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Abstract

Background: Metagenomics is a powerful methodology to study microbial communities, but it is highly
dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with
next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and
many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of
existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that
can rapidly detect weak similarity in large datasets.

Results: We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool),
that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA
Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First,
CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT.
Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign
reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy.
Third, CLAST does not need a preprocessed sequence database like Burrows–Wheeler Transform-based tools, and this
enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main
memory, making it possible to run CLAST on a standard desktop computer or server node.

Conclusions: CLAST achieved very high speed (similar to the Burrows–Wheeler Transform-based Bowtie 2 for long
reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing
or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most
powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing
technologies.
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Background
The rapid development of sequencing technologies has
resulted in a flood of new data. For example, a single
run of the latest version of the Illumina sequencing system
(HiSeq 2500) can produce ~540–600 Gb of sequences
with 100-bp read lengths, and can take >11 days [1]. These
technologies have made it easier to perform massive
sequencing projects such as metagenomic analyses.
For example, 3.3 million genes, representing the human
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gut metagenome, were derived from 124 human fecal
samples using next generation sequence technologies
[2]. Similarly, the Human Microbiome Project (HMP)
produced >8.8 Tb of sequences, representing the
normal human metagenome, from 681 samples using
the Illumina Genome Analyzer IIx system [3].
Most fundamental metagenomic analyses are highly

dependent on sequence alignment tools, such as the Basic
Local Alignment Search Tool (BLAST) [4], BLAST-like
Alignment Tool (BLAT) [5], and Fragment Recruitment at
High Identity with Tolerance (FR-HIT) algorithm [6], to
search for nucleotide sequence similarity against sequence
databases. The alignment sensitivity of the tool is a crucial
factor for metagenomic studies because many of the reads
are derived from microbes whose genomes have not yet
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been sequenced. On the other hand, the search speed is
also an important issue because of the increasing amount
of data produced from advances in sequencing platforms.
For instance, SSEARCH [7], which is an alignment tool
based on the Smith–Waterman local alignment algorithm,
is too slow to use for massive metagenomic analyses. How-
ever, the sensitivity and search speed often have contra-
dictory requirements, and thus most alignment tools used
for metagenomic studies sacrifice one of these aspects.
An effective way to accelerate sequence similarity

searching while maintaining sufficient sensitivity is to
maximize the degree of parallelism. Use of graphics
processing units (GPUs) is a suitable way to parallelize
calculations with low financial and computational cost,
because GPUs are relatively inexpensive, powerful, and
widely used for high-performance computing. Many GPU-
based sequence similarity search tools have been developed,
such as CUDASW++2.0, GPU-BLAST, GHOSTM, G-
BLASTN, MUMmerGPU, and SARUMAN [8-13]. How-
ever, none of these GPU-based tools is suitable for metage-
nomic analyses because they cannot detect weak similarity
of numerous query nucleotide sequences against reference
genomes at reasonably high speed (Additional file 1).
Here, we developed a nucleotide sequence similarity

search tool CLAST (CUDA implemented large-scale align-
ment search tool) that can rapidly detect weak sequence
similarity with both short and long query read lengths.
CLAST uses GPUs and searches with both global and local
alignment algorithms. Global alignment facilitates taxo-
nomic and functional assignment of metagenomic reads,
and local alignment is useful in motif searching. Further-
more, we implemented a novel algorithm to construct the
Figure 1 Overview of the CLAST search processing phases. (A) A read
using a novel algorithm for parallel architecture (Figure 3). (B) The query se
were filtered to reduce calculation time (Figure 4). (D) The seed sequences w
were filtered according to E-value and alignment length.
q-gram index [14], which allows sequence similarity
searching with reference data that has not been pre-
indexed. This feature minimizes the memory requirements
of CLAST, and allows the use of large and frequently
updated reference databases. CLAST was optimized for
both the NVIDIA Fermi and more recent Kepler GPU
architectures.

