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Background
Survival and reliability analysis is a very important branch of statistics. It has many appli-
cations in many applied sciences, such as engineering, public health, actuarial science, 
biomedical studies, demography, and industrial reliability. The failure behavior of any 
system can be considered as a random variable due to the variations from one system 
to another resulting from the nature of the system. Therefore, it seems logical to find a 
statistical model for the failure of the system. In other applications, survival data are cat-
egorized by their hazard rate, e.g., the number of deaths per unit in a period of time. The 
modeling of survival data depends on the behavior of the hazard rate. The hazard rate 
may belong to the monotone (non-increasing and non-decreasing hazard rate) or non-
monotone (bathtub and upside-down bathtub [UBT] or unimodal hazard rate). Several 
lifetime models have been suggested in statistics literature to model survival data. The 
Weibull distribution is one of the most popular and widely used models in life testing 
and reliability theory. Lindley (1958) suggested a one-parameter distribution as an alter-
native model for survival data. This model is known as Lindley distribution. However, 
we suggest that Weibull and Lindley distributions are restricted when data shows non-
monotone hazard rate shapes, such as the unimodal hazard rate function (Almalki and 
Nadarajah 2014; Almalki and Yuan 2013).

Abstract 

In this paper, we introduce an extension of the inverse Lindley distribution, which 
offers more flexibility in modeling upside-down bathtub lifetime data. Some statistical 
properties of the proposed distribution are explicitly derived. These include density 
and hazard rate functions with their behavior, moments, moment generating function, 
skewness, kurtosis measures, and quantile function. Maximum likelihood estimation of 
the parameters and their estimated asymptotic distribution and confidence intervals 
are derived. Rényi entropy as a measure of the uncertainty in the model is derived. The 
application of the model to a real data set i.e., the flood levels for the Susquehanna 
river at Harrisburg, Pennsylvania, over 20 four-year periods from 1890 to 1969 is com-
pared to the fit attained by some other well-known existing distributions.
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There are several real applications where the data show the non-monotone shape for 
their hazard rate. For example, Langlands et al. (1997) studied the data of 3878 cases of 
breast carcinoma seen in Edinburgh from 1954 to 1964 and noticed that mortality was 
initially low in the first year, reaching a peak in the subsequent years, and then declin-
ing slowly. Another real problem was analyzed by Efron (1988) who, using head and 
neck cancer data, found the hazard rate initially increased, reached a maximum, and 
decreased before it finally stabilized due to therapy. The inverse versions of some exist-
ing probability distributions, such as inverse Weibull, inverse Gaussian, inverse gamma, 
and inverse Lindley, show non-monotone shapes for their hazard rates; hence, we were 
able to model a non-monotone shape data.

Erto and Rapone (1984) showed that the inverse Weibull distribution is a good fit 
for survival data, such as the time to breakdown of an insulating fluid subjected to the 
action of constant tension. The use of Inverse Weibull was comprehensively described by 
Murthy et al. (2004). Glen (2011) proposed the inverse gamma distribution as a lifetime 
model in the context of reliability and survival studies. Recently, a new upside-down 
bathtub-shaped hazard rate model for survival data analysis was proposed by Sharma 
et al. (2014) by using transmuted Rayleigh distribution. Sharma et al. (2015a) introduced 
the inverse Lindley distribution as a one parameter model for a stress-strength reliability 
model. Sharma et al. (2015b) generalized the inverse Lindley into a two parameter model 
called “the generalized inverse Lindley distribution.” Finally, a new reliability model of 
inverse gamma distribution referred to as “the generalized inverse gamma distribution” 
was proposed by Mead (2015), which includes the inverse exponential, inverse Rayleigh, 
inverse Weibull, inverse gamma, inverse Chi square, and other inverse distributions.

The Lindley distribution was proposed by Lindley (1958) in the context of the Bayes 
theorem as a counter example of fiducial statistics with the probability density function 
(pdf)

Shanker et al. (2013) proposed two parameter extensions of the Lindley distribution 
with the pdf

Ghitany et al. (2008) discussed the Lindley distribution and its applications extensively 
and showed that the Lindley distribution is a better fit than the exponential distribution 
based on the waiting time at the bank for service. The inverse Lindley distribution was 
proposed by Sharma et al. (2015a) using the transformation X = 1

Y  with the pdf

where Y  is a random variable having pdf (1).
Another two parameter inverse Lindley distribution introduced by Sharma et  al. 

