
Feature Omission Vulnerabilities:

Thwarting Signature Generation for Polymorphic Worms

Matthew Van Gundy, Hao Chen, Zhendong Su

University of California, Davis

{vangundy,hchen,su}@cs.ucdavis.edu

Giovanni Vigna

University of California, Santa Barbara

vigna@cs.ucsb.edu

Abstract

To combat the rapid infection rate of today’s Internet

worms, signatures for novel worms must be generated

soon after an outbreak. This is especially critical in the

case of polymorphic worms, whose binary representa-

tion changes frequently during the infection process.

In this paper, we examine the assumptions under-

lying two leading network-based signature generation

systems for polymorphic worms: Polygraph [14] and

Hamsa [12]. By identifying an assumption of both sys-

tems not met by all vulnerabilities, we discover a class

of vulnerabilities (feature omission vulnerabilities) that

neither system can accurately characterize. We demon-

strate the limitations of Polygraph and Hamsa by testing

the signatures that they generate for exploits targeting a

feature omission vulnerability. We discuss why feature

omission vulnerabilities are difficult to characterize and

how increased semantic awareness can help the signa-

ture generation process.

1. Introduction

Internet-wide worm outbreaks in recent years have

lead to the development of systems and techniques for

limiting the spread of this type of malware. Content-

based filtering has been shown to be effective for limit-

ing the number of hosts infected by a worm outbreak

[13], particularly when performed at points of high-

connectivity, such as network routers. However, effec-

tive content filtering requires that signatures for new

worms be generated and disseminated quickly. Since

manual analysis of captured worm instances is too slow

for this task, host-based and network-based systems for

automated signature generation have been developed.

Unlike host-based systems, which use local knowl-

edge about the vulnerable application or platform to

generate signatures, network-based signature generation

systems identify invariant portions of a worm’s on-the-

wire representation by comparing worm samples to sam-

ples of innocuous traffic. By only considering informa-

tion available at the network level, network-based signa-

ture generation systems aim to apply to vulnerabilities

in virtually any networked application.

Two leading network-based signature generation sys-

tems for polymorphic worms, Polygraph [14] and

Hamsa [12], have demonstrated their ability to derive

precise signatures for polymorphic exploits of a num-

ber of vulnerabilities. However, neither Polygraph nor

Hamsa has discussed what type of vulnerabilities are

amenable to automated signature generation using their

techniques. By examining some of the assumptions un-

derlying both systems, we identify a class of vulnerabili-

ties that violate a common assumption. We then identify

an example vulnerability from this class in the wild, and

we show, through simulation, that both Polygraph and

Hamsa are unable to derive precise signatures for sim-

ple exploits of this vulnerability.

The remainder of this paper is organized as follows.

Section 2 covers related work including the high-level

operation of Polygraph and Hamsa. Section 3 presents

the assumptions common to both systems and describes

a class of vulnerabilities which violates those assump-

tions. Section 4 describes our evaluation methodology.

The results of our tests are described in Section 5. We

then briefly discuss some of the implications of this class

of vulnerabilities in Section 6. In Section 7 we discuss

potential future work and present our conclusions.

2. Related Work

The problem of signature generation and filtering for

monomorphic worms was first addressed by content-

sifting systems such as Honeycomb [11], Autograph

[10], and Earlybird [18]. After using heuristics to iden-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194698926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tify suspicious traffic, content-sifting systems attempt to

find a single substring, usually on the order of 40 bytes

in length, common to a significant fraction of the suspi-

cious traffic. Using a single substring as a signature is

appropriate for monomorphic worms since they do not

change their representation between infections. How-

ever, this technique is inappropriate for polymorphic

worms, which change significantly between infections,

because there may be no byte-string of sufficient length

common to a significant fraction of the worm instances.

In the case of polymorphic worms, network signa-

ture generation (or pattern extraction) systems rely on

the assumption that there must be some invariant con-

tent present in each polymorphic worm instance to en-

sure that the worm can exploit the vulnerability success-

fully (for justifications see Section 3.1). Pattern extrac-

tion systems, such as Polygraph [14] and Hamsa [12],

seek to generate signatures capturing these invariants.

The architectures of Polygraph and Hamsa separate the

problem of worm containment into three separate tasks:

flow classification, signature generation, and content fil-

tering.

The flow classifier is responsible for determining

which network flows are likely to contain worms. It sep-

arates network traffic into two sets: innocuous and sus-

picious. Innocuous traffic is believed to be worm-free

while suspicious traffic is believed to consist of worms

in transit between hosts.

Once the suspicious flows have been identified, the

signature generator attempts to derive a signature to

match them. Both Polygraph and Hamsa begin by ex-

tracting all tokens (or substrings) longer than some min-

imum length that appear in a specified fraction of the

suspicious network flows. Borrowing the formalism

from Hamsa, the suspicious flow pool, denoted M =
{M1, M2, . . . , M|M|}, is composed of suspicious flows

(Mi) and the subset of flows in M which contain token

t is denoted by M{t}. Given suspicious flow pool M, a

minimum token length l, and an extraction threshold λ,

token extraction determines the set of tokens T such that

T = {t | ∀Mi∈M ∀t∈Mi
. |t| ≥ l ∧

|M{t}|

|M| ≥ λ}.

After token extraction, both systems attempt to derive

signatures by choosing tokens that yield signatures that

match a large fraction of suspicious flows while main-

taining low false positive rates in the innocuous pool.