Implementation
Method of detecting similar regions
CLAST identifies similar regions between query and ref-
erence genome sequences by two phases of processing
(Figure 1). In the first phase, CLAST identifies “seeds”,
which are regions of reference genome sequences that
exactly match query sequences. In the second phase,
CLAST executes banded global or local alignment around
these seeds [15].
In the first phase, CLAST creates k-mers along the

reference genome sequence with a sliding window of
k bases with a step of p bases (p and k are user-adjusted
parameters). Next, CLAST constructs a read-only q-gram
index from the k-mers of the reference sequence that
dramatically accelerates similarity searching (the algo-
rithm to create the read-only q-gram index is described
below). Finally, CLAST creates seeds by referring k-mers
across the query sequences to the q-gram index with a
sliding window of k bases and a step of 1 base.
In the second phase, CLAST performs banded align-

ments (Figure 2A) for each seed to create “hit” with an
identity, a similarity score, and an E-value (Additional
file 2). To reduce the alignment calculation time, CLAST
only selects seeds that are adjacent to other seeds (within
-only q-gram index was generated from reference genome sequences
quences were searched against the read-only q-gram index. (C) Seeds
ere aligned to the reference genome sequences (Figure 2). (E) Results



Figure 2 Banded global and local alignment. (A) The gray area denotes the region of alignment in this banded alignment. Sequences were
aligned from the edges of the seed in both the global and local modes. Sequence comparison ended at the maximal alignment score in gray
area in the global alignment (B) and local alignment (C).
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a seed cluster; detail of the algorithm is described below).
This process dramatically reduces the calculation time
and cost of the subsequent global (default; Figure 2B)
and local (optional; Figure 2C) alignments. In the align-
ments within each seed cluster, CLAST detects similar
regions, and calculates identities, and similarity scores.
Additional file 3 describes the user-defined parameters
by which CLAST controls workflow, such as E-value
[16] threshold, k, and p.

General algorithm for creating the read-only q-gram
index in a parallel architecture
We generated a new algorithm for creating and referen-
cing a read-only q-gram index that was optimized for
parallel architectures, such as GPUs (Figure 3). This
q-gram index is not implemented in a hash table, and
consequently the memory requirements do not depend
on the variety of hash keys but rather on the number of
elements that the q-gram index contains. Therefore, in
this q-gram index, the key values can be as large as the
limit of variables (for instance, if a key is a 64-bit integer,
it can be from −263 to 263 − 1). This design enabled k to
have a value up to 31 in the CLAST q-gram index.
Firstly, we describe the procedure for constructing the

read-only q-gram index that consists of data and index
arrays from the original data that consisted of keys and
values (independent of each other) of each element in
the original data (Figure 3A). The data array consists of
a sorted key array and a value array sorted by keys. The
index array consists of the sorted non-redundant key
array (redundant key elements removed), a cellSize
array (the redundancy number of each key element),
and a gateway array (exclusive prefix summation of the
cellSize array).
Secondly, we describe the way to obtain the corre-

sponding values stored in the read-only q-gram index of
a queryKey (Figure 3B). A binary search of the sorted
non-redundant key array provides the corresponding
cellSize and gateway arrays of the queryKey (referred to as
gottenCellSize and gottenGateway). The queryKey corre-
sponds to the elements located from the gottenGateway to
[gottenGateway + gottenCellSize −1] in the value array (as
writeValues).
Finally, we describe the way to write the queryValue

array and its corresponding values stored in the read-only
q-gram index (Figure 3C). Referencing the read-only
q-gram index values by the queryKey (usually generated
from queryValue) array creates the gottenCellSize and
writeValue arrays. To assign each queryValue and corre-
sponding writeValue to a result array, a writeIndex array
was computed by an exclusive prefix sum operation of the
gottenCellSize array. The queryValue and corresponding
writeValues are written as the location from the write-
Index to the [writeIndex + gottenCellSize −1] in the result
array.
In CLAST, the key and value arrays of the original data

are the k-mer and k-mer position hash keys, respectively.
In addition to the general algorithm for creating the
q-gram index, CLAST overwrites elements of the cell-
Size array that are larger than the repeat threshold
(user-adjustable parameter) with zero to minimize unin-
formative sequence search seeds. In CLAST, the query-
Key and queryValue arrays are the hash key and position
information of each k-mer of the query sequences,
respectively. Therefore, in CLAST, the result array indi-
cates the correspondence of the k-mer position in the
reference and query sequences and thus is the seed
array.

Algorithm to reduce the number of seeds
We defined “surrounding area” of each seed as the
same query sequence, same reference sequence, within
z (user-adjustable parameter) bases parallel to the diag-
onal, and within w (user-adjustable parameter) bases in
the reference sequence direction (Figure 4A). First,
CLAST sorts seeds by location in the reference se-
quence (Figure 4B). Next, CLAST removes seeds the
next of those are not in surrounding area (Figure 4C).
Then, CLAST removes seeds the next of those are in
adjacent (Figure 4D). CLAST has removed isolated
seeds and arranges seed clusters into its representative
seeds for further steps (Figure 4E).



