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Abstract
We investigate the one-dimensional prescribed mean curvature equation with
concave-convex nonlinearities in the form of –( u′√

1+u′2 )
′ = λ(up + uq), u(x) > 0, 0 < x < 1,

u(0) = u(1) = 0, where λ > 0 is a parameter and p, q satisfy –1 < p < q < +∞, and we
obtain new exact results of positive solutions. Our methods are based on a detailed
analysis of time maps.
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1 Introduction
Mean curvature equations arise in differential geometry, physics, and other applied sub-
jects. For example, the negative solutions of prescribed mean curvature equations can
describe pendent liquid drops in the equilibrium state (see []), or the corneal shape (see
[]). In recent years, increasing attention has been paid to the study of the prescribedmean
curvature equations by different methods (see [–]).
A typical model of the prescribed mean curvature equation is

⎧
⎨

⎩

–div( ∇u√
+‖∇u‖ ) = λf (t,u), t ∈ R+,u ∈ �,

u =  on ∂�,
(.)

where � is a bounded domain in RN and f : �̄ × R+ → R+ is continuous.
It is well known that a solution u of (.) defines a Cartesian surface in RN+ whose mean

curvature is prescribed by the right-hand side of the equation. Classical existence theo-
rems for this problem (and in particular for the minimal surface problem) are presented
in [] with references to the original papers by Bombieri, Finn, Miranda, etc. (see e.g. [,
, ] and the references therein). The existence theorems established in most of those
papers are concerned with solutions of the prescribed mean curvature problem as global
minimizers of the corresponding energy functionals. Some papers studied the prescribed
mean curvature problems by using the sub-supersolution method (see [, , , ]), the
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time-map analysis method (see [, , , , –]) or Mawhin’s continuation theorem
(see [, –]) and so on.
The one-dimensional version of (.) is

⎧
⎨

⎩

–( u′√
+u′ )

′ = λf (t,u), a < t < b,

u(a) = u(b) = .
(.)

There are some papers considering the exact number of positive solutions of (.) in spe-
cial case of f (see [, , , –, , –]). The study derived from an open problem
proposed by Ambrosetti et al. in [], which concerned the exact number and the detailed
property of solutions of the semilinear equation

⎧
⎨

⎩

–u′′ = λ(up + uq), u >  in (, ),

u() = u() = ,

where  < p <  < q < +∞. Since then, related problemshave been studied bymany authors;
see [–] and the references cited therein.
Generally, it is difficult to obtain the exact multiplicity results for nonlinear boundary

value problems. If the operator –u′′ is replaced by –( u′√
+u′ )

′, then the problems will be-
come more complicated. In [], Habets and Omari considered the nonlinear boundary
value problem of the one-dimensional prescribed mean curvature equation with f (t,u) =
up, where p > . By using an upper and lower solution method, the authors obtained the
exactness results of positive solutions. In [], Pan and Xing derived the exact numbers of
positive solutions of (.) for the nonlinearities f (t,u) = ( +u)p (p > ), f (t,u) = eu – , and
f (t,u) = au (a > ).
However, there are few articles dealing with the case involving negative exponent. We

note that, in particular, Bonheure et al. [] is the first paper where the problem with
singularities has been considered. In [], the authors considered a general class of f (t,u)
involving a singularity, and they obtained the result that there exists a positive solution for
a small parameter, and they pointed out f (t,u) = u–p, (R–u)–q, u–p(R–u)–q (where p,q > )
as the special case. In [] and [], the authors studied global bifurcation diagrams and the
exact multiplicity of positive solutions for the cases f (t,u) = ( –u)– and f (t,u) = ( –u)–p

(p > ), respectively.
In [], Li and Liu examined problem (.) for f (t,u) = up +uq with  < p < q <  or  < p <

q < +∞. Very recently, the authors [] studied the exact number of solutions of problem
(.) for f (t,u) = up+uq with  < p <  < q < +∞. However, to the best of our knowledge, no
paper has considered the exact number of solutions of problem (.) with – < p < q < +∞
till now. In this paper, we will try to solve it.
Consider the following boundary value problem of the one-dimensional prescribed

mean curvature equation:

⎧
⎪⎪⎨

⎪⎪⎩

–( u′√
+u′ )

′ = λ(up + uq),

u(x) > ,  < x < ,

u() = u() = ,

(.)
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where – < p < q < +∞ and λ >  is a parameter. In this paper, a positive solution is a
function u ∈ C[, ]∩C(, ) satisfying (.).
The rest of this paper is organized as follows. In Section , we introduce and analyze the

time map which plays a key role in the paper. The main result will be stated and proved in
Section .

2 Timemaps
In this section, we will make a detailed analysis of the so-called timemap of problem (.).
Let u(x) be a solution of problem (.). Then it is well known that u(x) takes itsmaximum

at c = 
 , u(x) is symmetricwith respect to c, u′(x) >  for  ≤ x < c and u′(x) <  for c < x ≤ .