The strategies used to derive signatures from the set of

extracted tokens are specific to the system and the type

of signature being generated.

Polygraph generates three types of signatures us-

ing these tokens: conjunction, token subsequence, and

Bayesian. A flow matches a conjunction signature if

it contains each token present in the signature. Like-

wise, a flow matches a token subsequence signature if

it contains each token present in the signature in the

same order that the token appears in the signature. Ini-

tially, Polygraph forms conjunction and token subse-

quence signatures for each individual suspicious flow

by including all tokens occurring in the flow. Poly-

graph then generalizes these signatures by merging them

greedily until a further merge would result in a signature

with an unacceptable false positive rate in the innocuous

pool. Finally, Polygraph outputs these resulting signa-

tures.

Polygraph generates Bayesian signatures by calculat-

ing, for each token, the Bayesian score corresponding to

the probability that the token will be found in a suspi-

cious flow versus the probability that it will be found in

an innocuous flow. A flow matches a Bayesian signa-

ture if the total score of all tokens found in the signature

is greater than the matching threshold. Polygraph cal-

culates the matching threshold as the lowest value that

results in (at most) a given innocuous pool false positive

rate.

Hamsa generates multi-set signatures similar to Poly-

graph’s conjunction signatures except that each token

has an associated frequency. For each token ti and its

associated frequency ni, a flow must contain at least ni

occurrences of ti in order to match the signature. Hamsa

uses a model (Γ) which bounds the maximum false posi-

tive rate in the innocuous pool that a signature may have

in terms of the number of tokens in the signature. Hamsa

generates signatures greedily by eliminating all tokens

that, when added to the current signature, would result

in a false positive rate above the limit specified by Γ.

Hamsa then chooses the remaining token (if any) that

matches the largest number of flows in the suspicious

pool. Hasma repeats this process until it can add no to-

ken to the signature that will satisfy Γ or it has reached

the maximum number of tokens.

At the end of token selection, Hamsa scores the sig-

natures from each step in the process according to their

false positive rate and false negative rate in the innocu-

ous and suspicious pools. Hamsa makes the signa-

ture with the highest score more specific by extending

each token to the longest substring containing that to-

ken found in all suspicious pool flows matched by the

signature. The signature generation process continues

iteratively if a significant portion of the suspicious pool

remains unmatched.

After signature generation completes, each system

transfers its generated signatures to a network filter for

intercepting worm flows in transit.

Pattern extraction systems like Polygraph and Hamsa

identify patterns in network traffic without taking

end host semantics into account. Several semantics-

aware signature generation systems have been proposed,

among them Vigilante [5] and the system described by

Brumley et al. [2]. These systems leverage access to

the applications running on the host to derive signatures

capturing the semantics of the vulnerability being ex-

ploited. Because pattern extraction systems treat net-

work streams as opaque byte strings, they are unable to

take advantage of the richer semantic information avail-

able on the end host. However, this design decision also

makes pattern extraction systems applicable to arbitrary

end host configurations instead of being coupled to spe-

cific applications or platforms.

Concurrently with our work, Cui et al. [7] have pro-

posed ShieldGen. ShieldGen uses network protocol

analysis and a host-based exploit detection oracle (such

as Vigilante) in order to derive an exploit signature ex-

pressed in terms of protocol constraints. Instead of at-

tempting to generalize a signature from multiple exploit

samples in the style of content-sifting systems, Shield-

Gen constructs new exploit instances by weakening dif-

ferent constraints and leveraging its oracle to determine

which constraints are necessary for an exploit to suc-

ceed. This approach trades some of the semantic accu-

racy of a host-based solution for the greater generality

of network-based solutions.

Perdisci et al. have demonstrated how to mislead

Polygraph by injecting arbitrary amounts of specially-

crafted noise into Polygraph’s suspicious pool [16].

Newsome et al. extend Perdisci et al.’s attacks as well

as showing how values, known as red herrings, can be

employed to cause conjunction and token subsequence

signatures generated by Polygraph to be overly spe-

cific [15]. Li et al. also propose an attack against

Polygraph while describing the design motivation for

Hamsa [12].

Our work is orthogonal to existing work in that we are

not attacking these systems per se. Instead, we identify

an assumption underlying the approaches of both sys-

tems that has not yet received scrutiny. In particular, we

search for, and have identified, a class of vulnerabilities

that do not fit the assumptions of either system.

3. Feature Omission Vulnerabilities

Signature generation techniques depend upon a

number of assumptions about the setting in which they

are employed and the threat model in question. Li

et al. enumerate a number of these assumptions and

discuss them with respect to Hamsa [12]. Briefly, they

are:

Assumption 1: An attacker cannot control which

worm samples are encountered by the system.

Assumption 2: An attacker cannot control which

worm samples will be classified as suspicious by the

flow classifier.

Assumption 3: An attacker cannot change the fre-

quency with which tokens in normal traffic occur (in-

nocuous pool poisoning).

Assumption 4: An attacker cannot control which

innocuous flows will be classified as suspicious by the

flow classifier (noise injection).

While Li et al. present Assumptions 3 and 4 as unique

to Hamsa, they also apply to Polygraph. Perdisci et

al. [16] and Newsome et al. [15] have shown how to vi-

olate these assumptions.

3.1. The Feature Addition Assumption

There are no assumptions in the above list regarding

the type of vulnerabilities that are amenable to auto-

matic signature generation. Both Polygraph and Hamsa

assume that each worm sample must incorporate certain

invariant tokens in order to successfully exploit the

vulnerability that it targets. We formalize this in the

following (additional) assumption which we will call

the “Feature Addition Assumption”.