Figure 3 General algorithm for creating the read-only q-gram index in a parallel architecture. (A) The parallel algorithm to create a read-only
q-gram index. (B) The algorithm to obtain a corresponding value stored in the read-only q-gram index of a queryKey. (C) The parallel algorithm to
obtain the corresponding values stored in the read-only q-gram index of many queryKey.
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Splitting of long reference sequences for alignment
Because of the small working memory in GPUs, CLAST
is limited in the length of sequences that it can manipu-
late. Therefore, reference genome sequences longer than
the user-defined limit L (default value is 64 Mb) must
be split into shorter overlapping sequence fragments
with a CLAST accessory tool. Because all prokaryotic
genomes obtained to date are shorter than the default
value of L, these reference genome sequences do not
need to be fragmented for alignment.

Other specifications
Each CLAST process uses one GPU, and users can spe-
cify the GPU on which CLAST runs. This design allows
a GPU queuing system to control CLAST processes.

Results
CLAST accuracy evaluation by comparison with the
Smith–Waterman algorithm
To measure the search accuracy of CLAST, we com-
pared the output results of BLAST 2.2.25 [4], BLAT 34
[5], and CLAST against that of SSEARCH version 36.3.6
[7] (hereafter referred to as the accuracy test). We chose
Figure 4 Algorithm to reduce the number of seeds. (A) The gray area r
seeds that is to be reduced. The number of each seed represents the orde
the seeds. A balloon means that next seed is in surrounding area, and a x-m
algorithm to check the seeds. A x-mark means that next seed is in surroundin
(E) The seeds that remains in this example. The seeds are isolated, there is no
only BLAST and BLAT in the accuracy test because
these two tools are widely used in metagenomic analyses
(e.g. MEGAN, which is a commonly used taxonomic
and functional assignment tool for metagenomics, uses
BLAST results for their taxonomic and functional as-
signment [17]; MG-RAST, which is a commonly used
metagenomic analyses web service, uses BLAT for their
sequence similarity analyses [18]). This comparison
consisted of six phases. First, we obtained the reference
genome sequences of all bacteria and archaea in the
National Center for Biotechnology Information (NCBI)
RefSeq Genome database (October 2011, 4.3 GB, 2,314
sequences) [19] that were completely sequenced and
had full taxonomic information. Second, we created
two query sets (100-base test; 10,000 reads of 100 bases
as simulated-Illumina reads, 800-base test; 10,000 reads
of 800 bases as simulated-454 reads) by randomly re-
trieving 100-base and 800-base sequence fragments
from the 2,314 reference genome sequences. Thirdly,
these query sets were searched against the reference
genome sequences using SSEARCH, BLAST, BLAT,
and CLAST. Fourthly, we removed hits from the results
for each alignment tool if the assigned regions and
epresents the “surrounding area” of each seed. (B) An example of
r of seeds that is sorted by its position. (C) The first algorithm to check
ark means not. CLAST removes the seeds with x-mark. (D) The second

g area, and a baloon means not. CLAST removes the seeds with x-mark.
seeds in surrounding area.
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query were from the same reference genome sequence.
This step makes the result equivalent to a search for
the query sequence in the reference sequence database
without the original query genome sequence. Fifthly,
we selected the best non-self hits from the result of
each tools with the scoring criteria dependent on the
alignment tool. Then sixthly, BLAST, BLAT, and CLAST
were considered to accurately find a hit when they re-
ported the same hit and alignment position as SSEARCH.
This accuracy test was performed on a desktop computer
with an Intel Xeon X5670 6 core 2.93 GHz CPU, 48 GB
main memory, and two NVIDIA Tesla C2050 GPUs.

Results of comparison of search accuracy
In both the 100- and 800-base accuracy tests, the search
accuracy of CLAST was comparable to that of BLAST,
both when bit scores were >90 (100-base test) or 200
(800-base test) and when bit scores were <90 (100-base
Figure 5 Result of each accuracy test. Both of the graph represent the r
represents bit score calculated by SSEARCH, and vertical axis represents rat
(B) Results of 800 base accuracy test.
test) or 200 (800-base test). The search accuracy of CLAST
was greater than that of BLAT in nearly all cases (Figure 5
and Additional file 4).