Hence problem (.) is equivalent to the following problem defined on [, c]:

⎧
⎪⎪⎨

⎪⎪⎩

–( u′√
+u′ )

′ = λ(up + uq),

u(x) > ,  < x < c,

u() = u′(c) = .

(.)

Denote

f (u) = up + uq, fλ(u) = λ
(
up + uq

)
,

and

F(u) =
up+

p + 
+

uq+

q + 
, Fλ(u) = λ

(
up+

p + 
+

uq+

q + 

)

.

Let v = u′√
+u′ . If u(x) is a solution of (.) with s = u(c), then (u, v) is a solution of the

following problem defined on [, c]:

u′ =
v√
 – v

, v′ = –fλ(u), u() = , u(c) = s, v(c) = .

Since H(x) =
√
 – v(x) –  – Fλ(u(x)) satisfies

dH(x)
dx

=
–v(x)

√
 – v(x)

(
v′(x) + fλ

(
u(x)

)) ≡ ,

and H(c) = –Fλ(s), we see that

Fλ(s) – Fλ(u) =  –
√

 + u′ . (.)

Therefore,

u′ =
√
(Fλ(s) – Fλ(u))[ – (Fλ(s) – Fλ(u))]

 – (Fλ(s) – Fλ(u))
.

Then

 – (Fλ(s) – Fλ(u))√
(Fλ(s) – Fλ(u))[ – (Fλ(s) – Fλ(u))]

du = dx. (.)

http://www.boundaryvalueproblems.com/content/2014/1/193
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Integrating (.) from  to c, it leads to

T(λ, s) =
∫ s



 – (Fλ(s) – Fλ(u))√
(Fλ(s) – Fλ(u))[ – (Fλ(s) – Fλ(u))]

du =


. (.)

The function T(λ, s) is called the time map of f .
Choosing x =  in (.), we see that Fλ(s) <  and

 < s < α(λ) = F–
λ (). (.)

Therefore, if u(x) is a solution of (.) with u(  ) = s, then s satisfies (.) and (.). Con-
versely, for a given λ, if s satisfies (.) and (.), then (.) together with u() =  defines a
function u(x) on [,  ] which satisfies u(  ) = s and u′(  ) = , and then it is easy to see that
u(x) is a solution of (.) with u(  ) = s. So the number of solutions of (.) is equal to the
number of s satisfying (.) and (.). This leads us to investigate the shape of the graph
of T(λ, s).
Let � = {(λ, s) : λ ∈ (, +∞), s ∈ (,α(λ)]}. From (.) and (.) we see that T is defined

on � by

T(λ, s) =
∫ s



 – (Fλ(s) – Fλ(u))√
(Fλ(s) – Fλ(u))[ – (Fλ(s) – Fλ(u))]

du. (.)

For simplicity, we write

ξ = ξλ(s, t) = Fλ(s) – Fλ(st) = λ

[
sp+

p + 
(
 – tp+

)
+

sq+

q + 
(
 – tq+

)
]

,

�F = Fλ(s) – Fλ(u), �f̄ = sfλ(s) – ufλ(u), �f̄ ′ = sf ′
λ(s) – uf ′

λ(u).

It follows that

T(λ, s) = s
∫ 



 – ξ
√

ξ ( – ξ )
dt. (.)

The following lemmas give the properties of T(λ, s).

Lemma . ([]) T(λ, s) has continuous derivatives up to the second order on � with
respect to s and

Ts(λ, s) =
∫ 



ξ ( – ξ )( – ξ ) – λ[sp+( – tp+) + sq+( – tq+)]
[ξ ( – ξ )]/

dt

=

s

∫ s



�F( –�F)( –�F) –�f̄
[�F( –�F)]/

du, (.)

Tss(λ, s) =

s

∫ 



( – ξ )λ[sp+( – tp+) + sq+( – tq+)]

[ξ ( – ξ )]/
dt

–
∫ 



λ[(p + )sp( – tp+) + (q + )sq( – tq+)]
[ξ ( – ξ )]/

dt

=

s

∫ s



( –�F)�f̄  – (�f̄ ′ + �f̄ )�F( –�F)
[�F( –�F)]/

du. (.)
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Lemma . T(λ, s) is strictly decreasing on � with respect to λ.

Proof By a direct calculation, we have

Tλ(λ, s) = s
∫ 



–ξ ( – ξ ) – ξ ( – ξ )

λ[ξ ( – ξ )]/
dt < ,

which implies that T(λ, s) is strictly decreasing on � with respect to λ. �

Lemma . ([]) α(λ) is strictly decreasing on (, +∞) with respect to λ, and

lim
λ→+

α(λ) = +∞, lim
λ→+∞α(λ) = .