Assumption 5: (Feature Addition) Each exploit

of a given vulnerability must include one or more

byte-strings not commonly found in innocuous traffic.

Hamsa formalizes its invariant uniqueness assump-

tions through its Γ model [12] while Polygraph only

describes its uniqueness assumptions informally. Both

systems, however, assume that each worm sample will

include at least one element from some small set of byte-

strings that do not commonly occur in innocuous traffic

and, thus, are unique to malicious traffic.

This assumption is deeply embedded in the design of

both systems. If we consider the method of token extrac-

tion used by Polygraph and Hamsa, we see that the set

of tokens used to derive signatures consists entirely of

substrings occurring in at least a λ-fraction of the flows

in the suspicious pool.

The justifications for the Feature Addition Assump-

tion stem from traditional control-flow hijacking attacks.

The Epsilon-Gamma-Pi model proposed by Crandall et

al. describes the necessary components of a successful

control-flow hijacking attack [6]. Informally, they are:

ǫ - represents protocol framing data that must be

present in order to cause the control path of the ap-

plication to reach the vulnerable point

γ - represents injected data which will be spuriously

interpreted by the application as control data

π - represents the executable payload to which control

will be transfered by γ

Because the payload (π) can be any executable code

sequence, it can be highly variable. Crandall et al. ar-

gue that π is therefore not a good source of signature

material for polymorphic worms. Consequently, both

Polygraph and Hamsa focus on characterizing ǫ and γ –

arguing that they should be sufficiently unique to distin-

guish worm samples from innocuous traffic.

The authors of both Polygraph and Hamsa argue that

for most control-flow hijacking vulnerabilities there are

a limited number of memory locations to which control

can be transfered in order for an exploit to be successful.

In this way, they argue that there are few potential values

for γ and that γ is, therefore, a good potential source of

signature material.

However, Crandall et al. note that γ can be highly

variant due to prevalence of register springs1 that may

be targeted by an exploit. An exploit may also have con-

siderable freedom with respect to the location where the

exploit places its payload in memory. This can lead to

further variability in γ. In light of these circumstances

we believe that in general, like π, γ should not be con-

sidered a significant source of signature material.

In order to be successful an exploit must coerce the

application to the vulnerable point. Thus, for ǫ, it is ar-

gued that since vulnerabilities usually lie on seldom used

code paths, the protocol framing data needed to direct

the application to the vulnerable point will be manifested

as tokens unique to malicious traffic. For non-control-

flow hijacking attacks [3] γ and π are empty, but as with

control-flow hijacking attacks, the protocol framing data

to direct the program to the vulnerable point (ǫ) must be

1A register spring is an opcode sequence which will transfer con-

trol to the memory address denoted by a register. For instance, re-

turning control to a memory location which corresponds to the opcode

jmp %esp will cause execution to be returned to the stack without

requiring the address of the payload on the stack to be included in γ.

present. Hence, it is argued that methods such as Poly-

graph’s and Hamsa’s are able to isolate these unique ǫ

tokens, making these systems applicable to both control-

flow hijacking and non-control-flow hijacking attacks

alike.

3.2. Violating the Feature Addition As-
sumption

The Feature Addition Assumption is a constraint on

vulnerabilities rather than on an attacker’s abilities or

the deployment setting. Any vulnerability for which the

Feature Addition Assumption does not hold will fall out-

side the scope of both systems. Yet, the Feature Addition

Assumption appears to be trivially violable.

For example, suppose an application can be moved to

a vulnerable point in its control path by omitting a piece

of data required by its network protocol. In this case ǫ

denotes the absence of some token in an expected loca-

tion. This results in a malicious protocol framing feature

set that is a subset of the innocuous protocol framing fea-

ture set. This is a concept that the algorithms of neither

Polygraph nor Hamsa capture. Both systems obtain the

set of tokens from which they derive signatures solely

from malicious traffic, which does not contain the ab-

sent token.

Even if token extraction were somehow able to cap-

ture, as a feature, that such a token was omitted, this

scenario cannot be expressed by the non-Bayesian sig-

nature models of either system. In both systems, all non-

Bayesian signatures match a flow only if the flow con-

tains all of the tokens present in the signature. There is

no provision for a signature to match only flows that do

not contain a token. We denote vulnerabilities of this

type by the term feature omission vulnerabilities indi-

cating that some feature common to innocuous traffic

has been omitted from malicious traffic in order to ex-

ploit the vulnerability. We hypothesize that Polygraph

and Hamsa will not be able to derive precise signatures

for a feature omission vulnerability that allows sufficient

variability in γ.

3.3. An Example from the Wild

While a hypothetical class of vulnerabilities falling

outside the scope of current pattern extraction systems

is an important discovery, we wished to verify through

practice that feature omission vulnerabilities could in-

deed thwart signature generation in both Polygraph and

Hamsa. Most vulnerabilities are discovered on seldom-

used control paths. These paths could be seldom taken

because they may be associated with a seldom-used pro-

tocol feature, or because most client applications do not

cause the invocation of code handling exceptional pro-

tocol conditions.

While surveying vulnerabilities in CVE [4] and Bug-

traq [17] we discovered CVE-2004-0597 [8], which de-

scribes a stack-based buffer overflow vulnerability in the

way libpng, versions 1.2.5 and earlier, processes PNG

images. This vulnerability had wide impact. A brief

survey of its Bugtraq entry (BID 10857) shows that it

affected system and application software alike on more

than four operating system families.

