handling in
kidney [26]. AT1R plays a vital role in this process [27].
The upregulation of AT1R could promote sodium reten-
tion and lead to development of hypertension [7]. It has
been reported that there is a marked increase in the AT1R
expression and function in ZDF rats compared with LZ
rats [9, 28, 29]. We hypothesize that NF-κB activation pro-
motes the exaggerated expression and function of renal
AT1 receptor and contributes to hypertensive response in
ZDF rats. Recent studies suggest that NF-κB, a redox-
sensitive transcription factor, upregulates AT1 receptor
involving two binding sites within the 5′-flanking region
of AT1 receptor gene. Also, NF-κB is necessary for
cytokine-induced upregulation of both AT1 receptor
mRNA and protein expression [11, 30]. NF-κB blockade
have attenuated expression of AT1R protein and mRNA
in the PVN of ANG II-infused rats, and normalized Ang
II-induced vasoconstriction in SHR, suggesting an inter-
action between RAS and NF-κB in the cardiovascular
regulatory centres [14]. This is in agreement with earlier
studies [29, 31, 32], we also found increased nuclear levels
of NF-κB and AT1R expression in renal cortices of ZDF
rats. Since NF-κB has been activated, we wanted to deter-
mine whether blocking NF-κB attenuated the renal AT1R
function and expression, lowed blood pressure in ZDF
rats. Our present results showed that treatment of ZDF
rats with PDTC inhibited NF-κB activation, reduced ex-
pression and function of AT1R and blood pressure in the
kidney of these rats, suggesting that NF-κB activation in-
creases AT1R expression in the kidney and contributes to
hypertension in ZDF rats. Recent study has demonstrated
that the activation of glucagon-like peptide-1 receptor can
inhibit vascular smooth muscle cells calcification through
NF-κB/RANKL signaling [33] and chronic stimulation of
AT4 and inhibition of AT2 receptors reverse diabetes-
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induced endothelial dysfunction [34], which could also
play a vital role in renal sodium handling.

Association of NF-κB with inflammation and oxidative
stress: role of AT1R
A growing body of evidence indicates that hypertension
is an inflammatory state wherein proinflammatory cyto-
kines, such as tumour necrosis factor-alpha (TNF-α) and
interleukin-6 (IL-6), contribute to the hypertensive effect
[35]. The NF-κB complex is one of the most important
proinflammatory intracellular signaling systems. Activa-
tion of NF-κB complex has been linked to an increase in
the synthesis of AT1R and proinflammatory cytokines
[36]. Accordingly, inhibition of the NF-κB system or
AT1R abolishes the associated inflammatory response
[37, 38]. In addition to regulating proinflammatory cyto-
kine synthesis, NF-κB also contributes to NAD(P)H
oxidase-dependent oxidative stress [39]. Previous study
have demonstrated that activated NF-κB in the kidney
induces to NAD(P)H oxidase-dependent oxidative stress
and NAD(P)H-dependent superoxide contributed to the
mechanism of hypertension by promoting sodium re-
tention [40–42]. Other recent studies indicate that ROS
production is increased in humans with hypertension
and several hypertensive animal models [43, 44], and
oxidative stress upregulates vascular and renal AT1R via
mechanisms involving NF-κB and chronic AT1R block-
ade significantly reduces an increase of ROS production
[45, 46], suggesting an interaction between AT1R, NF-
κB, and oxidative stress in the cardiovascular regulatory
centres. In this study, we found that chronic NF-κB
blockade with PDTC might have reduced AT1R expres-
sion and attenuated the increase in oxidative stress by
partially inhibiting the positive feedback between ROS
and NF-κB in the kidney of ZDF rats. This suggests that
the interaction between oxidative stress and NF-κB
plays a critical role in AT1R expression and functions of
ZDF rats. In our current study, we found that PDTC
only prevented further increases in blood pressure with
age, but did not reduce the blood pressure to the same
as LZ rats, suggesting that although the activation of
NF-κB complex is an important, but not the only factor
involved in the pathogenesis of hypertension.

Conclusion
In summary, we show causative role of NF-κB activation
in the development of high blood pressure in ZDF rats.
The mechanism for this increase in blood pressure may
involve NF-κB-mediated alterations in both renal AT1

receptor functions and subsequent tubular sodium hand-
ling in ZDF rats. Chronic administration of PDTC to
ZDF rats restored AT1 receptor function and expression,
and reduced renal inflammation and oxidative stress,
suggesting that inhibition of NF-κB activation may be
effective adjuncts to the current treatment of hyperten-
sion, although studies of safety and toxicity are required
before such drugs can be considered for clinical use.

Additional files

Additional file 1: Table S1. List of primers used for quantitative real
time RT-PCR.

Additional file 2: Figure S1. Effect of PDTC on AT1 receptor function
in LZ and ZDF rats. MBP, mean blood pressure (A) and HR, heart rate (B)
were recorded in those rats treated with candesartan (10 μg/kg body
wt per min). Values of three durg (durg 1, durg 2, and durg 3) collections
were averaged and are shown. *P < 0.05 vs. LZ control rats in the same
period, #P < 0.05 vs. ZDF control in the same period (n = 6).
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