On the James type constant of $l_{p}-l_{1}$

Changsen Yang* and Haiying Li

Correspondence
yangchangsen0991@sina.com College of Mathematics and Information Science, 46 East of Construction Road, Xinxiang, Henan 453007, P.R. China

Abstract

For any $\tau \geq 0, t \geq 1$ and $p \geq 1$, the exact value of the James type constant $J_{X, t}(\tau)$ of the $I_{p}-I_{1}$ space is investigated. As an application, the exact value of the von Neuman-Jordan type constant of the $I_{p}-I_{1}$ space can also be obtained.
MSC: Primary 46B20; secondary 47H10
Keywords: James type constant; $I_{p}-l_{1}$ space; von Neuman-Jordan type constant

1 Introduction and preliminaries

Throughout this paper, we shall assume that X stands for a nontrivial Banach space, i.e., $\operatorname{dim} X \geq 2$. We will use S_{X} and B_{X} to denote the unit sphere and unit ball of X, respectively.

A Banach space X is called uniformly non-square in the sense of James if there exists a positive number $\delta<1$ such that $\frac{\|x+y\|}{2} \leq \delta$ or $\frac{\|x-y\|}{2} \leq \delta$, whenever $x, y \in S_{X}$. The non-square or James constant is defined by

$$
J(X)=\sup \left\{\min (\|x+y\|,\|x-y\|), x, y \in S_{X}\right\} .
$$

Obviously, X is uniformly non-square in the sense of James if and only if $J(X)<2$ (see [1]).
The von Neumann-Jordan constant, introduced by Clarkson in [2], is defined as follows:

$$
C_{\mathrm{NJ}}(X)=\sup \left\{\frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)}: x \in S_{X}, y \in B_{X}\right\} .
$$

It is well known that the von Neumann-Jordan constant is not larger than the James constant. This result $C_{\mathrm{N} \mathrm{J}}(X) \leq J(X)$ was obtained by Takahashi-Kato in [3], Wang in [4] and Yang-Li in [5] almost at the same time.

Recently, as a generalization of the James constant and the von Neumann-Jordan constant, Takahashi in [6] introduced the James type constant $J_{X, t}(\tau)$ and the von NeumannJordan type constant $C_{t}(X)$, respectively, as follows:

$$
J_{X, t}(\tau)=\sup \left\{\mu_{t}(\|x+\tau y\|,\|x-\tau y\|): x, y \in S_{X}\right\}
$$

where $\tau \geq 0,-\infty \leq t<+\infty$. Here, we denote $\mu_{t}(a, b)=\left(\frac{a^{t}+b^{t}}{2}\right)^{\frac{1}{t}}(t \neq 0)$ and $\mu_{0}(a, b)=$ $\lim _{t \rightarrow 0} \mu_{t}(a, b)=\sqrt{a b}$ for two positive numbers a and b. It is well known that $\mu_{t}(a, b)$ is nondecreasing and $\mu_{-\infty}(a, b)=\lim _{t \rightarrow-\infty} \mu_{t}(a, b)=\min (a, b)$. Therefore, $J(X)=J_{X,-\infty}(1)$,

$$
C_{t}(X)=\sup \left\{\frac{J_{X, t}(\tau)^{2}}{1+\tau^{2}}: 0 \leq \tau \leq 1\right\} .
$$

It is obvious that $C_{2}(X)=C_{\mathrm{NJ}}(X)$ and the James type constants include some known constants such as Alonso-Llorens-Fuster's constant $T(X)$ in [7], Baronti-Casini-Papini's constant $A_{2}(X)$ in [8], Gao's constant $E(X)$ in [9] and Yang-Wang's modulus $\gamma_{X}(t)$ in [10]. These constants are defined by $T(X)=J_{X, 0}(1), A_{2}(X)=J_{X, 1}(1), E(X)=2 J_{X, 2}^{2}(1)$ and $\gamma_{X}(t)=$ $J_{X, 2}^{2}(t)$.