Evaluating speed, sensitivity, and accuracy of taxonomic
assignments
Massive metagenomic analyses generally depend on the
alignment for each read against reference genomes to
assign taxonomy for the read. Therefore, we designed a
simulated metagenomic analysis test to evaluate the
sensitivity and accuracy of the taxonomic assignments as
well as calculation time.
The simulated metagenomic analysis test consisted of

six phases. First, we created two query sets (100,000 reads
of 100 or 800 bases) from 2,314 reference genome
sequences as in the accuracy test. Second, we searched
for similar regions between each query sequence and
the reference genome sequences. Third, we removed
esults of simulated metagenomic analysis test. Horizontal axis
io of accurately found hits. (A) Results of 100 base accuracy test.
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hits from the results if the assigned region and query were
from the same reference genome sequence. Fourth, we
selected the best non-self hits from the result of each
tool, as in the previous accuracy test. Fifth, taxonomic
assignment of the query sequences was performed using
taxonomy of the best non-self hits (Figure 6A). Finally, we
counted the number of query sequences that had similar
regions in any reference genome (total reported hits) and
the number of queries that were correctly taxonomically
assigned (correct genus assignments) (Figure 6B). We
Figure 6 Comparison of the search accuracy of different alignment tool
metagenomic analysis test was performed in the following steps: 1: Query seq
reference genome sequences. 2: Sequence similarities were calculated betwee
the original reference sequence, it was deleted from the results. 4: The best n
result of taxonomic assignment were correct or not were assessed based on t
compared the number of total reported hits, the number of
correct genus assignments, and the correct genus assigned
ratio (CGA ratio; number of correct genus assignments/
number of total reported hits) among the tools tested. Total
reported hits is a measure of the alignment tool sensitivity,
and CGA ratio is a measure of the accuracy of taxonomic
assignment. Since more sensitive similarity search tools will
detect weaker similarity, and consequently will have a
greater number of total reported hits, these tools are more
useful for motif searching (Figure 6).
s. (A) Taxonomic assignment of the query sequences in the simulated
uences were generated by randomly selecting short fragments from
n the query and reference genome sequences. 3: If a query matched to
on-self hits were selected for taxonomic assignment. (B)Whether the
he taxonomic databases.
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In the simulated metagenomic analysis test, we com-
pared CLAST with other similar tools, namely BLAST
2.2.25, BLAT 34, FR-HIT v0.6, Burrows–Wheeler Aligner
(BWA)/BWA-SW 0.5.9, Bowtie 2 2.0.4, and G-BLASTN
1.1, which depends on BLAST 2.2.28+ [4-6,20-22]. G-
BLASTN was separately compared with CLAST because
G-BLASTN was designed for the NVIDIA Kepler archi-
tecture GPU. The default command line options were
used for each alignment tool tested (Additional file 5).
BWA/BWA-SW 0.5.9, Bowtie 2 2.0.4, and BLAT 34 can-
not handle databases larger than 4 GB [23-25]. Therefore,
we separated the reference genome sequences into three
sets for testing these programs. Similarity search results
from the three sets were merged for comparison with the
results from BLAST, CLAST, and FR-HIT. The best
non-self hits were selected using CIGAR code and MD
tag (BWA), E-value (FR-HIT), and alignment score
(Bowtie 2, BWA-SW, BLAST, BLAT, and CLAST). The
simulated metagenomic analysis test (except for G-
BLASTN) was performed on the same desktop com-
puter as the accuracy test.
Results of comparison of calculation time between CLAST
and other tools
In the 100-base test, Bowtie 2 (global mode) was the
fastest tool, followed by Bowtie 2 (local mode), BWA,
CLAST (global mode), CLAST (local mode), BLAT, FR-
HIT (both global and local modes), and BLAST. CLAST
(global mode) was 72.6 times faster than BLAST.
CLAST (local mode) speed was comparable to CLAST
(global mode) and 2.35 times faster than BLAT.
In the 800-base test, Bowtie 2 (global mode) and