Lemma . () For fixed λ > , T(λ,α(λ)) > .
() For fixed λ > ,

lim
s→+

T(λ, s) =

⎧
⎪⎪⎨

⎪⎪⎩

, – < p < ,
π


√

λ
, p = ,

+∞, p > ,

lim
s→+

Ts(λ, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞, – < p < ,

–∞, p = ,  < q < ,

< , p = ,q = ,

= , p = ,q > ,

–∞, p > .

() Denote ω(λ) = sup{T(λ, s)| < s ≤ α(λ)}. Then ω(λ) is continuous, strictly decreasing
on (, +∞), and

lim
λ→+

ω(λ) = +∞, lim
λ→+∞ω(λ) = .

() Let η(λ) = T(λ,α(λ)). Then η(λ) is continuous and

lim
λ→+

T
(
λ,α(λ)

)
= +∞, lim

λ→+∞T
(
λ,α(λ)

)
= .

Furthermore, if Ts(λ, s)≥ , then η′(λ) < ; if Ts(λ, s) < , then η′(λ) <  under the condition
q ≤ p+

 +
√

p + 
 .

() If – < p < ,  < q < +∞, then there exists λ̄ >  such that for fixed  < λ ≤ λ̄,
Ts(λ,α(λ)) < .
() If – < p < ,  < q ≤ , then there exist  < λ̂ < λ̃ < ∞ such that for fixed  < λ ≤ λ̂,

Ts(λ,α(λ)) <  and for fixed λ ≥ λ̃, Ts(λ,α(λ)) > .
() Assume that p < q = . If p ≥

√
π+√

 ln(
√
+)+ –  ≈ ., then for fixed λ > ,

Ts(λ,α(λ)) < .

http://www.boundaryvalueproblems.com/content/2014/1/193
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Proof For fixed λ > . It is clear that

T
(
λ,α(λ)

)
=

∫ α(λ)



Fλ (u)√
 – F

λ
(u)

du > .

On the other hand, by the uniformly convergent of integral a direct calculation, we ob-
tain

lim
s→+

T(λ, s) = lim
s→+

s
–p


∫ 



 – ξ
√

λ[ 
p+ ( – tp+) + sq–p

q+ ( – tq+)]( – ξ )
dt

=

⎧
⎪⎪⎨

⎪⎪⎩

, – < p < ,
π


√

λ
, p = ,

+∞, p > .

If p �= ,

lim
s→+

Ts(λ, s)

= lim
s→+

s–
+p


∫ 



(

λ

[


p + 
(
 – tp+

)
+

sq–p

q + 
(
 – tq+

)
]

( – ξ )( – ξ )

– λ
[(
 – tp+

)
+ sq–p

(
 – tq+

)]
)

/
√

[

λ

(


p + 
(
 – tp+

)
+

sq–p

q + 
(
 – tq+

)
)

( – ξ )
]

dt

= lim
s→+

s–
+p


∫ 



λ
–p
p+ ( – tp+)

[λ


p+ ( – tp+)] 
dt

=

⎧
⎨

⎩

+∞, – < p < ,

–∞, p > .

If p = , then by the L’Hopital rule we have

lim
s→+

Ts(λ, s)

= lim
s→+

∫ 



λ( – q)sq( – tq+)



√
[λ( s


 ( – t) + sq+

q+ ( – tq+))]  [λ(s( – t) + sq( – tq+))]
dt

=

⎧
⎪⎪⎨

⎪⎪⎩

–∞,  < q < ,

< , q = ,

= , q > .

So the results () and () are proved.
The results of () can be proved in the same way as in Lemma . of [].

http://www.boundaryvalueproblems.com/content/2014/1/193
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Next to prove that the result () holds. By the chain rule of differentiation, we have

T ′(λ,α(λ)
)
=

∂T
∂λ

+
∂T
∂s

α′(λ).

Since ∂T
∂λ

< , α′(λ) < , we obtain T ′(λ,α(λ)) <  in the case of ∂T
∂s ≥ .

If ∂T
∂s < , by the fact that

T
(
λ,α(λ)

)
=

∫ α



Fλ(u)
√

 – F
λ (u)

du =
∫ 



s√
 – s


fλ(F–( s

λ
))
ds,

we have

T ′(λ,α(λ)
)
=

∫ 



s√
 – s

[


fλ(F–( s
λ
))

]′
ds.

Let γ (λ) = 
fλ(F–( sλ ))

= 
λf (F–( s

λ
)) . Then

γ ′(λ) = –
f (F–( s

λ
)) + λf ′(F–( s

λ
)) 

f (F–( s
λ
)) (–

s
λ
)

f λ (F–( s
λ
))

= –
f (F–( s

λ
)) – f ′(F–( s

λ
))F(F–( s

λ
))

f λ (F–( s
λ
))f (F–( s

λ
))

.