Now let us list some known results of the constant $J_{X, t}(\tau)$; for more details, see [6, 1114].
(1) If $-\infty \leq t_{1} \leq t_{2}<\infty$, then $J_{X, t_{1}}(\tau) \leq J_{X, t_{2}}(\tau)$ for any $\tau \geq 0$.
(2) Let $t \geq 1, \tau \geq 0$ and $X=l_{1}-l_{2}$, then

$$
\begin{equation*}
J_{X, t}(\tau)=\left(\frac{\left(1+\tau^{2}\right)^{\frac{t}{2}}+(1+\tau)^{t}}{2}\right)^{\frac{1}{t}} \tag{1.1}
\end{equation*}
$$

(3) Let X be an $l_{\infty}-l_{1}$ space. If $0 \leq \tau \leq 1$, then

$$
J_{X, t}(\tau)= \begin{cases}\left(\frac{1+(1+\tau)^{t}}{2}\right)^{\frac{1}{t}}, & t \geq 1 \\ 1+\frac{\tau}{2}, & t \leq 1\end{cases}
$$

(4) Let $1 \leq t \leq p \leq \infty, 2 \leq p$ and $0 \leq \tau \leq 1$. Then

$$
J_{X, t}(\tau)=1+2^{-\frac{1}{p}} \tau
$$

where X is an $l_{\infty}-l_{p}$ space.
(5) Let $t_{2} \geq t_{1} \geq 1$ and $0 \leq \tau \leq 1$. Then, for any Banach space X,

$$
\begin{equation*}
J_{X, t_{1}}^{t_{2}}(\tau) \leq J_{X, t_{2}}^{t_{2}}(\tau) \leq \frac{(1+\tau)^{t_{2}}+\left\{2 J_{X, t_{1}}^{t_{1}}(\tau)-(1+\tau)^{t_{1}}\right\}^{\frac{t_{2}}{t_{1}}}}{2} \tag{1.2}
\end{equation*}
$$

(6) $J_{X, t_{1}}(\tau)=1+\tau$ if and only if $J_{X, t_{2}}(\tau)=1+\tau$.

For $p \geq 1$, the $l_{p}-l_{1}$ space is defined by $X=\mathbf{R}^{2}$ with the norm

$$
\|x\|=\left\|\left(x_{1}, x_{2}\right)\right\|= \begin{cases}\|x\|_{p}, & x_{1} x_{2} \geq 0 \\ \|x\|_{1}, & x_{1} x_{2} \leq 0\end{cases}
$$

For any $\tau \geq 0$ and $p \geq 1$, we have calculated the exact value of the James type constant $J_{l_{p}-l_{1}, t}(\tau)$ for $t \geq 1$. As an application, we also give the exact value of the von NeumannJordan type constant $C_{t}\left(l_{p}-l_{1}\right)$ for $1 \leq t \leq 2$. In [11], for $1<p \leq 2$, it is known that $C_{\mathrm{NJ}}\left(l_{p}-\right.$ $\left.l_{1}\right)=1+2^{\frac{2}{p}-2}$ was given. In this paper, for $p \geq 2,(p-2) 2^{\frac{2}{p}-2} \leq 1$ and $p>2,(p-2) 2^{\frac{2}{p}-2} \geq 1$, the exact value of the von Neumann-Jordan constant $C_{\mathrm{NJ}}\left(l_{p}-l_{1}\right)$ is obtained.

2 Main results and their proofs

To give the value of $J_{X, t}(\tau)$ for $X=l_{p}-l_{1}$, we need the following lemmas.
Lemma 2.1 Let $x_{1}, x_{2}, y_{1}, y_{2} \geq 0$ and $p \geq 1$ such that

$$
x_{1}^{p}+x_{2}^{p}=1 \quad \text { and } \quad y_{1}^{p}+y_{2}^{p}=1 .
$$

If $0 \leq \tau \leq 1,0 \leq \tau y_{1} \leq x_{1}$ and $0 \leq x_{2} \leq \tau y_{2}$, then

$$
\left[\left(x_{1}+\tau y_{1}\right)^{p}+\left(x_{2}+\tau y_{2}\right)^{p}\right]^{\frac{1}{p}}+x_{1}-\tau y_{1}+\tau y_{2}-x_{2} \leq 1+\tau+\left(1+\tau^{p}\right)^{\frac{1}{p}}
$$