Portable Network Graphics (PNG) files are format-

ted as a series of discrete chunks of various types. The

type of a chunk denotes its purpose. The PNG Spec-

ification [1] imposes a partial ordering on the chunks

that compose a PNG image file. A chunk of type PLTE

containing color palette entries must be present in every

indexed-color image. The PLTE chunk may (optionally)

be followed by a chunk of type tRNS, which specifies

transparency information for each of the palette entries.

However, if a tRNS chunk is present it must appear after

the associated PLTE chunk.

Before version 1.2.5, libpng contained a buffer over-

flow vulnerability [9] that could be triggered by sup-

plying an indexed-color image that omitted the required

PLTE chunk. This causes the routine that decodes the

tRNS chunk to bypass a length check and write an arbi-

trary amount of data into a fixed-length stack buffer. In

the terms of the ǫγπ model:

ǫ - The PNG image must be of indexed-color type and

the PLTE chunk required by the specification must

not occur before the tRNS chunk carrying the pay-

load.

γ - There are a number of possible exploitations of

this vulnerability. However, the most straightfor-

ward exploits would use a stack-based return ad-

dress or a register-spring address to overwrite the

tRNS chunk handler return pointer.

π - The only constraint on the payload is that it must

be longer than 256 and shorter than 231 bytes.

With respect to ǫ, this vulnerability falls within the

class of feature omission vulnerabilities. The necessary

precondition for exploitation is the absence of the PLTE

chunk. Furthermore, because of the structure of a PNG

file, omitting the PLTE chunk is unlikely to cause ad-

jacent chunks to be combined to form a new feature.

Also, while the control data (γ) that must be injected

into the application must be taken from a limited set

of valid values, we hypothesized that the size of γ was

likely to be large enough to resist generation of precise

signatures. The likelihood that values in γ will be coin-

cidentally found in innocuous flows is also heightened

because PNG’s encapsulate compressed binary data.

4. Evaluation

To test our hypothesis that Polygraph and Hamsa are

unable to accurately characterize worms targeting fea-

ture omission vulnerabilities, we generated a number of

simulated worm samples targeting the libpng vulnerabil-

ity. We then replicated the experimental setups of Poly-

graph and Hamsa as faithfully as possible and tested the

accuracy of the signatures generated by each system on

our worm samples.

4.1. Exploit Generation

We created exploit generators for the two most

straight-forward methods of exploiting the libpng vul-

nerability: via stack-based return address and via regis-

ter spring. Each exploit consists of an executable pay-

load and control data to direct execution to that payload

wrapped in a minimal PNG file that has all non-essential

fields chosen uniformly at random.

For the return-to-stack exploit, we exhaustively gen-

erated variants that explore every possible location of

the payload on the stack, yielding 3,937 working vari-

ants. We positioned the 4-byte return address of the

payload so that it would overwrite the return pointer and

used bytes chosen uniformly at random for padding and

alignment.

For the register spring exploit, we searched the vul-

nerable application and shared libraries for byte se-

quences that form a jmp %esp (or equivalent) instruc-

tion. Even in our minimal test application, which merely

opens a PNG file and feeds it to libpng, we discovered

35 such springs at various locations in the application

and shared libraries. It bears mentioning that, due to the

small size of the application, all register spring addresses

begin with the byte \xb7 and 77% of the addresses have

either \xf7 or \xf8 as their second byte. In order to offset

the bias towards these two 2-byte prefixes, we weighted

the probability that each address would be used in order

to achieve a distribution of 2-byte substrings that was as

close to uniform as possible.

For the register spring exploit to be successful, we

also needed to increment (lift) the stack register by 8

bytes. We found many suitable opcodes in the pro-

gram text (far more than the number of suitable register

Table 1. Parameters for Polygraph and Hamsa Evaluations

Polygraph Parameters

minimum token length 2 chars

token extraction threshold 3 flows (20% for Bayes)

minimum cluster size 3 flows

Hamsa Parameters

minimum token length (l) 2 chars

token extraction threshold (λ) 0.15

maximum false positive rate (u(1)) 0.15

false positive reduction factor (ur) 0.5

maximum signature tokens (k∗) 15

springs). When constructing the register spring exploits,

we chose lift addresses using the same technique used to

avoid biasing in the register spring addresses.

After generating the exploits, we verified that each

one successfully exploited the vulnerable application.

We then overwrote the payload portion of the exploit

with random bytes to simulate a perfectly polymor-

phic payload in a manner similar to Polygraph’s experi-

ments [14]. In this way, we left intact all protocol fram-

ing (ǫ) and control data (γ) while simulating the signifi-

cant amount of freedom available in constructing a poly-

morphic payload (π).

4.2. Data Collection and Innocuous Pool
Creation

To create an innocuous traffic pool, we crawled the

web directories of a campus web server and meta-

searched search engine results for PNG images. In all,

we amassed over 147,000 images. About 38% of these

are indexed-color images, the same type used for the ex-

ploits. We reassembled the network traces of these im-

ages being fetched from a web server and partitioned

them into a 504MB training pool and a 5.4GB test pool.

As systems that attempt to characterize misuse, Poly-

graph and Hamsa’s accuracy should not be highly sen-

sitive to the composition of the innocuous training pool,

otherwise their accuracy would become unpredictable in

practice. Even so, we did not include other HTTP traffic

in the innocuous pool in order to provide Polygraph and

Hamsa with an optimal scenario, in which they learn sig-

natures based on a maximally good innocuous pool and

a maximally bad suspicious pool.