Let F–( s
λ
) = v. Since

f (v) – f ′(v)F(v) =


p + 
vp +


q + 

vq +
(

 –
q

p + 
–

p
q + 

)

vp+q,

by q ≤ p+
 +

√

p + 
 , we have f

(v) – f ′(v)F(v)≥ . It follows that T ′(λ,α(λ)) < .
Other parts are similar to the proof of Lemma . in []. Sowe omit them.Next we prove

that the result () holds.
Let ā = ( –pq– )


q–p , then there exists λ̄ >  such that Fλ̄(ā) =

√
p+
 , and Fλ̄(u) <

√
p+
 for

 < u < ā, Fλ̄(u) >
√

p+
 for ā < u ≤ α(λ̄). For fixed  < λ ≤ λ̄, for simplicity, we denote

α(λ) by α. It follows from (.) that

Ts(λ,α) =

α

∫ α



Fλ (u) – F
λ
(u) – αfλ (α) + ufλ (u)

[ – F
λ
(u)]/

du. (.)

Let

G(u) = Fλ (u) – F
λ (u) – αfλ (α) + ufλ (u). (.)

Then we can see that G() = –αfλ (α) < , G(α) = , and

G′(u) =
(
 – F

λ (u)
)
fλ (u) + uf ′

λ (u)

= λ
[(
 – F

λ (u)
)(
up + uq

)
+ pup + quq

]

= λ
[(
 + p – F

λ (u)
)
up +

(
 + q – F

λ (u)
)
uq

]
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/193
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It is obvious that G′(u) >  for  < u≤ ā. If ā < u < α, then uq > ( –pq– )u
p, by (.) we have

G′(u) > λ

[
(
 + p – F

λ (u)
)
+

(
 + q – F

λ (u)
)
(
 – p
q – 

)]

up

>
[

(p – ) + (q – )
(
 – p
q – 

)]

up = .

It follows that G′(u) > , ∀ā < u < α. Then G(u) < , which implies that Ts(λ,α(λ)) < .
Then the result () is proved.
Now we prove that the result () holds.
By (.) we have

T(λ, s) =
∫ Fλ(s)



 – y
√
y( – y)


fλ(F–

λ (Fλ(s) – y))
dy. (.)

Then

Ts(λ, s)

=
∫ Fλ(s)



 – y
√
y( – y)

–f ′
λ(F–

λ (Fλ(s) – y)) 
fλ(F–λ (Fλ(s)–y))

fλ(s)

f λ (F–
λ (Fλ(s) – y))

dy

+
 – Fλ(s)√

Fλ(s)( – Fλ(s))
fλ(s)

fλ(F–
λ ())

. (.)

It follows that

Ts
(
λ,α(λ)

)

=
∫ 



 – y
√
y( – y)

–f ′
λ(F–

λ ( – y)) 
fλ(F–λ (–y)) fλ(α(λ))

f λ (F–
λ ( – y))

dy

= –
∫ α



Fλ(u)
√

 – F
λ (u)

f ′
λ(u)fλ(α)
f λ (u)

du

= –
∫ 



Fλ(αt)
√

 – F
λ (αt)

f ′
λ(αt)αfλ(α)
f λ (αt)

dt

≤ –
∫ 



tq+√
 – tq+

f ′
λ(αt)αfλ(α)
f λ (αt)

dt. (.)

If there exists λ̃ such that α(λ̃) = (– p
q )


q–p , then from the third formula of (.) and the fact

that f ′(u) <  for  < u < (– p
q )


q–p we have Ts(λ,α(λ)) >  for λ ≥ λ̃.

On the other hand, from (.), by a simple calculation we can see that limλ→+ Ts(λ,
α(λ)) < . In fact, by the last formula of (.), we have

lim
λ→+

∫ 



tq+√
 – tq+

f ′
λ(αt)αfλ(α)
f λ (αt)

dt =
∫ 



tq+√
 – tq+

lim
λ→+

f ′
λ(αt)αfλ(α)
f λ (αt)

dt,

http://www.boundaryvalueproblems.com/content/2014/1/193
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where

lim
λ→+

f ′
λ(αt)αfλ(α)
f λ (αt)

= lim
λ→+

pαptp– + qαqtq– + (ptp– + qtq–)αp+q

(αt)p + (αt)p+q + (αt)q

= lim
λ→+

pα(p–q)tp– + qtq– + (ptp– + qtq–)αp–q

α(p–q)tp + αp–qtp+q + tq

= qt–(q+).

Then

lim
λ→+

∫ 



tq+√
 – tq+

f ′
λ(αt)αfλ(α)
f λ (αt)

dt =
∫ 



q√
 – tq+

dt > .

It follows that limλ→+ Ts(λ,α(λ)) < . Then there exists λ̂ >  such that Ts(λ,α(λ)) <  for
 < λ ≤ λ̂. This proves ().
Note that tq+ < tp+ for  < t <  and Fλ(α) = , it follows from (.) that

Ts(λ,α)

=
∫ 



λ( (αt)
p+

p+ + (αt)q+
q+ )

[ – λ
(

(αt)p+
p+ + (αt)q+

q+ )]/
dt –

∫ 



λ[αp+( – tp+) + αq+( – tq+)]
[ – λ

(
(αt)p+
p+ + (αt)q+

q+ )]/
dt

<
∫ 



tp+

( – tp+)/
dt –

∫ 



(p + )[ – λ( (αt)
p+

p+ + (αt)q+
q+ )]

[ – λ
(

(αt)p+
p+ + (αt)q+

q+ )]/
dt

<
∫ 



tp+

( – tp+)/
dt – (p + )

∫ 



dt
( – tq+)/( + tp+)/

. (.)