Proof It is readily seen that $0 \leq x_{1}-\tau y_{1}+\tau y_{2}-x_{2} \leq 1+\tau$. Let us now consider two possible cases.
CASE 1. $0 \leq x_{1}-\tau y_{1}+\tau y_{2}-x_{2} \leq\left(1+\tau^{p}\right)^{1 / p}$. Hence

$$
\begin{aligned}
& {\left[\left(x_{1}+\tau y_{1}\right)^{p}+\left(x_{2}+\tau y_{2}\right)^{p}\right]^{\frac{1}{p}}+x_{1}-\tau y_{1}+\tau y_{2}-x_{2}} \\
& \quad \leq\left[\left(x_{1}^{p}+x_{2}^{p}\right)^{1 / p}+\left(\tau^{p} y_{1}^{p}+\tau^{p} y_{2}^{p}\right)^{1 / p}\right]+\left(1+\tau^{p}\right)^{\frac{1}{p}} \\
& \quad=1+\tau+\left(1+\tau^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

CASE 2. $\left(1+\tau^{p}\right)^{1 / p} \leq x_{1}-\tau y_{1}+\tau y_{2}-x_{2} \leq 1+\tau$. By Minkowski's inequality,

$$
\begin{aligned}
& {\left[\left(x_{1}+\tau y_{1}\right)^{p}+\left(x_{2}+\tau y_{2}\right)^{p}\right]^{1 / p}+x_{1}-\tau y_{1}+\tau y_{2}-x_{2}} \\
& \quad \leq\left(x_{1}^{p}+\tau^{p} y_{2}^{p}\right)^{1 / p}+\left(\tau^{p} y_{1}^{p}+x_{2}^{p}\right)^{1 / p}+x_{1}-\tau y_{1}+\tau y_{2}-x_{2} \\
& \quad \leq\left(x_{1}^{p}+\tau^{p} y_{2}^{p}\right)^{1 / p}+\tau y_{1}+x_{2}+x_{1}-\tau y_{1}+\tau y_{2}-x_{2} \\
& \quad \leq(1+\tau)+\left(1+\tau^{p}\right)^{1 / p},
\end{aligned}
$$

where the second inequality follows from the fact $\|\cdot\|_{p} \leq\|\cdot\|_{1}$. Consequently, the proof is complete.

Lemma 2.2 Let $\tau \in(0,1), t \in[1,2]$ and $p \geq 2$. Then
(a) $2 \tau^{p}+p-2-p \tau^{2} \geq 0$;
(b) $1-\tau^{2 p-2}-(p-1)\left(\tau^{p-2}-\tau^{p}\right) \geq 0$;
(c) the function

$$
f(\tau)=\frac{\tau-\tau^{p-1}}{(1-\tau)(1+\tau)^{t-1}}\left(1+\tau^{p}\right)^{\frac{t}{p}-1}
$$

is nondecreasing; moreover, $0 \leq f(\tau) \leq(p-2) 2^{\frac{t}{p}-t}$.
Proof (a) Letting $h(\tau)=2 \tau^{p}+(p-2)-p \tau^{2}$, we have $h^{\prime}(\tau)=2 p\left(\tau^{p-1}-\tau\right) \leq 0$, and $h(\tau) \geq$ $h(1)=0$.
(b) Letting $g(\tau)=1-\tau^{2 p-2}-(p-1)\left(\tau^{p-2}-\tau^{p}\right)$, we have

$$
g^{\prime}(\tau)=-(p-1) \tau^{p-3}\left(2 \tau^{p}+p-2-p \tau^{2}\right) .
$$

Hence, $g^{\prime}(\tau) \leq 0$ by (a) and $g(\tau) \geq g(1)=0$.
(c) By a basic calculation, then by use of (b), we have