4.3. Experimental Setup

To help ensure that our results are as comparable as

possible to the original publications, we used parame-

ter values (Figure 1) equivalent to those specified in the

Polygraph and Hamsa papers [14, 12]. For both exploits,

we ran 5 signature generation trials for suspicious train-

ing pools of each of the following sizes: 5, 10, 25, 50,

100, 200. For each exploit, we collected the remaining

malicious flows into a test pool, used to determine the

false negative rate of the generated signatures.

To help ensure that the systems were appropriately

tuned, we ran the test sets for each exploit against Hamsa

with 300 different combinations of parameter values.

The best results achieved were identical to those ob-

tained using the parameters in Figure 1. We did not

conduct similar trials with Polygraph due to its signif-

icantly longer running time. However, our experience

with Hamsa gives us some confidence that the results

reported in the next section show these systems in a fair

light.

5. Results

For the pattern-based signatures (i.e. Conjunction,

Token Subsequence, and Hamsa) the median results for

all trials were no false positives and 100% false nega-

tives, that is, no worm instances were correctly detected.

The false positive and false negative standard deviation

was 0% for the return-to-stack exploits. For the register

spring exploits, the false positive standard deviation was

less than 1.10%, and the false negative standard devia-

tion was less than 6.92% in each trial.

Figure 1. Best Token Subsequence Signa-

ture

(’HTTP/1.0 200 OK\r\nConnection: keep-alive\r\nCont

ent-Type: image/png\r\nETag: "’, ’"\r\nAccept-Range

s: bytes\r\nLast-Modified: ’, ’ GMT\r\nContent-Leng

th: ’, ’\r\nDate: Mon, 19 Mar 2007 21:1’, ’ GMT\r\n

Server: lighttpd/1.4.11\r\n\r\n\x89PNG\r\n\x1a\n\x00

\x00\x00\rIHDR’, ’\x03\x00\x00’, ’\x00\x00’, ’tRNS’,

’IEND’)

The best Token Subsequence and Hamsa signatures

(Figures 1 and 2) were generated for the register spring

exploit. The best Conjunction signature is identical to

Figure 2. Best Hamsa Signature

{’\x00\x00’: 4, ’en’: 3, ’ve’: 2, ’ag’: 2, ’ M’: 2,

’Mo’: 2, ’ GMT\r\nServer: lighttpd/1.4.11\r\n\r\n

\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR’: 1, ’: ’: 8,

’ge’: 2, ’\x03\x00\x00’: 1, ’li’: 2, ’e: ’: 2,

’ep’: 2, ’es’: 2, ’er’: 2, ’, ’: 2, ’ 2’: 4,

’\r\nContent-’: 2, ’/1.’: 2, ’on’: 5, ’ 200’: 3,

’"\r\nAccept-Ranges: bytes\r\nLast-Modified: ’: 1,

’ GMT\r\nContent-Length: ’: 1, ’ng’: 3, ’0 ’: 2,

’HTTP/1.0 200 OK\r\nConnection: keep-alive\r\n

Content-Type: image/png\r\nETag: "’: 1, ’te’: 4,

’IEND’: 1, ’\r\nCon’: 3, ’ GMT\r\n’: 2, ’nt’: 4,

’\r\nDate: Mon, 19 Mar 2007 21:1’: 1, ’\r\n’: 11,

’t-’: 4, ’tRNS’: 1}

the Token Subsequence signature in Figure 1 with the

omission of the \x00\x00 token. The false negative

rate for all three signatures was 82.7%.

If we examine these signatures, we see that

there are no tokens corresponding to π (the poly-

morphic payload). Because we simulated a per-

fectly polymorphic payload, any common payload

tokens between instances are purely coincidental.

Several tokens from ǫ (the protocol framing data)

appear, including tokens indicating indexed-color

(\x03\x00\x00) PNG images (...\x89PNG...

and Content-Type: image/png) and the pres-

ence of a tRNS chunk. The token PLTE is absent from

the signatures because a PLTE chunk is not included in

the exploits. However, according to the signature mod-

els for these signatures, the absence of a PLTE token in-

dicates that the token may or may not be present. None

of the signatures are able to express the condition that

the PLTE chunk must be absent.

The γ (bogus control) data from the register spring

vulnerabilities (e.g. \xf7\xb7, \xf8\xb7, etc.) does not

appear in any of the signatures, confirming our hypothe-

sis that the degree of variation available to register spring

exploits, even in our small vulnerable application, is suf-

ficient to prevent precise recognition of γ by Polygraph

and Hamsa’s algorithms. The top two bytes of the stack-

based return address (\xff\xbf) are present in all of the

signatures for the return-to-stack exploit. However, be-

cause PNG images consist primarily of compressed data

having uniform character distribution, \xff\xbf is found

in about 63% of the innocuous training flows. A two-

byte invariant, such as this, may be sufficient to detect

binary exploits embedded in a text-based protocol, but

it is not a good discriminator against a background of

binary image data.

In addition to tokens taken from ǫ and γ, there are

a number of other tokens present that are portions of

HTTP headers included in all responses from the web

server software used to deliver the exploits. However,

Polygraph and Hamsa are unable to determine that these

tokens are not important because they do not consider

protocol semantics. The tokens responsible for many of

the false negatives for these signatures fall into this cat-

egory.

