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Abstract
For any τ ≥ 0, t ≥ 1 and p ≥ 1, the exact value of the James type constant JX ,t(τ ) of
the lp – l1 space is investigated. As an application, the exact value of the von
Neuman-Jordan type constant of the lp – l1 space can also be obtained.
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1 Introduction and preliminaries
Throughout this paper, we shall assume that X stands for a nontrivial Banach space, i.e.,
dim X ≥ . We will use SX and BX to denote the unit sphere and unit ball of X, respectively.

A Banach space X is called uniformly non-square in the sense of James if there exists a
positive number δ <  such that ‖x+y‖

 ≤ δ or ‖x–y‖
 ≤ δ, whenever x, y ∈ SX . The non-square

or James constant is defined by

J(X) = sup
{
min

(‖x + y‖,‖x – y‖), x, y ∈ SX
}

.

Obviously, X is uniformly non-square in the sense of James if and only if J(X) <  (see []).
The von Neumann-Jordan constant, introduced by Clarkson in [], is defined as follows:

CNJ(X) = sup

{‖x + y‖ + ‖x – y‖

(‖x‖ + ‖y‖)
: x ∈ SX , y ∈ BX

}
.

It is well known that the von Neumann-Jordan constant is not larger than the James
constant. This result CNJ(X) ≤ J(X) was obtained by Takahashi-Kato in [], Wang in []
and Yang-Li in [] almost at the same time.

Recently, as a generalization of the James constant and the von Neumann-Jordan con-
stant, Takahashi in [] introduced the James type constant JX,t(τ ) and the von Neumann-
Jordan type constant Ct(X), respectively, as follows:

JX,t(τ ) = sup
{
μt

(‖x + τy‖,‖x – τy‖) : x, y ∈ SX
}

,

where τ ≥ , –∞ ≤ t < +∞. Here, we denote μt(a, b) = ( at+bt

 ) 
t (t �= ) and μ(a, b) =

limt→ μt(a, b) =
√

ab for two positive numbers a and b. It is well known that μt(a, b) is
nondecreasing and μ–∞(a, b) = limt→–∞ μt(a, b) = min(a, b). Therefore, J(X) = JX,–∞(),

Ct(X) = sup

{
JX,t(τ )

 + τ  :  ≤ τ ≤ 
}

.
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It is obvious that C(X) = CNJ(X) and the James type constants include some known
constants such as Alonso-Llorens-Fuster’s constant T(X) in [], Baronti-Casini-Papini’s
constant A(X) in [], Gao’s constant E(X) in [] and Yang-Wang’s modulus γX(t) in [].
These constants are defined by T(X) = JX,(), A(X) = JX,(), E(X) = J

X,() and γX(t) =
J
X,(t).

Now let us list some known results of the constant JX,t(τ ); for more details, see [, –
].

() If –∞ ≤ t ≤ t < ∞, then JX,t (τ ) ≤ JX,t (τ ) for any τ ≥ .
() Let t ≥ , τ ≥  and X = l – l, then

JX,t(τ ) =
(

( + τ ) t
 + ( + τ )t



) 
t
. (.)

() Let X be an l∞ – l space. If  ≤ τ ≤ , then

JX,t(τ ) =

{
( +(+τ )t

 ) 
t , t ≥ ,

 + τ
 , t ≤ .

() Let  ≤ t ≤ p ≤ ∞,  ≤ p and  ≤ τ ≤ . Then

JX,t(τ ) =  + – 
p τ ,

where X is an l∞ – lp space.
() Let t ≥ t ≥  and  ≤ τ ≤ . Then, for any Banach space X ,

Jt
X,t

(τ ) ≤ Jt
X,t

(τ ) ≤ ( + τ )t + {Jt
X,t

(τ ) – ( + τ )t} t
t


. (.)

() JX,t (τ ) =  + τ if and only if JX,t (τ ) =  + τ .
For p ≥ , the lp – l space is defined by X = R with the norm

‖x‖ =
∥∥(x, x)

∥∥ =

{
‖x‖p, xx ≥ ,
‖x‖, xx ≤ .