CLAST (both global and local modes) were the fastest
tools. The calculation time of CLAST was comparable
to Bowtie 2 (global mode) and faster than BWA-SW
(Figure 7). CLAST (global mode) was 9.64 and 80.8
times faster than BLAT and BLAST, respectively.
Figure 7 Search calculation time of each simulated metagenomic ana
against 2,314 reference genome sequences. Horizontal axis represents calcu
Results of comparison of similarity search sensitivity and
accuracy of taxonomic assignment
In the 100-base test, the highest number of total re-
ported hits (highest sensitivity) was obtained with
BLAST (Figure 8 and Additional file 6), followed by
FR-HIT (local mode), CLAST (local mode), and the
remaining tools. In the 800-base test, the highest number
of total reported hits was also obtained with BLAST;
however, CLAST (local mode) obtained nearly as many
total reported hits, whereas the other tools obtained
lower numbers. These results indicate that, for both
read lengths, BLAST, FR-HIT (local mode), and CLAST
(local mode) achieved high sensitivity, and that CLAST
(local mode) is sensitive enough to map metagenomic
reads to reference genome sequences.
For both read lengths, Bowtie 2 (global mode), CLAST

(global mode), and FR-HIT (global mode) achieved higher
CGA ratios (greater accuracy) than the other tools. In the
100-base test, BWA and Bowtie 2 (global mode) achieved
very high CGA ratios (98 and 96%, respectively), but these
algorithms produced fewer total reported hits than the
other tools. In the 800-base test, the number of total
reported hits from BWA-SW was 0.96 and 1.16 times
greater than from CLAST (global mode) and FR-HIT (global
mode). However, the CGA ratio of BWA-SW was much
lower than that of FR-HIT (global mode) and CLAST (global
mode) (Figure 8B) because the number of incorrect genus
assignments of BWA-SW was 1.58 and 3.79 times greater
than those of CLAST (global mode) and FR-HIT (global
mode), respectively (Additional file 6). Similarly, the number
of total reported hits of Bowtie 2 (local mode) was 1.10 and
1.33 times greater than those of CLAST (global mode) and
FR-HIT (global mode), but the number of incorrect genus
assignments of Bowtie 2 (local mode) was 1.80 and 4.31
times greater than those of CLAST (global mode) and FR-
HIT (global mode) (Additional file 6). These results indicate
that global alignment is useful for the purpose of taxonomic
assignment. BWA, Bowtie 2 (global mode), FR-HIT (global
lysis test. The time for each tool to search 100,000 query reads
lation time. (A) Results of 100 base test. (B) Results of 800 base test.



Figure 8 Results of the simulated metagenomic analysis test. Blue: Number of query reads that had at least one similar sequence in the
database (total reported hits). Red: Number of query reads with correct taxonomic assignment (correct genus assignments). Percentages are the
CGA ratio (correct genus assignments/total reported hits × 100). Horizontal axis represents number of queries. (A) Results of 100 base test.
(B) Results of 800 base test.
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mode), and CLAST (global mode) are able to assign
reads to taxonomic groups with reasonably high accur-
acy. Especially among these four tools, CLAST (global
mode) and FR-HIT (global mode) achieved not only
high accuracy of taxonomic assignment but also moder-
ate search sensitivity (Figure 9). Accuracy of taxonomic
assignment of CLAST (global mode) and FR-HIT (global
mode) excelled those of Bowtie 2 (local mode) and BWA-
SW, and search sensitivity of CLAST (global mode) and
FR-HIT (global mode) excelled those of Bowtie 2 (global
mode) and BWA. In addition, by changing the identity
threshold and the coverage threshold, the relationships
between total reported hits and correct genus assignment
of BLAST, BLAT, and CLAST (both global and local
modes) were shown as curves (Figure 10 and Additional
file 7). Although, the curves of the all tools were resem-
bled each other, the curve of CLAST (global mode) was
slightly higher than that of other tools in the 100 base test.
The point of Bowtie 2 (global mode) was near to that of
CLAST (global mode) with 90% identity threshold in both
tests. The point of Bowtie 2 (local mode) achieved lower
CGA ratio than the curves of BLAST, BLAT, and CLAST
(global mode) in the 100 base test, and was near to the
curve of BLAT in the 800 base test.