(2015a), called “the generalized inverse Lindley distribution,” is a new statistical inverse 

(1)f (y; θ) =
θ2

θ + 1
(1+ y)e−θy; θ , y > 0.

(2)f (z; θ) =
θ2

θ + β
(1+ βz)e−θz; θ ,β , z > 0.

f (x; θ) =
θ2

1+ θ

(
1+ x

x3

)
e−

θ
x ; θ , x > 0,
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model for upside-down bathtub survival data that uses the transformation X = Y− 1
α 

with the pdf

with Y  being a random variable having pdf (1).
Using the transformation X = Z− 1

α, we introduce a more flexible distribution with 
three parameters called “extended inverse Lindley distribution”, (EIL) and this gives us a 
better fit for upside-down bathtub data.

The aim of this paper is to introduce a new inverse Lindley distribution with its math-
ematical properties. These include the shapes of the density and hazard rate functions, 
the moments, moment generating function and some associated measures, the quantile 
function, and stochastic orderings. Maximum likelihood estimation of the model param-
eters and their asymptotic standard distribution and confidence interval are derived. 
Rényi entropy as a measure of the uncertainty in the model is derived. Application of 
the model to a real data set is finally presented and compared to the fit attained by some 
other well-known distributions.

The extended inverse Lindley distribution
An extended inverse Lindley distribution with parameters θ ,β, and α is defined by its 
probability density function and cumulative distribution function according to the 
definition.

Definition  Let Z be a random variable having pdf (2), then the random variable 
X = Z− 1

α is said to follow an EIL distribution with probability density function

and cumulative distribution function (cdf )

Remark  The pdf (3) can be shown as a mixture of two distributions as follows:

where

We see that the EPL is a two-component mixture of inverse Weibull distribution (with 
shape α and scale θ), and a generalized inverse gamma distribution (with shape param-
eters 2,α and scale θ), with the mixing proportion p = θ/(θ + β).

f (x; θ ,α) =
αθ2

1+ θ

(
1+ xα

x2α+1

)
e−

θ
xα ; θ ,α, x > 0,

(3)f (x; θ ,β ,α) =
αθ2

θ + β

[
β + xα

x2α+1

]
e−

θ
xα ; θ ,β ,α, x > 0

(4)f(x; θ ,β ,α) =
αθ2

θ + β

[
β + xα

x2α+1

]
e−

θ
xα ; θ ,β ,α, x > 0

F(x; θ ,β ,α) = pf1(x)+ (1− p)f2(x)

p =
θ

θ + β
, f1(x) =

αθ

xα+1
e−

θ
xα , x > 0 and f2(x) =

αθ2

x2α+1
e−

θ
xα , x > 0.



Page 4 of 13Alkarni ﻿SpringerPlus  (2015) 4:690 

We use X ∼ EIL(θ ,β ,α) to denote the random variable that has EIL distribution with 
parameters θ ,β ,α and the pdf and cdf in (3) and (4), respectively.

The derivative of f (x) is obtained from (3) as

where

with

Clearly, f ′(x) and ψ(y) have the same sign and ψ(y) is a unimodal quadratic function 
that attains its maximum value at the point y whenever ψ(y) = 0; hence, the mode of 
f (x) is given by

In Fig.  1, we plot the pdf of the EIL distribution for some values of θ ,β ,α and the 
behavior of f (x).

Survival and hazard functions
The survival and hazard rate functions of the EIL distribution are respectively given by

f ′(x) =
αθ2

θ + β
x−3α−2e−

θ
xα ψ(xα), x > 0,

ψ(y) = ay2 + by+ c, y = xα ,

a = −(α + 1), b = αθ − β(2α + 1), c = αβθ .

x =

(
αθ − β(2α + 1)+

√
[αθ − β(2α + 1)]2 + 4αθβ(α + 1)

2(α + 1)

) 1
α

.