The first integral in (.) can be estimated as

∫ 



tp+

( – tp+)/
dt

=


p + 

∫ 


t d arcsin

(
tp+

)

=
π

(p + )
–


p + 

∫ 


arcsin

(
tp+

)
dt

<
π

(p + )
–


p + 

∫ 


t arcsin

(
t

)
dt

=
π + 
(p + )

. (.)

For the second integral in (.), we see that

∫ 



dt
( – tq+)/( + tp+)/

>
∫ 



dt
( – t)/( + t)/

http://www.boundaryvalueproblems.com/content/2014/1/193


Feng and Zhang Boundary Value Problems 2014, 2014:193 Page 10 of 16
http://www.boundaryvalueproblems.com/content/2014/1/193

= 
∫ 




( – v)

dv

=
√
 ln(

√
 + ) + 


. (.)

Here the transformation v = ( – t)/ has been used. Combining (.), (.) with (.)
we can see if

p≥
√

π + √
 ln(

√
 + ) + 

– ,

then Ts(λ,α(λ)) < . This proves (). �

Remark . It follows from the proof of () that if q >  then the conclusion of () still
holds.

Remark . From the proof of [], one can see that the inequality

q ≤ p –  +
√
p + p + 


,  < p < q < +∞, (.)

plays an important role in guaranteeing that T(λ,α(λ)) is decreasing on λ. In () of
Lemma ., we replace (.) by

q ≤ p + 


+
√

p +


,

and the method used to prove that T(λ,α(λ)) is decreasing on λ is completely different
from that of [].

Remark . It follows from the proof of [] that the inequality

p≥
(

π + √
 ln(

√
 + ) + 

)/

– ,  < p < q < , (.)

guarantees that T ′
s(λ,α) < . If p and q satisfy p = ,  < q ≤ ; p = ,  < q ≤ ; – < p < ,

 < q < +∞, and – < p < ,  < q ≤ , we can prove that T ′
s(λ,α) <  without the inequality

(.); see, for example, the proof of (), () in Lemma ..

The proofs of Lemmas . and . are similar to those of []. So we omit them.

Lemma . For s ∈ (, +∞), we have

sup
≤u<s

�f̄
�F

=
fλ(s) + sf ′

λ(s)
fλ(s)

=  +
psp + qsq

sp + sq
.

Lemma . For s ∈ (, +∞), we have

min
≤u≤s

�f̄ ′

�f̄
=

�f̄ ′

�f̄

∣
∣
∣
∣
u=

=
sf ′

λ(s)
fλ(s)

=
psp + qsq

sp + sq
.
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The proof of Lemma . is similar to Lemma . in []. For convenience of the reader,
we prove it in the following.

Lemma . Suppose that – 
 ≤ p < q < +∞. Let

M = sup
≤u<s

�f̄
�F

, m = min
≤u≤s

�f̄ ′

�f̄
.

For fixed λ ∈ (, +∞), we have

Tss(λ, s) +
M
s

Ts(λ, s) < , s ∈ (
,α(λ)

]
. (.)

Proof From Lemma . and Lemma ., we haveM–m = .We still use the symbols such
as �F , �f̄ , and �f̄ ′ when λ is replaced by λ, so we have

Tss(λ, s) +
M
s

Ts(λ, s)

=
∫ s



(

( –�F)�f̄  – (�f̄ ′ + �f̄ )�F( –�F)

+
M


�F( –�F)
[
�F( –�F)( –�F) –�f̄

]
)

/(
s

[
�F( –�F)

]/)du.

Let

Q = ( –�F)�f̄  –
(
�f̄ ′ + �f̄

)
�F( –�F)

+
M


�F( –�F)
[
�F( –�F)( –�F) –�f̄

]
,

and

μ =
�f̄
�F

, (s) = sfλ(s) –


Fλ(s).

Then for s ∈ (, +∞), we have

′(s)� = sf ′
λ(s) +



fλ(s)

= λsp
[(

p +



)

+
(

q +



)

sq–p
]

.

By the fact that p ≥ – 
 , we have ′(s) >  for s ∈ (, +∞).

It follows that
[

sfλ(s) –


Fλ(s)

]

–
[

ufλ(u) –


Fλ(u)

]

> ,  < u < s <∞.

Therefore, for  < u < s < ∞ we have

sfλ(s) – ufλ(u)
Fλ(s) – Fλ(u)

>


,
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i.e.,

μ =
�f̄
�F

>


.