Because the libpng vulnerability we tested is a feature

omission vulnerability, the small amount of data gleaned

from ǫ and γ is more common in the innocuous training

pool than the timestamps in the Date headers. Because

the innocuous training pool must be collected before a

worm outbreak begins, the timestamps present in train-

ing flows will be disjoint with any legitimate timestamps

found in suspicious flows. This causes the timestamp

data from suspicious flows to be incorporated into the

signatures, limiting a signature’s maximum usefulness

to a window of 10 minutes for the register spring exploits

and 1 minute in the case of the return-to-stack exploits.

This occurs because Polygraph and Hamsa do not con-

sider protocol semantics and therefore cannot determine

that the Date header is not necessary for the exploit to

succeed. This problem cannot be remedied by simply

omitting these Date tokens without raising the false pos-

itive rate due to the systems’ inability to precisely char-

acterize ǫ and γ.

One of Hamsa’s features exacerbates this issue, fur-

ther degrading the accuracy of its signatures. Some of

the initial signatures generated by Hamsa were much

less specific and would have matched more exploits.

However, after generating a signature, Hamsa refines the

signature by finding all tokens in the covered portion of

the suspicious pool which match the initially generated

signature. It includes all of these (possibly longer) to-

kens into the signature, making the signature more spe-

cific, thereby reducing the possibility of false positives

while maintaining the same coverage in the suspicious

pool. In a few of the cases, this caused a signature with

very little timestamp information to be expanded into

one that included a maximal amount of timestamp infor-

mation and, therefore, had a minimal chance of catching

future exploits.

The median false positive rate for Polygraph’s

Bayesian signatures for the return-to-stack exploit on

all pool sizes was less than 0.12% with a standard de-

viation of less than 0.06%. For the register spring ex-

ploit, the Bayesian signatures for all pool sizes had less

than 0.05% false positives with a standard deviation of

less than 0.69%. As Figure 3 shows, the median false

negative rates for Polygraph’s Bayesian signatures were

lower than those of the pattern-based signatures. The

maximum standard deviation for any of the pool sizes

Figure 3. Bayesian Signature Performance

70

75

80

85

90

95

100

105

0 50 100 150 200

%
F

al
se

N
eg

at
iv

es

Suspicious Pool Size

return-to-stack
register spring

was less than 10%. However, even the best Bayesian sig-

nature (depicted in Figure 4) had a false negative rate of

63.11%, severely limiting its usefulness for effectively

mitigating a worm outbreak. This signature, generated

for the return-to-stack exploit, incorporates the super-

sets of many of the tokens found in the pattern-based

signatures, and, like the pattern-based signatures, it in-

cludes the Date headers from the exploit flows. In fact,

the Bayesian scores for the Date tokens are above the

matching threshold and are nearly an order of magni-

tude greater than \x03\x00\x00\x01, the first three

bytes of which are part of ǫ.

Because we simulated a perfectly polymorphic pay-

load (π), these signatures must capture the essential pro-

tocol framing (ǫ) and control (γ) data in order to cor-

rectly classify the exploits. The signatures must either

recognize the presence of a tRNS PNG chunk without

a preceding PLTE chunk (ǫ) or the presence of stack or

register spring return addresses (γ), or both. However,

our results demonstrate that both Polygraph and Hamsa

are unable to correctly characterize the protocol fram-

ing data (ǫ) of the selected feature omission vulnerability

and, in the face of highly-variant control (γ) and payload

(π) data, they are mislead by accessory protocol data be-

cause they cannot use protocol semantics to determine

which tokens are unimportant.

6. Discussion

One reason why Polygraph and Hamsa’s cannot char-

acterize feature omission vulnerabilities is that they can-

not recognize omitted features because they do not at-

tempt to characterize innocuous traffic. However, the so-

lution is not straightforward. Characterizing innocuous

Figure 4. Best Bayesian Signature

.

{’\x08\x03\x00\x00’: 0.0017, ’:5’: 0.0042,

’7 ’: 0.0073, ’0 ’: 0.0097, ’11’: 0.0120,

’at’: 0.0141, ’ 0’: 0.0159, ’8 GMT\r\n’: 0.0208,

’6 GMT\r\n’: 0.0422, ’n, ’: 0.0714, ’HTTP/1.0 200 OK

\r\nConnection: keep-alive\r\nContent-Type: image/png

\r\nETag: "-’: 0.0337, ’5 GMT\r\n’: 0.0435,

’9 GMT\r\n’: 0.0723, ’:2’: 0.0837, ’IEND’: 0.1107,

’ GMT\r\nServer: lighttpd/1.4.11\r\n\r\n\x89PNG\r\n

\x1a\n\x00\x00\x00\rIHDR’: 0.1113, ’\xff\xbf’: 0.1133,

’3 ’: 0.1152, ’ GMT\r\nContent-Length: 1’: 0.1341,

’HTTP/1.0 200 OK\r\nConnection: keep-alive\r\nContent

-Type: image/png\r\nETag: "-1’: 0.1798, ’HTTP/1.0 200

OK\r\nConnection: keep-alive\r\nContent-Type:

image/png\r\nETag: "1’: 0.1856, ’ 2006 ’: 0.3172,

’"\r\nAccept-Ranges: bytes\r\nLast-Modified:

S’: 0.2192, ’ GMT\r\nContent-Length: 2’: 0.2573,

’"\r\nAccept-Ranges: bytes\r\nLast-Modified: Wed,

’: 0.2767, ’ GMT\r\nContent-Length: 3’: 0.4708,

’\x04\x03\x00\x00’: 0.4841, ’ 2007 1’: 0.7817,

’\x02\x03\x00\x00’: 0.7230, ’tRNS’: 0.5656,

’\x01\x03\x00\x00’: 0.7352, ’, 2’: 0.7460,

’\x03\x00\x00\x01’: 0.9785, ’ 2005 ’: 0.3139,

’\r\nDate: Fri, 23 Mar 2007 07:27:4’: 7.7908,

’\r\nDate: Fri, 23 Mar 2007 07:27:5’: 8.2823,

} Threshold: 3.4869

traffic precisely appears to be a much harder problem

than characterizing malicious traffic. Finding a set of

features common to worm instances targeting the same

vulnerability is probably much easier than finding a set

of common features among a diverse set of innocuous

traffic that may vary significantly in type, purpose, and

importance. For many protocols, a set of features com-

mon to all innocuous traffic is likely to be so minimal as

to be useless.

Both systems are also easily mislead by unimpor-

tant protocol features because their context-agnostic de-

sign prevents protocol or application specific informa-

tion from being used to determine a feature’s impor-

tance. While these systems aim to automate a job that

a human analyst performs by manually inspecting worm

instances for invariant signature material, the human an-

alyst is likely to have the contextual advantage of under-

standing the network protocols in play. The human an-

alyst can use this knowledge to rank the importance of

different features shared by a family of exploits. Without

the benefit of context, these systems can probably do lit-

tle better than their current approach of ranking features

based solely on their rates of occurrence.

Even if Polygraph and Hamsa could recognize the

omission of a feature, they may not be able to deter-

mine if the feature has been omitted without full knowl-

edge of the protocol in question. For instance, assume

that a pattern extraction system could determine that a

PNG image containing a tRNS chunk without a preced-

ing PLTE chunk was a sufficient condition for exploit-

ing the libpng vulnerability. That system could not de-

termine that the PLTE chunk was missing without full

knowledge of the PNG format because the worm could

always embed a fake PLTE chunk within the bounds of

another chunk.

The development of ShieldGen [7], concurrently with

this work, provides some insight into the value of in-

creased semantic awareness. ShieldGen uses a network

protocol analyzer to correctly parse network streams and

develop signatures based on the structure and values of

the individual protocol fields. ShieldGen also leverages

knowledge of the purpose of various fields to prevent it

from being misled easily by inherent red herrings (such

as timestamps). We believe that ShieldGen may be capa-

ble of generating effective signatures against the libpng

vulnerability using its additional knowledge of protocol

syntax and semantics.

The libpng vulnerability is a simple buffer overflow.

ShieldGen employs a buffer overflow heuristic which

should detect that exploits only succeed when a tRNS

chunk with a length of more than 256 bytes appears.

This signature would catch all exploits with no false pos-

itives among correctly formatted PNG files. However, if

the vulnerability was not a simple buffer overflow, or de-

pended on the contents of multiple fields, this heuristic

would not succeed in finding an effective signature.

ShieldGen also determines if the exploit flow violates

any protocol constraints. If so, it attempts to construct

probes that meet the constraints to determine if the ex-

ploit is triggered by violating one or more of those con-

straints. In this phase, ShieldGen may be able to rec-

ognize that the absence of the PLTE chunk preceding

the tRNS chunk violates the PNG format. If ShieldGen

were to issue a probe by adding a PLTE chunk, it would

learn that the presence of a tRNS chunk without a pre-

ceding PLTE chunk are necessary conditions for the ex-

ploit to occur. With this knowledge, ShieldGen could

generate a precise vulnerability signature. However, if

instead, ShieldGen generated a valid probe by dropping

the tRNS chunk and noting that the resulting flow does

not successfully exploit the vulnerability, it could falsely

conclude that the presence of the tRNS chunk is the suf-

ficient condition for the exploit to occur.

While an improvement over current pattern extrac-

tion systems, ShieldGen’s ability to recognize this fea-

ture omission vulnerability in terms of the omitted fea-

ture depends on the way in which it generates probes.

Because ShieldGen does not exhaust all combinations

of protocol features, it is not clear that ShieldGen can

catch feature omission vulnerabilities in general. Fur-

thermore, if the omitted feature did not cause a viola-

tion of the protocol, it is unlikely that ShieldGen would

be able to generate a precise signature. This is because

ShieldGen’s initial signature consists of all protocol con-

straints output by the protocol analyzer and it derives a

signature by relaxing or omitting constraints. If a con-

straint representing the absence of the feature is not out-

put by the protocol generator initially, it will not be con-

sidered during ShieldGen’s probing process.

7. Conclusions and Future Work

The wide variety of Internet devices makes host-

agnosticism a desirable feature for signature generation

systems. While there are many different types of hosts,

and many more possible configurations, every pair of

communicating hosts must share some common set of

protocols. ShieldGen serves as a positive example of

how incorporating knowledge of protocol syntax and

semantics can aid the generation of precise signatures

while still remaining relatively host-agnostic.

Having more feature data alone will not solve the

problem of generating precise signatures for feature

omission vulnerabilities. Better techniques for recog-

nizing the necessary conditions for an exploit to suc-

ceed must be developed. For example, using increased

knowledge of the protocols in play, a system might be

able to cluster similar types of innocuous and suspicious

traffic together, and then generate more precise signa-

tures by noting the features present in innocuous traffic

but absent from the suspicious traffic within the cluster.