$$
\begin{aligned}
f^{\prime}(\tau)= & \frac{1}{\left[(1-\tau)(1+\tau)^{t-1}\right]^{2}}\left\{(1 - \tau) (1 + \tau) ^ { t - 1 } \left[\left(1-(p-1) \tau^{p-2}\right)\left(1+\tau^{p}\right)^{\frac{t}{p}-1}\right.\right. \\
& \left.+\left(\tau-\tau^{p-1}\right)(t-p) \tau^{p-1}\left(1+\tau^{p}\right)^{\frac{t}{p}-2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left(\tau-\tau^{p-1}\right)\left(1+\tau^{p}\right)^{\frac{t}{p}-1}\left[-(1+\tau)^{t-1}+(1-\tau)(t-1)(1+\tau)^{t-2}\right]\right\} \\
= & \frac{\left(1+\tau^{p}\right)^{\frac{t}{p}-2}(1+\tau)^{t-2}}{\left[(1-\tau)(1+\tau)^{t-1}\right]^{2}}\left\{(1 + \tau) (1 + \tau ^ { p }) \left[1-(p-1) \tau^{p-2}-\tau+(p-1) \tau^{p-1}\right.\right. \\
& \left.\left.+\tau-\tau^{p-1}\right]+(1-\tau)\left(\tau-\tau^{p-1}\right)\left[(t-p)(1+\tau) \tau^{p-1}-\left(1+\tau^{p}\right)(t-1)\right]\right\} \\
= & \frac{\left(1+\tau^{p}\right)^{\frac{t}{p-2}}(1+\tau)^{t-2}}{\left[(1-\tau)(1+\tau)^{t-1}\right]^{2}}\left\{\left(1+\tau^{2}\right)\left[1-\tau^{2 p-2}-(p-1) \tau^{p-2}\left(1-\tau^{2}\right)\right]\right. \\
& \left.+(2-t)(1-\tau)\left(\tau-\tau^{p-1}\right)\left(1-\tau^{p-1}\right)\right\} \geq 0 .
\end{aligned}
$$

Now from $\lim _{\tau \rightarrow 1^{-}} f(\tau)=(p-2) 2^{\frac{t}{p}-t}$, we have $0 \leq f(\tau) \leq(p-2) 2^{\frac{t}{p}-t}$.

Theorem 2.3 Let $t \geq 1, p \geq 1, \tau \geq 0$ and $X=l_{p}-l_{1}$ space. Then

$$
\begin{equation*}
J_{X, t}(\tau)=\left(\frac{\left(1+\tau^{p}\right)^{\frac{t}{p}}+(1+\tau)^{t}}{2}\right)^{\frac{1}{t}} \tag{2.1}
\end{equation*}
$$

Proof As $J_{X, t}(\tau)=\tau J_{X, t}\left(\frac{1}{\tau}\right)$ is valid for any $\tau>0$, we only consider the case $0 \leq \tau \leq 1$. We claim that the following inequality is valid for any $x, y \in S_{l_{p}-l_{1}}$:

$$
\begin{equation*}
\|x+\tau y\|+\|x-\tau y\| \leq\left(1+\tau^{p}\right)^{\frac{1}{p}}+1+\tau \tag{2.2}
\end{equation*}
$$

In fact, by the convexity of norm, we only need to show that this inequality is valid for any $x, y \in \operatorname{ext}\left(S_{l_{p}-l_{1}}\right)$, where $\operatorname{ext}\left(S_{l_{p}-l_{1}}\right)$ denotes the set of extreme points of $S_{l_{p}-l_{1}}$. From $\operatorname{ext}\left(S_{l_{p}-l_{1}}\right)=\left\{\left(x_{1}, x_{2}\right): x_{1}^{p}+x_{2}^{p}=1, x_{1} x_{2} \geq 0\right\}$, we may assume that $x=(a, b), y=(c, d)$, where $a, b, c, d \geq 0$ with $a^{p}+b^{p}=c^{p}+d^{p}=1$.
(I) If $(a-c \tau)(b-d \tau) \geq 0$,

$$
\begin{aligned}
\|x+\tau y\|+\|x-\tau y\| & =\|x+\tau y\|_{p}+\|x-\tau y\|_{p} \\
& \leq 1+\tau+\left[|a-c \tau|^{p}+|b-d \tau|^{p}\right]^{\frac{1}{p}} \\
& \leq 1+\tau+\max \left\{\left[a^{p}+b^{p}\right]^{\frac{1}{p}},\left[(c \tau)^{p}+(d \tau)^{p}\right]^{\frac{1}{p}}\right\} \\
& \leq 2+\tau \\
& \leq\left(1+\tau^{p}\right)^{\frac{1}{p}}+1+\tau .
\end{aligned}
$$

(II) If $(a-c \tau)(b-d \tau) \leq 0$.