For any τ ≥  and p ≥ , we have calculated the exact value of the James type constant
Jlp–l,t(τ ) for t ≥ . As an application, we also give the exact value of the von Neumann-
Jordan type constant Ct(lp – l) for  ≤ t ≤ . In [], for  < p ≤ , it is known that CNJ(lp –
l) =  + 


p – was given. In this paper, for p ≥ , (p – )


p – ≤  and p > , (p – )


p – ≥ ,

the exact value of the von Neumann-Jordan constant CNJ(lp – l) is obtained.

2 Main results and their proofs
To give the value of JX,t(τ ) for X = lp – l, we need the following lemmas.

Lemma . Let x, x, y, y ≥  and p ≥  such that

xp
 + xp

 =  and yp
 + yp

 = .
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If  ≤ τ ≤ ,  ≤ τy ≤ x and  ≤ x ≤ τy, then

[
(x + τy)p + (x + τy)p] 

p + x – τy + τy – x ≤  + τ +
(
 + τ p) 

p .

Proof It is readily seen that  ≤ x –τy +τy –x ≤ +τ . Let us now consider two possible
cases.

Case .  ≤ x – τy + τy – x ≤ ( + τ p)/p. Hence

[
(x + τy)p + (x + τy)p] 

p + x – τy + τy – x

≤ [(
xp

 + xp

)/p +

(
τ pyp

 + τ pyp

)/p] +

(
 + τ p) 

p

=  + τ +
(
 + τ p) 

p .

Case . ( + τ p)/p ≤ x – τy + τy – x ≤  + τ . By Minkowski’s inequality,

[
(x + τy)p + (x + τy)p]/p + x – τy + τy – x

≤ (
xp

 + τ pyp

)/p +

(
τ pyp

 + xp

)/p + x – τy + τy – x

≤ (
xp

 + τ pyp

)/p + τy + x + x – τy + τy – x

≤ ( + τ ) +
(
 + τ p)/p,

where the second inequality follows from the fact ‖ · ‖p ≤ ‖ · ‖. Consequently, the proof
is complete. �

Lemma . Let τ ∈ (, ), t ∈ [, ] and p ≥ . Then
(a) τ p + p –  – pτ  ≥ ;
(b)  – τ p– – (p – )(τ p– – τ p) ≥ ;
(c) the function

f (τ ) =
τ – τ p–

( – τ )( + τ )t–

(
 + τ p) t

p –

is nondecreasing; moreover,  ≤ f (τ ) ≤ (p – )
t
p –t .

Proof (a) Letting h(τ ) = τ p + (p – ) – pτ , we have h′(τ ) = p(τ p– – τ ) ≤ , and h(τ ) ≥
h() = .

(b) Letting g(τ ) =  – τ p– – (p – )(τ p– – τ p), we have

g ′(τ ) = –(p – )τ p–(τ p + p –  – pτ ).

Hence, g ′(τ ) ≤  by (a) and g(τ ) ≥ g() = .
(c) By a basic calculation, then by use of (b), we have

f ′(τ ) =


[( – τ )( + τ )t–]

{
( – τ )( + τ )t–[( – (p – )τ p–)( + τ p) t

p –

+
(
τ – τ p–)(t – p)τ p–( + τ p) t

p –]
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–
(
τ – τ p–)( + τ p) t

p –[–( + τ )t– + ( – τ )(t – )( + τ )t–]}

=
( + τ p)

t
p –( + τ )t–

[( – τ )( + τ )t–]

{
( + τ )

(
 + τ p)[ – (p – )τ p– – τ + (p – )τ p–

+ τ – τ p–] + ( – τ )
(
τ – τ p–)[(t – p)( + τ )τ p– –

(
 + τ p)(t – )

]}

=
( + τ p)

t
p –( + τ )t–

[( – τ )( + τ )t–]

{(
 + τ )[ – τ p– – (p – )τ p–( – τ )]

+ ( – t)( – τ )
(
τ – τ p–)( – τ p–)} ≥ .

Now from limτ→– f (τ ) = (p – )
t
p –t , we have  ≤ f (τ ) ≤ (p – )

t
p –t . �

Theorem . Let t ≥ , p ≥ , τ ≥  and X = lp – l space. Then

JX,t(τ ) =
(

( + τ p)
t
p + ( + τ )t



) 
t
. (.)