Calculation time using multiple GPUs
We ran CLAST on one, two, and eight GPUs with
actual metagenomic reads to investigate the effect of



Figure 9 Relationships of sensitivity (total reported hits) and specificity (correct genus assignments) for each software both of the 100
base test and the 800 base test. Each point represents the result of simulated metagenomic analysis of BLAST, BLAT, CLAST (both global and
local mode), FR-HIT (both global and local mode), BWA, BWA-SW, Bowtie 2 (both global and local mode). The gray slanting line of each graph
represents 100 % CGA ratio. All points cannot be above the gray line. Horizontal axis represents total reported hits, and vertical axis represents
correct genus assignments. (A) Results of 100 base test. (B) Results of 800 base test.
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GPU number on the calculation time. The reference
genome sequences were the same as that used in the sim-
ulated metagenomic analysis test. The query sequences,
which are the Illumina Genome Analyzer IIx reads from
a human gut microbial community, were obtained from
Figure 10 Relationships between sensitivity and specificity of BLAST,
100 base test and the 800 base test. Each curve represents the results o
global and local modes) under several thresholds. Each curve consists of th
with 5 different thresholds. One point is the result that was not filtered by any
the others are based on the results that were filtered by an identity threshold
and 80%. The coverage threshold was unified to 50%. In all curves, high ident
genus assignments (Additional file 7). The points of Bowtie 2 results (both glo
thresholds (same with the points in Figure 9) are also plotted to be able to co
reported hits, and vertical axis represents correct genus assignments. (A) Resu
Qin et al. [2] (NCBI SRA accession number ERR011343;
75 bp, 21,739,219 reads). For this test, we used a 4-node
GPU server. Each of the node had an Intel Xeon X5690 6
core 3.47 GHz CPU, 64 GB main memory, and two NVI-
DIA Tesla C2075 GPUs.
BLAT, and CLAST by changing the identity threshold both of the
f simulated metagenomic analysis of BLAST, BLAT, and CLAST (both
e 5 points, indicating the results of simulated metagenomic analysis
identity and coverage thresholds (same with the point in Figure 9), and
and a coverage threshold. The identity thresholds were 95%, 90%, 85%,
ity thresholds represent small numbers of total reported hits and correct
bal and local modes) that were not filtered by any identity and coverage
mpare with the curves of other tools. Horizontal axis represents total
lts of 100 base test. (B) Results of 800 base test.
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Results of calculation time using multiple GPUs
Total similarity search-calculation time for CLAST with
the real metagenomic reads showed a linear inverse rela-
tionship with GPU number (Figure 11). With only one
GPU, the calculation times of CLAST were 355 min
(global mode) and 373 min (local mode) (Figure 11). With
two GPUs, calculation times of CLAST were 188 min
(global mode) and 192 min (local mode), and with eight
GPUs, calculation times of CLAST were 49 min (global
mode) and 50 min (local mode). This result indicates
that CLAST function can be greatly accelerated by using
multiple GPUs.

Comparison with G-BLASTN
In addition to comparison of CLAST with CPU-based
tools, we compared the speed, sensitivity, and accuracy
of CLAST taxonomic assignments to those of G-BLASTN
(BLAST algorithm optimized for Kepler architecture GPU
computing). The dataset and the analysis pipeline for
comparison with G-BLASTN were the same as those of
the simulated metagenomic analysis test. We used a work-
station with two Intel Xeon E5-2687 W 8 core 3.10 GHz
CPUs, 62.9 GB main memory, and two NVIDIA Tesla
K20m GPUs (hereafter referred to as the two K20 ma-
chine). If the CLAST algorithm achieves the same speed
as that of G-BLASTN, G-BLASTN (default settings)
would be approximately two times as fast as CLAST
(default settings) on the two K20 machine because
G-BLASTN automatically uses all available GPUs, and
Figure 11 Calculation time of CLAST with real metagenomic reads.
one CLAST process uses only the one specified GPU. We
compared CLAST to G-BLASTN run in the megablast
mode (designed to identify only similar sequences) and
blastn modes (command line parameters are -use_gpu
true -outfmt 6 -task megablast and -use_gpu true -outfmt
6 -task blastn).

Results of comparison with G-BLASTN
In the simulated metagenomic analysis test, the G-BLASTN
(blastn mode) analysis took 15,970 s when the query length
was 100 bases, and 136,560 s when the query length was
800 bases, on the two K20 machines. On the other hand,
CLAST took 210 s (global mode) and 215 s (local mode)
for the 100-base query length, and 1,248 s (global mode)
and 1,352 s (local mode) for the 800-base query length
in the same GPU architecture. In other words, CLAST
was 150–200 times faster than G-BLASTN (blastn mode).
Furthermore, G-BLASTN (megablast mode) took 199 s
when query length was 100 bases, and 724 s when query
length was 800 bases. Thus, CLAST was 1.07–1.85 times
faster than G-BLASTN (megablast mode). These results
suggest that CLAST is much faster than G-BLASTN
(blastn mode) and slightly faster than G-BLASTN (mega-
blast mode).
The total reported hits and correct genus assignments