We may assume that $a-c \tau>0$ and $b-d \tau \leq 0$. Then, by use of Lemma 2.1, we also have

$$
\|x+\tau y\|+\|x-\tau y\|=\|x+\tau y\|_{p}+\|x-\tau y\|_{1} \leq\left(1+\tau^{p}\right)^{\frac{1}{p}}+1+\tau .
$$

Thus (2.2) is valid.
Now, by taking $x=(1,0)$ and $y=(0,1)$, we have $2 J_{l_{p}-l_{1,1}}(\tau)=\left(1+\tau^{p}\right)^{\frac{1}{p}}+1+\tau$. Therefore by (1.2) we have

$$
J_{X, t}^{t}(\tau) \leq \frac{(1+\tau)^{t}+\left[2 J_{X, 1}(\tau)-(1+\tau)\right]^{t}}{2}=\frac{(1+\tau)^{t}+\left(1+\tau^{p}\right)^{\frac{t}{p}}}{2}
$$

On the other hand, by taking $x=(1,0), y=(0,1)$, we have

$$
\|x+\tau y\|=\left(1+\tau^{p}\right)^{\frac{1}{p}}, \quad\|x-\tau y\|=1+\tau
$$

so

$$
J_{X, t}^{t}(\tau) \geq \frac{(1+\tau)^{t}+\left(1+\tau^{p}\right)^{\frac{t}{p}}}{2}
$$

Therefore, (2.1) is valid for $t \geq 1$.

Theorem 2.4 Let $p=2, t \geq 1$ or $p>2, t \in[1,2]$, and X be an $l_{p}-l_{1}$ space.
For p and t such that $(p-2) 2^{\frac{t}{p}-t} \leq 1$, then

$$
\begin{equation*}
C_{t}(X)=\left(\frac{2^{\frac{t}{p}-\frac{t}{2}}+2^{\frac{t}{2}}}{2}\right)^{\frac{2}{t}} \tag{2.3}
\end{equation*}
$$

For p and t such that $(p-2) 2^{\frac{t}{p}-t}>1$, then

$$
C_{t}(X)=\frac{1}{1+\tau_{0}^{2}}\left(\frac{\left(1+\tau_{0}\right)^{t}+\left(1+\tau_{0}^{p}\right)^{\frac{t}{p}}}{2}\right)^{\frac{2}{t}}
$$

where τ_{0} is the unique solution of the equation

$$
\begin{equation*}
\frac{\left(\tau-\tau^{p-1}\right)\left(1+\tau^{p}\right)^{\frac{t}{p}-1}}{(1-\tau)(1+\tau)^{t-1}}=1 \tag{2.4}
\end{equation*}
$$

Proof By (2.1), we have

$$
C_{t}(X)=[\sup \{h(\tau): 0 \leq \tau \leq 1\}]^{\frac{2}{t}}, \quad \text { where } h(\tau)=\frac{(1+\tau)^{t}+\left(1+\tau^{p}\right)^{\frac{t}{p}}}{2\left(1+\tau^{2}\right)^{\frac{t}{2}}} .
$$

A simple computation yields

$$
h^{\prime}(\tau)=\frac{t(1-\tau)(1+\tau)^{t-1}}{2\left(1+\tau^{2}\right)^{\frac{t}{2}+1}}\left[1-\frac{\left(\tau-\tau^{p-1}\right)\left(1+\tau^{p}\right)^{\frac{t}{p}-1}}{(1-\tau)(1+\tau)^{t-1}}\right] .
$$

If $p=2, t \geq 1$ or $p>2, t \in[1,2]$ such that $(p-2) 2^{\frac{t}{p}-t} \leq 1$, Lemma 2.2 implies $h^{\prime}(\tau) \geq 0$, so that h is nondecreasing. Hence

$$
C_{t}(X)=h(1)^{\frac{2}{t}}=\left(\frac{2^{\frac{t}{p}-\frac{t}{2}}+2^{\frac{t}{2}}}{2}\right)^{\frac{2}{t}} .
$$