Proof As JX,t(τ ) = τ JX,t( 
τ

) is valid for any τ > , we only consider the case  ≤ τ ≤ . We
claim that the following inequality is valid for any x, y ∈ Slp–l :

‖x + τy‖ + ‖x – τy‖ ≤ (
 + τ p) 

p +  + τ . (.)

In fact, by the convexity of norm, we only need to show that this inequality is valid for
any x, y ∈ ext(Slp–l ), where ext(Slp–l ) denotes the set of extreme points of Slp–l . From
ext(Slp–l ) = {(x, x) : xp

 + xp
 = , xx ≥ }, we may assume that x = (a, b), y = (c, d), where

a, b, c, d ≥  with ap + bp = cp + dp = .
(I) If (a – cτ )(b – dτ ) ≥ ,

‖x + τy‖ + ‖x – τy‖ = ‖x + τy‖p + ‖x – τy‖p

≤  + τ +
[|a – cτ |p + |b – dτ |p] 

p

≤  + τ + max
{[

ap + bp] 
p ,

[
(cτ )p + (dτ )p] 

p
}

≤  + τ

≤ (
 + τ p) 

p +  + τ .

(II) If (a – cτ )(b – dτ ) ≤ .
We may assume that a – cτ >  and b – dτ ≤ . Then, by use of Lemma ., we also have

‖x + τy‖ + ‖x – τy‖ = ‖x + τy‖p + ‖x – τy‖ ≤ (
 + τ p) 

p +  + τ .

Thus (.) is valid.
Now, by taking x = (, ) and y = (, ), we have Jlp–l,(τ ) = ( + τ p)


p +  + τ . Therefore

by (.) we have

Jt
X,t(τ ) ≤ ( + τ )t + [JX,(τ ) – ( + τ )]t


=

( + τ )t + ( + τ p)
t
p


.
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On the other hand, by taking x = (, ), y = (, ), we have

‖x + τy‖ =
(
 + τ p) 

p , ‖x – τy‖ =  + τ ,

so

Jt
X,t(τ ) ≥ ( + τ )t + ( + τ p)

t
p


.

Therefore, (.) is valid for t ≥ . �

Theorem . Let p = , t ≥  or p > , t ∈ [, ], and X be an lp – l space.
For p and t such that (p – )

t
p –t ≤ , then

Ct(X) =
(


t
p – t

 +  t




) 
t
. (.)

For p and t such that (p – )
t
p –t > , then

Ct(X) =


 + τ 


(
( + τ)t + ( + τ

p
 )

t
p



) 
t
,

where τ is the unique solution of the equation

(τ – τ p–)( + τ p)
t
p –

( – τ )( + τ )t– = . (.)

Proof By (.), we have

Ct(X) =
[
sup

{
h(τ ) :  ≤ τ ≤ 

}] 
t , where h(τ ) =

( + τ )t + ( + τ p)
t
p

( + τ ) t


.

A simple computation yields

h′(τ ) =
t( – τ )( + τ )t–

( + τ ) t
 +

[
 –

(τ – τ p–)( + τ p)
t
p –

( – τ )( + τ )t–

]
.

If p = , t ≥  or p > , t ∈ [, ] such that (p – )
t
p –t ≤ , Lemma . implies h′(τ ) ≥ , so

that h is nondecreasing. Hence

Ct(X) = h()

t =

(


t
p – t

 +  t




) 
t
.

Otherwise, let τ ∈ (, ) be the unique solution to equation (.). It then follows from
Lemma . that h′(τ ) ≥  for τ ∈ [, τ] and h′(τ ) ≤  for τ ∈ [τ, ]. In other words, h
attains its maximum at τ. Hence

Ct(X) =


 + τ 


(
( + τ)t + ( + τ

p
 )

t
p



) 
t
. �
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For  < p ≤ , CNJ(lp – l) =  + 

p – (see []). Now, by taking t =  in Theorem .,

as a generalization, we can obtain the following corollary on the von Neumann-Jordan
constant of lp – l space.

Corollary . Let X be the lp – l space.
(a) If p ≥  and (p – )


p – ≤ , then CNJ(X) =  + 


p –.

(b) If p >  and (p – )

p – ≥ , then

CNJ(X) =



+
 – τ

p


(τ – τ
p–
 )

,

where τ ∈ (, ) is the unique solution to the equation

(τ – τ p–)( + τ p)

p –

 – τ  = .
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