Hence

Q = �F( –�F)
[
( –�F)
 –�F

�f̄ 

�F –
(

�f̄ ′

�F
+ 

�f̄
�F

)

+
M


[

( –�F)( –�F) –
�f̄
�F

]]

≤ �F( –�F)
[


μ –

(

m +  +
M


)

μ +M
]

=


�F( –�F)

[

μ –
(

M +



)

μ +


M

]

=


�F( –�F)(μ –M)

(

μ –



)

.

Since 
 < μ ≤ M, we have Q ≤  and then (.) follows. �

3 Main results
In this section, we apply the Lemmas .-. to establish the exact number of solutions for
problem (.). We consider the following six cases: p = ,  < q ≤ ; p = ,  < q ≤ ; q = ,
 < p < ; – < p < q ≤ ; – 

 ≤ p < ,  < q < +∞, and – 
 ≤ p < ,  < q ≤ . Case p = ,

 < q ≤  is treated in the following theorem.

Theorem . Assume that p = ,  < q ≤ . Then there exist  < λ∗ < λ∗ < +∞ such that
(.) has exactly one solution for λ ∈ (,λ∗) ∪ {λ∗}, exactly two solutions for λ ∈ [λ∗,λ∗),
and no solution for λ ∈ (λ∗, +∞).

Proof For fixed λ > , by (.) and the fact that f ′(u) >  we have Ts(λ,α(λ)) < . Com-
bining this with Lemma ., for fixed λ > , T(λ, s) has only one critical point s, which
is a maximum point, and Ts(λ, s) >  for  < s < s, Ts(λ, s) <  for s < s < α(λ). From
p < q ≤  and () of Lemma ., we know that T(λ,α(λ)) is strictly decreasing in (,+∞).
Selecting λ∗ >  such that T(λ∗,α(λ∗)) = 

 , we obtain T(λ,α(λ)) > 
 for  < λ < λ∗. Com-

bining this with the fact that lims→+ T(λ, s) =  and the continuity of T(λ, s) we see that
there is only one s satisfying (.) for  < λ < λ∗.
Choosing λ∗ > λ∗ such that max<s<α(λ∗)T(λ∗, s) = 

 , there is only one s satisfying (.)
for λ = λ∗ and no s satisfying (.) for λ > λ∗ by () of Lemma ..
When λ∗ ≤ λ < λ∗, by the fact that max<s<α(λ)T(λ, s) > 

 and T(λ,α(λ)) < 
 , it follows

that there are two s satisfying (.). Theorem . is proved. �

The following theorem deals with the case p = ,  < q ≤ .

Theorem . Assume that p = ,  < q ≤ . Then there exist  < λ∗ < π such that (.) has
exactly one solution for λ ∈ [λ∗,π] and no solution for λ ∈ (,λ∗)∪ (π, +∞).
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Proof From (.) we see that

( – ξ )ξ ( – ξ ) – λ
[
s

(
 – t

)
+ sq+

(
 – tq+

)]

≤ ξ – λ
[
s

(
 – t

)
+ sq+

(
 – tq+

)]
= λ

 – q
q + 

sq+
(
 – tq+

) ≤ ;

then Ts(λ, s) < , it follows that T(λ, s) is decreasing on s.
On the other hand, by () of Lemma ., we know lims→+ T(λ, s) = π


√

λ
. Then for fixed

λ ∈ (, +∞), sups∈(,α(λ)]T(λ, s) = π


√

λ
, mins∈(,α(λ)]T(λ, s) = T(λ,α(λ)).

From p = ,  < q ≤  and () of Lemma ., we know thatT(λ,α(λ)) is strictly decreasing
in (,+∞). Selecting λ∗ >  such that T(λ∗,α(λ∗)) = 

 , we obtain T(λ,α(λ)) > 
 for  <

λ < λ∗. Then there is no s satisfying (.) for  < λ < λ∗.
If sup<s<α(λ)T(λ, s) = 

 , then λ = π and there is no s satisfying (.) for λ > π. By the
monotone property of T(λ, s) on s we see that there is only one s satisfying (.) for λ∗ ≤
λ ≤ π. This completes the proof. �

Case : q = ,  < p < .

Theorem . Assume that  < p < , q = . Then the following conclusions hold.
(a) For any λ > , (.) has at most two solutions.
(b) There exist  < λ < λ < +∞ such that (.) has exactly one solution for  < λ < λ

and has no solution for λ > λ.
(c) If, in addition, p≥

√
π+√

 ln(
√
+)+ –  ≈ ., then there exist  < λ∗ < λ∗ < +∞

such that (.) has exactly one solution for λ ∈ (,λ∗)∪ {λ∗}, exactly two solutions for
λ ∈ [λ∗,λ∗), and no solution for λ ∈ (λ∗, +∞).