(5)s(x) = 1− FX (x) = 1−
[
1+

θβ

θ + β

1

xα

]
e−

θ
xα ; θ ,β ,α, x > 0,

Fig. 1  Plots of the probability density function of the EIL distribution for different values of θ ,β, and α.
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and

The behavior of h(x) in (6) of the EIL(θ ,β ,α) for different values of the parameters θ ,β, 
and α are showed graphically in Fig. 2.

Moments, moment generating function, and associated measures

Theorem 1  Let X be a random variable that follows the EIL distribution with pdf as in 
(3), then the rth row moment (about the origin) is given by

and the moment generating function (mgf ) is given by

where Ŵa =
∞∫

0

xa−1e−xdx.

Proof  µ′
r = E(xr) =

∞∫

−∞
xrf (x)dx

(6)h(x) =
f (x)

s(x)
=

αθ2(β + xα)

xα+1
[
(θ + β)xα

(
e

θ
xα − 1

)
− βθ

] ; θ ,β ,α, x > 0.

(7)µ′
r = E(xr) =

θ
r
α [α(θ + β)− rβ]

α(θ + β)
Ŵ
α − n

α
, α > r,

(8)MX (t) =
∞∑

n=0

tn

n!
θ

n
r
α(θ + β)− nβ

α(θ + β)
Ŵ
α − n

α
, n < α,

Fig. 2  Plots of the hazard rate function of the EIL distribution for different values of θ ,β, and α.
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For X ∼ EIL(θ ,β ,α), we have

Letting y = xα, we have

Using 
∞∫

0

e−
a
x

xb+1 dx = Ŵb
ab
, the definition of inverse gamma, the above expression is reduced 

to

The mgf of a continuous random variable X , when it exists, is given by

For X ∼ EIL(θ ,β ,α), we have

Using etx =
∑∞

n=0
tnxn

n! , the series expansion, the above expression is reduced to

Letting y = xα, we have

Using 
∞∫

0

e−
a
x

xb+1 dx = Ŵb
ab
, the definition of inverse gamma, the moment generating func-

tion for the EIL distribution is given by

The mean and the variance of the EIL distribution are, respectively,

µ′
r =

αθ2

θ + β

∞�

0

x
r

�
β + xα

x2α+1

�
e
− θ

xα dx

=
αθ2

θ + β



β
∞�

0

e
− θ

xα

x2α−r+1
dx +

∞�

0

e
− θ

xα

xα−r+1
dx



.

µ′
r =

θ2

θ + β



β
∞�

0

e
− θ

y

y3−
r
α

dy+
∞�

0

e
− θ

y

y2−
r
α

dy



.

µ′
r =

θ
r
α [α(θ + β)− rβ]

α(θ + β)
Ŵ
α − n

α
, α > r.

MX (t) =
∫ ∞

−∞
etxf (x)dx.

MX (t) =
αθ2

θ + β

∫ ∞

0
etx

[
β + xα

x2α+1

]
e−

θ
xα dx.

MX (t) =
αθ2

θ + β

∞�

n=0

tn

n!



β
∞�

0

e−
θ
xα

x2α−n+1
dx +

∞�

0

e−
θ
xα

xα−n+1
dx



,

MX (t) =
θ2

θ + β

∞�

n=0

tn

n!



β
∞�

0

e
− θ

y

y3−
n
α

dy+
∞�

0

e
− θ

y

y2−
n
α

dy



.

MX (t) =
∞∑

n=0

tn

n!
θ

n
r
α(θ + β)− nβ

α(θ + β)
Ŵ
α − n

α
, n < α.
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The skewness and kurtosis measures can be obtained from the expressions

upon substituting for the row moments in (7).

Quantile function

Theorem 2  Let X be a random variable with the pdf in (3). Then, the quantile function, 
say Q(p) is

where θ ,β ,α > 0, p ∈ (0, 1), and W−1(.) is the negative Lambert W  function.

Proof  We have Q(p) = F−1(p), p ∈ (0, 1), which implies F(Q(p)) = p. By substitution, 
we get

When we multiply both sides by −(β + θ)e−(θ+β), and raise them to β, we have the Lam-
bert equation

Hence, we have the negative Lambert W  function of the real argument 
−p(θ + β)e−θ−β . i.e.,

thus, by solving this equation for Q(P), the proof is complete.

Special cases of the EIL distribution
The EIL distribution contains some well-known distributions as sub-models, described 
below in brief.