Polygraph and Hamsa already do a very primitive sort

of clustering along these lines by partitioning traffic by

service port. However, any signature that mistakenly as-

sumes that some feature(s) must be omitted risks trivial

evasion by a worm that includes some subset of those

features as red herrings. In some situations it may be

impossible to distinguish the two situations without full

knowledge of how the application will process the data.

Lastly, regardless of the techniques used for signature

generation, the signature models employed must be able

to express the notion that some feature must be absent in

order for the signature to match.

We have evaluated the operation of two of the lead-

ing pattern extraction systems for polymorphic worms,

and we have uncovered a class of vulnerabilities that

violate an assumption of these systems – feature omis-

sion vulnerabilities. We discovered an instance of a fea-

ture omission vulnerability in the wild and implemented

exploit generators for this vulnerability in order to test

Polygraph’s and Hamsa’s ability to generate meaningful

signatures for it. We demonstrated that Polygraph and

Hamsa are ineffective against attacks that exploit this

type of vulnerability.

Acknowledgments

This research was partially supported by the National

Science Foundation, under grants CCR-0238492, CCR-

0524853, CCR-0716095, and CNS-0644450, by US Air

Force under grant FA9550-07-1-0532, and by the Uni-

versity of California, Davis TOPS Fellowship.

References

[1] M. Adler, T. Boutell, J. Bowler, C. Brunschen, A. M.

Costello, L. D. Crocker, et al. Portable Network Graph-

ics (PNG) Specification (Second Edition). Technical re-

port, W3C, Nov. 2003. http://www.w3.org/TR/

2003/REC-PNG-20031110.
[2] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.

Towards Automatic Generation of Vulnerability-Based

Signatures. In IEEE Symposium on Security and Privacy,

Washington, DC, USA, May 2006. IEEE Computer So-

ciety.
[3] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.

Non-Control-Data Attacks Are Realistic Threats. In

USENIX Security Symposium, pages 177–192. USENIX

The Advanced Computing Systems Association, Aug.

2005.
[4] Common Vulnerabilities and Exposures. http://

cve.mitre.org/.
[5] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,

L. Zhou, L. Zhang, and P. Barham. Vigilante: end-to-end

containment of internet worms. In ACM Symposium on

Operating Systems Principles (SOSP), pages 133–147,

New York, NY, USA, Oct. 2005. ACM Press.
[6] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong. On

Deriving Unknown Vulnerabilities from Zero-Day Poly-

morphic and Metamorphic Worm Exploits. In ACM

Conference on Computer and Communications Security

(CCS), New York, NY, USA, Nov. 2005. ACM Press.
[7] W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto.

ShieldGen: Automatic Data Patch Generation for Un-

known Vulnerabilities with Informed Probing. In IEEE

Symposium on Security and Privacy, Washington, DC,

USA, May 2007. IEEE Computer Society.
[8] CVE-2004-0597: Multiple buffer overflows

in libpng 1.2.5 and earlier. http://cve.

mitre.org/cgi-bin/cvename.cgi?name=

CVE-2004-0597.
[9] C. Evans. CESA-2004-001: libpng 1.2.5 stack-

based buffer overflow and other code concerns,

2004. http://scary.beasts.org/security/

CESA-2004-001.txt.
[10] H.-A. Kim and B. Karp. Autograph: Toward Automated,

Distributed Worm Signature Detection. In USENIX Se-

curity Symposium, pages 271–286. USENIX The Ad-

vanced Computing Systems Association, Aug. 2004.

[11] C. Kreibich and J. Crowcroft. Honeycomb: Creating

Intrusion Detection Signatures Using Honeypots. SIG-

COMM Comput. Commun. Rev., 34(1):51–56, 2004.
[12] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez.

Hamsa: Fast Signature Generation for Zero-day Poly-

morphic Worms with Provable Attack Resilience. In

IEEE Symposium on Security and Privacy, pages 32–47,

Washington, DC, USA, May 2006. IEEE Computer So-

ciety.
[13] D. Moore, C. Shannon, G. M. Voelker, and S. Savage.

Internet Quarantine: Requirements for Containing Self-

Propagating Code. In INFOCOM, Apr. 2003.
[14] J. Newsome, B. Karp, and D. Song. Polygraph:

Automatically Generating Signatures for Polymorphic

Worms. In IEEE Symposium on Security and Privacy,

pages 226–241, Washington, DC, USA, May 2005. IEEE

Computer Society.
[15] J. Newsome, B. Karp, and D. Song. Paragraph:

Thwarting Signature Learning by Training Maliciously.

In D. Zamboni and C. Kruegel, editors, Recent Ad-

vances in Intrusion Detection (RAID), volume 4219 of

LNCS, pages 81–105, New York, NY, USA, Sept. 2006.

Springer-Verlag.
[16] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif.

Misleading Worm Signature Generators Using Deliber-

ate Noise Injection. In IEEE Symposium on Security

and Privacy, pages 17–31, Washington, DC, USA, May

2006. IEEE Computer Society.
[17] Security Focus Vulnerability Notes (Bugtraq

Database). http://www.securityfocus.

com/vulnerabilities.
[18] S. Singh, C. Estan, G. Varghese, and S. Savage. Auto-

mated Worm Fingerprinting. In Operating Systems De-

sign & Implementation (OSDI), pages 45–60. USENIX

The Advanced Computing Systems Association, Dec.

2004.