of G-BLASTN (blastn mode) were 99,841 and 56,151,
respectively (CGA ratio: 58%), when the query length
was 100 bases. The total reported hits and correct genus
assignments of G-BLASTN (blastn mode) were 100,000
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and 62,728, respectively (CGA ratio: 63%), when the query
length was 800 bases. Thus, G-BLASTN (blastn mode)
performed similarly to BLAST in the simulated metage-
nomic analysis test. This result suggests that CLAST (local
mode) can detect as much information as G-BLASTN
(blastn mode) when the query length is 800 bases.
The total reported hits and correct genus assignments

of G-BLASTN (megablast mode) were 46,720 and 42,664,
respectively (CGA ratio: 91%), when the query length was
100 bases. The total reported hits and correct genus
assignments of G-BLASTN (megablast mode) were 65,108
and 52,754, respectively (CGA ratio: 81%), when the query
length was 800 bases. Thus, G-BLASTN (megablast mode)
was similar to Bowtie 2 (local mode) in the simulated
metagenomic analysis test. This result showed that the
accuracy of taxonomic assignments of CLAST (global
mode) is greater than that of G-BLASTN (megablast
mode) and that the sensitivity of CLAST (local mode) is
greater than that of G-BLASTN (megablast mode).

Discussion
As mentioned above, both high speed and accuracy of
similarity searching are necessary for analyses of the large
number of reads, often from uncharacterized microbes,
derived from high-throughput several metagenomic se-
quencing projects. CLAST is an ultrafast and sensitive
similarity-searching tool that is optimized for massive
metagenomic analyses with next-generation sequencing
technologies (Figure 12). Here we demonstrated the
excellent performance of the CLAST tool in terms of
both computation speed and sensitivity. The high speed
of CLAST largely comes from the use of GPUs, which
are relatively inexpensive, powerful, and widely used to
Figure 12 Scatter diagram of sensitivity versus time use.
accelerate high-performance computing. The sensitivity
of CLAST largely comes from the use of banded dynamic
alignment as a programming algorithm for seed extension.
Moreover, the speed and sensitivity of CLAST can be
improved by specifying longer or shorter k values, re-
spectively. However, CLAST may not be appropriate for
users who are not familiar with GPU computing, and
because CLAST is designed for metagenomic analyses,
other tools are more suitable in other situations. For
example, BWA or Bowtie 2 are more appropriate for data
analyses in genome resequencing projects for which there
is a reference genome, and thus a higher-sensitivity tool is
not required (Figure 12).
In addition to its speed and sensitivity, the dynamic

programming of CLAST also allows both global and
local alignments. Global alignment is useful for assigning
taxonomic assignment of metagenomic reads because
global alignments can evaluates similarity of large regions
of the query and reference genome sequences (Figure 8).
Our results demonstrate that CLAST (global mode) pro-
duces highly accurate taxonomic assignments, similar
to several other global alignment tools. CLAST (global
mode) also achieved relatively high sensitivity, which is
higher than those of BWA and Bowtie 2 (global mode)
(Figure 8). On the other hand, local alignment is useful for
motif searching, which is often used in functional metage-
nomics [26], because it can identify partial sequence iden-
tity between reads and reference genome sequences. The
unique ability of CLAST to perform both local and global
alignment greatly enhances its usefulness in metagenomics
analyses (see Additional file 8).
Large-scale metagenomic analyses often require use of

very large and frequently updated reference databases.
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CLAST is exceptionally suited for these analyses because
it requires minimal database preprocessing for larger
genome sequences and does not have a database size
limitation. In addition, the maximum memory usage of
CLAST is independent of the size of the reference gen-
ome sequences in the database.
Although some other alignment tools are able to per-

form large-scale similarity searches, they tend to require
more database preprocessing and memory usage than
CLAST. For example, BLAST requires database prepro-
cessing, and the calculation time of this preprocessing is
highly related to the size of database. Although BLAT
does not require preprocessing, it cannot utilize databases
larger than 4 GB [23]. FR-HIT does not require prepro-
cessing, but its memory usage is typically two or three
times larger than the size of the database [6]. Burrows–
Wheeler transform-based mapping tools usually also re-
quire database preprocessing, but because these mapping
tools use block sorting, the preprocessing time is generally
incidental. For instance, preprocessing of the human
genome database (~3 GB) by Burrows–Wheeler transform-
based tools usually takes only a few hours [24,25]. However,
the microbial genome sequence database now exceeds
5 GB, and the NCBI non-redundant nucleotide sequence
database is now >40 GB, and these databases will continue
to grow. Given its unique ability to use these extremely
large and rapidly growing databases, CLAST shows great
promise as an alignment tool for genomic and metage-
nomic analyses (see Additional file 8).
CLAST requires ~2 GB of main memory and ~2 GB of