µ =
θ1/α(α(θ + β)− β)

α(θ + β)
Ŵ

(
α − 1

α

)
, α > 1,

σ 2 =
[

θ2/α

α2(β + θ)2

][
α(β + θ)(α(β + θ)− 2β)Ŵ

(
α − 2

α

)
− (α(β + θ)− β)2Ŵ2

(
α − 1

α

)]
, α > 2.

skewness =
µ′
3
− 3µ′

2
µ+ 2µ3

σ 3

curtosis =
µ′
4
− 4µ′

3
µ+ 6µ′

2
µ2 − 3µ4

σ 4
,

Q(p) =
[
−
1

β
−

1

θ
−

1

βθ
W−1

(
−
p(θ + β)

e(θ+β)

)](−1
α
)

,

[
1+

θ

θ + β

β

(Q(p))α

]
e
− θ

(Q(p))α = p.

−
[
θ + β +

θβ

(Q(p))α

]
e
−
(
θ+β+ θβ

(Q(p))α

)

= −p(θ + β)e−(θ+β).

W−1(−p(θ + β)e−(θ+β) = −
[
θ + β +

θβ

(Q(p))α

]
,
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Inverse Lindley distribution

The inverse Lindley distribution (IL) shown by Sharma et al. (2015b) is a special case of 
the EIL distribution; α = β = 1. Using (3) and (4), the pdf and cdf is given by

The associated hazard rate function using (6) is given by

The generalized inverse Lindley distribution

The generalized inverse Lindley distribution (GIL) as shown by Sharma et al. (2015b) is a 
special case of the EIL distribution; β = 1. Using (3) and (4), the pdf and cdf are respec-
tively given by

The associated hazard rate function using (6) is given by

The rth row moment for the GIL is then given by

and the mgf is given by

Inverse Weibull distribution

The inverse Weibull distribution (IW) is a special case of EIL distribution; β = 0. Using 
(3) and (4), the pdf and cdf are respectively given by

f(x) =
θ2

1+ θ

(
1+ x

x3

)
e−

θ
x , x > 0 and

F(x) =
[
1+

θ

1+ θ

1

x

]
e−

θ
x , x > 0.

h(x) =
θ2(1+ x)

x2
[
(θ + 1)x

(
e
θ
x − 1

)
− θ

] , x > 0.

f (x; θ ,α) =
αθ2

1+ θ

(
1+ xα

x2α+1

)
e−

θ
xα , and

F(x; θ ,α) =
[
1+

θ

1+ θ

1

xα

]
e−

θ
xα .

h(x) =
αθ2(1+ xα)

xα+1
[
(1+ β)xα

(
e

θ
xα − 1

)
− θ

] ; x > 0.

µ′
r = E(xr) =

θ
r
α [α(θ + 1)− r1]

α(θ + 1)
Ŵ
α − n

α
, α > r,

MX (t) =
∞∑

n=0

tn

n!
θ

n
r
α(θ + 1)− n

α(θ + 1)
Ŵ
α − n

α
, n < α.

f (x; θ ,α) =
αθ

xα+1
e−

θ
xα , x > 0 and

F(x; θ ,α) = e−
θ
xα , x > 0.
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The associated hazard rate function using (6) is given by

Stochastic orderings
Stochastic orderings of positive continuous random variables is an important tool used 
judge comparative behavior. A random variable X is said to be smaller than a random 
variable Y  in the following contexts:

(a)		 Stochastic order (X ≤st Y ) if FX (x) ≤ FY (x)∀x;
(b)		 Hazard rate order (X ≤hr Y ) if hX (x) ≥ hY (x)∀x;
(c)		 Mean residual life order (X ≤mrl Y ) ifmX (x) ≤ mY (x)∀x; and
(d)		 Likelihood ratio order (X ≤lr Y ) if fX (x)/fY (x) decreases in x.

The following implications (Shaked and Shanthikumar 1994) are well known:

The following theorem shows that the EIL distribution is ordered with respect to “like-
lihood ratio” ordering.

Theorem 3  Let X ∼ PL(θ1,β1,α1) and Y ∼ PL(θ2,β2,α2). If β1 = β2 and θ2 ≥ θ1 (or if

θ1 = θ2 and β2 ≥ β1), then X ≥lr Y . Hence, X ≥hr Y ,X ≥mrl Y and X ≥st Y .