Otherwise, let $\tau_{0} \in(0,1)$ be the unique solution to equation (2.4). It then follows from Lemma 2.2 that $h^{\prime}(\tau) \geq 0$ for $\tau \in\left[0, \tau_{0}\right]$ and $h^{\prime}(\tau) \leq 0$ for $\tau \in\left[\tau_{0}, 1\right]$. In other words, h attains its maximum at τ_{0}. Hence

$$
C_{t}(X)=\frac{1}{1+\tau_{0}^{2}}\left(\frac{\left(1+\tau_{0}\right)^{t}+\left(1+\tau_{0}^{p}\right)^{\frac{t}{p}}}{2}\right)^{\frac{2}{t}}
$$

For $1<p \leq 2, C_{\mathrm{NJ}}\left(l_{p}-l_{1}\right)=1+2^{\frac{2}{p}-2}$ (see [11]). Now, by taking $t=2$ in Theorem 2.3, as a generalization, we can obtain the following corollary on the von Neumann-Jordan constant of $l_{p}-l_{1}$ space.

Corollary 2.5 Let X be the $l_{p}-l_{1}$ space.
(a) If $p \geq 2$ and $(p-2) 2^{\frac{2}{p}-2} \leq 1$, then $C_{\mathrm{NJ}}(X)=1+2^{\frac{2}{p}-2}$.
(b) If $p>2$ and $(p-2) 2^{\frac{2}{p}-2} \geq 1$, then

$$
C_{\mathrm{NJ}}(X)=\frac{1}{2}+\frac{1-\tau_{0}^{p}}{2\left(\tau_{0}-\tau_{0}^{p-1}\right)},
$$

where $\tau_{0} \in(0,1)$ is the unique solution to the equation

$$
\frac{\left(\tau-\tau^{p-1}\right)\left(1+\tau^{p}\right)^{\frac{2}{p}-1}}{1-\tau^{2}}=1 .
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors completed the paper, and read and approved the final manuscript.

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Nos. 11271112; 11201127) and IRTSTHN (14IRTSTHN023),

Received: 8 October 2014 Accepted: 13 February 2015 Published online: 04 March 2015

References

1. Gao, J, Lau, KS: On two classes of Banach spaces with uniform normal structure. Stud. Math. 99(1), 41-56 (1991)
2. Clarkson, JA: The von Neumann-Jordan constant for the Lebesgue space. Ann. Math. 38, 114-115 (1937)
3. Takahashi, Y, Kato, M: A simple inequality for the von Neumann-Jordan and James constants of a Banach space. J. Math. Anal. Appl. 359(2), 602-609 (2009)
4. Wang, F: On the James and von Neumann-Jordan constants in Banach spaces. Proc. Am. Math. Soc. 138(2), 695-701 (2010)
5. Yang, C, Li, H: An inequality between Jordan-von Neumann constant and James constant. Appl. Math. Lett. 23(3), 277-281 (2010)
6. Takahashi, Y: Some geometric constants of Banach spaces - a unified approach. In: Banach and Function Spaces II, pp. 191-220. Yokohama Publishers, Yokohama (2008)
7. Alonso, J, Llorens-Fuster, E: Geometric mean and triangles inscribed in a semicircle in Banach spaces. J. Math. Anal. Appl. 340(2), 1271-1283 (2008)
8. Baronti, M, Casini, E, Papini, PL: Triangles inscribed in semicircle, in Minkowski planes, and in normed spaces. J. Math. Anal. Appl. 252(1), 124-146 (2000)
9. Gao, J: A Pythagorean approach in Banach spaces. J. Inequal. Appl. 2006, Article ID 94982 (2006)
10. Yang, C, Wang, F: On a new geometric constant related to the von Neumann-Jordan constant. J. Math. Anal. Appl. 324(1), 555-565 (2006)
11. Dhompongsa, S, Piraisangjun, P, Saejung, S: Generalised Jordan-von Neumann constants and uniform normal structure. Bull. Aust. Math. Soc. 67(2), 225-240 (2003)
12. Yang, C: An inequality between the James type constant and the modulus of smoothness. J. Math. Anal. Appl. 398(2), 622-629 (2013)
13. Yang, C, Wang, H: Two estimates for the James type constant. Ann. Funct. Anal. 6(1), 139-147 (2015)
14. Yang, C, Wang, Y: Some properties of James type constant. Appl. Math. Lett. 25(3), 538-544 (2012)