Proof By Lemma ., for λ ∈ (, +∞), T(λ, s) has at most one maximum point s ∈
(,α(λ)]. If s = α(λ), then Ts(λ, s) >  for  < s < α(λ). In this case there is at most one
s satisfying (.) for some λ. If s < α(λ), then Ts(λ, s) >  for  < s < s and Ts(λ, s) < 
for s < s < α(λ). Then there are at most two s satisfying (.) for some λ. It follows that
(.) has at most two solutions. This proves (a).
Let λ >  such that max<s<α(λ)T(λ, s) = 

 . By () of Lemma ., we see that there is
no s satisfying (.) for λ > λ.
On the other hand, by limλ→+ T(λ,α(λ)) = +∞, there exists λ >  such thatT(λ,α(λ)) >


 for  < λ < λ. Combining this with the proof of (a) we see that there is only one s satis-
fying (.) for  < λ < λ. This gives (b).
Considering (c), from  < p < , q = , and () of Lemma ., we know that T(λ,α(λ))

is strictly decreasing in (,+∞). Selecting λ∗ >  such that T(λ∗,α(λ∗)) = 
 , we obtain

T(λ,α(λ)) > 
 for  < λ < λ∗. Then there is only one s satisfying (.) for  < λ < λ∗.

By () of Lemma ., for fixed λ ∈ (, +∞), Ts(λ,α(λ)) < . Combining this with
Lemma ., T(λ, s) has only one critical point s, which is a maximum point, and
Ts(λ, s) >  for  < s < s, Ts(λ, s) <  for s < s < α(λ).
Choosing λ∗ > λ∗ such that max<s<α(λ∗)T(λ∗, s) = 

 , there is one s satisfying (.) for
λ = λ∗ and no s satisfying (.) for λ > λ∗ by () of Lemma ..
When λ∗ ≤ λ < λ∗, by the fact that max<s<α(λ)T(λ, s) > 

 and T(λ,α(λ)) < 
 , it follows

that there are two s satisfying (.). Theorem . is proved. �
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Case : – < p < q ≤ .

Theorem . Assume that – < p < q ≤ . Then there exists λ∗ >  such that (.) has
exactly one solution for λ ∈ (,λ∗], and no solution for λ ∈ (λ∗, +∞).

Proof From Lemma . we know lims→+ T(λ, s) =  for fixed λ > . By (.) and the fact
that f ′(u) <  we have Ts(λ, s) > . Then for fixed λ > , maxs∈(,α(λ)]T(λ, s) = T(λ,α(λ)).
Combing this with () of Lemma ., there exists λ∗ >  such that T(λ∗,α(λ∗)) = 

 and
T(λ,α(λ)) > 

 for  < λ < λ∗, T(λ,α(λ)) < 
 for λ > λ∗. Then (.) has exactly one solution

for λ ∈ (,λ∗], and no solution for λ ∈ (λ∗, +∞). �

Case : – 
 ≤ p < ,  < q < +∞.

Theorem . Assume that – 
 ≤ p < ,  < q < +∞. Then the following conclusions hold.

(a) For any λ > , (.) has at most two solutions.
(b) There exist  < λ < λ < +∞ such that (.) has exactly one solution for  < λ < λ

and has no solution for λ > λ.
(c) Furthermore, suppose that q ≤ p+

 +
√

p + 
 holds. Let λ̄ be defined in the same

way as in () of Lemma ..
(i) If λ̄ is such that max<s<α(λ̄)T(λ̄, s) ≤ 

 , then there exist  < λ∗ < λ∗ ≤ λ̄ < +∞
such that (.) has exactly one solution for λ ∈ (,λ∗)∪ {λ∗}, exactly two
solutions for λ ∈ [λ∗,λ∗), and no solution for λ ∈ (λ∗, +∞).

(ii) If λ̄ is such that max<s<α(λ̄)T(λ̄, s) > 
 .

Case . If T(λ̄,α(λ̄)) < 
 , then there exist  < λ∗ < λ̄ < λ∗ < +∞ such that (.) has exactly

one solution for λ ∈ (,λ∗) ∪ {λ∗}, exactly two solutions for λ ∈ [λ∗, λ̄], and no solution for
λ ∈ (λ∗, +∞).
Case . If T(λ̄,α(λ̄)) > 

 , then there exist  < λ̄ < λ∗ < λ∗ < +∞ such that (.) has exactly
one solution for λ ∈ (,λ∗)∪ {λ∗}, exactly two solutions for λ ∈ [λ∗,λ∗), and no solution for
λ ∈ (λ∗, +∞).
Case . If T(λ̄,α(λ̄)) = 

 , then there exist  < λ̄ = λ∗ < λ∗ < +∞ such that (.) has exactly
one solution for λ ∈ (,λ∗)∪ {λ∗}, exactly two solutions for λ ∈ [λ∗,λ∗), and no solution for
λ ∈ (λ∗, +∞).