Proof  We have

Setting α1 = α2 = α, we have fX (x)
fY (x)

= θ21
θ22

θ2+β2
θ1+β1

β1+xα

β2+xα e
(θ2−θ1)x

−α, which is decreasing 
in x forβ1 = β2 and θ2 ≥ θ1 (or if θ1 = θ2 and β2 ≥ β1). This implies X ≤lr Y . Hence, 
X ≤hr Y ,X ≤mrl Y and X ≤st Y .

Estimation and inference
Let X1, . . . ,Xn be a random sample with observed values x1, . . . , xn from EIL distribu-
tion. Let � = (θ ,β ,α) be the 3×1 parameter vector. The log likelihood function is given 
by

h(x) =
αθ

xα+1
(
e

θ
xα − 1

) ; x > 0.

X ≤lr Y ⇒X ≤hr Y ⇒ X ≤mrl Y

⇓
X ≤st Y

fX (x)

fY (x)
=

α1θ
2
1

α2θ
2
2

θ2 + β2

θ1 + β1

β1 + xα1

β2 + xα2
x2(α2−α1)e−θ2x

−α2−θ1x
−α1

,

ln = n log α + 2 nlogθ − nlog(θ + β)] + −(2α + 1)

n∑

i=1

log xi − θ

n∑

i=1

x−α
i .
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The score function Un(�) = (∂ ln /∂θ , ∂ ln /∂β , ∂ ln /∂α)T is given by

The maximum likelihood estimation (MLE) of � say {�} is obtained by solving the 
nonlinear system Un(x;�) = 0. This nonlinear system of equations does not have a 
closed form. For interval estimation and hypothesis tests on the model parameters, we 
require the observed information matrix

where the elements of In(Θ) are the second partial derivatives of Un(�). Under standard 
regular conditions for large sample approximation (Cox and Hinkley, 1974) that are ful-
filled for the proposed model, the distribution of {�} is approximately N3(�, Jn(�)−1), 
where Jn(�) = E[In(�)]. Whenever the parameters are in the interior of the param-
eter space but not on the boundary, the asymptotic distribution of 

√
n({�} −�) is 

N3(0, J (�)−1), where J (�)−1 = lim
n→∞

n−1In(�) is the unit information matrix and p 
is the number of parameters of the distribution. The asymptotic multivariate normal 
N3(�, In({�})−1) distribution of {�} can be used to approximate the confidence interval 
for the parameters, hazard rate, and survival functions. An 100(1− γ ) asymptotic confi-
dence interval for parameter �i is given by

where Î ii is the (i, i) diagonal element of In({�})−1 for i = 1, . . . , 3 and Z γ
2
 is the quantile 

1− γ /2 of the standard normal distribution.

Rényi entropy
Entropy is a measure of variation of the uncertainty in the distribution of any random 
variable. It provides important tools to indicate variety in distributions at particular 
moments in time and to analyze evolutionary processes over time. For a given probabil-
ity distribution, Rényi (1961) gave an expression of the entropy function, so called Rényi 
entropy, defined by

where γ > 0 and γ �= 0. For EIL distribution in (3), we have

∂ ln

∂θ
=

2n

θ
−

n

θ + β
−

n∑

i=1

x
−α
i

,

∂ ln

∂β
=

−n

θ + β
+

n∑

i=1

1

1+ βxα
i

,

∂ ln

∂α
=

n

α
+

n∑

i=1

x
α
i
log xi

β + x
α
i

− 2

n∑

i=1

log xi + θ

n∑

i=1

x
−α
i

log xi.

In(�) = −




Iθθ Iθβ Iθα
Iβθ Iββ Iβα
Iαθ Iαβ Iαα





(�i − Z γ
2

√
Î ii,�i + Z γ

2

√
{I ii}),

Re(γ ) =
1

1− γ
log

{∫
f γ (x)dx

}
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Now using the fact that (1+ z)γ =
∞∑
j=0

(
γ

j

)
zj , we have

We substitute y = xα and use the 
∞∫

0

e−
a
x

xb+1 dx = Ŵb
ab

 definition of inverse gamma so that

where Ŵa =
∞∫

0

xa−1e−xdx.