VRAM, under default settings, and usual metagenomic
analyses. More VRAM may be consumed when numerous
outputs are produced compared with the input query and
reference sequences, such as in 16S rRNA gene amplicon
sequencing analyses, but users can manipulate the VRAM
usage by specifying specific parameters. The low memory
usage of CLAST makes it a reasonable approach for
large-scale metagenomic analyses by researchers who
do not have access to specialized large-memory com-
puters. This low memory usage is achieved by dividing
both the reference genome sequences and query sequences
into smaller units that are loaded stepwise to the main
memory. Although CLAST depends on a q-gram index
of reference sequences, creation of the read-only q-gram
index is also performed by the GPUs and therefore does
not add substantially to the running time. This feature is
one of the most important and innovative advances of
CLAST. In contrast, BLAT and FR-HIT load all reference
genome sequence data to the main memory at the same
time, thus requiring a larger main memory for larger data-
bases. Indeed, FR-HIT used >13 GB of memory in our
simulated metagenomic analysis test.
To further take advantage of parallel-computation power,

CLAST can be run by multiple GPUs, dramatically
accelerating the homology search. This feature, combined
with its low memory usage, makes CLAST appropriate
for GPU clusters and supercomputers, which are often
equipped with nodes having more than one GPU and
less than 100 GB of memory. The source code of the
CLAST tool is attached to this paper (Additional file 9).

Conclusions
The novel high-speed and sensitive sequence similarity
search tool CLAST was designed and validated for
metagenomic analysis applications. CLAST was capable
of identifying sequence similarities ~80.8 times faster
than BLAST and 9.6 times faster than BLAT owing to a
GPU-based parallelization technique using CUDA com-
puting architecture. To improve the sensitivity of simi-
larity searching for taxonomic assignment and motif
searching, CLAST supports both global and local align-
ment. Furthermore, CLAST does not require extensive
database preprocessing, and consequently can be run
on a standard desktop computer with NVIDIA GPUs.
Taken together, our results demonstrate that CLAST run
on a GPU-oriented cluster or supercomputer has the
potential to be one of the most powerful and realistic
approaches to analyze the massive amount of sequence
data from next-generation sequencing technologies.

Availability and requirements

� Project name: CLAST
� Project home page: https://github.com/masayano/

CLAST
� Operating system(s): Platform independent
� Programming language: CUDA
� Other requirements: NVIDIA Fermi architecture

GPU, CUDA 4.0
� License: GNU GPL
� Any restrictions to use by non-academics: None

Additional files

Additional file 1: Features of GPU-based similarity searching tools.
(*) CUDA SW++ calculates 17 giga cell updates per second on a single-GPU
GeForce GTX 280 graphics card [8]. Thus, it takes ~4 million seconds for
CUDA SW++ to search for similar regions between 1 million 100-base query
sequences and 4 billion bases of reference sequences. Therefore, CUDA SW
++ is not suitable for analysis of reads from next-generation sequencing
technologies. (**) GPU-BLAST is ~3–4 times faster than NCBI BLAST, but it is
slower than BLAT [5,9]. (***) Demonstrated in the Results section.

Additional file 2: Information about the similar regions of CLAST hits.

Additional file 3: Parameters used in CLAST and its description.

Additional file 4: Detailed results of the accuracy test.

Additional file 5: Command line parameters for each tool in the
simulated metagenomic analysis test.

Additional file 6: Detailed results of the simulated metagenomic
analysis test.
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Additional file 7: Detailed results of the simulated metagenomic
analysis test with changing threshold values.

Additional file 8: Specifications of the tools used in the simulated
metagenomic analysis test. (*) BWA/BWA-SW 0.5.9 was used in this
study; however, more recent BWA algorithms (since 0.6.x) can now utilize
genomes >4 GB [24].

Additional file 9: Source code of the CLAST tool.
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