Proof The proof of (a), (b) is similar to that of Theorem ..
Considering (c)(i), from q ≤ p+

 +
√

p + 
 and () of Lemma ., we know that

T(λ,α(λ)) is strictly decreasing in (,+∞). Selecting λ∗ >  such that T(λ∗,α(λ∗)) = 
 , we

obtain T(λ,α(λ)) > 
 for  < λ < λ∗. Then there is only one s satisfying (.) for  < λ < λ∗.

By () of Lemma ., for fixed λ ∈ (, λ̄], Ts(λ,α(λ)) < . Combining this with
Lemma ., T(λ, s) has only one critical point s, which is a maximum point, and
Ts(λ, s) >  for  < s < s, Ts(λ, s) <  for s < s < α(λ).
If max<s<α(λ̄)T(λ̄, s) < 

 , choosing  < λ∗ < λ̄ such that max<s<α(λ∗)T(λ∗, s) = 
 , there is

one s satisfying (.) for λ = λ∗ and no s satisfying (.) for λ > λ∗ by () of Lemma .. If
max<s<α(λ̄)T(λ̄, s) = 

 , then let λ∗ = λ̄.
When λ∗ ≤ λ < λ∗, by the fact that max<s<α(λ)T(λ, s) > 

 and T(λ,α(λ)) < 
 , it follows

that there are two s satisfying (.). The proof of (c)(i) is complete.
Next, turning to (c)(ii), since max<s<α(λ̄)T(λ̄, s) > 

 , there exists λ∗ > λ̄ such that
max<s<α(λ∗)T(λ∗, s) = 

 and there is no s satisfying (.) for λ > λ∗.
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By the fact T(λ∗,α(λ∗)) = 
 , if T(λ̄,α(λ̄)) <


 , then we have λ̄ > λ∗; if T(λ̄,α(λ̄)) > 

 , then
we have λ̄ < λ∗; if T(λ̄,α(λ̄)) = 

 , then we have λ̄ = λ∗. The proof of the other conclusions
follows by a similar method to (c)(i). Then the result (c)(ii) follows. �

Remark If we assume that – 
 ≤ p < ,  < q ≤ , then we have similar results to those of

Theorem .. It is worth to point that λ̄ is different from that of Theorem . in this case.
Then we have Theorem ..

Case : – 
 ≤ p < ,  < q ≤ .

Theorem . Assume that – 
 ≤ p < ,  < q ≤ . Then the following conclusions hold.

(a) For any λ > , (.) has at most two solutions.
(b) There exist  < λ < λ < +∞ such that (.) has exactly one solution for  < λ < λ

and has no solution for λ > λ.
(c) Furthermore, suppose that q ≤ p+

 +
√

p + 
 holds. Let λ̂ be defined in the same

way as in () of Lemma ..
(i) If λ̂ is such that max<s<α(λ̂)T(λ̂, s) ≤ 

 , then there exist  < λ∗ < λ∗ ≤ λ̂ < +∞
such that (.) has exactly one solution for λ ∈ (,λ∗)∪ {λ∗}, exactly two
solutions for λ ∈ [λ∗,λ∗), and no solution for λ ∈ (λ∗, +∞).

(ii) If λ̂ is such that max<s<α(λ̂)T(λ̂, s) >

 .

Case . If T(λ̂,α(λ̂)) < 
 , then there exist  < λ∗ < λ̂ < λ∗ < +∞ such that (.) has exactly

one solution for λ ∈ (,λ∗) ∪ {λ∗}, exactly two solutions for λ ∈ [λ∗, λ̂], and no solution for
λ ∈ (λ∗, +∞).
Case . If T(λ̂,α(λ̂)) > 

 , then there exist  < λ̂ < λ∗ < λ∗ < +∞ such that (.) has exactly
one solution for λ ∈ (,λ∗)∪ {λ∗}, exactly two solutions for λ ∈ [λ∗,λ∗), and no solution for
λ ∈ (λ∗, +∞).
Case . If T(λ̂,α(λ̂)) = 

 , then there exist  < λ̂ = λ∗ < λ∗ < +∞ such that (.) has exactly
one solution for λ ∈ (,λ∗)∪ {λ∗}, exactly two solutions for λ ∈ [λ∗,λ∗), and no solution for
λ ∈ (λ∗, +∞).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MF completed the main study and carried out the results of this article. XZ checked the proofs and verified the
calculation. All the authors read and approved the final manuscript.

Author details
1School of Applied Science, Beijing Information Science & Technology University, Beijing, 100192, Republic of China.
2Department of Mathematics and Physics, North China Electric Power University, Beijing, 102206, Republic of China.

Acknowledgements
This work is sponsored by the project NSFC (11301178, 11171032), the Fundamental Research Funds for the Central
Universities (2014MS58) and the improving project of graduate education of Beijing Information Science and Technology
University (YJT201416). The authors are grateful to the anonymous referees for their constructive comments and
suggestions, which have greatly improved this paper.

Received: 17 March 2014 Accepted: 28 July 2014

References
1. Finn, R: Equilibrium Capillary Surfaces. Springer, New York (1986)
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