Application
In this section, we demonstrate the applicability of the EIL model for a real data. The 
data listed in Table 1 represents the flood levels for the Susquehanna River at Harris-
burg, Pennsylvania, over 20 four-year periods from 1890 to 1969 and was obtained in 
a civil engineering context and give the maximum flood level (in millions of cubic feet 
per second). This data have been widely used by authors and were initially reported by 
Dumonceaux and Antle (1973). Upadhyay and Peshwani (2003) applied a Bayesian anal-
ysis for model comparison between lognormal and Weibull models and concluded that 
the lognormal fit the data better than the Weibull model. Singh et al. (2013) reported 
that inverse Weibull distribution fits this data better than other distributions, such as 
gamma, Weibull, flexible Weibull, and lognormal.

For this data, we fit the proposed EIL(θ ,β ,α), the sub models that were introduced 
in “Special cases of the EIL distribution” and the three parameters generalized inverse 
Weibull proposed by De Gusmao et al. (2011), as well as.

The expectation–maximization (EM) algorithm is used to estimate the model param-
eters. The MLEs of the parameters, the Kolmogorov‒Smirnov statistics (K–S) with its 
respective p value, and the maximized log likelihood (logL) for the above distributions as 
well as our proposed model are given in Table 2. They indicate that the EIL distribution 
(proposed model) fits the data better than the other distributions. The EIL(θ ,β ,α) takes 

Re(γ ) =
1

1− γ
log






�
αθ2

θ + β

�γ ∞�

0

�
β + xα

x2α+1

�γ
e
− γ θ

xα dx






=
1

1− γ
log






�
αθ2

θ + β

�γ ∞�

0

�
β(1+

xα

β
)

�γ
x
−2γα−γ

e
− γ θ

xα dx




.

Re(γ ) =
1

1− γ
log






�
αθ2

θ + β

�γ ∞�

j=0

�
γ

j

�
βγ−j

∞�

0

e−
γ θ
xα
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Table 1  Flood level data for the Susquehanna river

0.654 0.613 0.315 0.449 0.297

0.402 0.379 0.423 0.379 0.324

0.269 0.740 0.418 0.412 0.494

0.416 0.338 0.392 0.484 0.265
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the smallest K-S test statistic value and the largest value of its corresponding p-value. In 
addition, it takes the largest log likelihood. The fitted densities and the empirical distri-
bution versus the fitted cumulative distributions of all models for this data are shown in 
Figs. 3 and 4, respectively.

Concluding remarks
In this paper, a new three-parameter inverse distribution, called extended inverse 
Lindley distribution, was introduced and studied in detail. This model has more flex-
ibility than other types of inverse distributions (one, two and three parameters) due 
to the shape of its density as well as its hazard rate functions. It was shown that the 
density of the new distribution can be expressed as two components of the Weibull 
density function and a generalized gamma density function. We introduced the pdf, 
cdf, hazard rate function, the moments, moment generating function, and the quantile 
function in simple mathematical forms. Maximum likelihood estimation of the model 
parameters and their asymptotic standard distribution and confidence interval are 
derived. Rényi entropy as a measure of the uncertainty in the model is derived. Appli-
cation of the model to a real data set is presented and compared to the fit attained 
by some other well-known inverse Lindley and inverse Weibull distributions, such as 
inverse Lindley, generalized inverse Lindley, inverse Weibull and generalized inverse 
Weibull.

Table 2  Parameter estimates, KS statistic, P-value and logL of flood level data

Dist. θ̂ β̂ α̂ K-S P-value log L

EIL(θ ,β ,α) 0.1052 4.0439 2.9573 0.1395 0.8311 1 6.2317

EIL(θ , 1,α) 0.0899 – 3.0763 0.1445 0.7977 16.1475

EIL(θ , 0,α) 0.0123 – 4.2873 0.1545 0.7263 16.096

GIW(θ ,β ,α) 0.0302 4.3127 0.8071 0.1560 0.7150 1 6.097

EIL(θ , 1, 1) 0.6345 – – 0.3556 0.0127 -0.5854

Fig. 3  Plot of the fitted densities of the data in Table 1
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